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Abstract. In this paper we study the dependence of the Lidstone eigenvalues λm(q) , m ∈ N ,
of the fourth-order beam equation on potentials q ∈ Lp[0,1] , 1 � p � ∞ . The first result is that
λm(q) have a strongly continuous dependence on potentials, i.e., as nonlinear functionals, λm(q)
are continuous in q ∈ Lp[0,1] when the weak topology is considered. The second result is that
λm(q) are continuously Fréchet differentiable in potentials q ∈ Lp[0,1] when the Lp norm is
considered. These results will be used in studying the optimal estimations for these eigenvalues
in later works.

1. Introduction

Recently, we have undertaken a systematic study in papers [8, 9, 15, 18] on the de-
pendence of solutions and eigenvalues of the second-order Sturm-Liouville operators
on potentials. It has been shown that eigenvalues of Sturm-Liouville operators have
the strongly continuous dependence on potentials, i.e., as nonlinear functionals of po-
tentials, eigenvalues are continuous in potentials even when the weak topologies are
considered for potentials. These strong continuity results have been applied to solve
several interesting extremal problems and optimal estimations for the corresponding
eigenvalues in papers [14, 19]. See also the survey article [16]. This has given another
approach to solve extremal problems on eigenvalues, which is different from that in
[6, 7].

In this paper, we will study the dependence of eigenvalues of the following fourth-
order beam equation on potentials q

y(4)(x)+q(x)y(x) = λy(x), x ∈ [0,1]. (1.1)

Here q ∈ L p := Lp([0,1],R) , endowed with the Lp norm ‖ · ‖p , where 1 � p � ∞ .
With the Lidstone boundary condition

y(0) = y(1) = 0 = y′′(0) = y′′(1), (1.2)
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it is well-known that problem (1.1)–(1.2) has a sequence of (real) eigenvalues

λ1(q) < λ2(q) < · · · < λm(q) < · · ·
such that limm→∞ λm(q) = +∞ , see [5]. Notice that solutions y(x) of (1.1) are in the
Sobolev space W 4,1([0,1],R) . For example, one has for constant potentials

λm(c) = (mπ)4 + c ∀m ∈ N, c ∈ R. (1.3)

It is a basic result that λm(q) are continuous in potentials q when the Lp norm
‖ · ‖p for q ∈ L p is considered. For the Lebesgue spaces L p , besides the norm
topologies ‖ · ‖p , one has the weak topologies wp which are defined as follows. We
say that qn → q in (L p,wp) , if

∫ 1

0
qnvdx →

∫ 1

0
qvdx ∀v ∈ L p∗ ,

where p∗ = p/(p− 1) is the conjugate exponent of p . A functional f : L p → R is
said to be strongly continuous if f : (L p,wp) → R is continuous. Evidently, strong
continuity of f implies that f : (L p,‖ · ‖p) → R is continuous.

One of the main results of this paper is the following strong continuity of λm(q)
in q .

THEOREM 1.1. For each m ∈ N , as a nonlinear functional, λm(q) is strongly
continuous in q ∈ L p , where 1 � p � ∞ .

Another result of this paper is the following continuous Fréchet differentiability of
λm(q) in q ∈ L p with the Lp norm ‖ · ‖p .

THEOREM 1.2. As a nonlinear functional of q ∈ (L p,‖ · ‖p) , eigenvalue λm(q)
is continuously Fréchet differentiable. Moreover, the Fréchet derivative is given by

∂qλm(q) = E2
m(·,q), (1.4)

where Em(·,q) is an eigenfunction associated with λm(q) satisfying the normalization
condition:

‖Em(·,q)‖2 =
(∫ 1

0
E2

m(x,q)dx

) 1
2

= 1.

Here (1.4) is understood as the following bounded linear functional � of (L p,‖ · ‖p)

�(h) =
∫ 1

0
E2

m(x,q)h(x)dx ∀h ∈ L p. (1.5)

The continuity and differentiability results of this paper are the basis to study
eigenvalues in a quantitative way. As did in [14, 15, 16, 19] for the second-order sys-
tems, we will undertake quantitative analysis for eigenvalues of the fourth-order beam
equation in future works.
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The paper is organized as follows. In Section 2, after recalling some basic facts
on fundamental solutions and eigenvalues of linear systems, we will prove that the first
eigenvalue λ1(q) of (1.1)–(1.2) is strongly continuous in q∈L p . In Section 3, we will
use the induction principle to give the proof of Theorem 1.1. In these proofs, different
from the approaches used in [8, 11, 15, 18] for the second-order equations, we will ex-
tensively exploit the minimax characterization for eigenvalues λm(q) . Such a technique
is also used in [4, 12] to obtain some strong continuity of weighted eigenvalues and the
first non-trivial Fučı́k curve of the Laplacian in weights. Finally, Theorem 1.2 will be
proved at the end of Section 3.

We end the introduction with the following remark. We can argue in a similar
way to prove that the strong continuity and Fréchet differentiability of eigenvalues in
potentials obtained above also hold for other self-adjoint boundary conditions, such as

y(0) = y(1) = 0 = y′(0) = y′(1),

or

y(0) = y(1) = 0 = y′(0) = y′′(1).

2. Preliminary results

Given q ∈ L p , where 1 � p � ∞ , and λ ∈ R . We consider equation (1.1). Let
ϕi(x,λ ,q) be the fundamental solution of Eq. (1.1) satisfying

(y(0),y′(0),y′′(0),y′′′(0))T = ei,

where 1 � i � 4. Results in [8, 18] show that solutions of (1.1) have strongly continuous
dependence on potentials q .

LEMMA 2.1. As nonlinear operators, the following solution mappings

R× (L p,wp) → (C3,‖ · ‖C3), (λ ,q) → ϕi(·,λ ,q), (2.1)

are continuous, where 1 � i � 4 . Here C3 = C3([0,1],R) .

As for the first eigenvalue λ1(q) , one has the following minimization characteri-
zation.

LEMMA 2.2. ([1]) There holds

λ1(q) = min
u∈C2

0
u �=0

∫ 1
0

(
(u′′)2 +qu2

)
dx∫ 1

0 u2 dx
, (2.2)

where
C2

0 :=
{
u ∈C2([0,1],R) : u(0) = u(1) = u′′(0) = u′′(1) = 0

}
.
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The following lemma shows that λ1(q) can be estimated using ‖q‖1 from bellow
and from above.

LEMMA 2.3. As a functional, λ1(q) is bounded for q in any bounded subset of
(L 1,‖ · ‖1) .

Proof. Let us take u in (2.2) as ψ(x) :=
√

2sin(πx) ∈C2
0 . Then ‖ψ‖2 = 1 and

λ1(q) �
∫ 1

0

(
(ψ ′′)2 +qψ2) dx � ‖ψ ′′‖2

2 +‖ψ‖2
∞‖q‖1 = π4 +2‖q‖1. (2.3)

On the other hand, for any u ∈C2
0 with u �= 0, one has

‖u‖2
∞ �

(∫ 1

0
|u′|dx

)2

�
∫ 1

0
u′u′dx

= uu′
∣∣1
0−

∫ 1

0
uu′′dx �

∫ 1

0
|uu′′|dx

� ‖u‖2‖u′′‖2, (2.4)

and
∫ 1

0
qu2 dx �−‖q‖1‖u‖2

∞ = −‖q‖1‖u‖2√
2

·
√

2‖u‖2
∞

‖u‖2

�−1
2

(‖q‖2
1‖u‖2

2

2
+

2‖u‖4
∞

‖u‖2
2

)
. (2.5)

Let us write (2.4) as

‖u′′‖2 � ‖u‖2
∞

‖u‖2
. (2.6)

By (2.5) and (2.6), one has

∫ 1

0

(
(u′′)2 +qu2) dx = ‖u′′‖2

2 +
∫ 1

0
qu2 dx � −‖q‖2

1‖u‖2
2

4
.

Thus (2.2) yields
λ1(q) � −‖q‖2

1/4. (2.7)

Now (2.3) and (2.7) have proved the lemma. �
For q ∈ L 1 , let E1(x,q) be an eigenfunction associated with λ1(q) satisfying

the normalization condition: ‖E1(·,q)‖2 = 1. For definiteness, we always take the
normalized eigenfunction E1(x,q) of λ1(q) so that E ′

1(0,q) > 0. Then E1(x,q) is
uniquely determined.

LEMMA 2.4. Let qn → q0 in (L 1,w1) . Then, up to a subsequence, one has some
Ẽ ∈C3 such that

E1(·,qn) → Ẽ in (C3,‖ · ‖C3). (2.8)
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Proof. Since qn → q0 in (L 1,w1) , ‖qn‖1 is bounded. By Lemma 2.3, up to a
subsequence, one can assume that λ1(qn) → λ̃ for some λ̃ ∈ R .

Due to the Lidstone boundary condition (1.2), one has an, bn ∈ R , n ∈ N , such
that

E1(x,qn) ≡ anϕ2(x,λ1(qn),qn)+bnϕ4(x,λ1(qn),qn). (2.9)

Step 1. We claim that {an} is bounded.
If not, let us assume that |an|→+∞. Then {bn} would be unbounded. Otherwise,

if {bn} is bounded, one has bn/an → 0. By Lemma 2.1,

zn(x) := ϕ2(x,λ1(qn),qn)+
bn

an
ϕ4(x,λ1(qn),qn) → ϕ2(x, λ̃ ,q0) =: z̃ �= 0 (2.10)

in (C3,‖ · ‖C3) . Recall that

1 =
∫ 1

0
(E1(x,qn))2 dx = a2

n ·
∫ 1

0
z2
n(x)dx. (2.11)

This is impossible because an → ∞ and zn → z̃ �= 0. Thus both {an} and {bn} are
unbounded in the present case. Notice that (2.11) can be rewritten as

1 =
∫ 1

0
(E1(x,qn))2 dx = b2

n ·
∫ 1

0
ẑ2
n(x)dx, (2.12)

where
ẑn(x) :=

an

bn
ϕ2(x,λ1(qn),qn)+ ϕ4(x,λ1(qn),qn).

We distinguish two cases. The first case is that {an/bn} is bounded. Arguing as
before, it follows from Lemma 2.1 that, up to a subsequence, ẑn will tend to a non-
zero function of the form cϕ2(x, λ̃ ,q0)+ ϕ4(x, λ̃ ,q0) , where c ∈ R . By (2.12), this is
impossible because {bn} is unbounded. The second case is that {an/bn} is unbounded.
Then, up to a subsequence, one has bn/an → 0. Thus one still has (2.10). Therefore
(2.11) is impossible because {an} is unbounded. These contradictions have shown that
{an} is necessarily bounded.

Step 2. We claim that {bn} is bounded.
This can be proved as in Step 1.
Step 3. From Steps 1 and 2, let us simply assume that an → a0 and bn → b0 . By

setting
Ẽ(x) := a0ϕ2(x, λ̃ ,q0)+b0ϕ4(x, λ̃ ,q0), (2.13)

convergence result (2.8) follows immediately from (2.1) in Lemma 2.1. �

Based on the minimization characterization (2.2), we will prove the following
strong continuity of λ1(q) in q ∈ L 1 .

LEMMA 2.5. As a nonlinear functional, λ1(q) is strongly continuous in q ∈ L 1 .
Precisely, if qn → q0 in (L 1,w1) , one has then λ1(qn) → λ1(q0) .
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Proof. Let us take the first (normalized) eigenfunctions yn(x) := E1(x,qn) with
potentials qn , where n � 0. From the minimization characterization for λ1(q0) , one
has ∫ 1

0
(y′′0)

2 dx+
∫ 1

0
q0y

2
0 dx = λ1(q0),

∫ 1

0
(y′′n)

2 dx+
∫ 1

0
q0y

2
n dx � λ1(q0),

and, from the minimization characterization for λ1(qn) , one has
∫ 1

0
(y′′n)

2 dx+
∫ 1

0
qny

2
n dx = λ1(qn),

∫ 1

0
(y′′0)

2 dx+
∫ 1

0
qny

2
0 dx � λ1(qn).

Here n ∈ N is arbitrary. From these, we obtain
∫ 1

0
(qn−q0)y2

n dx � λ1(qn)−λ1(q0) �
∫ 1

0
(qn−q0)y2

0 dx ∀n ∈ N. (2.14)

By the definition for qn → q0 in (L 1,wp) , one has

lim
n→∞

∫ 1

0
(qn−q0)y2

0 dx = lim
n→∞

(∫ 1

0
qny

2
0 dx−

∫ 1

0
q0y

2
0 dx

)
= 0.

On the other hand, by applying Lemma 2.4 to E1(·,qn) = yn , n ∈ N , one has∣∣∣∣
∫ 1

0
(qn −q0)y2

n dx

∣∣∣∣ =
∣∣∣∣
∫ 1

0
(qn−q0)Ẽ2 dx+

∫ 1

0
(qn−q0)(y2

n− Ẽ2)dx

∣∣∣∣
�

∣∣∣∣
∫ 1

0
qnẼ

2 dx−
∫ 1

0
q0Ẽ

2 dx

∣∣∣∣+‖qn−q0‖1‖y2
n− Ẽ2‖∞

→ 0,

because qn → q0 in (L 1,w1) , y2
n → Ẽ2 in (C3,‖ · ‖C3) and ‖qn − q0‖1 is bounded.

Now (2.14) shows that limn→∞ λ1(qn) = λ1(q0) (for any possible convergent subse-
quence). The theorem is thus proved. �

Because of Lemma 2.5, the limiting function Ẽ(x) in result (2.8) of Lemma 2.4 is
independent of the choice of subsequences and is actually E1(x,q0) . Thus Lemma 2.4
can be improved as the following strong continuity result.

COROLLARY 2.6. The following (nonlinear) eigenfunction operator is continu-
ous

(L 1,w1) → (C3,‖ · ‖C3), q → E1(·,q).

We remark that if qn → q0 in (L 1,w1) , it is possible to use equations (1.1) for
E1(·,qn) to show that

E(4)
1 (·,qn) → E(4)

1 (·,q0) in (L 1,w1).
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3. Proofs of main results

For m ∈ N , we choose some normalized eigenfunction Em(x,q) associated with
the m th eigenvalue λm(q) of problem (1.1)–(1.2). Denote

Vm−1,q = span{E1(·,q), · · · ,Em−1(·,q)} ⊂ L 2

and

V⊥
m−1,q =

{
u ∈ L 2 : 〈u,v〉 :=

∫ 1

0
uvdx = 0 ∀v ∈Vm−1,q

}
.

Recall that {Em(·,q)}m∈N are orthogonal

〈Ei(·,q),Ej(·,q)〉 = 0 ∀i �= j. (3.1)

We have the following variational characterization of eigenvalues, which is a limiting
case of the minimax principle [3].

LEMMA 3.1. For m ∈ N with m � 2 , one has the following minimization (or
minimax) characterization

λm(q) = min
u∈C2

0∩V⊥
m−1,q

u �=0

∫ 1
0

(
(u′′)2 +qu2

)
dx∫ 1

0 u2 dx
. (3.2)

Now we are ready to prove the theorems stated in the introduction.

Proof of Theorem 1.1. Since (L 1,w1) is the weakest topology, it suffices to show
the theorem for the case p = 1.

Suppose that qn → q0 in (L 1,w1). We claim that for m ∈ N,

lim
n→∞

λm(qn) = λm(q0), (3.3)

lim
n→∞

Em(·,qn) = Em(·,q0) in (C3,‖ · ‖C3). (3.4)

We will prove (3.3)–(3.4) by induction on m ∈ N . Notice that Lemma 2.5 and
Corollary 2.6 state that (3.3)–(3.4) hold for m = 1. Inductively, let us assume that
(3.3)–(3.4) hold for all 1 � m � k−1. In this case, (3.4) can be rewritten as

lim
n→∞

Vk−1,qn = Vk−1,q0 in (C3,‖ · ‖C3).

From this, it is easy to verify that

fn ∈V⊥
k−1,qn

and fn → f in (C3,‖ · ‖C3) =⇒ f ∈V⊥
k−1,q0

. (3.5)

For simplicity, let us write yn(x) = Ek(x,qn) ∈ V⊥
k−1,qn

for n ∈ Z
+ . By the same

arguments as in Lemma 2.4, there exists ψ such that, up to a subsequence,

yn → ψ in (C3,‖ · ‖C3).
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By (3.1) and (3.5), one has ψ ∈V⊥
k−1,q0

. Since ‖yn‖2 = 1 for all n , one has

‖ψ‖2 = 1. (3.6)

Let us decompose

y0 = un + vn = un +
k−1

∑
i=1

an
i Ei(·,qn),

where un ∈V⊥
k−1,qn

and vn = ∑k−1
i=1 an

i Ei(·,qn) ∈Vk−1,qn . Notice that

1 = ‖y0‖2
2 = ‖un‖2

2 +
k−1

∑
i=1

(an
i )

2‖Ei(·,qn)‖2
2 = ‖un‖2

2 +
k−1

∑
i=1

(an
i )

2.

In particular, |an
i | � 1 for all i = 1, ...,k−1 and n ∈ Z

+. Thus, up to a subsequence,

vn → v0 ∈Vk−1,q0 in (C3,‖ · ‖C3)

and then
un → u0 ∈V⊥

k−1,q0
in (C3,‖ · ‖C3).

Since y0 = u0 + v0, we have

u0 = y0 and v0 = 0.

Then
un → y0 in (C3,‖ · ‖C3) and vn → 0 in (C3,‖ · ‖C3). (3.7)

Let us decompose

yn = wn + zn, where wn ∈V⊥
k−1,q0

and zn ∈Vk−1,q0 .

Similarly, one has

wn → ψ in (C3,‖ · ‖C3) and zn → 0 in (C3,‖ · ‖C3). (3.8)

By Lemma 3.1, one has, for all n ∈ N ,

∫ 1

0
((un + vn)′′)2 dx+

∫ 1

0
q0(un + vn)2 dx = λk(q0), (3.9)

∫ 1

0
(w′′

n)
2 dx+

∫ 1

0
q0w

2
n dx � λk(q0)

∫ 1

0
w2

n dx, (3.10)

and
∫ 1

0
((wn + zn)′′)2 dx+

∫ 1

0
qn(wn + zn)2 dx = λk(qn), (3.11)

∫ 1

0
(u′′n)

2 dx+
∫ 1

0
qnu

2
n dx � λk(qn)

∫ 1

0
u2

n dx. (3.12)
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From (3.10) and (3.11), we have

λk(qn)−λk(q0)
∫ 1

0
w2

n dx

�
∫ 1

0
((wn + zn)′′)2 dx+

∫ 1

0
qn(wn + zn)2 dx−

(∫ 1

0
(w′′

n)
2 dx+

∫ 1

0
q0w

2
n dx

)

=
∫ 1

0
2w′′

nz
′′
n dx+

∫ 1

0
(z′′n)

2 dx+
∫ 1

0
(qn−q0)w2

n dx+
∫ 1

0
2qnwnzn dx+

∫ 1

0
qnz

2
n dx.

By (3.6) and (3.8), one has

liminf
n→∞

(λk(qn)−λk(q0)) = liminf
n→∞

(
λk(qn)−λk(q0)

∫ 1

0
w2

n dx

)
� 0.

Similarly, from (3.9) and (3.12), we have

λk(qn)
∫ 1

0
u2

n dx−λk(q0)

�
∫ 1

0
(u′′n)

2 dx+
∫ 1

0
qnu

2
n dx−

(∫ 1

0
((un + vn)′′)2 dx+

∫ 1

0
q0(un + vn)2 dx

)

=−
∫ 1

0
2u′′nv

′′
n dx−

∫ 1

0
(v′′n)

2 dx+
∫ 1

0
(qn−q0)u2

n dx−
∫ 1

0
2q0unvn dx−

∫ 1

0
q0v

2
n dx.

Because of (3.7), one has ‖un‖2 →‖y0‖2 = 1. Thus

limsup
n→∞

(λk(qn)−λk(q0)) = limsup
n→∞

(
λk(qn)

∫ 1

0
u2

n−λk(q0)
)

� 0.

These have proved (3.3) for m = k .
Furthermore, result (3.4) can be proved by the same arguments as in Corollary

2.6. �

Proof of Theorem 1.2. The continuous Fréchet differentiability λm(q) in
q ∈ (L p,‖ · ‖p) is a conventional result [10, 17]. In the following we will compute
the Fréchet derivatives. Notice that for any q, h ∈ L p and τ ∈ R , Em(x,q+ τh) satis-
fies

E(4)
m (x,q+ τh)+ (q(x)+ τh(x))Em(x,q+ τh) = λm(q+ τh)Em(x,q+ τh) (3.13)

for x∈ [0,1] and boundary condition (1.2). To find the Fréchet derivative � := ∂qλm(q) ·
h ∈ R , let us expand Em(x,q+ τh) and λm(q+ τh) as

Em(x,q+ τh) = Em(x,q)+ τz(x)+o(τ) and λm(q+ τh) = λm(q)+ τ�+o(τ)

when τ → 0. Expanding (3.13), we know that z(x) satisfies the inhomogeneous beam
equation

z(4)(x)+ (q(x)−λm(q))z(x) = (�−h(x))Em(x,q), x ∈ [0,1], (3.14)
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and the boundary condition

z(0) = z(1) = z′′(0) = z′′(1) = 0. (3.15)

In order that Eq. (3.14) has solutions z(x) satisfying (3.15), by the Fredholm
principle, it is necessary that the inhomogeneous term of (3.14) is orthogonal to the
eigenfunction Em(·,q) , i.e.

∫ 1

0
(�−h(x))E2

m(x,q)dx = 0.

As Em(·,q) is normalized, we know that

� =
∫ 1

0
E2

m(x,q)h(x)dx.

This gives (1.4) and (1.5). �

In conclusion, we have established for the fourth-order beam equation (1.1) the
continuity of eigenvalues in weak topologies of potentials and the continuous differen-
tiability of eigenvalues in the norms of potentials.

Like the corresponding results for eigenvalues of Sturm-Liouville operators, these
results can lead to many interesting extremal problems. For example, let 1 < p < ∞
and r > 0. Theorem 1.1 shows that the following extremal problems

Lm,p(r) := min
{

λm(q) : q ∈ L p, ‖q‖p � r
}

,

Mm,p(r) := max
{

λm(q) : q ∈ L p, ‖q‖p � r
}

,

can be attained by some potentials, because balls in spaces L p are compact in weak
topologies wp . Moreover, the continuous differentiability of eigenvalues in Theo-
rem 1.2 shows that these problems can be determined using the Lagrangian multi-
plier method. Since Eq. (1.1) is a linear Hamiltonian systems of two-degree-freedom
[13], the corresponding critical equation is some nonlinear Hamiltonian system of two-
degree-freedom. A complete analysis for these extremal problems is much complicated
and will be given in future works.
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