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COMMUTING TRACES AND LIE ISOMORPHISMS

ON GENERALIZED MATRIX ALGEBRAS

ZHANKUI XIAO AND FENG WEI

(Communicated by H. Radjavi)

Abstract. Let G be a generalized matrix algebra over a commutative ring R , q : G ×G −→ G
be an R -bilinear mapping and Tq : : G −→ G be a trace of q . We describe the form of Tq

satisfying the condition Tq(G)G = GTq(G) for all G ∈ G . The question of when Tq has
the proper form is considered. Using the aforementioned trace function, we establish sufficient
conditions for each Lie isomorphism of G to be almost standard. As applications we characterize
Lie isomorphisms of full matrix algebras, of triangular algebras and of certain unital algebras
with nontrivial idempotents. Some further research topics related to current work are proposed
at the end of this article.

1. Introduction

Let R be a commutative ring with identity, A be a unital algebra over R and
Z (A ) be the center of A . Let us denote the commutator or the Lie product of the
elements a,b ∈ A by [a,b] = ab−ba . Recall that an R -linear mapping f : A −→ A
is said to be commuting if [f(a),a] = 0 for all a ∈ A . When we investigate a com-
muting mapping, the principal task is to describe its form. The identity mapping and
every mapping which has its range in Z (A ) are two classical examples of commuting
mappings. Furthermore, the sum and the pointwise product of commuting mappings
are also commuting mappings. We encourage the reader to read the well-written survey
paper [18], in which the author presented the development of the theory of commuting
mappings and their applications in details.

Let n be a positive integer and q : A n −→ A . We say that q is n -linear if
q(a1, · · · ,an) is R -linear in each variable ai , that is, q(a1, · · · ,rai + sbi, · · · ,an) =
rq(a1, · · · ,ai, · · · ,an)+sq(a1, · · · ,bi, · · · ,an) for all r,s∈R,ai,bi ∈A and i = 1,2, · · · ,n .
The mapping Tq : A −→ A defined by Tq(a) = q(a,a, · · · ,a) is called a trace of q .
We say that a commuting trace Tq is proper if it is of the form

Tq(a) =
n

∑
i=0

μi(a)an−i, ∀a ∈ A ,
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where μi(0 � i � n) is a mapping from A into Z (A ) and each μi(0 � i � n) is in fact
a trace of the i-linear mapping qi from A i into Z (A ) . Let n = 1 and f : A −→ A
be an R -linear mapping. In this case, an arbitrary trace Tf of f exactly equals to itself.
Moreover, if a commuting trace Tf of f is proper, then it has the form

Tf(a) = za+ η(a), ∀a ∈ A ,

where z ∈ Z (A ) and η is an R -linear mapping from A into Z (A ) . Let us see
the case of n = 2. Suppose that g : A ×A −→ A is an R -bilinear mapping. If a
commuting trace Tg of g is proper, then it is of the form

Tg(a) = za2 + μ(a)a+ ν(a), ∀a ∈ A ,

where z ∈ Z (A ) , μ is an R -linear mapping from A into Z (A ) and ν is a trace
of some bilinear mapping. It was Brešar who initiated the study of commuting traces
of multilinear mappings in [16, 17], where he investigated the structure of commuting
traces of (bi-)linear mappings on prime rings. It has turned out that this study is closely
related to the problem of characterizing Lie isomorphisms or Lie derivations of asso-
ciative rings [6]. Lee et al further generalized Brešar’s results by showing that each
commuting trace of an arbitrary multilinear mapping on a prime ring has the so-called
proper form [35].

Cheung in [26] studied commuting mappings of triangular algebras (e.g., of up-
per triangular matrix algebras and nest algebras). He determined the class of triangular
algebras for which every commuting mapping is proper. Xiao and Wei [60] extended
Cheung’s result to the generalized matrix algebra case. They established sufficient
conditions for each commuting mapping of a generalized matrix algebra

[
A M
N B

]
to be

proper. Motivated by the results of Brešar and Cheung, Benkovič and Eremita [11]
considered commuting traces of bilinear mappings on a triangular algebra

[
A M
O B

]
. They

gave conditions under which every commuting trace of a triangular algebra
[

A M
O B

]
is

proper. It is worth to mention that the form of commuting traces of multilinear map-
pings of upper triangular matrix algebras was earlier described in [4]. One of the main
aims of this article is to provide a sufficient condition for each commuting trace of
arbitrary bilinear mapping on a generalized matrix algebra

[
A M
N B

]
to be proper. Con-

sequently, this make it possible for us to characterize commuting traces of bilinear
mappings on full matrix algebras, those of bilinear mappings on triangular algebras and
those of bilinear mappings on certain unital algebras with a nontrivial idempotent.

Another important purpose of this article is to address the Lie isomorphisms prob-
lem of generalized matrix algebras. At his 1961 AMS Hour Talk, Herstein proposed
many problems concerning the structure of Jordan and Lie mappings in associative sim-
ple and prime rings [32]. The renowned Herstein’s Lie-type mapping research program
was formulated since then. The involved Lie mappings mainly include Lie isomor-
phisms, Lie triple isomorphisms, Lie derivations and Lie triple derivations et al. Given
a commutative ring R with identity and two associative R -algebras A and B , one
can define a Lie isomorphism from A into B to be an R -linear bijective mapping l
satisfying the condition

l([a,b]) = [l(a), l(b)], ∀a,b ∈ A .
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For example, an isomorphism or the negative of an anti-isomorphism of one algebra
onto another is also a Lie isomorphism. One can ask whether the converse is true
in some special cases. That is, does every Lie isomorphism between certain associa-
tive algebras arise from isomorphisms and anti-isomorphisms in the sense of modulo
mappings whose range is central? If m is an isomorphism or the negative of an anti-
isomorphism from A onto B and n is an R -linear mapping from A into the center
Z (B) of B such that n([a,b]) = 0 for all a,b ∈ A , then the mapping

l = m+n (♠)

is a Lie homomorphism. We shall say that a Lie isomorphism l : A −→ B is standard
in the case where it can be expressed in the preceding form (♠) .

The resolution of Herstein’s Lie isomorphisms problem in matrix algebra back-
ground has been well-known for a long time. Hua [33] proved that every Lie auto-
morphism of the full matrix algebra Mn(D)(n � 3) over a division ring D is of the
standard form (♠) . This result was extended to the nonlinear case by Dolinar [30]
and Šemrl [57] and was further refined by them. Doković [28] showed that every Lie
automorphism of upper triangular matrix algebras Tn(R) over a commutative ring R
without nontrivial idempotents has the standard form as well. Marcoux and Sourour
[40] classified the linear mappings preserving commutativity in both directions (i.e.,
[x,y] = 0 if and only if [f(x), f(y)] = 0) on upper triangular matrix algebras Tn(F) over
a field F . Such a mapping is either the sum of an algebra automorphism of Tn(F)
(which is inner) and a mapping into the center FI , or the sum of the negative of an
algebra anti-automorphism and a mapping into the center FI . The classification of the
Lie automorphisms of Tn(F) is obtained as a consequence. Benkovič and Eremita
[11] directly applied the theory of commuting traces to the study of Lie isomorphisms
on a triangular algebra

[
A M
O B

]
. They provided sufficient conditions under which ev-

ery commuting trace of
[

A M
O B

]
is proper. This is directly applied to the study of Lie

isomorphisms of
[

A M
O B

]
. It turns out that under some mild assumptions, each Lie

isomorphism of
[

A M
O B

]
has the standard form (♠) . On the other hand, Martindale

together with some of his students studied Lie isomorphisms problems of associative
rings in a series of papers [13, 14, 42, 43, 45, 46, 47, 48, 56]. Speaking in a loose
manner, the problems have been resolved provided that the rings in question contain
certain nontrivial idempotents. Simultaneously, the treatment of the problems has been
extended from simple rings to prime rings. The question whether the results on Lie
isomorphisms can be obtained in rings containing no nontrivial idempotents has been
open for a long time. The first idempotent free result on Lie isomorphisms was ob-
tained in 1993 by Brešar [16]. Under some mild technical assumptions (which were
removed somewhat later [19]), he described the form of a Lie isomorphism between
arbitrary prime rings. This was also the first paper based on applications of the the-
ory of functional identities. Just recently, Beidar, Brešar, Chebotar, Martindale jointly
gave a final solution to the long-standing Herstein’s conjecture of Lie isomorphisms
of prime rings using the theory of functional identities, see the paper [5] and refer-
ences therein. Simultaneously, Lie isomorphisms between rings and between (non-
)self-adjoint operator algebras have received a fair amount of attention and have also
been intensively studied. The involved rings and operator algebras include (semi-)prime
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rings, the algebra of bounded linear operators, C∗ -algebras, von Neumann algebras,
H∗ -algebras, Banach space nest algebras, Hilbert space nest algebras, reflexive alge-
bras, see [1, 2, 3, 21, 22, 23, 24, 39, 41, 49, 50, 51, 54, 55, 57, 58, 59, 61, 62].

This is the first paper in a series of three that we are planning on this topic. The
other two papers will be dedicated to studying, in more detail, centralizing traces and
Lie triple isomorphisms on triangular algebras and those mappings on generalized ma-
trix algebras [38]. The roadmap of this paper is as follows. Section 2 contains the
definition of generalized matrix algebra and some classical examples. In Section 3 we
provide sufficient conditions for each commuting trace of an arbitrary bilinear mapping
on a generalized matrix algebra

[
A M
N B

]
to be proper (Theorem 3.4). And then we apply

this result to describe the commuting traces of various generalized matrix algebras. In
Section 4 we will give sufficient conditions under which every Lie isomorphism from
a generalized matrix algebra into another one has the standard form (Theorem 4.3). As
corollaries of Theorem 4.3, characterizations of Lie isomorphisms on triangular alge-
bras, on full matrix algebras and on certain unital algebras with nontrivial idempotents
are obtained. The last section contains some potential future research topics related to
our current work.

2. Generalized matrix algebras and examples

Let us begin with the definition of generalized matrix algebras given by a Morita
context. Let R be a commutative ring with identity. A Morita context consists of two
R -algebras A and B , two bimodules AMB and BNA , and two bimodule homomor-
phisms called the pairings ΦMN : M⊗

B
N −→ A and ΨNM : N⊗

A
M −→ B satisfying the

following commutative diagrams:

M⊗
B

N⊗
A

M ΦMN⊗IM ��

IM⊗ΨNM

��

A⊗
A

M

∼=

��M⊗
B

B ∼= �� M

and N⊗
A

M⊗
B

N ΨNM⊗IN ��

IN⊗ΦMN

��

B⊗
B

N

∼=

��N⊗
A

A ∼= �� N .

Let us write this Morita context as (A,B,M,N,ΦMN ,ΨNM) . We refer the reader to
[53] for the basic properties of Morita contexts. If (A,B,M,N, ΦMN ,ΨNM) is a Morita
context, then the set

[
A M
N B

]
=

{[
a m
n b

]
a ∈ A,m ∈ M,n ∈ N,b ∈ B

}

form an R -algebra under matrix-like addition and matrix-like multiplication, where at
least one of the two bimodules M and N is distinct from zero. Such an R -algebra is
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usually called a generalized matrix algebra of order 2 and is denoted by

G = G (A,M,N,B) =
[

A M
N B

]
.

In a similar way, one can define a generalized matrix algebra of order n > 2. It was
shown that up to isomorphism, arbitrary generalized matrix algebra of order n (n � 2)
is a generalized matrix algebra of order 2 [36, Example 2.2]. If one of the modules M
and N is zero, then G exactly degenerates to an upper triangular algebra or a lower
triangular algebra. In this case, we denote the resulted upper triangular algebra (resp.
lower triangular algebra) by

T U = T (A,M,B) =
[

A M
O B

] (
resp. TL = T (A,N,B) =

[
A O
N B

])

Note that our current generalized matrix algebras contain those generalized matrix al-
gebras in the sense of Brown [20] as special cases. Let Mn(R) be the full matrix
algebra consisting of all n×n matrices over R . It is worth to point out that the notion
of generalized matrix algebras efficiently unifies triangular algebras with full matrix
algebras together. The distinguished feature of our systematic work is to deal with all
questions related to (non-)linear mappings of triangular algebras and of full matrix al-
gebras under a unified frame, which is the admired generalized matrix algebras frame,
see [36, 37, 60].

Let us list some classical examples of generalized matrix algebras which will be
revisited in the sequel (Section 3 and Section 4). Since these examples have already
been presented in many papers, we just state their title without any introduction. We
refer the reader to [36, 60] for more details.

(a) Unital algebras with nontrivial idempotents;

(b) Full matrix algebras;

(c) Inflated algebras;

(d) Upper and lower triangular matrix algebras;

(e) Hilbert space nest algebras

3. Commuting traces of bilinear mappings on generalized matrix algebras

In this section we will establish sufficient conditions for each commuting trace of
an arbitrary bilinear mapping on a generalized matrix algebra G to be proper (Theorem
3.4). Consequently, we are able to describe commuting traces of bilinear mappings on
triangular algebras, on full matrix algebras and on certain unital algebras with nontrivial
idempotents. The most important is that Theorem 3.4 will be used to characterize Lie
isomorphisms from a generalized matrix algebra into another in Section 4.
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Throughout this section, we denote the generalized matrix algebra of order 2 orig-
inated from the Morita context (A,B,A MB,B NA,ΦMN ,ΨNM) by

G = G (A,M,N,B) =
[

A M
N B

]
,

where at least one of the two bimodules M and N is distinct from zero. We always
assume that M is faithful as a left A-module and also as a right B-module, but no any
constraint conditions on N . The center of G is

Z (G ) = { a⊕b am = mb, na = bn, ∀ m ∈ M, ∀n ∈ N} .

Indeed, by [34, Lemma 1] we know that the center Z (G ) consists of all diagonal
matrices a⊕ b , where a ∈ Z (A) , b ∈ Z (B) and am = mb , na = bn for all m ∈
M,n ∈ N . However, in our situation which M is faithful as a left A-module and also as
a right B-module, the conditions that a ∈Z (A) and b ∈ Z (B) become redundant and
can be deleted. Indeed, if am = mb for all m ∈ M , then for any a′ ∈ A we get

(aa′ −a′a)m = a(a′m)−a′(am) = (a′m)b−a′(mb) = 0.

The assumption that M is faithful as a left A-module leads to aa′ −a′a = 0 and hence
a ∈ Z (A) . Likewise, we also have b ∈ Z (B) .

Let us define two natural R -linear projections πA : G → A and πB : G → B by

πA :

[
a m
n b

]
�−→ a and πB :

[
a m
n b

]
�−→ b.

By the above paragraph, it is not difficult to see that πA (Z (G )) is a subalgebra of
Z (A) and that πB (Z (G )) is a subalgebra of Z (B) . Given an element a∈πA(Z (G )) ,
if a⊕b,a⊕b′ ∈Z (G ) , then we have am = mb = mb′ for all m ∈M . Since M is faith-
ful as a right B-module, b = b′ . That implies there exists a unique b ∈ πB(Z (G )) ,
which is denoted by ϕ(a) , such that a⊕ b ∈ Z (G ) . It is easy to verify that the map
ϕ : πA(Z (G ))−→ πB(Z (G )) is an algebraic isomorphism such that am = mϕ(a) and
na = ϕ(a)n for all a ∈ πA(Z (G )),m ∈ M,n ∈ N .

Let A and B be algebras. Recall an (A ,B)-bimodule M is loyal if aM b = 0
implies that a = 0 or b = 0 for all a ∈ A ,b ∈ B . Let us first state several lemmas
without proofs, since their proofs are identical with those of [11, Lemma 2.4, Lemma
2.5, Lemma 2.6].

LEMMA 3.1. Let G = G (A,M,N,B) be a generalized matrix algebra with a loyal
(A,B)-bimodule M . For arbitrary element λ ∈ πA(Z (G )) and arbitrary nonzero ele-
ment a ∈ A, if λa = 0 , then λ = 0

LEMMA 3.2. Let G = G (A,M,N,B) be a generalized matrix algebra with a loyal
(A,B)-bimodule M . Then the center Z (G ) of G is a domain.

LEMMA 3.3. The generalized matrix algebra G = G (A,M,N,B) has no nonzero
central ideals.
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We are ready to state and prove the main result of this section.

THEOREM 3.4. Let G = G (A,M,N,B) be a 2 -torsionfree generalized matrix al-
gebra over a commutative ring R and q : G ×G −→ G be an R -bilinear mapping.
If

(1) every commuting linear mapping on A or B is proper;

(2) πA(Z (G )) = Z (A) �= A and πB(Z (G )) = Z (B) �= B;

(3) M is loyal,

then every commuting trace Tq : G −→ G of q is proper.

For convenience, let us write A1 = A , A2 = M , A3 = N and A4 = B . Suppose
that Tq is an arbitrary trace of the R -bilinear mapping q . Then there exist R -bilinear
mappings fi j : Ai×Aj → A1 , gi j : Ai×Aj → A2 , hi j : Ai×Aj → A3 and ki j : Ai×Aj →
A4 , 1 � i � j � 4, such that

Tq : G −→ G[
a1 a2

a3 a4

]
�−→

[
F(a1,a2,a3,a4) G(a1,a2,a3,a4)
H(a1,a2,a3,a4) K(a1,a2,a3,a4)

]
,∀

[
a1 a2

a3 a4

]
∈ G

where
F(a1,a2,a3,a4) = ∑

1�i� j�4
fi j(ai,a j),

G(a1,a2,a3,a4) = ∑
1�i� j�4

gi j(ai,a j),

H(a1,a2,a3,a4) = ∑
1�i� j�4

hi j(ai,a j),

K(a1,a2,a3,a4) = ∑
1�i� j�4

ki j(ai,a j).

Since Tq is commuting, we have

0 =
[[

F G
H K

]
,

[
a1 a2

a3 a4

]]

=
[

Fa1 +Ga3−a1F −a2H Fa2 +Ga4−a1G−a2K
Ha1 +Ka3−a3F −a4H Ha2 +Ka4−a3G−a4K

] (�)

for all

[
a1 a2

a3 a4

]
∈ G .

For convenience, let us write a =
[

a1 a2

a3 a4

]
in the sequel. Now we divide the proof

of Theorem 3.4 into a series of lemmas for comfortable reading.
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LEMMA 3.5. H(a1,a2,a3,a4)= h13(a1,a3)+h23(a2,a3)+h33(a3,a3)+h34(a3,a4)
holds for all a ∈ G .

Proof. It follows from the matrix relation (�) that

Ha1 +Ka3−a3F −a4H = 0. (3.1)

Let us choose a2 = 0, a3 = 0 and a4 = 0. Then (3.1) implies that h11(a1,a1)a1 = 0
for all a1 ∈ A1 . Obviously, h11(1,1) = 0. Replacing a1 by a1 + 1 and 1− a1 in
h11(a1,a1)a1 = 0 in turn, we obtain

(h11(a1,a1)+h11(a1,1)+h11(1,a1))(a1 +1) = 0

and
(h11(a1,a1)−h11(a1,1)−h11(1,a1))(1−a1) = 0

for all a1 ∈A1 . Combining the above two equations yields that 2(h11(a1,1)+h11(1,a1))
= 0. Since G is 2-torsion free, h11(a1,a1) = 0 for all a1 ∈ A1 .

Let us take a3 = 0 and a4 = 0 in (3.1) . Then we get

(h12(a1,a2)+h22(a2,a2))a1 = 0 (3.2)

for all a1 ∈ A1,a2 ∈ A2 . Substituting −a2 for a2 in (3.2) gives

(−h12(a1,a2)+h22(a2,a2))a1 = 0 (3.3)

for all a1 ∈ A1,a2 ∈ A2 . By (3.2) and (3.3) we know that 2h22(a2,a2)a1 = 0 for all
a1 ∈ A1,a2 ∈ A2 . Hence h22(a2,a2) = 0 for all a2 ∈ A2 .

Now the relation (3.2) shows that h12(a1,a2)a1 = 0 for all a1 ∈ A1,a2 ∈ A2 . Thus
h12(1,a2) = 0. Replacing a1 by a1 +1 in h12(a1,a2)a1 = 0 leads to 0 = (h12(a1,a2)+
h12(1,a2))(a1 +1) = h12(a1,a2) .

Let us choose a1 = 0, a2 = 0 and a3 = 0. Applying (3.1) yields that a4h44(a4,a4)
= 0 for all a4 ∈ A4 . Therefore h44(1,1) = 0. Substituting a4 +1 and 1−a4 for a4 in
a4h44(a4,a4) = 0 in turn, we arrive at

(a4 +1)(h44(a4,a4)+h44(a4,1)+h44(1,a4)) = 0

and
(1−a4)(h44(a4,a4)−h44(a4,1)−h44(1,a4)) = 0

for all a4 ∈ A4 . Combining the above two equations gives 2(h44(a4,1)+h44(1,a4)) =
0. Since G is 2-torsion free, h44(a4,a4) = 0 for all a4 ∈ A4 .

If we take a1 = 0 and a3 = 0 into (3.1) , then

a4(h22(a2,a2)+h24(a2,a4)) = 0 (3.4)

for all a2 ∈ A2,a4 ∈ A4 . Note that the fact h22(a2,a2) = 0 for all a2 ∈ A2 . Hence (3.4)
implies that a4h24(a2,a4) = 0 for all a2 ∈ A2,a4 ∈ A4 . So h24(a2,1) = 0. Replacing
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a4 by a4 +1 in a4h24(a2,a4) = 0, we obtain 0 = (a4 +1)(h24(a2,a4)+h24(a2,1)) =
h24(a2,a4) .

Finally let us choose a3 = 0. Then (3.1) becomes

h14(a1,a4)a1−a4h14(a1,a4) = 0 (3.5)

for all a1 ∈ A1,a4 ∈ A4 . Replacing a1 by −a1 in (3.5) we have

h14(a1,a4)a1 +a4h14(a1,a4) = 0 (3.6)

for all a1 ∈ A1,a2 ∈ A2 . Combining (3.5) with (3.6) yields h14(a1,a4)a1 = 0 for all
a1 ∈ A1,a4 ∈ A4 . Clearly, h14(1,a4) = 0 for all a4 ∈ A4 . Substituting a1 +1 for a1 in
h14(a1,a4)a1 = 0, we get 0 = (h14(a1,a4)+h14(1,a4))(a1 +1) = h14(a1,a4) and this
completes the proof of the lemma. �

Similarly, we can show

LEMMA 3.6. G(a1,a2,a3,a4)= g12(a1,a2)+g22(a2,a2)+g23(a2,a3)+g24(a2,a4)
holds for all a ∈ G .

LEMMA 3.7. With notations as above, we have

(1) a1 �→ f11(a1,a1) is a commuting trace;

(2) a1 �→ f12(a1,a2) , a1 �→ f13(a1,a3) , a1 �→ f14(a1,a4) are commuting linear map-
pings for each a2 ∈ A2,a3 ∈ A3,a4 ∈ A4 , respectively;

(3) f22, f24, f33, f34, f44 map into Z (A1) .

Proof. It follows from the matrix relation (�) that

Fa1 +Ga3−a1F −a2H = 0. (3.7)

Let us take a2 = 0, a3 = 0 and a4 = 0 in (3.7) . Thus [ f11(a1,a1),a1] = 0 for all
a1 ∈ A1 .

Let us choose a3 = 0 and a4 = 0. Applying Lemma 3.5 and (3.7) yields [F,a1] =
0, that is

[ f12(a1,a2)+ f22(a2,a2),a1] = 0 (3.8)

for all a1 ∈ A1,a2 ∈ A2 . Replacing a1 by −a1 in (3.8) we obtain

[ f12(a1,a2)− f22(a2,a2),a1] = 0 (3.9)

for all a1 ∈ A1,a2 ∈ A2 . Combining (3.8) with (3.9) we get [ f12(a1,a2),a1] = 0 and
[ f22(a2,a2),a1] = 0 for all a1 ∈ A1,a2 ∈ A2 .

If we take a3 = 0, then (3.7) and Lemma 3.5 imply that

[ f14(a1,a4)+ f24(a2,a4)+ f44(a4,a4),a1] = 0 (3.10)
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for all a1 ∈ A1,a2 ∈ A2,a4 ∈ A4 . Substituting −a1 for a1 in (3.10) we have

[ f14(a1,a4)− f24(a2,a4)− f44(a4,a4),a1] = 0 (3.11)

for all a1 ∈A1,a2 ∈A2,a4 ∈A4 . In view of (3.10) and (3.11) , we arrive at [ f14(a1,a4),
a1] = 0 and [ f24(a2,a4)+ f44(a4,a4),a1] = 0. Taking a2 = 0 into the last equality we
get f44(a4,a4) ∈ Z (A1) and hence f24(a2,a4) ∈ Z (A1) for all a2 ∈ A2,a4 ∈ A4 .

Let us choose a2 = 0. By (3.7) and Lemma 3.6 it follows that

[ f13(a1,a3)+ f33(a3,a3)+ f34(a3,a4),a1] = 0 (3.12)

for all a1 ∈ A1,a3 ∈ A3,a4 ∈ A4 . Let us put a4 = 0 in (3.12) . Then

[ f13(a1,a3)+ f33(a3,a3),a1] = 0 (3.13)

for all a1 ∈ A1,a3 ∈ A3 , which gives f34(a3,a4) ∈ Z (A1) . Replacing a1 by −a1 in
(3.13) yields

[ f13(a1,a3)− f33(a3,a3),a1] = 0 (3.14)

for all a1 ∈A1,a3 ∈ A3 . Combining (3.13) with (3.14) we obtain f33(a3,a3)∈Z (A1)
and [ f13(a1,a3),a1] = 0 for all a1 ∈ A1,a3 ∈ A3 . �

Using an analogous proof of Lemma 3.7 the following results hold.

LEMMA 3.8. With notations as above, we have

(1) a4 �→ k44(a4,a4) is a commuting trace;

(2) a4 �→ k14(a1,a4) , a4 �→ k24(a2,a4) , a4 �→ k34(a3,a4) are commuting mappings
for each a1 ∈ A1,a2 ∈ A2,a3 ∈ A3 , respectively;

(3) k11,k12,k13,k22,k33 map into Z (A4) .

LEMMA 3.9. We have f22(a2,a2) ⊕ k22(a2,a2) ∈ Z (G ) and f33(a3,a3) ⊕
k33(a3,a3) ∈ Z (G ) for all a2 ∈ A2,a3 ∈ A3 .

Proof. By the relation (�) we know that

Fa2 +Ga4−a1G−a2K = 0. (3.15)

Let us take a1 = 0 and a4 = 0. Then (3.15) implies that

( f22(a2,a2)+ f23(a2,a3)+ f33(a3,a3))a2 = a2(k22(a2,a2)+ k23(a2,a3)+ k33(a3,a3))
(3.16)

for all a2 ∈ A2,a3 ∈ A3 . Moreover, setting a3 = 0 in (3.16) we get

f22(a2,a2)a2 = a2k22(a2,a2) (3.17)
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for all a2 ∈ A2 . Applying Lemma 3.7, Lemma 3.8 and [60, Lemma 3.2] yields that
( f22(a2,a2)−ϕ−1(k22(a2,a2)))a2 = 0. By the complete linearization we have

β (x,y)z+ β (z,x)y+ β (y,z)x = 0 (3.18)

for all x,y,z ∈ A2 , where

β (x,y) = f22(x,y)−ϕ−1(k22(x,y))+ f22(y,x)−ϕ−1(k22(y,x)).

Obviously, the mapping β : A2 ×A2 → Z (A1) is bilinear and symmetric. By the hy-
pothesis there exist a,b ∈ A1 such that [a,b] �= 0. Replacing z by az in (3.18) and
subtracting the left multiplication of (3.18) by a , we get

(β (az,x)−β (z,x)a)y+(β (y,az)−β (y,z)a)x = 0

for all x,y,z ∈ A2 . It follows from [11, Lemma 2.3] that β (az,x) = β (z,x)a and hence
β (z,x)[a,b] = 0 for all x,z ∈ A2 . Applying Lemma 3.1 yields β = 0. In particular,
β (a2,a2) = 0 for all a2 ∈ A2 . Thus f22(a2,a2)⊕ k22(a2,a2) ∈ Z (G ) .

Now the relation (3.16) becomes

( f23(a2,a3)+ f33(a3,a3))a2 = a2(k23(a2,a3)+ k33(a3,a3)) (3.19)

for all a2 ∈ A2,a3 ∈ A3 . Substituting −a2 for a2 and applying (3.19) , we arrive at
f33(a3,a3)a2 = a2k33(a3,a3) for all a2 ∈ A2,a3 ∈ A3 . In view of the fact M is faithful
as a left A-module and k33(a3,a3) ∈ Z (B) = πB(Z (G )) , we assert that f33(a3,a3)⊕
k33(a3,a3) ∈ Z (G ) . �

LEMMA 3.10. f12(a1,a2) = α(a2)a1 + ϕ−1(k12(a1,a2)) and k24(a2,a4) =
ϕ(α(a2))a4 + ϕ( f24(a2,a4)) hold for all a1 ∈ A1,a2 ∈ A2,a4 ∈ A4 , where α(a2) =
f12(1,a2)−ϕ−1(k12(1,a2)) .

Proof. Taking a4 = 0 into (3.15) and using (3.16) we have

(
f11(a1,a1)+ f12(a1,a2)+ f13(a1,a3)

)
a2−a2

(
k11(a1,a1)+ k12(a1,a2)+ k13(a1,a3)

)

−a1
(
g12(a1,a2)+g22(a2,a2)+g23(a2,a3)

)
= 0. (3.20)

Replacing a1 by −a1 in (3.20) we get

(
f11(a1,a1)− f12(a1,a2)− f13(a1,a3)

)
a2−a2

(
k11(a1,a1)− k12(a1,a2)− k13(a1,a3)

)

−a1
(
g12(a1,a2)−g22(a2,a2)−g23(a2,a3)

)
= 0. (3.21)

Combining (3.20) with (3.21) yields

a1g12(a1,a2) = f11(a1,a1)a2−a2k11(a1,a1), (3.22)

a1g22(a2,a2) = f12(a1,a2)a2−a2k12(a1,a2), (3.23)
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a1g23(a2,a3) = f13(a1,a3)a2−a2k13(a1,a3). (3.24)

In an analogous way, taking a1 = 0 into (3.15) and using (3.16) we obtain

g24(a2,a4)a4 = a2k44(a4,a4)− f44(a4,a4)a2, (3.25)

g22(a2,a2)a4 = a2k24(a2,a4)− f24(a2,a4)a2, (3.26)

g23(a2,a3)a4 = a2k34(a3,a4)− f34(a3,a4)a2. (3.27)

On the other hand, we have showed that [ f12(a1,a2),a1] = 0 for all a1 ∈ A1,a2 ∈ A2 .
Substituting a1 +1 for a1 leads to f12(1,a2) ∈ Z (A1) for all a2 ∈ A2 . By the relation
(3.23) we know that

g22(a2,a2) = α(a2)a2, (3.28)

where α(a2)= f12(1,a2)−ϕ−1(k12(1,a2))∈Z (A1) . Let us set E(a1,a2)= f12(a1,a2)
−α(a2)a1−ϕ−1(k12(a1,a2)) . Then (3.23) and (3.28) jointly imply that E(a1,a2)a2

= 0, which further gives E(a1,a2)b2 +E(a1,b2)a2 = 0 for all a1 ∈ A1 and a2,b2 ∈ A2 .
By [11, Lemma 2.3] we conclude that E(a1,a2) = 0. Hence f12(a1,a2) = α(a2)a1 +
ϕ−1(k12(a1,a2)) . Similarly, we can show that k24 is of the desired form as well. �

LEMMA 3.11. f13(a1,a3) = τ(a3)a1 + ϕ−1(k13(a1,a3)) and k34(a3,a4) =
ϕ(τ(a3))a4 + ϕ( f34(a3,a4)) hold for all a1 ∈ A1,a3 ∈ A3,a4 ∈ A4 , where τ(a3) =
f13(1,a3)−ϕ−1(k13(1,a3)) .

Proof. Note that [ f13(a1,a3),a1] = 0 for all a1 ∈ A1,a3 ∈ A3 . Substituting a1 +
1 for a1 gives f13(1,a3) ∈ Z (A1) for all a3 ∈ A3 . Let us set τ(a3) = f13(1,a3)−
ϕ−1(k13(1,a3)) and E(a1,a3) = f13(a1,a3)− τ(a3)a1 −ϕ−1(k13(a1,a3)) . It follows
from (3.24) that E(a1,a3)a2 = 0 for all a1 ∈ A1,a2 ∈ A2,a3 ∈ A3 . Since M = A2 is
faithful as a left A-module, we obtain E(a1,a3) = 0 and hence f13(a1,a3) = τ(a3)a1 +
ϕ−1(k13(a1,a3)) . Similarly, using (3.27) one can prove that k34 is of the desired form
as well. �

LEMMA 3.12. There exist linear mapping γ : A4 →Z (A1) and bilinear mapping
δ : A1×A4 → Z (A1) such that f14(a1,a4) = γ(a4)a1 +δ (a1,a4) for all a1 ∈ A1,a4 ∈
A4 .

Proof. Since a1 �→ f14(a1,a4) is a commuting mapping of A1 for all a4 ∈ A4 ,
there exist mappings γ : A4 → Z (A1) and δ : A1×A4 → Z (A1) such that

f14(a1,a4) = γ(a4)a1 + δ (a1,a4),

where δ is R -linear in the first argument. Let us show that γ is R -linear and that δ
is R -bilinear. It is easy to observe that

f14(a1,a4 +b4) = γ(a4 +b4)a1 + δ (a1,a4 +b4)

and
f14(a1,a4)+ f14(a1,b4) = γ(a4)a1 + δ (a1,a4)+ γ(b4)a1 + δ (a1,b4).
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for all for all a1 ∈ A1 and a4,b4 ∈ A4 . Therefore

(
γ(a4 +b4)− γ(a4)− γ(b4)

)
a1 + δ (a1,a4 +b4)− δ (a1,a4)− δ (a1,b4) = 0

for all a1 ∈ A1 and a4,b4 ∈ A4 . Note that both γ and δ map into Z (A1) and hence
(γ(a4 +b4)− γ(a4)− γ(b4))[a1,b1] = 0 for all a1,b1 ∈ A1 and a4,b4 ∈ A4 . Applying
Lemma 3.1 yields that γ is R -linear. Consequently, δ is R -linear in the second
argument. �

LEMMA 3.13. k14(a1,a4) = γ ′(a1)a4 + ϕ(δ (a1,a4)) holds for all a1 ∈ A1,a4 ∈
A4 , where γ ′(a1) = k14(a1,1)−ϕ(δ (a1,1)) .

Proof. By (3.22) we know that g12(1,a2) = f11(1,1)a2−a2k11(1,1) for all a2 ∈
A2 . On the other hand, the equations (3.22)− (3.27) together with (3.15) imply that

f14(a1,a4)a2 +g12(a1,a2)a4 = a1g24(a2,a4)+a2k14(a1,a4) (3.29)

for all a1 ∈ A1,a2 ∈ A2,a4 ∈ A4 . Let us set a1 = 1 in (3.29) . Then

g24(a2,a4) = a2
(
ζa4 + ϕ( f14(1,a4))− k14(1,a4)

)
(3.30)

for all a2 ∈ A2,a4 ∈ A4 , where ζ = ϕ( f11(1,1))− k11(1,1) . Similarly, using (3.25)
and (3.29) we have

g12(a1,a2) =
(
θa1 + ϕ−1(k14(a1,1))− f14(a1,1)

)
a2 (3.31)

for all a1 ∈ A1,a2 ∈ A2 , where θ = ϕ−1(k44(1,1))− f44(1,1) . Now the equations
(3.29)− (3.31) and Lemma 3.12 jointly show that

(γ(a4)a1 + δ (a1,a4))a2 +
(
θa1 + ϕ−1(k14(a1,1))− f14(a1,1)

)
a2a4

= a2k14(a1,a4)+a1a2
(
ζa4 + ϕ( f14(1,a4))− k14(1,a4)

)
for all a1 ∈ A1,a2 ∈ A2,a4 ∈ A4 . That is,

a1a2
(
(ζ + ϕ(γ(1)−θ )a4 + ϕ(δ (1,a4))− k14(1,a4)

)

= a2
(
γ ′(a1)a4 + ϕ(δ (a1,a4))− k14(a1,a4)

)
(3.32)

for all a1 ∈ A1,a2 ∈ A2,a4 ∈ A4 . Replacing a2 by b1a2 in (3.32) and subtracting the
left multiplication of (3.32) by b1 gives

[a1,b1]a2
(
(ζ + ϕ(γ(1)−θ )a4 + ϕ(δ (1,a4))− k14(1,a4)

)
= 0

for all a1,b1 ∈ A1,a2 ∈ A2,a4 ∈ A4 . Note that M = A2 is loyal and A = A1 is noncom-
mutative. It follows that

k14(1,a4) = (ζ + ϕ(γ(1)−θ )a4 + ϕ(δ (1,a4))
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for all a4 ∈ A4 . Consequently, the relation (3.32) implies that

A2
(
γ ′(a1)a4 + ϕ(δ (a1,a4))− k14(a1,a4)

)
= 0

for all a1,a4 ∈ A4 . Since A2 = M is faithful as a right B-module, k14 is of the desired
form. �

Proof of Theorem 3.4. Let us write ε = θ − γ(1) and ε ′ = ζ − γ ′(1) . By the
equations (3.30) and (3.31) and the form of f14,k14 , we have the following relations:

g12(a1,a2) = εa1a2 + ϕ−1(γ ′(a1))a2, g24(a2,a4) = a2(ε ′a4 + ϕ(γ(a4))) (3.33)

for all a1 ∈ A1,a2 ∈ A2,a4 ∈ A4 . By (3.1) and those similar computational procedures
we get

h13(a1,a3) = a3εa1 + γ ′(a1)a3, h34(a3,a4) = ε ′a4a3 + ϕ(γ(a4))a3 (3.34)

for all a1 ∈ A1,a3 ∈ A3,a4 ∈ A4 . Taking a1 = 1 and a4 = 1 into (3.29) and combining
Lemma 3.12, Lemma 3.13 with (3.33) , we conclude that εa2 = a2ε ′ for all a2 ∈ A2 .
Note that ε ∈ Z (A1) = πA(Z (G )) and ε ′ ∈ Z (A4) = πB(Z (G )) . In view of [60,
Lemma 3.2] we obtain ε ⊕ ε ′ ∈ Z (G ) .

It follows from (3.22) and (3.33) that

(
f11(a1,a1)− εa2

1−ϕ−1(γ ′(a1))a1−ϕ−1(k11(a1,a1))
)
a2 = 0

for all a1 ∈ A1,a2 ∈ A2 . Since A2 = M is faithful as a left A-module,

f11(a1,a1) = εa2
1 + ϕ−1(γ ′(a1))a1 + ϕ−1(k11(a1,a1)) (3.35)

for all a1 ∈ A1 . Similarly,

k44(a4,a4) = ε ′a2
4 + ϕ(γ(a4))a4 + ϕ( f44(a4,a4)) (3.36)

for all a4 ∈ A4 .
Finally, let us set ε ⊕ ε ′ and define the mapping μ : G → Z (G ) by

[
a1 a2

a3 a4

]
�→

[
ϕ−1(γ ′(a1))+ γ(a4)+ α(a2)+ τ(a3) 0

0 γ ′(a1)+ ϕ(γ(a4)+ α(a2)+ τ(a3))

]
.

In view of all conclusions derived above, we see that

ν(x) : = Tq(x)− zx2− μ(x)x

≡
[

f23(a2,a3)− εa2a3 0
0 k23(a2,a3)− ε ′a3a2

]
(mod Z (G ))
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where x ∈ G . Therefore we can write

Tq(x) = zx2 + μ(x)x+
[

f23(a2,a3)− εa2a3 0
0 k23(a2,a3)− ε ′a3a2

]
+ c

for some c ∈ Z (G ) . Since q is a commuting mapping, we have
[[

f23(a2,a3)− εa2a3 0
0 k23(a2,a3)− ε ′a3a2

]
,

[
a1 a2

a3 a4

]]
= 0.

This implies that f23(a2,a3)−εa2a3 ∈Z (A1) = πA(Z (G )) and k23(a2,a3)−ε ′a3a2 ∈
Z (A4) = πB(Z (G )) . Moreover, it shows that

( f23(a2,a3)− εa2a3)a2 = a2(k23(a2,a3)− ε ′a3a2)

and
a3( f23(a2,a3)− εa2a3) = (k23(a2,a3)− ε ′a3a2)a3.

for all a2 ∈ A2,a3 ∈ A3 . For convenience, let us write f (a2,a3) = f23(a2,a3)− εa2a3

and k(a2,a3) = k23(a2,a3)− ε ′a3a2 . Thus
(
f (a2,a3)−ϕ−1(k(a2,a3))

)
a2 = 0

for all a2 ∈ A2,a3 ∈ A3 . A linearization of the last relation gives
(
f (a2,a3)−ϕ−1(k(a2,a3))

)
b2 +

(
f (b2,a3)−ϕ−1(k(b2,a3))

)
a2 = 0

for all a2,b2 ∈ A2,a3 ∈ A3 . Note that the hypothesis A2 = M is loyal as an (A,B)-
bimodule. It follows from [11, Lemma 2.3] that f (a2,a3)−ϕ−1(k(a2,a3)) = 0 for all
a2 ∈ A2,a3 ∈ A3 . Hence ν maps G into Z (G ) and this completes the proof of the
theorem. �

As a direct consequence of Theorem 3.4 we get

COROLLARY 3.14. [11, Theorem 3.1] Let T = T (A,M,B) be a 2 -torsionfree
triangular algebra over a commutative ring R and q : T ×T −→ T be an R -
bilinear mapping. If

(1) every commuting linear mapping on A or B is proper;

(2) πA(Z (T )) = Z (A) �= A and πB(Z (T )) = Z (B) �= B;

(3) M is loyal,

then every commuting trace Tq : T −→ T of q is proper.

In particular, we also have

COROLLARY 3.15. [11, Corollary 3.4] Let n � 2 and R be a 2 -torsionfree
commutative domain. Suppose that q : Tn(R)×Tn(R) −→ Tn(R) is an R -bilinear
mapping. Then every commuting trace Tq : Tn(R) −→ Tn(R) of q is proper.
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COROLLARY 3.16. [11, Corollary 3.5] Let N be a nest of a Hilbert space H .
Suppose that q : T (N )×T (N )−→T (N ) is an R -bilinear mapping. Then every
commuting trace Tq : T (N ) −→ T (N ) of q is proper.

In order to handle the commuting traces of bilinear mappings on full matrix alge-
bras we need a technical lemma in below. Recall that an algebra A over a commutative
ring R is said to be central over R if Z (A ) = R1.

PROPOSITION 3.17. Let G = G (A,M,N,B) be a 2 -torsionfree generalized ma-
trix algebra over a commutative ring R , where B is a noncommutative algebra over R
and both G and B are central over R . Suppose that q : G ×G −→G is an R -bilinear
mapping. If

(1) every commuting linear mapping of B is proper,

(2) for any r ∈ R and m ∈ M, rm = 0 implies that r = 0 or m = 0 ,

(3) there exist m0 ∈ M and b0 ∈ B such that m0b0 and m0 are R -linearly indepen-
dent,

then every commuting trace Tq : G −→ G of q is proper.

Proof. For the proof of this lemma, we shall follow the proof of Theorem 3.4 step
by step and hence use the same notations. However, we have to make explicit changes
in some necessary places. All changes take place from the Lemma 3.9 to the end.

Step 1. f22(a2,a2)⊕ k22(a2,a2) ∈ R1 and f33(a3,a3)⊕ k33(a3,a3) ∈ R1. By
(3.17) we know that

(
f22(a2,a2)−ϕ−1(k22(a2,a2))

)
a2 = 0

for all a2 ∈ A2 = M . Note that the fact A1 = R in our context. Then the assumption
(2) deduces that f22(a2,a2) = ϕ−1(k22(a2,a2)) . Using the same proof of Lemma 3.9
one easily obtain f22(a2,a2)⊕ k22(a2,a2) ∈ R1. On the other hand, f33(a3,a3)⊕
k33(a3,a3) ∈ R1 follows from the second paragraph of the proof of Lemma 3.9.

Step 2. f12(a1,a2) = α(a2)a1+ϕ−1(k12(a1,a2)) and k24(a2,a4) = ϕ(α(a2))a4 +
ϕ( f24(a2,a4)) , where α(a2) = f12(1,a2)−ϕ−1(k12(1,a2)) . If only we show that M is
loyal as an (A1,A4)-bimodule, then the corresponding form of f12 can be obtained by
copying the proof of Lemma 3.10. Let rMb = 0 for all r ∈R and b ∈ B . Suppose that
b �= 0. Since M is faithful as a right B-module, there exists a m∈M such that mb �= 0.
However 0 = rmb = r(mb) , the assumption (2) implies that r = 0. And hence M is a
loyal (A1,A4)-bimodule.

It is necessary for us to characterize the form of k24 . By equations (3.26) and
(3.28) we see that

a2
(
k24(a2,a4)−ϕ(α(a2))a4−ϕ( f24(a2,a4))

)
= 0 (3.37)
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for all ai ∈ Ai with i = 1,2,4. Since a4 �→ k24(a2,a4) is a commuting linear mapping
on A4 , there exist mappings ψ : A2 −→ R1 and ω : A2×A4 −→ R1 such that

k24(a2,a4) = ψ(a2)a4 + ω(a2,a4),

where ω is R -linear in the second argument. Let us prove that ψ is an R -linear
mappings and that ω is an R -bilinear mapping. It is straightforward to check that

k24(a2 +b2,a4) = ψ(a2 +b2)a4 + ω(a2 +b2,a4)

and

k24(a2,a4)+ k24(b2,a4) = ψ(a2)a4 + ω(a2,a4)+ ψ(b2)a4 + ω(b2,a4).

for all a2,b2 ∈ A2 and a4 ∈ A4 . Therefore

(
ψ(a2 +b2)−ψ(a2)−ψ(b2)

)
a4 +ω(a2 +b2,a4)−ω(a2,a4)−ω(b2,a4) = 0 (3.38)

for all a2,b2 ∈A2 and a4 ∈A4 . Note that both ψ and ω map into Z (A4) . Commuting
(3.38) with b4 ∈ A4 we get

(ψ(a2 +b2)−ψ(a2)−ψ(b2))[a4,b4] = 0

for all a2,b2 ∈ A2 and a4,b4 ∈ A4 . Let us choose a4,b4 ∈ A4 such that [a4,b4] �= 0.
Since M is faithful as a right A4 -module, there exists m ∈ M such that m[a4,b4] �= 0.
Thus

ϕ−1(ψ(a2 +b2)−ψ(a2)−ψ(b2)
)
m[a4,b4] = 0

for all a2,b2 ∈ A2 . The assumption (2) implies that ψ is an R -linear mapping. Con-
sequently, ω is R -linear in the first argument. Rewrite (3.37) as

a2
(
(ψ(a2)−ϕ(α(a2)))a4 + ω(a2,a4)−ϕ( f24(a2,a4))

)
= 0 (3.39)

for all a2 ∈ A2 and a4 ∈ A4 . Setting a2 = m0 and a4 = b0 we obtain

(
ϕ−1(ψ(m0))−α(m0)

)
m0b0 +

(
ϕ−1(ω(m0,b0))− f24(m0,b0)

)
m0 = 0.

So α(m0) = ϕ−1(ψ(m0)) and f24(m0,b0) = ϕ−1(ω(m0,b0)) by the condition (3) .
Substituting a2 +m0 for a2 and b0 for a4 in (3.39) yields

(
ϕ−1(ψ(a2))−α(a2)

)
m0b0 +

(
ϕ−1(ω(a2,b0))− f24(a2,b0)

)
m0 = 0.

Therefore α(a2) = ϕ−1(ψ(a2)) for all a2 ∈ A2 . Then it follows from (3.39) that
ω(a2,a4) = ϕ( f24(a2,a4)) for all a2 ∈ A2,a4 ∈ A4 . Hence k24 has also the desired
form.

Since M is loyal, we only need to change the places in the proof of Theorem 3.4,
where the noncommutativity of A is involved. However, the proof of Lemma 3.11 does
not involve the noncommutativity of A and hence it still works in our context.
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Step 3. f14 (resp. k14 ) is of the form as in Lemma 3.12 (resp. Lemma 3.13).
Note that a4 �→ k14(a1,a4) is a commuting R -linear mapping on A4 . Then there exist
mappings γ ′ : A1 → R1B and δ ′ : A1 ×A4 → R1B such that

k14(a1,a4) = γ ′(a1)a4 + δ ′(a1,a4), (3.40)

where δ ′ is R -linear in the second argument. Here we denote 1B the identity of B to
avoid confusion in the following discussion. We assert that γ ′ is an R -linear mapping
and δ ′ is an R -bilinear mapping. In fact, k14(1,a4) = γ ′(1)a4 + δ ′(1,a4) and hence
k14(a1,a4) = a1γ ′(1)a4 +a1δ ′(1,a4) . Therefore

(γ ′(a1)−a1γ ′(1))a4 + δ ′(a1,a4)−a1δ ′(1,a4) = 0 (3.41)

for all a1 ∈ R , a4 ∈ A4 . Commuting (3.41) with b4 ∈ A4 we obtain

(γ ′(a1)−a1γ ′(1))[a4,b4] = 0

for all a1 ∈ R , a4,b4 ∈ A4 . Moreover,

ϕ−1(γ ′(a1)−a1γ ′(1))m[a4,b4] = 0

for all a1 ∈R , a4,b4 ∈ A4 and m∈M . Since M is loyal and B is noncommutative, we
have γ ′(a1) = a1γ ′(1) . This implies that γ ′ is R -linear and hence δ ′ is R -bilinear.

It would be helpful to point out here that each of the mappings fi j takes its values
in R . Now the identities (3.29),(3.30) and (3.31) jointly yield that

f14(a1,a4)a2 +
(
θa1 + ϕ−1(k14(a1,1B))− f14(a1,1B)

)
a2a4

= a2k14(a1,a4)+a1a2
(
ηa4 + ϕ( f14(1,a4))− k14(1,a4)

)
and hence (taking into account the relation (3.40))

a2
{

ϕ
(
a1ϕ−1(η)+ ϕ−1(γ ′(a1−1)− k14(a1,1B))−θa1 + f14(a1,1B)

)
a4

+ ϕ
(
( f14(1,a4)−ϕ−1(δ ′(1,a4)))a1 + ϕ−1(δ ′(a1,a4))− f14(a1,a4)

)}
= 0 (3.42)

for all ai ∈ Ai with i = 1,2,4. Let us choose a4,b4 ∈ A4 such that [a4,b4] �= 0. Then
the fact A2 is faithful as a right A4 -module and the relation (3.42) deduce that

ϕ
(
a1ϕ−1(η)+ ϕ−1(γ ′(a1−1)− k14(a1,1B))−θa1 + f14(a1,1B)

)
[a4,b4] = 0.

for all a1 ∈ A1 . Thus
(
a1ϕ−1(η)+ ϕ−1(γ ′(a1−1)− k14(a1,1B))−θa1 + f14(a1,1B)

)
M[a4,b4] = 0

for all a1 ∈ A1 . Since M is faithful as a right B-module, there exists a m∈M such that
m[a4,b4] �= 0. Therefore the condition (2) implies that

a1ϕ−1(η)+ ϕ−1(γ ′(a1−1)− k14(a1,1B))−θa1 + f14(a1,1B) = 0
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for all a1 ∈ A1 . Then the relation (3.42) shows

( f14(1,a4)−ϕ−1(δ ′(1,a4)))a1 + ϕ−1(δ ′(a1,a4)) = f14(a1,a4)

for all a1 ∈ A1,a4 ∈ A4 . Let us γ(a4) := f14(1,a4)−ϕ−1(δ ′(1,a4)) and δ (a1,a4) :=
ϕ−1(δ ′(a1,a4)) . Then f14(a1,a4) = γ(a4)a1 + δ (a1,a4) and k14(a1,a4) = γ ′(a1)a4 +
ϕ(δ (a1,a4))

Finally, following the rest part of the proof of Theorem 3.4 we can obtain the
required result. �

COROLLARY 3.18. Let R be a 2 -torsionfree commutative domain and Mn(R)
be the full matrix algebra over R . Suppose that q : Mn(R)×Mn(R) −→ Mn(R) is
an R -bilinear mapping. Then every commuting trace Tq : Mn(R) −→ Mn(R) of q
is proper.

Proof. If n > 3, then Mn(R) =
[

M2×2(R) M2×(n−2)(R)
M(n−2)×2(R) M(n−2)×(n−2)(R)

]
. By [60,

Corollary 4.1] we know that each commuting linear mapping on M2(R) and Mn−2(R)
is proper. The assumptions (2) and (3) in Theorem 3.4 clearly holds for Mn(R)
(n > 3) . Applying Theorem 3.4 yields the desired conclusion.

If n = 3, then M3(R) =
[

M1×1(R) M1×2(R)
M2×1(R) M2×2(R)

]
. Therefore there exist elements

m0 = [1,0] ∈ M1×2(R) and b0 =
[

0 1
0 0

]
∈ M2(R)

such that m0b0 and m0 are linearly independent over R . By [60, Corollary 4.1] and
Proposition 3.17 we conclude that Tq has the proper form.

If n = 2, the result follows from [19, Theorem 3.1].
Finally, if n = 1, the conclusion is obvious. �

COROLLARY 3.19. Let R be a 2 -torsionfree commutative domain, V be an R -
linear space and B(R,V,γ) be the inflated algebra of R along V . Suppose that
q : B(R,V,γ) ×B(R,V,γ)−→ B(R,V,γ) is an R -bilinear mapping. Then every com-
muting trace Tq : B(R,V,γ) −→ B(R,V,γ) of q is proper.

Let us see the commuting traces of bilinear mappings of several unital algebras
with nontrivial idempotents.

COROLLARY 3.20. Let A be a 2 -torsionfree unital prime algebra over a com-
mutative ring R . Suppose that A contains a nontrivial idempotent e and that f =
1−e. If eZ (A )e = Z (eA e) �= eA e and fZ (A ) f = Z ( fA f ) �= fA f , then every
commuting trace of an arbitrary bilinear mappings on A is proper.

Proof. Let us write A as a natural generalized matrix algebra

[
eAe eA f
f Ae fA f

]
. It

is clear that eA e and fA f are prime algebras. By [17, Theorem 3.2] it follows that
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each commuting additive mapping on eA e and fA f is proper. On the other hand,
if (eae)eA f ( f b f ) = 0 holds for all a,b ∈ A , then the primeness of A implies that
eae = 0 or f b f = 0. This shows eA f is a loyal (eA e, fA f )-bimodule. Applying
Theorem 3.4 yields that each commuting trace of an arbitrary bilinear mappings on A
is proper. �

COROLLARY 3.21. Let X be a Banach space over the real or complex field F ,
B(X) be the algebra of all bounded linear operators on X . Then every commuting
trace of an arbitrary bilinear mapping on B(X) is proper.

Proof. Note that B(X) is a centrally closed prime algebra. If X is infinite di-
mensional, the result follows from Corollary 3.20. If X is of dimension n , then
B(X) = Mn(F) . In this case the result follows from Corollary 3.18. �

4. Lie isomorphisms on generalized matrix algebras

In this section we shall use the main result in Section 3 (Theorem 3.4) to describe
the form of an arbitrary Lie isomorphism of a certain class of generalized matrix alge-
bras (Theorem 4.3). As applications of Theorem 4.3, we characterize Lie isomorphisms
of certain generalized matrix algebras. The involved algebras include upper triangular
matrix algebras, nest algebras, full matrix algebras, inflated algebras, prime algebras
with nontrivial idempotents.

LEMMA 4.1. Let G = G (A,M,N,B) be a 2 -torsionfree generalized matrix alge-
bra over a commutative ring R . Then G satisfies the polynomial identity [[x2,y], [x,y]]
if and only if both A and B are commutative.

Proof. If A and B are commutative, then we can prove that G satisfies the poly-
nomial identity [[x2,y], [x,y]] by a direct but rigorous procedure.

The necessity can be obtained by a similar proof of [11, Lemma 2.7]. �
The following proposition is a much more common generalization of [11, Lemma

4.1].

PROPOSITION 4.2. Let G = G (A,M,N,B) and G ′ = G ′(A′,M′,N′,B′) be gener-
alized matrix algebras over R with 1/2 ∈ R . Let l : G −→ G ′ be a Lie isomorphism.
If

(1) every commuting trace of an arbitrary bilinear mapping on G ′ is proper,

(2) at least one of A,B and at least one of A′,B′ are noncommutative,

(3) M′ is loyal,

then l = m + n , where m : G −→ G ′ is a homomorphism or the negative of an anti-
homomorphism, m is injective, and n : G −→ Z (G ′) is a linear mapping vanishing
on each commutator. Moreover, if G ′ is central over R , then m is surjective.
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The proof of this proposition is almost a copy of the proof of Lemma [11, Lemma
4.1] and is left out.

THEOREM 4.3. Let G = G (A,M,N,B) and G ′ = G ′(A′,M′,N′,B′) be general-
ized matrix algebras over R with 1/2 ∈ R . Let l : G −→ G ′ be a Lie isomorphism.
If

(1) every commuting linear mapping on A′ or B′ is proper,

(2) πA′(Z (G ′)) = Z (A′) �= A′ and πB′(Z (G ′)) = Z (B′) �= B′ ,

(3) either A or B is noncommutative,

(4) M′ is loyal,

then l = m+n , where m : : G −→ G ′ is a homomorphism or the negative of an anti-
homomorphism, m is injective, and n : G −→ Z (G ′) is a linear mapping vanishing
on each commutator. Moreover, if G ′ is central over R , then m is surjective.

Proof. It follows from Theorem 3.4 and Proposition 4.2 directly. �
As a direct consequence of Theorem 4.3 we have

COROLLARY 4.4. [11, Theorem 4.3] Let T = T (A,M,B) and T ′ = T ′(A′,M′,
B′) be triangular algebras over R with 1/2 ∈ R . Let l : T −→ T ′ be a Lie isomor-
phism. If

(1) every commuting linear mapping on A′ or B′ is proper,

(2) πA′(Z (T ′)) = Z (A′) �= A′ and πB′(Z (T ′)) = Z (B′) �= B′ ,

(3) either A or B is noncommutative,

(4) M′ is loyal,

then l = m+n , where m : : T −→ T ′ is a homomorphism or the negative of an anti-
homomorphism, m is injective, and n : T −→ Z (T ′) is a linear mapping vanishing
on each commutator. Moreover, if T ′ is central over R , then m is surjective.

In particular, we also have

COROLLARY 4.5. [11, Corollary 4.4] Let n � 2 and R be a commutative do-
main with 1

2 ∈R . If l : Tn(R)−→Tn(R) is a Lie isomorphism, then l = m+n , where
m : Tn(R) −→ Tn(R) is an isomorphism or the negative of an antiisomorphism and
n : Tn(R) −→ R1 is a linear mapping vanishing on each commutator.

COROLLARY 4.6. [11, Corollary 4.5] Let N and N ′ be nests on a Hilbert
space H , T (N ) and T (N ′) be the nest algebras associated with N and N ′ ,
respectively. If l : T (N ) −→ T (N ′) is a Lie isomorphism, then l = m+ n , where
m : T (N )−→T (N ′) is an isomorphism or the negative of an antiisomorphism and
n : T (N ) −→ C1′ is a linear mapping vanishing on each commutator.
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For the Lie isomorphisms of full matrix algebras, we have similar characteriza-
tions.

COROLLARY 4.7. Let R be a commutative domain with 1
2 ∈R . If l : Mn(R)→

Mn(R) (n � 3 ) is a Lie isomorphism, then l = m+n , where m : Mn(R) → Mn(R)
is an isomorphism or the negative of an anti-isomorphism and n : Mn(R) → R1 is a
linear mapping vanishing on each commutator.

Proof. We write Mn(R) =
[

M1×1(R) M1×(n−1)(R)
M(n−1)×1(R) M(n−1)×(n−1)(R)

]
. Corollary 3.16

shows that each commuting trace of arbitrary bilinear mapping on Mn(R) is proper.
Moreover, M(n−1)×(n−1)(R) is noncommutative and M1×(n−1)(R) is a loyal
(R,M(n−1)×(n−1)(R))-bimodule. Hence Proposition 4.2 implies the conclusion. �

COROLLARY 4.8. Let R be a commutative domain with 1
2 ∈ R , V be an R -

linear space and B(R,V,γ) be the inflated algebra of R along V . If l : B(R,V,γ)−→
B(R,V,γ) is a Lie isomorphism, then l = m+n , where m : B(R,V,γ) −→ B(R,V,γ)
is an isomorphism or the negative of an anti-isomorphism and n : B(R,V,γ) −→ R1
is a linear mapping vanishing on each commutator.

Let us consider the Lie isomorphisms of several unital algebras with nontrivial
idempotents.

COROLLARY 4.9. Let A be a unital prime algebra with nontrivial idempotents.
Then every Lie isomorphism is of the standard form (♠) .

COROLLARY 4.10. Let X be a Banach space over the real or complex field F ,
B(X) be the algebra of all bounded linear operators on X . Then every Lie isomor-
phism has the standard form (♠) .

5. Potential topics for further research

Although the main goal of the current article is to consider commuting traces and
Lie isomorphisms on generalized matrix algebras, there are more interesting mappings
related to our current work on generalized matrix algebras. These mappings are still
considerable interest and will draw more people’s attention. In this section we will
propose several potential topics for future further research.

Let R be a commutative ring with identity, A be a unital algebra over R and
Z (A ) be the center of A . Recall that an R -linear mapping f : A −→ A is said
to be centralizing if [f(a),a] ∈ Z (A ) for all a ∈ A . Let n be a positive integer
and q : A n −→ A be an n -linear mapping. The mapping Tq : A −→ A defined by
Tq(a) = q(a,a, · · · ,a) is called a trace of q . We say that a centralizing trace Tq is
proper if it can be written as

Tq(a) ≡
n−1

∑
i=0

μi(a)an−i mod Z (A ), ∀a ∈ A ,
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where μi(0 � i � n) is a mapping from A into Z (A ) and every μi(0 � i � n) is in
fact a trace of an i-linear mapping qi from A i into Z (A ) . Let n = 1 and f : A −→ A
be an R -linear mapping. In this case, an arbitrary trace Tf of f exactly equals to itself.
Moreover, if a centralizing trace Tf of f is proper, then it has the form

Tf(a) ≡ za mod Z (A ), ∀a ∈ A ,

where z ∈ Z (A) . Let us see the case of n = 2. Suppose that g : A ×A −→ A is an
R -bilinear mapping. If a centralizing trace Tg of g is proper, then it is of the form

Tg(a) ≡ za2 + μ(a)a mod Z (A ), ∀a ∈ A ,

where z ∈ Z (A ) and μ is an R -linear mapping from A into Z (A ) . Brešar started
the study of commuting and centralizing traces of multilinear mappings in his series
of works [15, 16, 17, 18], where he investigated the structure of centralizing traces of
(bi-)linear mappings on prime rings. It has turned out that in certain rings, in particular,
prime rings of characteristic different from 2 and 3, every centralizing trace of a biad-
ditive mapping is commuting. Moreover, every centralizing mapping of a prime ring of
characteristic not 2 is of the proper form and is actually commuting. Lee et al further
generalized Brešar’s results by showing that each commuting trace of an arbitrary mul-
tilinear mapping on a prime ring also has the proper form [35]. An exciting discovery
is that every centralizing trace of arbitrary bilinear mapping on triangular algebras is
commuting in some additional conditions.

THEOREM 5.1. [38, Theorem 3.4] Let T = T (A,M,B) be a 2 -torsionfree tri-
angular algebras over a commutative ring R and q : T ×T −→T be an R -bilinear
mapping. If

(1) every commuting linear mapping on A or B is proper,

(2) πA(Z (T )) = Z (A) �= A and πB(Z (T )) = Z (B) �= B,

(3) M is loyal,

then every centralizing trace Tq : T −→T of q is proper. Moreover, each centralizing
trace Tq of q is commuting.

It is natural to formulate the following question

QUESTION 5.2. Let T = T (A,M,B) be a 2-torsionfree triangular algebra over
a commutative ring R and q : T ×T × ·· · ×T −→ T be an n -linear mapping.
Suppose that the following conditions are satisfied

(1) each commuting linear mapping on A or B is proper;

(2) πA(Z (T )) = Z (A) �= A and πB(Z (T )) = Z (B) �= B ;

(3) M is loyal.
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Is any centralizing trace Tq : T −→ T of q proper? Furthermore, what can we say
about the centralizing traces of multilinear mappings on a generalized matrix algebra
G = G (A,M,N,B)?

Let R be a commutative ring with identity, A and B be associative R -algebras.
We define a Lie triple isomorphism from A into B to be an R -linear bijective map-
ping l satisfying the condition

l([[a,b],c]) = [[l(a), l(b)], l(c)], ∀a,b,c ∈ A .

Obviously, every Lie isomorphism is a Lie triple isomorphism. The converse is, in gen-
eral, not true. In [38] we apply Theorem 5.1 to the study of Lie triple isomorphisms
on triangular algebras. It is shown that every Lie triple isomorphism between triangu-
lar algebras also has an approximate standard decomposition expression under some
additional conditions. That is

THEOREM 5.3. [38, Theorem 4.3] Let T = T (A,M,B) and T ′ = T ′(A′,M′,B′)
be triangular algebras over R with 1/2 ∈ R . Let l : T −→ T ′ be a Lie triple iso-
morphism. If

(1) every commuting linear mapping on A′ or B′ is proper,

(2) πA′(Z (T ′)) = Z (A′) �= A′ and πB′(Z (T ′)) = Z (B′) �= B′ ,

(3) either A or B is noncommutative,

(4) M′ is loyal,

then l = ±m + n , where m : T → T ′ is a Jordan homomorphism, m is injective,
and n : T −→ Z (T ′) is a linear mapping vanishing on each second commutator.
Moreover, if T ′ is central over R , then m is surjective.

A question closely related to the above theorem is

QUESTION 5.4. Let G = G (A,M,N,B) and G ′ = G ′(A′,M′,N′,B′) be general-
ized matrix algebras over R with 1/2 ∈ R . Let l : G −→ G ′ be a Lie triple isomor-
phism. Under what conditions does l has a similar decomposition expression?
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[9] D. BENKOVIČ, Generalized Lie derivations on triangular algebras, Linear Algebra Appl., 434 (2011),

1532–1544.
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[28] D. Ž. DOKOVIĆ, Automorphisms of the Lie algebra of upper triangular matrices over a connected

commutative ring, J. Algebra, 170 (1994), 101–110.
[29] G. DOLINAR,Maps on upper triangular matrices preserving Lie products, Linear Multilinear Algebra,

55 (2007), 191–198.



846 Z. XIAO AND F. WEI

[30] G. DOLINAR, Maps on Mn preserving Lie products, Publ. Math. Debrecen, 71 (2007), 467–477.
[31] Y. DU AND Y. WANG, Lie derivations of generalized matrix algebras, Linear Algebra Appl., 437

(2012), 2719–2726.
[32] I. N. HERSTEIN, Lie and Jordan structures in simple, associative rings, Bull. Amer. Math. Soc., 67

(1961), 517–531.
[33] L. HUA, A theorem on matrices over an sfield and its applications, J. Chinese Math. Soc. (N.S.), 1

(1951), 110–163.
[34] P. A. KRYLOV, Isomorphism of genralized matrix rings, Algebra and Logic, 47 (2008), 258–262.
[35] P.-H. LEE, T.-L. WONG, J.-S. LIN AND R.-J. WANG, Commuting traces of multiadditive mappings,

J. Algebra, 193 (1997), 709–723.
[36] Y.-B. LI AND F. WEI, Semi-centralizing maps of genralized matrix algebras, Linear Algebra Appl.,

436 (2012), 1122–1153.
[37] Y.-B. LI, L. VAN WYK AND F. WEI, Jordan derivations and antiderivations of genralized matrix

algebras, Oper. Matrices, 7 (2013), 399–415.
[38] Z.-K. XIAO, F. WEI, Centralizing traces and Lie triple isomorphisms on triangular algebras,

Preprint.
[39] F.-Y. LU, Lie isomorphisms of reflexive algebras, J. Funct. Anal., 240 (2006), 84–104.
[40] L. W. MARCOUX AND A. R. SOUROUR, Commutativity preserving maps and Lie automorphisms of

triangular matrix algebras, Linear Algebra Appl., 288 (1999), 89–104.
[41] L. W. MARCOUX AND A. R. SOUROUR, Lie isomorphisms of nest algebras, J. Funct. Anal., 164

(1999), 163–180.
[42] W. S. MARTINDALE, 3RD, Lie isomorphisms of primitive rings, Proc. Amer. Math. Soc., 14 (1963),

909–916.
[43] W. S. MARTINDALE, 3RD, Lie isomorphisms of simple rings, J. London Math. Soc., 44 (1969), 213–

221.
[44] W. S. MARTINDALE, 3RD, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12

(1969), 576–584.
[45] W. S. MARTINDALE, 3RD, Lie isomorphisms of prime rings, Trans. Amer. Math. Soc., 142 (1969),

437–455.
[46] W. S. MARTINDALE, 3RD, Lie and Jordan mappings in associative rings, Ring theory (Proc. Conf.,

Ohio Univ., Athens, Ohio, 1976), pp. 71–84. Lecture Notes in Pure and Appl. Math., Vol. 25, Dekker,
New York, 1977.

[47] W. S. MARTINDALE, 3RD, Lie and Jordan mappings, Contemporary Math., 13 (1982), 173–177.
[48] W. S. MARTINDALE, 3RD, Lie maps in prime rings: a personal perspective, Rings and Nearrings,

95–110, Walter de Gruyter, Berlin, 2007.
[49] M. MATHIEU, Lie mappings of C∗ -algebras, Nonassociative algebra and its applications, 229–234,

Lecture Notes in Pure and Appl. Math., 211, Dekker, New York, 2000.
[50] C. R. MIERS, Lie isomorphisms of factors, Trans. Amer. Math. Soc., 147 (1970), 55–63.
[51] C. R. MIERS, Lie homomorphsism of operator algebras, Pacific J. Math., 38 (1971), 717–735.
[52] C. R. MIERS, Lie triple derivations of von Neumann algebras, Proc. Amer. Math. Soc., 71 (1978),

57–61.
[53] K. MORITA, Duality for modules and its applications to the theory of rings with minimum condition,

Sci. Rep. Tokyo Kyoiku Diagaku Sect. A, 6 (1958), 83–142.
[54] X.-F. QI AND J.-C. HOU, Characterization of ξ -Lie multiplicative isomorphisms, Oper. Matrices, 4

(2010), 417–429.
[55] X.-F. QI AND J.-C. HOU, Characterization of Lie multiplicative isomorphisms between nest algebras,

Sci. China Math., 54 (2011), 2453–2462.
[56] M. P. ROSEN, Isomorphisms of a certain class of prime Lie rings, J. Algebra, 89 (1984), 291–317.
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