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DERIVATIONS AND BICIRCULAR PROJECTIONS
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Abstract. In this paper we investigate some functional equations on standard operator algebras
and semiprime rings. We prove, for example, the following result, which is related to a classical
result of Chernoff. Let X be a real or complex Banach space, let L (X) be the algebra of all
bounded linear operators on X and let A (X) ⊂ L (X) be a standard operator algebra. Suppose
there exists a linear mapping D : A (X) → L (X) satisfying the relation D(An) = D(A)An−1 +
AD(An−2)A+An−1D(A) for all A ∈ A (X), where n > 2 is some fixed integer. In this case D
is of the form D(A) = [A,B] for all A ∈ A (X) and some fixed B ∈ L (X) . Some functional
equations related to bicircular projections are also investigated.

This research is a continuation of our recent work [26]. Throughout, R will repre-
sent an associative ring with center Z(R). As usual, we write [x,y] for xy− yx. Given
an integer n � 2, a ring R is said to be n -torsion free if for x∈ R, nx = 0 implies x = 0.
An additive mapping x �→ x∗ on a ring R is called involution in case (xy)∗ = y∗x∗ and
x∗∗ = x hold for all x,y ∈ R . A ring equipped with an involution is called a ring with
involution or ∗ -ring. Recall that a ring R is prime if for a,b ∈ R, aRb = (0) implies
that either a = 0 or b = 0, and is semiprime in case aRa = (0) implies a = 0. Let A
be an algebra over the real or complex field and let B be a subalgebra of A. A linear
mapping D : B → A is called a linear derivation in case D(xy) = D(x)y+ xD(y) holds
for all pairs x,y∈ R. In case we have a ring R , an additive mapping D : R→ R is called
a derivation if D(xy) = D(x)y+xD(y) holds for all pairs x,y ∈ R and is called a Jordan
derivation in case D(x2) = D(x)x + xD(x) is fulfilled for all x ∈ R . A derivation D
is inner in case there exists a ∈ R , such that D(x) = [x,a] holds for all x ∈ R . Every
derivation is a Jordan derivation. The converse is in general not true. A classical result
of Herstein [15] asserts that any Jordan derivation on a 2-torsion free prime ring is a
derivation. A brief proof of Herstein theorem can be found in [4].

Cusack [8] generalized Herstein theorem to 2-torsion free semiprime rings (see
[5] for an alternative proof). Herstein theorem has been fairly generalized by Beidar,
Brešar, Chebotar and Martindale [1]. Let X be a real or complex Banach space and let
L (X) and F (X) denote the algebra of all bounded linear operators on X and the ideal
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of all finite rank operators in L (X), respectively. An algebra A (X) ⊂ L (X) is said
to be standard in case F (X) ⊂ A (X). Any standard operator algebra is prime, which
is a consequence of a Hahn-Banach theorem. In case we have a real or complex Hilbert
space, we denote by A∗ the adjoint operator of a bounded linear operator A . Let X be
a complex Banach space. A projection P ∈ L (X) is bicircular in case all mappings of
the form eiαP+ eiβ (I−P), where I denotes the identity operator, are isometric for all
pairs of real numbers α,β . Let us start with the following result proved by Brešar [6]
(see [21] for a generalization).

THEOREM 1. Let R be a 2 -torsion free semiprime ring and let D : R → R be an
additive mapping satisfying the relation

D(xyx) = D(x)yx+ xD(y)x+ xyD(x) (1)

for all pairs x,y ∈ R. In this case D is a derivation.

Note that in case a ring has an identity element, the proof of the result above is
immediate. Namely, in this case the substitution y = e in the relation (1), where e
stands for the identity element, gives that D is a Jordan derivation and then it follows
from Cusack’s generalization of Herstein theorem that D is a derivation. An additive
mapping satisfying the relation (1) on an arbitrary ring is called a Jordan triple deriva-
tion. It is easy to prove that any Jordan derivation on a 2-torsion free ring is a Jordan
triple derivation, which means that Theorem 1 generalizes Cusack’s generalization of
Herstein theorem.

The substitution y = xn−2 in the relation (1) gives

D(xn) = D(x)xn−1 + xD(xn−2)x+ xn−1D(x).

It is our aim in this paper to prove the following result, which is related to the above
relation.

THEOREM 2. Let X be a real or complex Banach space and let A (X) be a stan-
dard operator algebra on X . Suppose there exists a linear mapping D : A (X)→L (X)
satisfying the relation

D(An) = D(A)An−1 +AD(An−2)A+An−1D(A)

for all A ∈ A (X) and some fixed integer n > 2. In this case D is of the form D(A) =
[A,B] for all A ∈ A (X) and some fixed B ∈ L (X) .

In case n = 3 the result above reduces to Theorem 1 in [29]. In the proof of
Theorem 2 we use Herstein theorem and the result below.

THEOREM 3. Let X be a real or complex Banach space, let A (X) be a standard
operator algebra on X and let D : A (X) → L (X) be a linear derivation. In this case
D is of the form D(A) = [A,B] for all A ∈ A (X) and some fixed B ∈ L (X).
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Theorem 3 has been proved by Chernoff [7] (see also [25, 27]). We are now in the
position to prove Theorem 2.

Proof of Theorem 2. We have the relation

D(An) = D(A)An−1 +AD(An−2)A+An−1D(A). (2)

Let us first restrict our attention to F (X) .
Let A be from F (X) and let P ∈ F (X) be a projection with AP = PA = A .

Putting A+P for A in the above relation, we obtain

n

∑
i=0

(n
i

)
D(An−iPi) = D(A+P)

(n−1

∑
i=0

(n−1
i

)
An−1−iPi

)

+
n−2

∑
i=0

(n−2
i

)
(A+P)D(An−2−iPi)(A+P)

+
(n−1

∑
i=0

(n−1
i

)
An−1−iPi

)
D(A+P). (3)

Using (2) and rearranging the relation (3) in sense of collecting together terms involving
equal number of factors of P , we obtain

n−1

∑
i=1

fi(A,P) = 0,

where fi(A,P) stands for the expression of terms involving i factors of P . Replacing A
by A+2P , A+3P, . . . , A+(n−1)P in turn in the relation (2) and expressing the re-
sulting system of n−1 homogeneous equations of variables fi(A,P) , i = 1,2, . . . ,n−1,
we see that the coefficient matrix of the system is a van der Monde matrix

⎡
⎢⎢⎢⎣

1 1 . . . 1
2 22 . . . 2n−1

...
...

. . .
...

n−1 (n−1)2 . . . (n−1)n−1

⎤
⎥⎥⎥⎦ .

Since the determinant of this matrix is different from zero, it follows that the system
has only a trivial solution. In particular,

fn−1(A,P) =
( n

n−1

)
D(A)− (n−1

n−1

)
D(A)P− (n−1

n−2

)
D(P)A

−(n−2
n−2

)
AD(P)P− (n−2

n−2

)
PD(P)A− (n−2

n−3

)
PD(A)P

−(n−1
n−1

)
PD(A)− (n−1

n−2

)
AD(P).

The above relation reduces to

nD(A) = (n−1)(D(P)A+AD(P))+D(A)P+PD(A) (4)

+AD(P)P+PD(P)A+(n−2)PD(A)P.
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Putting P for A in (2) gives D(P) = D(P)P+PD(P)P+PD(P) . Left (right, two-sided)
multiplication of this relation by A gives, respectively,

AD(P)P = PD(P)A = AD(P)A = 0. (5)

Considering above ascertainments in (4) leads to

nD(A) = (n−1)(D(P)A+AD(P))+D(A)P+PD(A)+ (n−2)PD(A)P. (6)

Right (left) multiplication by P in (6) gives, respectively,

D(A)P = D(P)A+PD(A)P,
PD(A) = AD(P)+PD(A)P.

With the above two relations, the relation (6) reduces to

D(A) = D(P)A+AD(P)+PD(A)P. (7)

Putting A2 for A in the above relation gives

D(A2) = D(P)A2 +A2D(P)+PD(A2)P. (8)

Right (left) multiplication by A in the relation (7) and considering (5) gives, respec-
tively,

D(A)A = D(P)A2 +PD(A)A and AD(A) = A2D(P)+AD(A)P. (9)

From the van der Monde matrix we also obtain

fn−2(A,P) =
( n

n−2

)
D(A2)− (n−1

n−2

)
D(A)A− (n−1

n−3

)
D(P)A2

−(n−2
n−2

)
AD(P)A− (n−2

n−3

)
AD(A)P− (n−2

n−3

)
PD(A)A

−(n−2
n−4

)
PD(A2)P− (n−1

n−2

)
AD(A)− (n−1

n−3

)
A2D(P).

Considering (5) and some calculations reduces the above relation to

n(n−1)D(A2) = 2(n−1)(D(A)A+AD(A))
+2(n−2)(AD(A)P+PD(A)A)
+(n−1)(n−2)(A2D(P)+D(P)A2)
+(n−2)(n−3)PD(A2)P.

By (8) we have PD(A2)P = D(A2)−D(P)A2 −A2D(P) . Considering this in the above
relation leads to

(2n−3)D(A2) = (n−1)(D(A)A+AD(A))
+(n−2)(AD(A)P+PD(A)A)
+(n−2)(A2D(P)+D(P)A2).
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Because of (9) the above relation reduces to

D(A2) = D(A)A+AD(A). (10)

From the relation (7) one can conclude that D maps F (X) into itself. We therefore
have a linear mapping D , which maps F (X) into itself and satisfies (10) for all A ∈
F (X) . In other words, D is a Jordan derivation on F (X) and since F (X) is prime,
it follows, according to Herstein theorem, that D is a derivation on F (X) . Applying
Theorem 3, one can conclude that D is of the form

D(A) = [A,B] (11)

for all A ∈ F (X) and some fixed B ∈ L (X) . It remains to prove that (11) holds
for all A ∈ A (X) as well. For this purpose we introduce D1 : A (X) → L (X) by
D1(A) = [A,B] , where B is from the relation (11). Let us denote D−D1 by D0 . The
mapping D0 is, obviously, linear and satisfies the relation (2). Besides, D0 vanishes on
F (X) . It is our aim to prove that D0 vanishes on A (X) as well. Let A be from A (X) ,
let P be a one-dimensional projection and let us introduce S∈A (X) by S = A+PAP−
(AP+PA) . Since S−A∈F (X) , we have D0(S) = D0(A) . Besides, SP = PS = 0. By
the relation (2) we have

D0(An) = D0(A)An−1 +AD0(An−2)A+An−1D0(A) (12)

for all A ∈ A (X) . Therefore

D0(S)Sn−1 +SD0(Sn−2)S+Sn−1D0(S) = D0(Sn) (13)

= D0(Sn +P) = D0((S+P)n)
= D0(S+P)(S+P)n−1 +(S+P)D0((S+P)n−2)(S+P)

+(S+P)n−1D0(S+P)
= D0(S)(Sn−1 +P)+ (S+P)D0(Sn−2)(S+P)+ (Sn−1 +P)D0(S)
= D0(S)Sn−1 +D0(S)P+SD0(Sn−2)S+SD0(Sn−2)P+PD0(Sn−2)S

+PD0(Sn−2)P+Sn−1D0(S)+PD0(S).

From the above relation it follows that

D0(S)P+SD0(Sn−2)P+PD0(Sn−2)S+PD0(Sn−2)P+PD0(S) = 0

and since D0(S) = D0(A) , we obtain

D0(A)P+SD0(An−2)P+PD0(An−2)S+PD0(An−2)P+PD0(A) = 0. (14)

Two-sided multiplication of the above relation by P gives

2PD0(A)P+PD0(An−2)P = 0. (15)

Putting 2A for A in the above relation, we obtain

4PD0(A)P+2n−2PD0(An−2)P = 0. (16)



854 N. ŠIROVNIK AND J. VUKMAN

In case n = 3, the relation (15) gives

PD0(A)P = 0. (17)

In case n > 3, the relations (15) and (16) give (17). Considering the above relation in
the relation (15), we obtain

PD0(An−2)P = 0.

The above relation reduces (14) to

D0(A)P+SD0(An−2)P+PD0(An−2)S+PD0(A) = 0.

Putting 2A for A (in this case S becomes 2S ) and comparing such obtained relation
with the above relation leads to

D0(A)P+PD0(A) = 0.

Right multiplication of the above relation by P gives

D0(A)P+PD0(A)P = 0

and the relation (17) reduces the above relation to

D0(A)P = 0.

Since P is an arbitrary one-dimensional projection, if follows from the above relation
that D0(A)= 0 for any A∈A (X) . The proof of the theorem is therefore complete. �

In our recent paper [26] one can find the following result.

THEOREM 4. Let X be a real or complex Banach space and let A (X) be a stan-
dard operator algebra on X . Suppose there exists an additive mapping T : A (X) →
L (X) satisfying the relation

T (An) = T (A)An−1−AT (An−2)A+An−1T (A)

for all A ∈ A (X) and some fixed integer n > 2. In this case T is of the form T (A) =
AC+CA for all A ∈ A (X) and some fixed C ∈ L (X).

Let us point out that in Theorem 2 there is an assumption that D is linear, while in
Theorem 4 T is additive. The question arises, whether Theorem 2 can be proved under
weaker assumption that D is additive. The answer is in general negative. Namely, the
proof of Theorem 2 depends on Theorem 3, which in general can not be proved in case
the mapping D is additive, as shown by Šemrl [25].

THEOREM 5. Let X be a real or complex Banach space and let A (X) be a stan-
dard operator algebra on X . Suppose there exist linear mappings F,G : A (X) →
L (X) satisfying relations

F(An) = F(A)An−1 +AG(An−2)A+An−1F(A),
G(An) = G(A)An−1 +AF(An−2)A+An−1G(A)

for all A ∈ A (X) and some fixed integer n > 2. In this case F(A) = AB−CA and
G(A) = AC−BA for all A ∈ A (X) and some fixed B,C ∈ L (X) .
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Proof. Adding both of the relations gives

D(An) = D(A)An−1 +AD(An−2)A+An−1D(A), (18)

where D stands for F +G . Similarly we obtain

T (An) = T (A)An−1−AT(An−2)A+An−1T (A), (19)

where T denotes F −G . By Theorem 2, D is of the form D(A) = [A,B] for all A ∈
A (X) and some fixed B ∈ L (X) . Theorem 4 implies that T is of the form T (A) =
AC+CA for all A ∈ A (X) and some fixed C ∈ L (X) . Obviously, D+T = 2F and
D−T = 2G . We have

D(A)+T(A) = AB−BA+AC+CA = A(B+C)− (B−C)A,

D(A)−T(A) = AB−BA−AC−CA = A(B−C)− (B+C)A.

Let B denote 1
2(B +C) and C denote 1

2 (B−C) . Mappings F and G can now be
presented as F(A) = AB−CA and G(A) = AC−BA for all A ∈ A (X) and some fixed
operators B,C ∈ L (X) , which was our aim to prove. �

Stachó and Zalar [23, 24] investigated bicircular projections on the C∗ -algebra
L (H), where H is a complex Hilbert space. According to Proposition 3.4 in [23]
every bicircular projection P : L (H) → L (H), where H is a complex Hilbert space,
satisfies the functional equation

P(ABA) = P(A)BA−AP(B∗)∗A+ABP(A) (20)

for all pairs A,B ∈ L (H), where B∗ stands for the adjoint operator of B ∈ L (H). M.
Fošner and Iliševič [11] investigated the above functional equation on 2-torsion free
semiprime ∗ -ring. They expressed the solution of the identity (20) in terms of deriva-
tion and so-called double centralizers. Bicircular projections and related functional
equations have been extensively investigated during the last few years (see [2, 3, 9, 10,
11, 12, 13, 14, 16, 17, 18, 19, 28]). Putting B = An−2 in the relation (20) we obtain

P(An) = P(A)An−1−AP((A∗)n−2)∗A+An−1P(A), (21)

which leads to the following result.

THEOREM 6. Let X be a real or complex Hilbert space space and let A (X) be
a standard operator algebra, which is closed under the adjoint operation. Let P,Q :
A (X) → L (X) be linear mappings satisfying

P(An) = P(A)An−1 +AQ((A∗)n−2)∗A+An−1P(A),
Q(An) = Q(A)An−1 +AP((A∗)n−2)∗A+An−1Q(A)

for all A ∈ A (X) and some fixed integer n > 2. In this case P and Q are of the form

P(A) = A(B+C+D+E)+ (C+E−B−D)A,

Q(A) = A(B+C−D−E)+ (C+D−B−E)A
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for all A ∈ A (X) , where B,C,D,E ∈ L (X) are some fixed operators. Besides, B∗ =
−B+ λ I , C∗ = −C, D∗ = D+ μI and E∗ = E , where λ ,μ are fixed real or complex
numbers and I stands for the identity operator.

Proof. The proof goes through in three steps.

First step. Let us first assume that P = Q and let F denote P . In this case we have
the relation

F(An) = F(A)An−1 +AF((A∗)n−2)∗A+An−1F(A) (22)

for all A ∈ A (X) . It is our aim to prove that 2F(A) = A(B +C) + (C−B)A for all
A ∈ A (X) and some fixed operators B,C ∈ L (X) . We will also show that B∗ =
−B+λ I for some fixed real or complex number λ and C∗ = −C . For this purpose let
us introduce mappings d, f : A (X) → L (X) by

d(A) = F(A)+F(A∗)∗ (23)

and
f (A) = F(A)−F(A∗)∗ (24)

for all A ∈ A (X) . One can easily show that the relation (22) implies

d(An) = d(A)An−1 +Ad(An−2)A+An−1d(A) (25)

and
f (An) = f (A)An−1 −A f (An−2)A+An−1 f (A) (26)

for all A ∈ A (X) . We therefore have

d(A∗)∗ = (F(A∗)+F(A)∗)∗ = F(A)+F(A∗)∗ = d(A).

Hence, d(A∗)∗ = d(A) . By Theorem 2 it follows from (25) that d is of the form d(A) =
[A,B] for all A ∈ A (X) and some fixed operator B ∈ L (X) . Since d(A∗)∗ = d(A) ,
we obtain AB−BA = B∗A−AB∗ , which gives [A,B∗ +B] = 0. Therefore B∗ +B ∈
Z(A (X)) , which means that B∗ +B = λ I for some fixed real or complex number λ .

The relation (26) together with Theorem 4 implies that f is of the form f (A) =
AC+CA for all A ∈ A (X) and some fixed C ∈ L (X) . From (24) we obtain

F(A)−F(A∗)∗ = AC+CA. (27)

Putting A∗ for A in the above relation leads to F(A∗)−F(A)∗ = A∗C+CA∗ . We now
have

(
F(A∗)−F(A)∗

)∗ =
(
A∗C+CA∗)∗ and therefore

F(A∗)∗ −F(A) = C∗A+AC∗.

The above relation together with (27) gives A(C∗ +C)+ (C∗ +C)A = 0. Since every
standard operator algebra is prime, it follows from the last relation that C∗ =−C . Com-
bining relations (23) and (27) we obtain 2F(A) = AB−BA + AC+CA and therefore
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2F(A) = A(B+C)+ (C−B)A for all A ∈ A (X) . The proof of the first step is now
complete.

Second step. We will now assume that P = −Q and let H denote P . In this case
we have the relation

H(An) = H(A)An−1−AH((A∗)n−2)∗A+An−1H(A) (28)

for all A ∈ A (X) . In this step one has to prove that 2H(A) = A(D+E)+ (E −D)A
for all A ∈ A (X) and some fixed operators D,E ∈ L (X) . Besides, D∗ = D+ μI for
some fixed real or complex number μ and E∗ = E . The proof of the second step goes
through using the same arguments as in the first step and will therefore be omitted.

Third step. We are now in a position to prove the theorem in its full generality. We
have the relations

P(An) = P(A)An−1 +AQ((A∗)n−2)∗A+An−1P(A),
Q(An) = Q(A)An−1 +AP((A∗)n−2)∗A+An−1Q(A)

for all A ∈ A (X) . Adding (subtracting) the above relations gives, respectively,

F(An) = F(A)An−1 +AF((A∗)n−2)∗A+An−1F(A),
H(An) = H(A)An−1−AH((A∗)n−2)∗A+An−1H(A),

where F denotes P + Q and H stands for P−Q . Due to results regarding (22) and
(28) in first and second step, we obtain from the above relations that

2P(A)+2Q(A) = A(B+C)+ (C−B)A,

2P(A)−2Q(A) = A(D+E)+ (E−D)A

for all A ∈ A (X) , where B,C,D,E ∈ L (X) are some fixed operators with properties
B∗ = −B+λ I , C∗ = −C , D∗ = D+ μI and E∗ = E . The last two relations imply that

4P(A) = A(B+C+D+E)+ (C+E−B−D)A,

4Q(A) = A(B+C−D−E)+ (C+D−B−E)A

for all A ∈ A (X) . Let B denote 1
4B , C denote 1

4C , D denote 1
4D and E denote 1

4E .
Then we have

P(A) = A(B+C+D+E)+ (C+E−B−D)A,

Q(A) = A(B+C−D−E)+ (C+D−B−E)A

for all A ∈ A (X) , which completes the proof of the theorem. �
Let us point out that in Theorem 2, Theorem 5 and Theorem 6 we obtain as a

result the continuity of the mappings under purely algebraic assumptions concerning
these mappings, which means that these results might be of some interest from the
automatic continuity point of view. For results concerning automatic continuity we
refer the reader to [22].

We proceed with the following conjecture.
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CONJECTURE 7. Let R be a semiprime ring with suitable torsion restrictions and
let D : R → R be an additive mapping. Suppose that

D(xn) = D(x)xn−1 + xD(xn−2)x+ xn−1D(x)

holds for all x ∈ R and some fixed integer n > 2. In this case D is a derivation.

We are going to conclude the paper by proving the above conjecture in case a
semiprime ring has the identity element.

THEOREM 8. Let n > 2 be some fixed integer, let R be a (2n)! -torsion free
semiprime ring with the identity element and let D : R → R be an additive mapping
satisfying the relation

D(xn) = D(x)xn−1 + xD(xn−2)x+ xn−1D(x) (29)

for all x ∈ R. In this case D is a derivation.

Proof. Let e be the identity element. Putting e for x in the relation (29) gives

D(e) = 0. (30)

Let y be any element of Z(R) . Putting x+ y for x in the relation (29), we obtain

n

∑
i=0

(n
i

)
D(xn−iyi) = D(x+ y)

(n−1

∑
i=0

(n−1
i

)
xn−1−iyi

)

+
n−2

∑
i=0

(n−2
i

)
(x+ y)D(xn−2−iyi)(x+ y)+

(n−1

∑
i=0

(n−1
i

)
xn−1−iyi

)
D(x+ y).

Using (29) and rearranging the above relation in sense of collecting together terms
involving equal number of factors of y , we obtain

n−1

∑
i=1

fi(x,y) = 0,

where fi(x,y) stands for the expression of terms involving i factors of y . Replacing x
by x+2y , x+3y , . . . , x+(n−1)y in turn in the relation (29) and expressing the re-
sulting system of n−1 homogeneous equations of variables fi(x,y) , i = 1,2, . . . ,n−1,
we see that the coefficient matrix of the system is a van der Monde matrix

⎡
⎢⎢⎢⎣

1 1 . . . 1
2 22 . . . 2n−1

...
...

. . .
...

n−1 (n−1)2 . . . (n−1)n−1

⎤
⎥⎥⎥⎦ .
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Since the determinant of this matrix is different from zero, it follows that the system
has only a trivial solution. In particular,

fn−2(x,e) = −( n
n−2

)
D(x2)+

(n−1
n−3

)
D(e)x2 +

(n−1
n−2

)
D(x)x

+
(n−2

n−4

)
D(x2)+

(n−2
n−3

)
(D(x)x+ xD(x))+

(n−2
n−2

)
xD(e)x

+
(n−1

n−3

)
x2D(e)+

(n−1
n−2

)
xD(x),

where y is replaced with the identity element e . Since (30) holds, the above relation
reduces to (( n

n−2

)− (n−2
n−4

))
D(x2) =

((n−1
n−2

)
+

(n−2
n−3

))
(D(x)x+ xD(x)).

After few calculations the above relation reduces to

(2n−3)D(x2) = (2n−3)(D(x)x+ xD(x)).

Since R is (2n)! -torsion free, it follows from the above relation that

D(x2) = D(x)x+ xD(x)

for all x ∈ R . In other words, D is a Jordan derivation on R . According to Cusack’s
generalization of Herstein theorem, one can conclude that D is a derivation, which
completes the proof of the theorem. �
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[10] A. FOŠNER, D. ILIŠEVIĆ, Generalized bicircular projections via rank preserving maps on the spaces

of symmetric and antisymmetric operators, Operators and Matrices 5 (2011), 239–260.
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[26] N. ŠIROVNIK, J. VUKMAN, On certain functional equation related to a class of generalized inner

derivations, Operators and Matrices, to appear.
[27] J. VUKMAN, On automorphisms and derivations of operator algebras, Glasnik Mat. Vol. 19 (1984),

135–138.
[28] J. VUKMAN, On functional equations related to bicircular projections, Glasnik. Mat. Vol. 41, (2006),

51–55.
[29] J. VUKMAN, On derivations of standard operator algebras and semisimple H∗ -algebras, Studia Sci.

Math. Hungar. 44 (2007), 57–63.

(Received March 25, 2013) Nejc Širovnik
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