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COMMUTATION RELATIONS FOR

TRUNCATED TOEPLITZ OPERATORS

ISABELLE CHALENDAR AND DAN TIMOTIN

(Communicated by A. Böttcher)

Abstract. For truncated Toeplitz operators, which are compressions of multiplication operators
to model subspaces of the Hardy space H2 , we obtain criteria for commutation relations. The
results show an analogy to the case of Toeplitz matrices, and they extend the theory of Sedlock
algebras.

1. Introduction

Truncated Toeplitz operators are compressions of multiplication operators to model
subspaces of the Hardy space H2 ; they represent a far reaching generalization of clas-
sical Toeplitz matrices. Although particular cases had appeared before in the literature,
the general theory has been initiated in the seminal paper [14]. Since then, truncated
Toeplitz operators have constituted an active area of research. We mention only a few
relevant papers: [2, 3, 4, 5, 10, 17]; see also the recent survey [9] and the references
within.

In particular, in [15] Sedlock has investigated when a product of truncated Toeplitz
operators is itself a truncated Toeplitz operator. It turns out that this does not happen
very often. More precisely, there exists a family of classes Bα

u (precise definitions
in the next section), where α is in the extended complex plane, such that, whenever
the product of two nonscalar truncated Toeplitz operators is itself a truncated Toeplitz
operator, both operators have to belong to the same class Bα

u . These classes are com-
mutative algebras, and they are the maximal subalgebras of the subspace of truncated
Toeplitz operators.

On the other hand, truncated Toeplitz operators represent a far reaching general-
ization of classical Toeplitz matrices. Toeplitz matrices whose product is also a Toeplitz
matrix are sometimes called generalized circulants [7], and a discussion of the classes
Bα

u for this particular case appears in [16]. A uniform procedure for imposing condi-
tions on products of Toeplitz matrices has been devised in [12], leading to characteri-
zations of different classes of Toeplitz matrices: normal, unitary, commuting, etc.

The purpose of the present paper is to adapt the approach in [12] to the general
case of truncated Toeplitz operators on an arbitrary model space. The algebraic rela-
tions carry through neatly if we take advantage of a certain unitary operator between
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different model spaces, called the Crofoot transform. As a consequence, we obtain
complete characterizations of some classes of truncated Toeplitz operators defined by
commutation relations.

The plan of the paper is the following. After a preliminary section, we introduce
the Sedlock classes in Section 3 and the Crofoot transform in Section 4. Section 5 is
dedicated to the key technical argument, which is analogous to the one in [12]. The
main results are then proved in Section 6.

2. Preliminaries

Our notations are mostly standard: C is the complex plane, D = {z ∈ C : |z| < 1}
the unit disc, and T = {z ∈ C : |z| < 1} the unit circle. By Ĉ we will denote the
extended complex plane C∪{∞} . As is customary, we will view the Hardy space H2

on D as a subspace of L2(T) by identifying functions analytic in D with their radial
limits (almost everywhere). Similarly, the algebra H∞ of bounded analytic functions in
D may be viewed as a closed subalgebra of L∞(T) .

An inner function u ∈ H∞ is characterized by |u|= 1 almost everywhere on T . If
u is an inner function and a ∈ D , we define the inner function ua by

ua(z) =
u(z)−a
1− au(z)

.

If u is an inner function, the model space K2
u is defined by K2

u = H2 �uH2 . We
denote by PK2

u
the orthogonal projection (in L2(T)) onto K2

u .

The conjugation of L2(T) defined by f̃ = uz f bijectively maps K2
u to itself; it

is this latter restriction that will appear in the sequel. The space K2
u is a reproducing

kernel space of analytic functions on D , and the reproducing kernels for points λ ∈ D

are

ku
λ (z) =

1−u(λ )u(z)

1−λz
.

The conjugate kernels k̃u
λ will also appear; an easy computation yields

k̃u
λ (z) =

u(z)−u(λ )
z−λ

.

As shown in [1], in special cases one may have “reproducing kernels” for points ζ ∈ T .
Namely, all functions in K2

u have a nontangential limit f (ζ ) in ζ ∈ T precisely when
u has an angular derivative in the sense of Caratheodory in ζ . In this case the function

ku
ζ (z) =

1−u(ζ )u(z)

1− ζz

belongs to K2
u , and f (ζ ) = 〈 f ,kζ 〉 for f ∈ K2

u .
The truncated Toeplitz operators (TTO) are defined as follows. Note first that,

since the reproducing kernels are bounded functions, K2
u ∩H∞ is dense in K2

u . If φ ∈
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L2(T) , we consider the map f �→ PK2
u
φ f defined on K2

u ∩H∞ . If this map extends to a

bounded operator on K2
u , we denote it Au

φ and call it a truncated Toeplitz operator with

symbol φ . The set of all TTOs on K2
u is a weakly closed subspace of L (K2

u ) , that we
will denote by Tu .

Truncated Toeplitz operators are closer to Toeplitz matrices than to Toeplitz opera-
tors. To start with, the symbol of a TTO is not uniquely defined; it is proved in [14] that
Au

φ = 0 if and only if φ ∈ uH2 +uH2 . It would be tempting to speak about the uniquely

defined reduced symbol of a TTO Au
φ as the projection of φ onto L2 � (uH2 + uH2) .

This space can also be written as (K2
u +K2

u )�C(ku
0 − k

u
0) (see [14, 15]); in particular,

any TTO has a symbol in K2
u +K2

u . Obviously things simplify when ku
0 = k

u
0 , which is

equivalent to u(0) = 0; we will have more to say about this in Section 5.
It has been shown in [14, Theorem 4.1] that TTOs may be characterized alge-

braically among operators on K2
u ; the result is the following.

LEMMA 2.1. The bounded operator A on K2
u belongs to Tu if and only if there

are functions ψ ,χ ∈ K2
u such that

Δ(A) := A−SuAS∗u = (ψ ⊗ ku
0)+ (ku

0 ⊗ χ),

in which case A = Au
ψ+χ .

EXAMPLES.

1. If φ(z) = z , then Au
φ is the model operator [13, 18] on the space K2

u ; it will be
denoted by Su .

2. In [14] are identified all rank one operators in Tu : they are multiples of ku
λ ⊗ k̃u

λ
and of their adjoints k̃u

λ ⊗ ku
λ , to which are added multiples of ku

ζ ⊗ ku
ζ whenever

u has an angular derivative in the sense of Caratheodory in ζ ∈ T .

3. For α ∈ D the modified compressed shifts are defined by

Sα
u = Su +

α
1−αu(0)

ku
0 ⊗ k̃u

0.

If α ∈ D , then Sα
u is unitarily equivalent to Suα , and is thus a completely non-

unitary contraction (whose characteristic function, in the sense of Sz. Nagy–Fo-
ias [18], is uα ). If α ∈ T , then Sα

u is unitary, with singular spectral measure and
multiplicity one (these are precisely the Clark unitary operators defined in [6]).

3. Sedlock classes

The Sedlock classes Bα
u ⊂ Tu , with α ∈ Ĉ , have been introduced in [15] in

connection to multiplication properties of TTOs. For α ∈C , Bα
u is the set of operators

in Tu which have a symbol of the form φ + αSuφ̃ + c , where φ ∈ K2
u and c ∈ C ;

while, for α = ∞ , B∞
u is the set of TTOs which have an antiholomorphic symbol. The

following are the main results proved in [15].
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THEOREM 3.1. (i) For any α ∈ Ĉ , Bα
u is a commutative weakly closed algebra.

(ii) If α = α ′ , then Bα
u ∩Bα ′

u = CI .

(iii) A ∈ Bα
u if and only if A∗ ∈ B

1/α
u .

(iv) If α ∈ D , then Bα
u = {Sα

u }′ (the commutant of Sα
u ).

(v) If A,B∈Tu , then AB∈Tu if and only if either one of the operators is a scalar,
or both belong to the same class Bα

u for some α ∈ Ĉ . In the last case we also have
AB ∈ Bα

u .
(vi) The classes Bα

u are precisely the maximal subalgebras of Tu .

As the algebras Bα
u are the commutants of modified compressed shifts, they may

be given a more concrete description. This is done in [15, Section 6], and we present
below a brief summary of the results therein. There are basically two distinct types of
Sedlock classes, depending on whether |α| = 1 or not, and the case |α| > 1 is reduced
to |α| < 1 by taking adjoints.

1. If |α|= 1, then Sα
u is a unitary operator of multiplicity one, with singular spectral

measure μα . Thus Bα
u = {Sα

u }′ is a maximal abelian subalgebra of L (K2
u ) , and

its elements may be described as functions Φ(Sα
u ) with Φ ∈ L∞(μα) .

2. If |α| = 1, suppose first that |α| < 1. Then Sα
u is a completely nonunitary con-

traction, that has a functional calculus with functions in H∞ [18]. Its commu-
tant Bα

u is a weakly closed nonselfadjoint algebra; its elements are the functions
Ψ(Sα

u ) with Ψ ∈H∞ , and we may identify their symbols as TTOs by the formula

Ψ(Sα
u ) = Au

Ψ
1−α u

.

If |α| > 1, then S1/α
u is a completely nonunitary contraction, and using Theo-

rem 3.1 (iii) the elements of Bα
u may be described as

Ψ(S1/α
u )∗ = Au

αφ
α−u

for Ψ ∈ H∞ .

It is worth mentioning the following simple corollary, which determines when the
product of two TTOs is zero.

COROLLARY 3.2. If Au
φ ,Au

ψ are nonzero operators in Tu and Au
φ Au

ψ = 0 , then

there is α ∈ Ĉ such that Au
φ ,Au

ψ ∈ Bα
u . Moreover:

1. If |α| = 1 , then Au
φ = Φ(Sα

u ) , Au
ψ = Ψ(Sα

u ) , with Φ,Ψ ∈ L∞(μα ) and ΦΨ = 0
μα -almost everywhere.

2. If |α| < 1 , then Au
φ = Φ(Sα

u ) , Au
ψ = Ψ(Sα

u ) , with Φ,Ψ ∈ H∞ , and the inner
function uα divides ΦΨ .
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3. If |α|> 1 , then Au
φ = Φ(S1/α

u )∗ , Au
ψ = Ψ(S1/α

u )∗ , with Φ,Ψ ∈H∞ , and the inner

function u1/α = 1−αu
u−α divides ΦΨ .

Proof. Most of the statements are immediate consequences of the remarks above.
For point (ii), one should note that if h ∈ H∞ and h(Sα

u ) = 0, then uα divides h . This
is proved directly in [15, Section 6]; alternately, it follows from the fact, noted above,
that the characteristic function of Sα

u is uα . �
We end this section with a continuity property of Sedlock classes.

LEMMA 3.3. Suppose αn,α ∈ C , αn → α , An ∈ Bαn
u , and An → A. Then A ∈

Bα
u .

Proof. For αn,α ∈ D the result follows from Theorem 3.1 (iv), once we note that
αn → α implies Sαn

u → Sα
u . If α ∈ D , we use Theorem 3.1 (iii) to reduce it to the

previous case. �
In the sequel we will usually assume that α ∈ C ; the obvious modifications of the

arguments required when α = ∞ are left to the reader.

4. The Crofoot transform

Let u be an inner function and a ∈ D . The Crofoot transform J = J(u,a) is the
unitary operator J : K2

u → K2
ua

defined by

J( f ) =

√
1−|a|2
1− au

f .

It is proved in [14, Theorem 13.2] that

JTuJ
∗ = Tua . (1)

The next result could be obtained by tedious calculations, but we prefer a shorter
argument based on the previous section.

THEOREM 4.1. If α ∈ Ĉ , then JBα
u J∗ = Bβ

ua , where β = α−a
1−aα .

Proof. Since Bα
u is a maximal subalgebra of Tu , it follows from (1) that JBα

u J∗

is a maximal algebra of Tua , and thus, by Theorem 3.1, it must be equal to Bβ
ua for

some β ∈ Ĉ . To obtain the precise value of β , it is enough to look at the Crofoot
transform of a single nonscalar operator; this we will do in the sequel. We may assume
that dimK2

u > 1, since otherwise there is nothing to prove.
Suppose first that |α| < 1. It is shown in [15, Example 5.3] that for any λ ∈ D

the rank one operator k̃u
λ ⊗ ku

λ belongs to B
u(λ )
u ; also, k̃u

λ ⊗ ku
λ is not scalar since

dimK2
u > 1.
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If f ∈ K2
u , then

f (λ ) =
1− au(λ )
√

1−|a|2 (J f )(λ ) = 〈J f ,
1−au(λ )
√

1−|a|2 kua
λ 〉 = 〈 f , 1−au(λ )

√
1−|a|2 J∗kua

λ 〉.

Therefore J∗kua
λ is a multiple of ku

λ , or, equivalently, kua
λ is a multiple of Jku

λ . Since J
commutes with the respective conjugations on K2

u and K2
ua

, the conjugate kernel k̃ua
λ is

a multiple of Jk̃u
λ . Therefore J(k̃u

λ ⊗ ku
λ )J∗ is a multiple of k̃ua

λ ⊗ kua
λ , and thus belongs

to B
ua(λ )
ua . Since ua(λ ) = u(λ )−a

1−au(λ ) , we have found, in the case α = u(λ ) , a nonscalar

operator in the class Bα
u whose Crofoot transform is in B

β
ua , with β = α−a

1−aα . By
Theorem 3.1 (ii) the same must then be true for the whole class.

The result is thus proved for points in u(D) ; since u is inner, this is a dense set
in D (see, for instance, [11, Theorem 6.6]). For α ∈ D outside this set, choose some
w ∈ D such that, if φ = ku

w + αSuk̃u
w , then Au

φ is not scalar. Take a sequence αn → α ,

αn ∈ u(D) ; then φn = ku
w + αnSuk̃u

w tend uniformly to φ , and therefore Au
φn

→ Au
φ ,

JAu
φn

J∗ → JAu
φJ∗ . We have Au

φn
∈ Bαn

u and Au
φ ∈ Bα

u by the definition of the Sedlock

classes. Since αn ∈ u(D) , JAu
φn

J∗ ∈ Bβn
ua , with βn := αn−a

1−aαn
→ β := α−a

1−aα . Applying

Lemma 3.3, it follows that JAu
φJ∗ ∈ B

β
ua . So again we have found a nonscalar operator

in Bα
u , whose Crofoot transform is in Bβ

ua with β = α−a
1−aα , and by Theorem 3.1 (ii)

the same must be true for the whole class.
Finally, if |α| > 1, then α ′ = 1/α ∈ D , and, if β ′ = α ′−a

1−aα ′ , then 1/β ′ = β .
Therefore, using the result already proved for α ′ and Theorem 3.1 (iii), we obtain

JBα
u J∗ = J(Bα ′

u )∗J∗ =
(
JBα ′

u J∗
)∗ = (Bβ ′

ua
)∗ = Bβ

ua
,

thus ending the proof of the theorem. �

Note that the particular case a = α appears in [15, Section 6]. We will only use
the Crofoot transform obtained by taking a = u(0) ; in this case ua(0) = 0.

5. Basic commutation formulas

In this section the inner function u is subjected to the condition u(0) = 0. Then
u = zu1 , ku

0 = 1 (the constant function equal to 1), and k̃u
0 = u1 ; also, we have the direct

sum decompositions

K2
u = C1⊕ zK2

u1
, (2)

(uH2 +uH2)⊥ = K2
u +K2

u = zK2
u1
⊕C1⊕ zK2

u1
. (3)

Any TTO has a unique symbol φ ∈ (uH2 +uH2)⊥ , and according to (3) we may
write

φ = φ+ + φ− + φ0 (4)
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with φ± ∈ zK2
u1

and φ0 ∈ C . Whenever u(0) = 0, the operator Au
φ will have the symbol

φ in K2
u +K2

u , and we will consistently use the decomposition (4). Note that (Au
φ )∗ =

Au
φ
, and (φ )± = φ∓ , (φ )0 = φ0 .

We define a conjugation ˘ on zK2
u1

, that we will call the reduced conjugation, by
transporting the conjugation on K2

u1
; that is, for f ∈ zK2

u1
,

f̆ = z f u1. (5)

The Sedlock classes can be easily identified in terms of φ± ; namely, Au
φ ∈ Bα

u if

and only if φ̆− = αφ+ .
Finally, let us note the formulas

Δ(I) = I−SuS
∗
u = 1⊗1, I−S∗uSu = u1⊗u1. (6)

The next is the correspondent of [12, Lemma 2.3].

LEMMA 5.1. Suppose u(0) = 0 . If Au
φ ,Au

ψ ∈ Tu , then

Δ(Au
φ Au

ψ) = φ+ ⊗ψ−− φ̆−⊗ ψ̆+

+(Au
φ ψ+ + ψ0φ+ + φ0ψ01)⊗1+1⊗ (Su(Au

ψ )∗S∗uφ− + φ0ψ−).

Proof. Denote φ̂ = φ −φ(0) , ψ̂ = φ −ψ(0) . We have

Δ(Au
φAu

ψ ) = Δ(Au
φ̂ Au

ψ̂)+ ψ0Δ(Au
φ̂ )+ φ0Δ(Au

ψ̂)+ φ0ψ0(1⊗1).

By Lemma 2.1, we have

Δ(Au
φ̂ ) = φ+ ⊗1+1⊗φ−, Δ(Au

ψ̂) = ψ+ ⊗1+1⊗ψ−, (7)

and therefore

Δ(Au
φ Au

ψ) = Δ(Au
φ̂Au

ψ̂)+ (ψ0φ+ + φ0ψ+ + φ0ψ01)⊗1+1⊗ (ψ0φ− + φ0ψ−). (8)

Now, using (6) and (7),

Δ(Au
φ̂ Au

ψ̂) = Au
φ̂Au

ψ̂ −SuA
u
φ̂ Au

ψ̂S∗u
= Au

φ̂Au
ψ̂ −Au

φ̂SuA
u
ψ̂S∗u +Au

φ̂SuA
u
ψ̂S∗u −SuA

u
φ̂ (S∗uSu +u1⊗u1)Au

ψ̂S∗u
= Au

φ̂ Δ(Au
ψ̂)+ Δ(Au

φ̂ )SuA
u
ψ̂S∗u−SuA

u
φ̂ (u1⊗u1)Au

ψ̂S∗u
= Au

φ̂ (ψ+ ⊗1+1⊗ψ−)+(φ+ ⊗1+1⊗φ−)SuA
u
ψ̂S∗u−(SuA

u
φ̂u1⊗Su(Au

ψ̂)∗u1)

We have Au
φ̂ 1 = φ+ , S∗u1 = 0, so the sum of the first two terms on the last line is

Au
φ̂ ψ+ ⊗1+ φ+⊗ψ−+1⊗Su(Au

ψ̂)∗S∗uφ−.
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Further, Au
φ̂ u1 = PK2

u
φ̂u1 = PK2

u
φ+u1 +PK2

u
φ−u1 . Since φ+ ∈ zK2

u1
, φ+u1 has zu1 = u

as a factor, and thus is orthogonal to K2
u . Also, φ−u1 = zzφ−u1 = z φ̆− , and φ̆− ∈ zK2

u1

implies z φ̆− ∈ K2
u , whence Au

φ̂u1 = z φ̆− . Therefore SuAu
φ̂u1 = PK2

u
φ̆− = φ̆− .

Taking into account the relation (Au
ψ̂)∗ = Au

ψ̂
= Au

ψ−+ψ+
, a similar computation

yields Su(Au
ψ̂)∗u1 = ψ̆+ . Therefore

Δ(Au
φ̂ Au

ψ̂) = Au
φ̂ ψ+ ⊗1+ φ+⊗ψ− +1⊗Su(Au

ψ̂ )∗S∗uφ−− φ̆−⊗ ψ̆+. (9)

Gathering (8) and (9) ends the proof of the lemma. �
From here follows the basic theorem, which corresponds to [12, Theorem 3.1].

THEOREM 5.2. Suppose u(0) = 0 and Au
φ ,Au

ψ ,Au
ζ ,Au

η ∈Tu . Then Au
φ Au

ψ −Au
ζ Au

η
∈ Tu if and only if

φ+ ⊗ψ−− φ̆−⊗ ψ̆+ = ζ+ ⊗η−− ζ̆−⊗ η̆+. (10)

Proof. By Lemma 5.1, there exist f ,g ∈ K2
u such that

Δ(Au
φ Au

ψ −Au
ζ Au

η) = φ+⊗ψ−− φ̆−⊗ ψ̆+− ζ+⊗η− + ζ̆−⊗ η̆+ + f ⊗1+1⊗g.

From Lemma 2.1 it follows that Au
φAu

ψ −Au
ζ Au

η ∈ Tu if and only if there exist f1,g1 ∈
K2

u such that

φ+ ⊗ψ−− φ̆−⊗ ψ̆+− ζ+⊗η−+ ζ̆−⊗ η̆+ = f1 ⊗1+1⊗g1. (11)

Now, if we consider the orthogonal decomposition (2), we can write operators
on K2

u as 2× 2 block matrices. With respect to this decomposition, the left hand side
of (11) has zeros on the first row and column, since φ±,ψ±,ζ±,η± ∈ zK2

u1
. Meanwhile,

the right hand side is the general form of an operator that has zeros in the lower right
corner. It follows that both sides have to be zero, so, in particular, (10) is true. �

6. Main results

As noticed above, the Sedlock classes have been introduced in connection with
multiplication properties of TTOs, and the main result in this direction is Theorem 3.1
(v). As a consequence, a characterization of unitary TTOs is obtained in [15]. In the
sequel we use Theorem 5.2 in order to improve that result (see Theorem 6.3 below), as
well as to obtain complete descriptions of other classes of TTOs.

The first result discusses commuting TTOs.

THEOREM 6.1. Let u be an inner function. If Au
φ ,Au

ψ ∈ Tu , then the following
are equivalent:

(i) Au
φ Au

ψ = Au
ψAu

φ .

(ii) Au
φ Au

ψ −Au
ψAu

φ ∈ Tu .

(iii) One of the following is true:
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(1) There exists α ∈ Ĉ such that Au
φ and Au

ψ both belong to Bα
u .

(2) The operators I,Au
φ ,Au

ψ are not linearly independent.

Proof. It is obvious that (i)⇒(ii). For (iii)⇒(i), in case (1) commutativity follows
from Sedlock’s result, while in case (2) one of the TTOs is a linear combination of the
identity and the other. So we are left to prove that (ii)⇒(iii).

Both conditions (ii) and (iii) are invariant if we apply a Crofoot transform: since
the transform is unitary, this is obvious for (iii)(2). For (ii) it follows from (1), while for
(iii)(1) it is a consequence of Lemma 4.1. So we may assume for the rest of the proof
that u(0) = 0, and thus apply the results from Section 5.

Assume then that Au
φ Au

ψ −Au
ψAu

φ ∈ Tu . Applying Theorem 5.2 with η = φ and
ζ = ψ , formula (10) becomes

φ+ ⊗ψ−− φ̆−⊗ ψ̆+ = ψ+⊗φ−− ψ̆−⊗ φ̆+. (12)

The operators on the two sides of this equality have rank at most two. If the rank is at
most one, then {φ+, φ̆−} and {ψ+, ψ̆−} are both pairs of linearly dependent functions.
Suppose, for instance, that φ− = 0 and φ̆− = αφ+ . Then (12) yields

φ+ ⊗ (ψ−−αψ̆+) = (αψ+− ψ̆−)⊗ φ̆+.

The equality of the rank one operators implies the existence of a ∈ C such that

ψ−−αψ̆+ = aφ̆+, αψ+− ψ̆− = aφ+.

Applying the reduced conjugation to the first equation and comparing the result to the
second, we see that a = 0. Thus ψ̆− = αψ+ , and thus Au

φ and Au
ψ both belong to Bα

u ;
that is, (1) is true.

Suppose now that the rank of the operators in (12) is two. The spaces spanned by
{φ+, φ̆−} and by {ψ+, ψ̆−} are equal, and thus there exist a11,a12,a21,a22 ∈ C such
that

ψ+ = a11φ+ +a12φ̆−, ψ̆− = a21φ+ +a22φ̆−.

Replacing these formulas in (12) yields

[
2a21φ+ +(a22−a11)φ̆−

]⊗ φ̆+ +
[
(a22−a11)φ+ −2a12φ̆−

]⊗φ− = 0,

and then the linear independence of φ+ and φ̆− implies that a12 = a21 = 0 and a11 =
a22 = a . Thus φ− = aφ+ , ψ̆− = aφ̆− , ψ− = aφ− , and

Au
ψ = ψ0I +Au

ψ++ψ−
= ψ0I +aAu

φ++φ−
= aAu

φ +(ψ0−φ0)I.

Therefore in this case (2) is satisfied. This ends the proof of the theorem. �

One can obtain as a consequence the characterization of normal TTOs.
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THEOREM 6.2. Let u be an inner function. If Au
φ ∈ Tu , then the following are

equivalent:
(i) Au

φ ∈ Tu is normal.
(ii) Au

φ (Au
φ )∗ − (Au

φ )∗Au
φ ∈ Tu .

(iii) One of the following is true:

(1) There exists α ∈ T such that Au
φ belongs to Bα

u .

(2) Au
φ is a linear combination of a selfadjoint TTO and the identity.

Proof. By applying Theorem 6.1 to the case ψ = φ , we obtain the equivalence of
(i), (ii), and (iii ′ ), where (iii ′ ) states that one of the following is true:

(1′) There exists α ∈ C such that Au
φ and (Au

φ )∗ both belong to Bα
u .

(2′) The operators I,Au
φ ,(Au

φ )∗ are not linearly independent.

If Au
φ is a multiple of the identity, then (1), (2), (1′) , (2′) are all satisfied. Suppose

this is not the case. If Au
φ ∈Bα

u , then (Au
φ )∗ ∈Bα−1

. If (1′) is true, then we must have

α−1 = α , or |α| = 1; thus (1) is equivalent to (1′) .
If (2) is true, then Au

φ = aA+ bI , with A = A∗ and a = 0; then (Au
φ )∗ = a

aAu
φ +

ab−ab
a I , and thus (2′) is true. Conversely, suppose (Au

φ )∗ = cAu
φ + dI . Since we have

asumed that Tφ is not a scalar, at least one of ℜAu
φ ,ℑAu

φ is not a scalar. Say this is

ℜAu
φ ; then ℜAu

φ = (c+1)Au
φ +dI , with c = −1, and thus Au

φ = (c+1)−1(ℜAu
φ −dI );

therefore (2) is true.
Thus (1) ⇔ (1′) and (2) ⇔ (2′) ; this ends the proof of the theorem. �

It is proved in [15] that if a TTO Au
φ is unitary then it belongs to some class Bα

u

for some α ∈ T . In this case Au
φ = Φ(Sα

u ) , where |Φ| = 1 μα -almost everywhere.
With our method we can obtain a slight improvement of this result.

THEOREM 6.3. Let u be an inner function. If Au
φ ∈ Tu , then the following are

equivalent:

1. Au
φ is unitary.

2. Au
φ is an isometry.

3. Au
φ is a coisometry.

4. (Au
φ )∗Au

φ − I ∈ Tu .

5. Au
φ (Au

φ )∗ − I ∈ Tu .

6. Au
φ ∈ Bα

u for some α ∈ T , and Au
φ = Φ(Sα

u ) , where |Φ| = 1 μα -almost every-
where.
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Proof. The implications (i)⇒(ii), (i)⇒(iii), (ii)⇒(iv), (iii)⇒(v), and (vi)⇒(i)
are all immediate.

To prove (v)⇒(vi), we may assume, as in the proof of Theorem 6.1, that u(0) =
0. We may then apply Theorem 5.2 to the case ψ = φ , ζ = η = 1 , which implies
ζ± = η± = 0. We obtain then

φ+ ⊗φ+ = φ̆−⊗ φ̆−.

Therefore there exists α ∈ T such that φ̆− = αφ+ ; that is, Au
φ ∈ Bα

u . The particular
form of Au

φ is then a consequence of the description of Bα
u in Section 3.

Finally, if (iv) is true, then (v) is true for (Au
φ )∗ = Au

φ
. Therefore the previous

paragraph yields Au
φ
∈Bα

u for some α ∈ T , whence Au
φ
∈Bα

u . Thus (iv)⇒(vi), which

ends the proof of the theorem. �
In particular, there do not exist nonunitary isometries or coisometries in Tu . This

can also be obtained as a consequence of the complex symmetry of the truncated
Toeplitz operators with respect to the conjugation on K2

u (see [8]).
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