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Abstract. We introduce the block numerical range Wn(L ) of an operator function L with
respect to a decomposition H = H1⊕ . . .⊕Hn of the underlying Hilbert space. Our main results
include the spectral inclusion property and estimates of the norm of the resolvent for analytic L .
They generalise, and improve, the corresponding results for the numerical range (which is the
case n = 1) since the block numerical range is contained in, and may be much smaller than, the
usual numerical range. We show that refinements of the decomposition entail inclusions between
the corresponding block numerical ranges and that the block numerical range of the operator
matrix function L contains those of its principal subminors. For the special case of operator
polynomials, we investigate the boundedness of Wn(L ) and we prove a Perron-Frobenius type
result for the block numerical radius of monic operator polynomials with coefficients that are
positive in Hilbert lattice sense.

1. Introduction

The numerical range of a linear operator is a useful tool to localise the spectrum
and, for nonselfadjoint operators, to keep control of the resolvent norm. There are
various generalisations of the concept of numerical range, on the one hand the nu-
merical range of analytic operator functions (see e.g. [18]) and on the other hand the
block numerical range of operators that admit a matrix representation (see e.g. [31]).
Both generalisations share the spectral inclusion property and resolvent estimates with
the classical numerical range, but not the convexity and even connectivity. However,
although convexity may appear to be an advantage, it is rather an obstacle for tight
spectral enclosures and finer resolvent estimates.

Non-linear operator functions appear in a wide range of applications such as vi-
brating systems, signal processing, quantum mechanics, fluid dynamics, and many
more; the most common non-linearities are polynomial (especially quadratic, see [30])
and rational. Striking evidence of the importance of corresponding spectral problems
has been given in the recent paper [1] (see also the corresponding MATLAB toolbox).

In this paper we introduce an analytic tool to study the spectral properties of op-
erator functions, the so-called block numerical range. This new notion includes both
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generalisations mentioned above as special cases and provides even tighter spectral en-
closures and resolvent estimates. If L =

(
Li j

)n
i, j=1 : Ω → L(H) is an analytic operator

function on a domain Ω ⊂ C whose values are bounded linear operators in a Hilbert
space H = H1 ⊕ . . .⊕Hn , then the block numerical range is defined as

Wn(L ) := Wn
H1⊕...⊕Hn

(L ) :=
⋃

xi∈Hi ,‖xi‖=1
σp(L(x1,...,xn))

where L(x1,...,xn) : Ω → Mn(C) is the n×n matrix function given by

L(x1,...,xn)(z) :=
(
(Li j(z)x j,xi)

)n
i, j=1, z ∈ Ω.

In the special case L (z) = A − z , z ∈ C , the block numerical range of the operator
function L coincides with the block numerical range of the operator A which was
introduced in [15], and further studied in [11], for the case n = 2 and in [33] for n � 2;
the case n = 1 is the classical numerical range.

The first crucial property of the block numerical range is that, while being con-
tained in the classical numerical range, it still exhibits the spectral inclusion property.
More precisely, we always have σp(L ) ⊂Wn(L ) ⊂W (L ) , and

σ(L ) ⊂Wn(L ) ⊂W (L ) (1.1)

provided that

∃s∈N0 ∃z0∈Ω : 0 �∈ {(detL(x1,...,xn))(s)(z0) : xi ∈ Hi,‖xi‖ = 1}. (1.2)

This theorem improves an earlier result in [32] for the quadratic numerical range, i.e.
the case n = 2; there it was assumed that 0 /∈ W 2(L (z0)) for some z0 ∈ Ω which
corresponds to the special case s = 0 in (1.2).

The second key property of the block numerical range is that it provides an esti-
mate for the norm of the resolvent. Since Wn(L ) ⊂ W (L ) , this estimate applies in
more points of the complex plane and gives tighter bounds. More precisely, if C ⊂ Ω
is a bounded connected component of Wn(L ) , then there is a γ > 0 such that∥∥L −1(z)

∥∥ � γ
dist(z,C)νC

, z ∈U \C, (1.3)

where νC is the number of zeros of detL(x1,...,xn) in C counted with multiplicities
(which is independent of (x1, . . . ,xn) , ‖xi‖ = 1) and U ⊂ Ω is a bounded domain such
that U ⊃C separates C from Wn(L )\C . As a consequence of the estimate (1.3), we
obtain that the length of a Jordan chain of an eigenvalue on the boundary of C cannot
exceed νC .

Since the block numerical range may be considerably smaller than the numerical
range, the above results may provide tighter spectral enclosures and resolvent esimtates;
in fact, it may even happen that the block numerical range is bounded, while the numeri-
cal range is unbounded. More generally, if a decomposition H =H1⊕ . . .⊕Hn is further
refined to a decomposition H = H̃1⊕ . . .⊕H̃m with m > n and Hi = H̃ji ⊕ . . .⊕H̃ji+1−1 ,
then

Wm(L ) ⊂Wn(L )
(
more precisely, Wm

H̃1⊕...⊕H̃m
(L ) ⊂Wn

H1⊕...⊕Hn
(L )

)
.
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Other interesting features of the block numerical range include various inclusions of
(other block) numerical ranges and, for operator polynomials, criteria for boundedness
and a Perron-Frobenius type result for the block numerical radius.

This paper is organised as follows. In Section 2 we introduce the block numerical
range and present some of its basic properties. In Section 3 we derive various inclu-
sions between the block numerical ranges of L and other (block) numerical ranges;
we prove that a refinement of the decomposition of H entails inclusion between the
respective block numerical ranges (Proposition 3.1) and that, under certain dimension
restrictions, Wn(L ) contains the block numerical ranges of the principal subminors of
L and, in particular, the numerical ranges W (Lii) of the diagonal elements Lii of L
(Proposition 3.3). In Section 4 we prove the spectral inclusion (1.1) using tools from
complex analysis such as the theorems of Hurwitz and Montel (Theorem 4.1). In Sec-
tion 5 we establish the estimate (1.3) for the norm of the resolvent L (z)−1 in points
z ∈ Ω\Wn(L ) in terms of the distance of z to a bounded component of Wn(L ) (The-
orem 5.1). In Section 6 we consider the special case of operator polynomials and find
criteria when the block numerical range is bounded (Theorem 6.4). In Section 7 we
prove a Perron-Frobenius type result for monic operator polynomials P of the form
P(z) = zk −Ak−1zk−1− . . .−A1z−A0 on a Hilbert lattice H with positive coefficients
Ai in lattice sense; it shows that the block numerical radius wn(P) of P is contained
in the closure of the block numerical range (Theorem 7.3) and the vector x ∈ H at
which it is attained may be chosen to be positive in lattice sense.

Part of our results were obtained in the PhD thesis [36] of the third author, M. Wa-
genhofer. The illustrating plots of block numerical ranges for the six examples, which
include a quadratic 8×8 matrix polynomial of a gyroscopic system with 8 degrees of
freedom, were produced with a C++-code due to M. Wagenhofer (see [35]).

2. Definition and preliminaries

Throughout this paper, H denotes a complex Hilbert space with scalar product
(·, ·) , L(H) is the set of bounded linear operators on H , Ω ⊂ C is a domain, and
L : Ω → L(H) is an operator function which is assumed to be analytic in the main
results. The resolvent set, spectrum, and point spectrum of L are defined as (see [18,
§ 11.2])

ρ(L ) := {z ∈ Ω : L (z) is bijective},
σ(L ) := Ω\ρ(L ),

σp(L ) := {z ∈ Ω : L (z) is not injective};
the operator function L −1 is defined as

L −1 : ρ(L ) → L(H), L −1(z) := (L (z))−1;

note that, if L is analytic, then so is L −1 . The numerical range of L is the set (see
[18, § 26.3])

W (L ) := {λ ∈ Ω : ∃x ∈ H,x �= 0,(L (λ )x,x) = 0}.
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In the following, a decomposition of the Hilbert space H as an orthogonal direct
sum of closed subspaces H1, . . . ,Hn of H is given,

H = H1⊕ . . .⊕Hn. (2.1)

If H is given as a product of H = H1×. . .×Hn , of Hilbert spaces H1, . . . ,Hn , then Hi

will be tacitly identified with the subspace {0}×. . .×{0}×Hi×{0}×. . .×{0} in (2.1).
With respect to the decomposition (2.1) of H , we can write L as an operator

matrix function
L (z) =

(
Li j(z)

)n
i, j=1 (2.2)

with operator functions

Li j : Ω → L(Hj,Hi), i, j = 1, . . . ,n,

the values of which are bounded linear operators from Hj to Hi ; note that if L is
analytic, then so are Li j .

The following definition generalises various earlier notions: the numerical and the
quadratic numerical range of an analytic operator function (see [18, § 26.3] and [32])
as well as the quadratic numerical range and block numerical range of a linear operator
(see [11] and [33]).

DEFINITION 2.1. Let L (·) = (Li j(·))n
i, j=1 : Ω → L(H) be an operator function.

For x = (x1, . . . ,xn)∈H1×. . .×Hn define the n×n -matrix function Lx : Ω→Mn(C) by

Lx(z) := L (z)x :=
(
(Li j(z)x j,xi)

)n
i, j=1, z ∈ Ω,

and denote the product of the unit spheres of Hi , i = 1, . . . ,n , by

S n := {(x1, . . . ,xn) : xi ∈ Hi,‖xi‖ = 1, i = 1, . . . ,n}.
Then the block numerical range of L is defined as the union of all eigenvalues of the
matrix functions Lx , x ∈ S n ,

Wn(L ) :=
⋃

x∈S n

σ(Lx).

Clearly, the block numerical range depends on the decomposition (2.1) of H since
so does the matrix representation (2.2) of L ; if necessary, we specify this dependence
by writing Wn

H1⊕...⊕Hn
(L ) instead of Wn(L ) . For n = 3, the block numerical range

is also called cubic numerical range.

The following properties of the block numerical range are easy to check.

REMARK 2.2.

i) For an n×n matrix function L : Ω → L(Cn) (where H = Cn ),

Wn(L ) = σp(L ) = σ(L ).



THE BLOCK NUMERICAL RANGE OF ANALYTIC OPERATOR FUNCTIONS 905

ii) If we set H∗
i := Hi \ {0} and H∗ := H∗

1 ⊕ . . .⊕H∗
n , then

Wn(L ) :=
⋃

x∈H∗
σ(Lx)

since, for x = (x1, . . . ,xn) ∈ H∗ and x̂ = (x̂1, . . . , x̂n) ∈ S n with x̂i :=
xi

‖xi‖ ,

detL (z)x = 0 ⇐⇒ detL (z)x̂ = 0.

iii) For n = 1, the block numerical range is the usual numerical range, i.e.

W 1(L ) = W (L ).

iv) For a linear operator function L : C → L(H) , L (z) := A − z , z ∈ C , with
A ∈ L(H) , the block numerical range of L and of A coincide, i.e.

Wn(L ) = Wn(A ).

v) With the identification iii), the block numerical range can also be written as

Wn(L ) = {z ∈ Ω : 0 ∈Wn(L (z))}. (2.3)

PROPOSITION 2.3. If L : Ω → L(H) is an operator function, Ω∗ := {z ∈ C :
z ∈ Ω} , and

L ∗ : Ω∗ → L(H), L ∗(z) := L (z)∗,

is its adjoint operator function, then,

Wn(L ∗) = Wn(L )∗ := {λ ∈ C : λ ∈Wn(L )}.
In particular, if L is self-adjoint, i.e. Ω∗ = Ω and L ∗ = L , then Wn(L ) is symmet-
ric with respect to the real axis.

Proof. Let z ∈ Ω . By [33, Rem. 2.3] we have Wn(L (z)∗) =Wn(L (z))∗ . Hence,
by (2.3),

z ∈Wn(L ∗) ⇐⇒ 0 ∈Wn(L ∗(z)) ⇐⇒ 0 ∈Wn(L (z)∗) ⇐⇒ 0 ∈Wn(L (z))∗

⇐⇒ 0 ∈Wn(L (z)) ⇐⇒ z ∈Wn(L ) ⇐⇒ z ∈Wn(L )∗. �

3. Inclusions between block numerical ranges and classical numerical ranges

In this section we show that the block numerical ranges become smaller if the
decomposition is refined; in particular, the block numerical range of an operator func-
tion is always contained in the numerical range. Moreover, we show that the numerical
ranges of all principal submatrices, in particular, of all diagonal entries Lii are contained
in the block numerical range if certain dimension conditions hold.

Both results are straightforward generalisations of respective theorems [33, Thm.
3.5, Thm. 3.1] for the operator case.



906 A. RADL, C. TRETTER AND M. WAGENHOFER

PROPOSITION 3.1. Let L : Ω → L(H) be an operator function and let

H = H1
1 ⊕·· ·⊕Hm1

1︸ ︷︷ ︸
=H1

⊕·· ·⊕H1
n ⊕·· ·⊕Hmn

n︸ ︷︷ ︸
=Hn

be a refinement of the decomposition H = H1 ⊕·· ·⊕Hn . Then, with m := ∑n
i=1 mi ,

Wm
H1

1⊕···⊕H
m1
1 ⊕···⊕H1

n⊕···⊕Hmn
n

⊂Wn
H1⊕···⊕Hn

,

or, briefly,
Wm(L ) ⊂Wn(L ). (3.1)

Proof. Let λ ∈Wm(L ) . Then 0 ∈Wm(L (λ )) ⊂Wn(L (λ )) by [33, Thm. 3.5],
and thus λ ∈Wn(L ) . �

EXAMPLE 3.2. Consider the quadratic 6×6 matrix polynomial

P(z) :=

⎛
⎜⎜⎝

1 0 0 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 0 0 1

⎞
⎟⎟⎠z2+

⎛
⎜⎜⎝

−1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0−1

⎞
⎟⎟⎠z+

⎛
⎜⎜⎝

1 0 1 0 0 0
0 1 0 0 0 0
1 0 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 1 0 1

⎞
⎟⎟⎠,

z ∈ C ,

with respect to the refined decompositions C6 = C2×C4 = C2×C2×C2 . Proposition
3.1 yields that W 3

C2×C2×C2(P) ⊂W 2
C4×C2(P) ⊂W (P) ; the corresponding block nu-

merical ranges are displayed in Figure 1. Note that in this case, only the cubic numerical
range is considerably smaller than the numerical range.

Figure 1: W (P) , W 2
C4×C2(P) , W 3

C2×C2×C2 (P) and eigenvalues of the quadratic 6×6 ma-
trix polynomial P in Ex. 3.2.

The following results show that, if all Hi are infinite dimensional, then the block
numerical ranges of all principal submatrix operator functions of L are contained in
Wn(L ) and, in particular, W (Lii) ⊂ Wn(L ) . If some of the components are finite
dimensional, these inclusions only hold under some restrictions on their dimensions.



THE BLOCK NUMERICAL RANGE OF ANALYTIC OPERATOR FUNCTIONS 907

PROPOSITION 3.3. Let L = (Li j)n
i, j=1 : Ω → L(H) be an operator function,

l ∈ N , I := {i1, . . . , il} ⊂ {1, . . . ,n} , and let

LI := (Li j ik)
l
j,k=1 : Ω → L(Hi1 ⊕ . . .⊕Hil )

be the operator function arising from L by selecting the rows and columns i1 ,. . . , il .
If there exists an enumeration of {i′1, . . . , i′n−l} := {1, . . . ,n} \ {i1, . . . , il} such that
dimHi′j > n− j , j = 1, . . . ,n− l , then

Wl(LI) ⊂Wn(L ); (3.2)

in particular, the inclusion (3.2) holds if dimHi′j =∞ , j=1, . . . ,n−l .

Proof. The claim follows from [33, Thm. 3.1] in a straightforward way if we use
the characterization (2.3) of the block numerical range. �

COROLLARY 3.4. Let L = (Li j)n
i, j=1 : Ω → L(H) be an operator function and

i ∈ {1, . . . ,n} . If there exists an enumeration of {i′1, . . . , i′n−1} := {1, . . . , i − 1,
i+1, . . . ,n} with dimHi′j > n− j , j = 1, . . . ,n−1 , then

W (Lii) ⊂Wn(L ); (3.3)

in particular, if dimHj >n, j = 1, . . . ,n, then W (Lii) ⊂Wn(L ) for all i = 1, . . . ,n.

REMARK 3.5. If dimHj =∞ , j = 1, . . . ,n , then

W |I|(LI) ⊂Wn(L ) for all I ⊂ {1, . . . ,n};

in particular, W (Lii) ⊂Wn(L ) for all i = 1, . . . ,n .

In the special case n = 2 of the quadratic numerical range, the dimension condi-
tions in Proposition 3.3 and Corollary 3.4 reduce to dimH2 > 1 for W (L11) ⊂Wn(L )
and dimH1 > 1 for W (L22) ⊂Wn(L ) (see [32, Proposition 4.1].

If one Hi has finite dimension, there is another criterion for the inclusion in (3.3).

PROPOSITION 3.6. Let L = (Li j)n
i, j=1 : Ω → L(H) be an operator function and

i ∈ {1, . . . ,n} such that dimHi < ∞ and dimHi < dimHj for all j ∈ {1, . . . ,n} , j �= i .
Then

W (Lii) ⊂Wn(L ).

Proof. Without loss of generality, we may assume that i = 1. Let λ ∈W (L11) . By
the assumption on the dimensions, there exist x j ∈ Hj ,

∥∥x j
∥∥ = 1, with L1 j(λ )x j = 0,



908 A. RADL, C. TRETTER AND M. WAGENHOFER

j = 2, . . . ,n . Since λ ∈ W (L11) , there exists x1 ∈ H1 , ‖x1‖ = 1, such that
(L11(λ )x1,x1) = 0. Then x = (x1, . . . ,xn) ∈ S n ,

Lx(λ ) =

⎛
⎜⎜⎜⎝

0 · · · 0
(L21(λ )x1,x2) · · · (L2n(λ )xn,x2)

...
...

(Ln1(λ )x1,xn) · · · (Lnn(λ )xn,xn)

⎞
⎟⎟⎟⎠ ,

and thus 0 ∈Wn(L (λ )) or, equivalently, λ ∈Wn(L ) . �

REMARK 3.7. If dimHi < ∞ for some i ∈ {1, . . . ,n} and dimHi � n− 1, then
the dimension condition in Corollary 3.4 is weaker than the one in Proposition 3.6; if
dimHi = 1, then the dimension condition in Proposition 3.6 is weaker than the one in
Corollary 3.4; if 1 < dimHi < n−1, the conditions are not comparable.

We remark that, unlike the operator case (comp. [33, Cor. 3.3]), one cannot con-
clude, for any n � 2, that the numerical ranges W (Lii) of the diagonal operator func-
tions Lii are contained in a connected component of Wn(L ) . The reason for this is that
the numerical range of an operator function is not connected in general; the simplest
example is a strongly damped quadratic operator polynomial whose numerical range
consists of two disjoint real intervals (see [10] and [18, § 31] for higher order so-called
hyperbolic operator polynomials).

4. Spectral inclusion

In this section we prove the spectral inclusion property of the block numerical
range of an analytic operator function. It generalises all earlier spectral inclusion results
for the numerical range and the block numerical range of bounded linear operators
(see [4, Thm. 1.2-1], [33, Thm. 2.5]) as well as those for the numerical range and the
quadratical numerical range of analytic operator functions (see [18, Thm. 26.6], [32,
Thm. 3.5]).

Like the case of the numerical range (n = 1) and quadratic numerical range (n= 2)
of an operator function L , spectral inclusion holds only if an additional condition is
satisfied: there exists a z0 ∈ Ω such that 0 /∈Wn(L (z0)) for n = 1,2. Note that this
condition is automatically satisfied if L (z) = A − z with a bounded linear operator
A .

In the following spectral inclusion theorem for the block numerical range (n ∈ N)
this condition is weakened. Unlike the results in the previous section, the claim cannot
easily be deduced from the operator case; the crucial step is to prove the equivalence
(4.2) below.

THEOREM 4.1. Let L : Ω → L(H) be an operator function. Then

σp(L ) ⊂Wn(L ).
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If, additionally, L is analytic and

∃s∈N0 ∃z0∈Ω : 0 �∈ {(detLx)(s)(z0) : x ∈ S n}, (4.1)

then
σ(L ) ⊂Wn(L ).

Figure 1 illustrates the inclusion of the eigenvalues for the quadratic matrix poly-
nomial P in Example 3.2; due to Proposition 3.1 higher order block numerical ranges
may yield tighter and tighter spectral inclusions (see also Figures 2–6 below).

Proof of Theorem 4.1. Let λ0 ∈ σp(L ) , i.e. 0 ∈ σp(L (λ0)) . Then the spectral
inclusion [33, Thm. 2.5] for the block numerical range of operators yields σp(L (λ0))⊂
Wn(L (λ0)) , thus, λ0 ∈Wn(L ) .

Now suppose that L is analytic and λ0 ∈ σ(L ) , i.e. 0∈ σ(L (λ0)) . Then, again
by [33, Thm. 2.5], it follows that σ(L (λ0))⊂Wn(L (λ0)) . The main part of the proof
consists in showing that, if (4.1) holds, then the equivalence

0 ∈Wn(L (λ )) ⇐⇒ λ ∈Wn(L ) (4.2)

prevails for λ ∈Ω (see Lemma 4.5 below). This proves λ0 ∈Wn(L ) , as required. �

The proof of the equivalence (4.2) is divided into several lemmas.

LEMMA 4.2. For a subset M ⊂ Mn(C) define

σ(M ) :=
⋃

A∈M

σ(A).

If M is bounded with respect to the norm topology, then σ
(
M

)
= σ(M ) .

Proof. “⊃” The set M ⊂ Mn(C) is compact being a closed and bounded set in a
finite dimensional space. By [6, Cor. 4.2.2] the set σ(M ) is compact as well and hence

σ(M ) = σ(M ) ⊃ σ(M ).

“⊂” For a metric space (X ,d) we equip the set of all compact subsets

K (X) := {K ⊂ X : K compact,K �= /0}
with the Hausdorff metric dH : K (X)×K (X) → [0,∞) , defined as

dH(K1,K2) := max
{

max
x1∈K1

dist(x1,K2), max
x2∈K2

dist(x2,K1)
}

,

where dist(x,K) := min{d(x,y) : y ∈ K} for K ∈ K (X) and x ∈ X . Moreover, by [6,
Cor. 4.2.2], the mapping

σ : (K (Mn(C)),dH) → (K (C),dH), K �→ σ(K),
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is continuous.
Now let λ0 ∈ σ(M ) , λ0 ∈ σ(A) with A ∈ M , and ε > 0. Since σ is con-

tinuous, there exists a δ > 0 such that dH(σ(M),σ(A)) < ε for M ∈ Mn(C) with
dH({M},{A}) < δ ; observe that dH({M},{A}) = d(M,A) where d denotes the met-
ric on Mn(C) induced by the norm on Mn(C) . Since A ∈ M , there exists a B ∈ M
such that d(A,B) < δ and thus dH(σ(A),σ(B)) < ε . In particular, there is a λ ∈ σ(B)
such that |λ −λ0| < ε . As σ(B) ⊂ σ(M ) , we have Bε(λ0)∩σ(M ) �= /0 . Because ε
was arbitrary, this implies that λ0 ∈ σ(M ) . �

LEMMA 4.3. For A ∈ L(H) define the block determinant set

Dn(A ) := {detAx : x ∈ S n}, (4.3)

Then, for z ∈ C ,

z ∈Wn(A ) ⇐⇒ 0 ∈ Dn(A − z);

in particular,

0 ∈Wn(A ) ⇐⇒ 0 ∈ Dn(A ).

REMARK 4.4. It is an open problem whether even the equivalence z∈∂W n(A )
⇐⇒ 0∈∂Dn(A −z) holds.

Proof. “=⇒” If z ∈Wn(A ) , there exist sequences (xk)k∈N ⊂ S n and (zk)k∈N ⊂
C such that det(Axk − zk) = 0, k ∈ N , and zk → z , k → ∞ . Since

(Axk − zk)− (Axk − z) = z− zk → 0, k → ∞,

and since det(·) is uniformly continuous on compact subsets of Mn(C) , we conclude∣∣det(Axk − z)
∣∣ =

∣∣det(Axk − z)−det(Axk − zk)
∣∣ → 0, k → ∞.

Therefore, 0 ∈ Dn(A − z) .
“⇐=” Consider the mapping

χ : S n → Mn(C), x �→ Ax.

As ‖Ax‖� ‖A ‖ for all x∈S n by [33, Rem. 2.3], the image M := χ(S n) is bounded
and hence σ(M ) = σ(M ) by Lemma 4.2. For z ∈ C\Wn(A ) define

Δz : M → C, Δz(B) := det(B− z).

If Δz(B) = 0, then z ∈ σ(B) ⊂ σ(M ) = σ(M ) = Wn(A ) , in contradiction to the
assumption z ∈ C\Wn(A ) . As Δz is continuous and M is compact, this leads to

0 < min
B∈M

|Δz(B)| = inf
B∈M

|det(B− z)|= inf
x∈S n

|det(Ax − z)|

for all z ∈ C\Wn(A ) . Thus, 0 �∈ Dn(A − z) . �
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LEMMA 4.5. Let L : Ω → L(H) be a continuous operator function and z ∈ Ω .
Then

z ∈Wn(L ) =⇒ 0 ∈Wn(L (z)).

If, in addition, L is analytic and (4.1) is fulfilled, then

z ∈Wn(L ) ⇐⇒ 0 ∈Wn(L (z)). (4.4)

Proof. “=⇒” Assume that z∈Wn(L )∩Ω . Then there exist sequences (zk)k∈N ⊂
Ω and (xk)k∈N ⊂ S n such that detLxk(zk) = 0, k ∈ N , and zk → z , k → ∞ . By [33,
Rem. 2.3] we have ‖Ax‖ � ‖A ‖ for every A ∈ L(H) , x ∈ S n . Thus∥∥Lxk(zk)−Lxk(z)

∥∥ =
∥∥(L (zk)−L (z))xk

∥∥ � ‖L (zk)−L (z)‖→ 0, k → ∞,

as L is continuous at z . Since det(·) is uniformly continuous on compact subsets of
Mn(C) , we obtain∣∣det(Lxk(z))

∣∣ =
∣∣det(Lxk (z))−det(Lxk(zk))

∣∣ → 0, k → ∞.

This means that 0 ∈ Dn(L (z)) and hence 0 ∈Wn(L (z)) by Lemma 4.3.
“⇐=” Suppose that (4.1) is satisfied. Let z ∈ Ω be such that 0 ∈Wn(L (z)) and

thus 0 ∈ Dn(L (z)) by Lemma 4.3. Then there exists a sequence (xk)k∈N ⊂ S n such
that

lim
k→∞

detLxk(z) = 0.

The sequence (ϕk)k∈N of analytic functions defined by

ϕk : Ω → C, ϕk(λ ) := detLxk(λ ),

is uniformly bounded on compact subsets of Ω . Hence, by Montel’s Theorem (see
[17, Thm. I.17.17 (p. 4151)]) we may assume that (ϕk)k∈N converges uniformly to an
analytic function ϕ : Ω → C on every compact subset of Ω . By assumption,

ϕ(z) = lim
k→∞

detLxk(z) = 0.

To show that ϕ �≡ 0, assume that ϕ ≡ 0. Then, for every s ∈ N0 and λ ∈ Ω , using that

ϕ(s) is the pointwise limit of the sequence (ϕ(s)
k )k∈N , we conclude that

0 = ϕ(s)(λ ) = lim
k→∞

ϕ(s)
k (λ ) = lim

k→∞
(detLxk)

(s)(λ ),

which yields that 0 ∈ {(detLx)(s)(λ ) : x ∈ S n} , a contradiction to assumption (4.1).
Hence ϕ �≡ 0. As a consequence of Hurwitz’s Theorem (see [17, Thm. II.2.5 (p. 492 )]),
there exists a sequence (zk)k∈N ⊂ Ω such that zk → z,k → ∞ , and ϕk(zk) = 0 for all
k ∈ N . This implies that 0 ∈Wn(L (zk)) for all k ∈ N , i.e. zk ∈Wn(L ) and therefore
z ∈Wn(L ) . �
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COROLLARY 4.6. If H is finite dimensional and L : Ω → L(H) is continuous,
then Wn(L ) is closed in Ω .

Proof. If z ∈ Wn(L )∩Ω , then 0 ∈ Wn(L (z)) by the first part of Lemma 4.5.
Since H is finite dimensional, the set Wn(L (z)) is compact, see [33, Rem. 2.3]. Thus,
Wn(L (z)) = Wn(L (z)) and hence 0 ∈Wn(L (z)) which means z ∈Wn(L ) . �

The following example illustrates the spectral inclusion in Theorem 4.1 for a ma-
trix function which is not an operator polynomial and for which it seems to be hardly
possible to obtain analytic information about the eigenvalues.

EXAMPLE 4.7. (σ(L )=σp(L )⊂Wn(L )) The spectrum of the 4× 4 matrix
function G : C→L(C4) given by

G(z) =

⎛
⎜⎜⎝

2− z i 1 −sinz
i 2− z 3+ i 1
1 3+ i −2− z i

3+ i 1 i −2− z

⎞
⎟⎟⎠ , z ∈ C,

consists only of eigenvalues λ ∈ σp(G) , given as the zeros of the characteristic deter-
minant detG(λ ) = 0, where

detG(z)= z4−(16+6i)z2+(6−18i)z+68+24i+sin(z)(1+ i)((2− i)z2+(1+ i)z−30).

Figure 2 illustrates that the cubic numerical range of G with respect to C4 = C×C×C2

gives a tighter inclusion of the eigenvalues than the quadratic numerical range with
respect to C4 = C2×C2 .

Figure 2: W 2
C2×C2 (G) , W 3

C×C×C2 (G) and eigenvalues of the matrix function G in Ex. 4.7 in
the rectangle [−7,7]× [−10,10] .

The following example shows that condition (4.1) is necessary for the inclusion of
the spectrum in the closure of the block numerical range of an operator function.
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EXAMPLE 4.8. Let f : Ω → C be analytic, f �≡ 0,A ∈ L(H) , and

L : Ω → L(H), L (z) := f (z)A .

Then, if NΩ( f ) denotes the set of zeros of f in Ω , it is not difficult to see that

σ(L ) =
{

Ω, 0 ∈ σ(A ),
NΩ( f ), 0 �∈ σ(A ), Wn(L ) =

{
Ω, 0 ∈Wn(A ),
NΩ( f ), 0 �∈Wn(A ).

If we choose A such that

0 ∈ σ(A ) and 0 ∈Wn(A )\Wn(A ), (4.5)

then
Ω = σ(L ) �⊂Wn(L ) = NΩ( f ).

In fact, condition (4.1) is not satisfied for L since

∀s ∈ N0 ∀z0 ∈ Ω 0 ∈ { f (s)(z0)detAx : x ∈ S n};
the latter holds because 0 ∈Wn(A ) , i.e. 0 ∈ {detAx : x ∈ S n} .

For example, we can choose A := Id−L where L is the left shift on �2(N) ,

L : �2(N) → �2(N), (xn)n∈N �→ (xn+1)n∈N.

It is well-known that σp(L)={z ∈ C : |z| < 1} , σ(L)= σp(L) , and W (L)={z ∈ C :
|z| < 1} (see [5, Problem 82] and [4, Chapt. 1, Ex. 2]). Since 1 ∈ σ(L) and, for an
arbitrary decomposition of �2(N) , 1 /∈W (L) ⊃Wn(L) , we conclude

0 ∈ σ(A ) = {1−λ : λ ∈ σ(L)},
0 /∈Wn(A ) = {1−λ : λ ∈Wn(L)}, 0 ∈ σ(A ) ⊂Wn(A ).

Thus, (4.5) is satisfied.

5. Resolvent estimates

In this section we establish upper bounds for the norm of the resolvent L (λ )−1

of an operator function in terms of the distance of λ to the block numerical range
of L . This result generalises corresponding estimates for the operator case (see [33,
Thm. 4.2]) as well as for operator functions in terms of the numerical range (see [19,
Thm. 1]) and the quadratic numerical range (see [32, Thm. 5.2]).

Due to the inclusions Wn(L )⊂W 2(L )⊂W (L ) for n � 2, the block numerical
range provides tighter bounds and bounds even in points λ ∈ W (L ) \Wn(L ) and
λ ∈W 2(L )\Wn(L ) , respectively.

THEOREM 5.1. Let L : Ω → L(H) be an analytic operator function such that
(4.1) holds. Let C ⊂Wn(L ) be a bounded connected component of Wn(L ) with

C ⊂ Ω, C∩Wn(L )\C = /0. (5.1)

Then
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i) the number of zeros νC(detLx) of detLx in C (counted with multiplicities) is
finite and independent of x ∈ S n ,

νC := νC(detLx), x ∈ S n;

ii) if U ⊂ Ω is a bounded domain such that

C ⊂U, U ∩Wn(L )\C = /0,

then there exists a constant γ > 0 such that

∥∥L −1(z)
∥∥ � γ

dist(z,C)νC
, z ∈U \C. (5.2)

For the proof we need the following proposition. Here, and in the following, we
use the suggestive notation inf |Dn(L (z))| = inf{|λ | : λ ∈ Dn(L (z))} .

PROPOSITION 5.2. Let L : Ω→ L(H) be an operator function. If 0 �∈Dn(L (z))
for some z ∈ C , then L (z) is invertible and

∥∥L −1(z)
∥∥ � ‖L (z)‖n−1

inf |Dn(L (z))| . (5.3)

Proof. If 0 �∈Dn(L (z)) , then 0 �∈Wn(L (z)) by Lemma 4.3, and thus 0 �∈σ(L (z))
by the spectral inclusion [33, Thm. 2.5], i.e. L (z) is (boundedly) invertible and Lx(z)=
L (z)x is invertible for all x ∈S n . Moreover, it follows from [7, Chapter I, (4.12)] and
[33, Rem. 2.3] that

∥∥Lx(z)−1
∥∥ � ‖Lx(z)‖n−1

|detLx(z)| � ‖L (z)‖n−1

inf |Dn(L (z))| , x ∈ S n. (5.4)

By [33, Lemma 4.1], if A ∈ L(H) is (boundedly) invertible with Ax invertible and
‖A −1

x ‖ � γ for all x ∈ S n , then also ‖A −1‖ � γ . Thus the estimate (5.3) follows
from (5.4). �

Proof of Theorem 5.1. The proof follows the ideas of the proof of [19, Thm. 1].
Assumption (5.1) implies, by [18, Lemma 28.5], that there exist domains U ⊂ Ω

as in (ii) and V ⊂ Ω such that Γ := ∂V consists of finitely many piecewise smooth
Jordan curves not intersecting each other and

U ⊂V, V ∩Wn(L )\C �= /0.

i) For a continuous function f on Γ with f (t) �= 0, t ∈ Γ , the index indΓ f of
f on Γ is defined as the change of the argument of f (t) when t varies on Γ ; if f
is holomorphic in the interior of Γ , then indΓ f is equal to the number of zeros of f
inside Γ by the argument principle (see [18, § 25.1]).
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Since νC(detLx) = νV (detLx) = indΓ(detLx) , x ∈ H∗ , the claim in i) now fol-
lows immediately from the connectedness of H∗ = (H1 \ {0})⊕ ·· ·⊕ (Hn \ {0}) and
from the continuity of the index function indΓ .

ii) Let x ∈ S n and denote by λ1(x), . . . ,λνC(x) ∈ C the zeros of detLx in C
counted with multiplicities. Then the functions gx : Ω → C , x ∈ S n , defined by

gx(z) :=
detLx(z)

(z−λ1(x)) · · · (z−λνC(x))
, z ∈ Ω\ {λ1(x), . . . ,λνC(x)},

are analytic and do not have any zeros in V . Moreover, we have

|detLx(z)| = |gx(z)| |z−λ1(x)| · · ·
∣∣z−λνC(x)

∣∣ � |gx(z)|dist(z,C)νC, z ∈ Ω. (5.5)

Assume that we have shown that condition (4.1) implies that

inf{|gx(z)| : x ∈ S n,z ∈U} =: d > 0. (5.6)

Then, by (5.5),

inf |Dn(L (z))| � d dist(z,C)νC > 0, z ∈U \C. (5.7)

Setting γ := d−1 max{‖L (z)‖n−1 : z ∈U} , we obtain from (5.3)

∥∥L −1(z)
∥∥ � ‖L (z)‖n−1

inf |Dn(L (z))| � ‖L (z)‖n−1

d dist(z,C)νC
� γ

dist(z,C)νC
, z ∈U \C,

as required. To prove (5.6), suppose to the contrary that there are sequences (zk)k∈N ⊂
U and (xk)k∈N ⊂S n such that gxk(zk)→ 0, k → ∞ ; as U is compact, we may assume
that zk → z0 ∈U ⊂V , k → ∞ . The inequality (5.5) implies that

|gx(z)| � |detLx(z)|
dist(z,C)νC

� M
dist(Γ,C)n =: N, z ∈ Γ = ∂V, x ∈ S n,

where M := sup{|detLx(z)| : x ∈ S n, z ∈ Γ} < ∞ . Since g is analytic in V , the maxi-
mum modulus principle (see [17, Thm. I.17.5]) yields that |gx(z)|� N , x ∈S n , z∈V .
Thus, by Montel’s Theorem (see [17, Thm. I.17.7]), we may assume that (gxk)k∈N

converges uniformly on compact subsets of V to an analytic function g : V → C .
From gxk(zk) → 0,k → ∞ , and the uniform convergence of the sequence (gxk )k∈N in a
neighbourhood of z0 it readily follows that g(z0) = 0. In order to see that g �≡ 0, we
note that for z ∈ V \C we have z /∈Wn(L ) . Due to assumption (4.1), we can apply
(4.4) in Lemma 4.5 which yields that 0 /∈Wn(L (z)) . By Lemma 4.3 this implies that
0 �∈ Dn(L (z)) . Hence, in particular, inf{∣∣gxk(z)

∣∣ : k ∈ N} > 0 for every z ∈V \C and
thus g �≡ 0. According to Hurwitz’s Theorem there is a sequence (μk)k∈N ⊂ U such
that μk → z0 , k → ∞ , and gxk(μk) = 0, k ∈ N . This is a contradiction to gxk(z) �= 0,
z ∈U , k ∈ N . �

Resolvent estimates provide upper bounds for the lengths of Jordan chains in
boundary points of the numerical range or block numerical range. Recall that for
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λ0 ∈σp(L ) a vector x0 ∈ H \ {0} such that L (λ0)x0 = 0 is called an eigenvector
of L in λ0 and x0 , x1 , . . . , xm−1 ∈ H \ {0} are called a Jordan chain of L in λ0 of
length m if

k

∑
j=0

1
k!

L ( j)(λ0)xk− j = 0, k = 0, . . . ,m−1.

Since the numerical and block numerical range of an operator function is not con-
vex, in general, an additional property of the boundary point is required.

COROLLARY 5.3. Let L : Ω → L(H) be analytic such that (4.1) holds, let C ⊂
Wn(L ) be a bounded connected component of Wn(L ) fulfilling (5.1), and let νC be
as in Theorem 5.1. Let λ0 ∈ ∂C be an eigenvalue of L with the exterior cone property,
i.e. there exists a closed cone K with vertex λ0 and positive aperture and an r > 0 such
that

K∩Br(λ )∩W = {λ0}.
Then the lengths of all Jordan chains of L in λ0 are at most νC .

Proof. The proof is identical to that of [19, Thm. 2] and hence omitted. �

6. Operator polynomials

In this section we consider a special class of operator functions, namely operator
polynomials P . We establish a sufficient condition for the spectral inclusion, improve
the resolvent estimates, and prove criteria for the block numerical range Wn(P) to
be bounded or unbounded. Finally, we show that Wn(P) is contained in some block
numerical range of the linear companion pencil associated with P .

An operator polynomial P of degree d ∈ N is of the form

P : C → L(H), P(z) = A[d]zd +A[d−1]zd−1 + · · ·+A[1]z+A[0] (6.1)

with A[l] ∈ L(H) , l = 0, . . . ,d , and A[d] �= 0; if A[d] = IdH , then P is called monic.

6.1. Spectral inclusion

For operator polynomials there is a simple sufficient condition in terms of the
leading coefficient for assumption (4.1) in the spectral inclusion Theorem 4.1. This
condition is easy to check but far from being necessary; below we show that it implies
that the block numerical range is bounded (see Theorem 6.4 i)).

THEOREM 6.1. Let P : C→ L(H) be an operator polynomial of degree d . Then

σp(P) ⊂Wn(P).

If, in addition, 0 �∈Wn(A[d]) , then

σ(P) ⊂Wn(P); (6.2)

in particular, (6.2) always holds if P is monic.
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For the proof of Theorem 6.1, we use the following lemmas; the proof of the first
one is immediate.

LEMMA 6.2. If P : C → L(H) is an operator polynomial of degree d , then for
z ∈ C and x ∈ H1×·· ·×Hn

detPx(z) =
nd

∑
l=0

δ [l]
x zl = detA[d]

x znd +
nd−1

∑
l=1

δ [l]
x zl +detA[0]

x (6.3)

where
δ [l]

x = ∑
0 � l1, . . ., ln � d
l1 + · · ·+ ln = l

det(A[li]
i j x j,xi)n

i, j=1, l = 0, . . . ,nd. (6.4)

LEMMA 6.3. If P : C → L(H) is an operator polynomial of degree d and if

0 �∈Wn(A[d]) , then 0 �∈ Wn(P(z)) for large values of |z| . In particular, P satisfies
(4.1) and hence, for z ∈ C ,

z ∈Wn(P) ⇐⇒ 0 ∈Wn(P(z)). (6.5)

Proof. By the assumption 0 �∈Wn(A[d]) and Lemma 4.3 it follows that 0 �∈Dn(A[d]) ,
i.e. δ := infx∈S n

∣∣detA[d]
x

∣∣ > 0. Let m := nd and define C := sup{δ [l]
x : x ∈ S n ,

l = 0, . . . ,m−1} with δ [l]
x as in (6.4). Then, for arbitrary x ∈ S n ,

|detPx(z)| =
∣∣∣∣detA[d]

x zm +
m−1

∑
l=0

δ [l]
x zl

∣∣∣∣ � δ |z|m −C
m−1

∑
l=0

|z|l → ∞, |z| → ∞,

independently of x∈S n and hence infx∈S n |detPx(z)|> 0 for large values of |z| . The
latter means that 0 �∈ Dn(P(z)) , which is equivalent to 0 �∈Wn(P(z)) by Lemma 4.3,
and it implies that condition (4.1) holds (with s = 0). Now the equivalence in (6.5) is
immediate from Lemma 4.5. �

Proof of Theorem 6.1. By Lemma 6.3, the additional assumption on P guar-
antees that P satisfies the condition (4.1) in the spectral inclusion Theorem 4.1 for
analytic operator functions. Therefore the latter implies both claims. �

6.2. Boundedness and connected components of Wn(P)

The boundedness of Wn(P) is closely related to the position of the point 0 with
respect to (the closure of) the block numerical range Wn(A[d]) of the leading coefficient
of P . In the finite dimensional case it was proved in [13, Thm. 2.3] that the numerical
range W (P) is bounded if and only if 0 �∈W (A[d]) (= W (A[d])) .

The following theorem shows that, in infinite dimensions, not only for the numer-
ical range but also for the block numerical range, we only have

0 �∈Wn(A[d]) =⇒ Wn(P) is bounded.
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The converse, which was conjectured for n = 1 in [13, Rem. after Ex. 3, p. 1260],
is not true in general; this can be seen e.g. from Example 4.8 where L (z) = p(z)A
with A = Id−L and L the left shift on �2(N) and a polynomial p . Here the (block)
numerical range of the constant coefficient also plays a role.

THEOREM 6.4. Let P : C → L(H) be an operator polynomial of degree d .

i) If 0 �∈Wn(A[d]) , then Wn(P) is bounded.

ii) If there exists x ∈ S n with detA[d]
x �= 0 and if 0 ∈ Wn(A[d]) , then Wn(P) is

unbounded.

iii) If there exists x ∈ S n with detA[d]
x �= 0 and if 0 ∈Wn(A[d]) but 0 �∈Wn(A[0]) ,

then Wn(P) is unbounded.

For the proof we use the following lemma.

LEMMA 6.5. Let pk(z) = a[m]
k zm+ · · ·+a[1]

k z+a[0]
k ,z∈C , be complex polynomials

of degree m, i.e. a[m]
k �= 0 , k ∈ N , such that a[l]

k → a[l] , k → ∞ , l = 0, . . . ,m. If a[m] = 0
and a[s] �= 0 for some s ∈ {0, . . . ,m− 1} , then there exists a sequence (λk)k∈N ⊂ C

such that |λk| → ∞ , and pk(λk) = 0 , k ∈ N .

Proof. Let pk(z) =: a[m]
k (z− μk1) · · · (z− μkm) , p(z) := a[m]zm+ . . .+ a[1]z+ a[0] .

Suppose the claim is false. Then there exists a constant C > 0 such that |μkl | � C ,
k ∈ N , l = 0, . . . ,m ; thus

|p(z)| = lim
k→∞

|pk(z)| � lim
k→∞

∣∣∣a[m]
k

∣∣∣(|z|+C)m = 0, z ∈ C,

i.e. p ≡ 0, a contradiction to the assumption that a[s] �= 0 for some s . �

Proof of Theorem 6.4. i) By Lemma 6.3 we have 0 �∈ Wn(P(z)) and thus, by
Lemma 4.5, z /∈Wn(P) for large values of |z| , which shows that Wn(P) is bounded.

ii) Let m := nd and

N := {x ∈ S n : detA[d]
x = 0}.

Then /0 �= N �= S n by the assumptions. Let x0 ∈ ∂N ⊂ N and (xk)k∈N ⊂ S n \N

be a sequence converging to x0 . For the sequences
(
δ [l]

xk

)
k∈N

of the corresponding
coefficients of the polynomials detPxk (see (6.3), (6.4)) we have

lim
k→∞

δ [l]
xk = δ [l]

x0 , l = 0, . . . ,m.

Now consider two cases: If δ [l]
x0 = 0 for all l = 0, . . . ,m , then

detPx0(z) = lim
k→∞

detPxk(z) = lim
k→∞

m

∑
l=0

δ [l]
xk zl = 0, z ∈ C,
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that is, z ∈ Wn(P) for every z ∈ C , and thus Wn(P) = C is unbounded. If, on the

other hand, there is an s ∈ {0, . . . ,m− 1} such that δ [s]
x0 �= 0, then Lemma 6.5 applies

to the sequence of polynomials
(
detPxk

)∞
1 ; note that δ [m]

x0 = detA[d]
x0 = 0 and δ [m]

xk �= 0,
as xk �∈ N , k ∈ N . It yields a sequence (λk)k∈N ⊂ C such that |λk| → ∞ , k → ∞ , and
detPxk (λk) = 0, k ∈ N . In particular, λk ∈ Wn(P) , k ∈ N , and hence Wn(P) is
unbounded.

iii) We may assume that 0 ∈ Wn(A[d]) \Wn(A[d]) ; otherwise the claim already

follows from ii). Then there exists a sequence (xk)k∈N ⊂ S n such that detA[d]
xk → 0,

k → ∞ , and detA[d]
xk �= 0, k ∈ N . By passing to appropriate subsequences, we may

assume that the sequences
(
δ [l]

xk

)
k∈N

, defined as in the proof of ii), converge to numbers

δ [l], l = 0, . . . ,m . Then δ [m] = 0, and δ [0] �= 0 according to the assumption 0 �∈Wn(A[0])
(which is equivalent to 0 �∈ Dn(A[0]) by Lemma 4.3). In particular, Lemma 6.5 again
applies to the sequence of polynomials

(
detPxk

)
k∈N

; thus, the claim follows in the
same way as in the second case in the proof of ii). �

The following examples illustrate various phenomena that may occur for the block
numerical range of operator polynomials. The first example shows that, unlike the
numerical range, the block numerical range of a non-constant operator polynomial may
be empty.

EXAMPLE 6.6. (W 2(P) = /0) For a non-constant operator polynomial P the
numerical range W (P) is never empty. This is no longer true for the block numer-
ical range. An example is the linear operator polynomial

P(z) :=
(

0 1
0 0

)
z+

(
1 0
0 1

)
=

(
1 z
0 1

)
, z ∈ C,

in C2 = C×C . Then detPx(z) = 1 �= 0 for every x ∈ S n and thus W 2(P) = /0 .

The second example shows that the block numerical range may be bounded and
non-empty, even though the numerical range is unbounded.

EXAMPLE 6.7. (W (P) unbounded, but W 2(P) bounded and W 2(P) �= /0) It is
not difficult to see that W (P) = C if there exists a common non-zero isotropic vector
x ∈ H , i.e. (A[d]x,x) = · · · = (A[0]x,x) = 0. For the quadratic polynomial

P(z) =
(

1 0
0 0

)
z2 +

(
1 0
1 0

)
z+

(
0 1
0 0

)
=

(
z2 + z 1

z 0

)
, z ∈ C,

x = (0,1)t is a common isotropic vector for all coefficient matrices and therefore
W (P) = C .

On the other hand, with respect to the decomposition C2 = C ×C , we have
W 2(P) = {0} since detPx(z) = −z = 0 if and only if z = 0; note that 0 ∈W 2(A[2])
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here. This example shows that a block-analogue of the existence of an isotropic vector
cannot be as simple as the existence of some non-zero x ∈ S n with

detA[d]
x = · · · = detA[0]

x = 0.

EXAMPLE 6.8. (Wn(P) bounded) For the operator polynomial P in Example
3.2, it is easy to see that W (A[2]) = {λ ∈ C : |λ −1| � 1/2} , thus 0 �∈ W (A[2]) ⊃
Wn(A[2]) for all n ∈ N . Hence it follows from (3.1) and Theorem 6.4 i) that all block
numerical ranges Wn(P) of P are bounded. The usual, quadratic and cubic numeri-
cal range of P for the two decompositions C6= C4×C2 = C2×C2×C2 are illustrated
in Figure 1.

The last example illustrates Theorem 6.4 ii); at the same time, it shows that, in gen-
eral, it is difficult to obtain any analytical information about the shape of the numerical
and block numerical range even in the case of operator polynomials.

EXAMPLE 6.9. (Wn(P) unbounded, but Wn(P) �= C) For the quadratic 3× 3
matrix polynomial

P(z) =

⎛
⎝1 0 0

0 0 0
0 0 1

⎞
⎠z2 +

⎛
⎝0 0 0

0 1 0
0 1 0

⎞
⎠z +

⎛
⎝0 0 0

0 0 1
0 0 0

⎞
⎠ =

⎛
⎝z2 0 0

0 z 1
0 z z2

⎞
⎠, z ∈ C,

in C3 = C2×C1 , we have

detA[2]
x = det

(
(x1,x1) 0

0 x3x3

)
= ‖x1‖2|x3|3, x = (x1 x2 |x3)t,

and so detA[2]
x �= 0 e.g. for

x = (1 0 |1) ∈ S 2 = {x = (x1 x2 |x3)t ∈ C
2 ×C : |x1|2+ |x2|2 = 1, |x3| = 1};

moreover, detA[2]
x = 0 e.g. for x = (0 1 |1) ∈ S 2 and thus 0 ∈ W 2(A[2]) . Hence

P satisfies the assumptions of Theorem 6.4 ii) and so W 2(P) is unbounded; since
W 2(P) ⊂W (P) , so must be W (P) .

To calculate W 2(P) , let x = (x1 x2 |x3)t ∈ S 2 be arbitrary, x = (t w |1)t with
t ∈ [0,1] and |w|2 = 1− t2 . Then

detPx(z) = det

(
t2z2 w
wz z2

)
= z(t2z3 +(1− t2)(z2 −1)), z ∈ C,

i.e. W 2(P) consists of 0 and all zeros of the polynomials

pt(z) = t2z3 +(1− t2)(z2 −1), t ∈ [0,1].

For t = 0 we obtain −1, 1 ∈ W 2(P) ; for t = 1, we obtain 0 ∈W 2(P) again. For
t ∈ (0,1) and z ∈ C , z �∈ {−1,1} , we have

pt(z) = 0 ⇐⇒ z3

z2 −1
=

t2−1
t2

< 0,
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and thus,

W 2(P)\ {−1,0,1}=
{

z ∈ C :
z3

z2−1
∈ (−∞,0)

}
.

In particular, we have W 2(P)∩R = (−∞,−1]∪ [0,1] . Thus, W 2(P) is unbounded,
and hence also W (P) , but W 2(P) �= C (see Figure 3).

Figure 3: W (P) , W 2
C2×C

(P) and eigenvalues of the quadratic 3×3 matrix polynomial P in
Ex. 6.9 in the rectangle [−4,1.5]×[−1,1] .

In fact, we can prove analytically that the imaginary part of W 2(P) is bounded,
whereas that of W (P) is not. To prove the former, we note that

z3

z2 −1
∈ (−∞,0) ⇐⇒ z2−1

z3 ∈ (−∞,0) ⇐⇒ |z|4 z− z3 ∈ (−∞,0),

where we have multiplied numerator and denominator by z3 for the last equivalence.
Writing z = a+ ib , a,b ∈ R , the latter holds if and only if the two conditions

a5 +2a3b2 +ab4−a3 +3ab2 < 0,

−a4b−2a2b3−b5 +3a2b−b3 = 0

hold. The second condition implies that

b = 0 or a2 = − 1
2

(
(2b2−3)±

√
9−16b2

)
;

Since a2 is real, the discriminant must be non-negative, i.e. 9− 16b2 � 0 and hence
b ∈ [− 3

4 , 3
4 ] . This proves that ImW 2(P) ∈ [− 3

4 , 3
4 ] ; note that Figure 3 suggests that

this estimate is sharp.
To see that the imaginary part of the numerical range is unbounded, we note that

(P(z)x,x) = z2(|x1|2 + |x3|2)+ z(|x2|2 + x2x3)+ x3x2
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for x = (x1,x2,x3) ∈ C3 , ‖x‖ = 1. If we let ε ∈ (0, 1√
2
) and choose x1 = x3 = ε ,

x2 =
√

1−2ε2 i , it is not difficult to check that the equation (P(z)x,x) = 0 has the
solutions

z±(ε)=
1

4ε2

(
2ε2−1+ε

√
1−2ε2 i±

√
(1−2ε2+

√
1−2ε2ε i)2+8

√
1−2ε2ε3 i

)
∈W (P)

=:a(ε)+b(ε) i±
√

c(ε)+d(ε) i

where
√· denotes the principal branch of the square root. Clearly, limε→0 b(ε) =

limε→0
ε
√

1−2ε2

4ε2 = ∞ . If we set ζ (ε) := z+(ε) if Im
√

c(ε)+d(ε) i > 0 and ζ (ε) :=
z−(ε) if Im

√
c(ε)+d(ε) i < 0, we obtain that ζ (ε) ∈W (P) and limε→0 Imζ (ε) �

limε→0 b(ε) = ∞ . This proves that ImW (P) is unbounded, as one could guess from
Figure 3.

We close this subsection by giving an upper bound for the number of connected
components of the block numerical range of an operator polynomial P . Note that the
assumption 0 �∈ Wn(A[d]) below allows for unbounded components (unlike Theorem
5.1 i)).

PROPOSITION 6.10. Let P : C → L(H) be an operator polynomial of degree d .
If 0 �∈Wn(A[d]) , then Wn(P) consists of at most nd connected components.

For each connected component C of Wn(P) the number νC(detPx(·)) of zeros
of the polynomial detPx(·) in C counting multiplicities does not depend on x ∈ S n .

Proof. Let 0 �∈Wn(A[d]) , i.e. detA[d]
x �= 0 for all x ∈S n . Hence detPx(z) = 0 if

and only if

0 = znd +
nd−1

∑
l=0

δ [l]
x

detA[d]
x

zl =: znd +
nd−1

∑
l=0

δ̃ [l]
x zl =: px(z),

where δ [l]
x is defined as in (6.4). The mapping

B : S n → Mnd(C), B(x) :=

⎛
⎜⎜⎜⎝

0 1 0
...

. . .
. . .

0 · · · 0 1

−δ̃ [0]
x −δ̃ [1]

x · · · −δ̃ [nd−1]
x

⎞
⎟⎟⎟⎠ ,

is continuous, and for every x ∈ S n the zeros of the polynomial px coincide with the
eigenvalues of B(x) counting multiplicities. Therefore,

Wn(P) =
⋃

x∈S n

σp(B(x)) = σp(B(S n)).

As B(S n) ⊂ Mnd(C) is connected, it follows from [34, Appendix B] that σp(B(S n))
consists of at most nd connected components and νC(detPx) = νC(B(x)) for a con-
nected component C of Wn(P) does not depend on x ∈ S n . �
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6.3. Resolvent estimates

For an operator polynomial P of degree d with 0 �∈Wn(A[d]) , Lemma 6.3 shows
that Wn(P) is bounded and that there exists z0 ∈ C such that 0 �∈Wn(L (z0)) ; in par-
ticular, every connected component of Wn(P) is bounded. Thus the resolvent estimate
in Theorem 5.1 applies to each connected component C of Wn(P) for which C is a
connected component of Wn(P) ; note that condition (5.1) holds for such C .

The following estimate improves the resolvent bound in (5.2) for the special case
of operator polynomials.

THEOREM 6.11. Let P : C → L(H) be an operator polynomial of degree d . If

0 �∈Wn(A[d]) , then

∥∥P−1(z)
∥∥ � ‖P(z)‖n−1

inf
∣∣Dn(A[d])

∣∣ ·dist(z,Wn(P))nd
, z ∈ C\Wn(P), (6.6)

where Dn(A[d]) is the block determinant set of A[d] (see (4.3)) and inf
∣∣∣Dn(A[d])

∣∣∣ =

inf{|z| : z ∈ Dn(A[d])} . More exactly, if C1, . . . ,Cs are the connected components of
Wn(P) and ν j := νCj (detPx(·)) , x ∈ S n , is the number of zeros of detPx(·) in Cj ,
j = 1, . . . ,s, then

∥∥P−1(z)
∥∥ � ‖P(z)‖n−1

inf
∣∣Dn(A[d])

∣∣ ·Πs
j=1 dist(z,Cj)ν j

, z ∈ C\Wn(P). (6.7)

Proof. The proof follows the lines of the proof of [33, Thm. 4.2] in the operator
case. Note that from 0 �∈Wn(A[d]) and Theorem 6.1 it follows that C\Wn(P)⊂ ρ(P)
and inf

∣∣∣Dn(A[d])
∣∣∣ > 0 (the latter by Lemma 4.3). If λ [ j]

1 (x), . . . ,λ [ j]
ν j (x) are the zeros of

detPx on Cj , j = 1, . . . ,s , counted with multiplicities, we have

|detPx(z)| =
∣∣∣detA[d]

x

∣∣∣ · s

∏
j=1

ν j

∏
i=1

∣∣∣z−λ [ j]
i

∣∣∣ � inf
∣∣∣Dn(A[d])

∣∣∣ · s

∏
j=1

dist(z,Cj)ν j

for x ∈ S n and z ∈ C . Hence,

inf |Dn(P(z))| � inf
∣∣∣Dn(A[d])

∣∣∣ · s

∏
j=1

dist(z,Cj)ν j > 0,

for all z ∈ C\Wn(P) . Now the estimate (6.6) follows from Proposition 5.2. �

COROLLARY 6.12. If P in Theorem 6.11 is monic, then

∥∥P−1(z)
∥∥ � ‖P(z)‖n−1

Πs
j=1 dist(z,Cj)ν j

� ‖P(z)‖n−1

dist(z,Wn(P))nd , z ∈ C\Wn(P).
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Since for an operator polynomial of degree d , the number of connected compo-
nents of Wn(P) is always bounded by nd , we obtain the following a priori upper
bound on the lengths of Jordan chains at eigenvalues on the boundary of Wn(P) , com-
plementing Corollary 5.3.

COROLLARY 6.13. Let P be an operator polynomial of degree d such that
0 �∈Wn(A[d]) , let C be a connected component of Wn(P) and νC := νC(detPx(·)) ,
x ∈ S n .

If λ0 ∈ ∂C is an eigenvalue of P with the exterior cone property, then the length
m0 of a Jordan chain of P in λ0 is bounded by m0 � νC � nd . In particular, if
Wn(P) consists of the maximal number nd of connected components, then there are
no associated vectors at λ0 .

6.4. The linear companion pencil

For an operator polynomial P of degree d > 0 the linear companion pencil C P :
C → L (Hd) is defined as

C P(z) :=

⎛
⎜⎜⎜⎝

IdH 0
. . .

IdH

0 A[d]

⎞
⎟⎟⎟⎠z+

⎛
⎜⎜⎜⎜⎝

0 − IdH 0

0
. . .
. . . − IdH

A[0] A[1] · · · A[d−1]

⎞
⎟⎟⎟⎟⎠ =: A [1]z+A [0].

Note that C P = P if P is already linear (i.e. d = 1). If P is monic, then C P is
monic as well and −A [0] is called the companion operator of P .

REMARK 6.14. The linear companion pencil C P is a linearisation of the oper-
ator polynomial P (see e.g. [18, § 12.2 and Lemma 12.2]) . In particular, the spec-
tra and point spectra of P and C P coincide, i.e. σ(P) = σ(C P) and σp(P) =
σp(C P) , and for finite dimensional H we have the equivalence

detP(z) = 0 ⇐⇒ detC P(z) = 0, z ∈ C. (6.8)

If P is monic, then the spectra and point spectra of P and of its companion operator
−A [0] coincide.

Now let H1, . . . ,Hn be closed subspaces of H such that H = H1 ⊕ ·· · ⊕Hn . In
the next proposition we study the block numerical range of the linear companion pencil
with respect to the decomposition

Hd ∼= (H1⊕·· ·⊕Hn)⊕·· ·⊕ (H1⊕·· ·⊕Hn) (6.9)

induced by the given decomposition of H . The special case of a monic polynomial and
the trivial decomposition of H = H1 (i.e. n = 1) was considered in [33, Thm. 5.1].
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PROPOSITION 6.15. Let P : C → L(H) be an operator polynomial of degree d .
Then, with respect to the decomposition H = H1⊕·· ·⊕Hn of H and (6.9) of Hd ,

Wn(P) ⊂Wnd(C P). (6.10)

Proof. Let x = (x1, . . . ,xn) ∈ S n . Then xd := (x1, . . . ,xn, . . . ,x1, . . . ,xn) ∈ S nd ,
and it follows that

C P
xd (z) =

⎛
⎜⎜⎜⎝

IdCn 0
. . .

IdCn

0 A[d]
x

⎞
⎟⎟⎟⎠z+

⎛
⎜⎜⎜⎜⎝

0 − IdCn 0

0
. . .
. . . − IdCn

A[0]
x A[1]

x · · · A[d−1]
x

⎞
⎟⎟⎟⎟⎠ , z ∈ C.

In particular, if λ ∈Wn(P) , i.e., detPx(λ ) = 0 for some x∈S , it follows from (6.8)
applied to the matrix polynomial Px that

0 = detC Px(λ ) = detC P
xd (λ ),

and therefore λ ∈Wnd(C P) . �

EXAMPLE 6.16. The cubic numerical range W 3(P) of the quadratic 6×6 ma-
trix polynomial

P(z) = z2 +

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 2 0
0 0 0 0 0 0
0 0 2 0 −1 0
0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

z+

⎛
⎜⎜⎜⎜⎜⎜⎝

−3 0 1 0 2 0
0 −2 0 0 0 0
−1 0 −1 0 0 0
0 0 0 0 0 0
−2 0 0 0 1 0
0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

, z ∈ C,

with respect to the decomposition C6 = C2 ×C2 ×C2 and the block numerical range
W 6(C P ) of its linear companion pencil C P with respect to the corresponding decom-
position C12 = (C2 ×C2 ×C2)× (C2 ×C2 ×C2) are shown in Figure 4 to illustrate
the inclusion (6.10).

The eigenvalues of P are the zeros of the characteristic determinant

detP(z) = z3(z−1)(z+2)
(
z− 1

2
−1

2

√
7i

)(
z− 1

2
+

1
2

√
7i

)
(z5 −8z3 +17z−13);

in particular, the smallest real eigenvalue of P is equal to −2 and the largest real
eigenvalue of P is the largest (and only) real zero of z5−8z3 +17z−13 = 0 which is
approximately 2.46336583493925.

REMARK 6.17. Note that the leftmost real point of W 3
C2×C2×C2(P) is a corner,

but no eigenvalue of P and the rightmost real point of W 6
C2×C2×C2×C2×C2×C2(C P ) is

a corner, but no eigenvalue of C P (i.e. of P ).
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Figure 4: W 3
C2×C2×C2(P) and eigenvalues of the quadratic 6× 6 matrix polynomial P in

Ex. 6.16 and W 6
C2×C2×C2×C2×C2×C2(C P) of its linear companion pencil C P .

This shows that the result that corners of the numerical range belong to the spec-
trum does not hold for the block numerical range of linear operators or operator func-
tions (see [36, Thm. 5.10] and the forthcoming paper [25]), and not even for the quadra-
tic numerical range of linear operators (see [14, Thm. 3.1]).

In analogy to the latter result, the left real corner of W 3
C2×C2×C2(P) is an eigen-

value of the principal minor of the operator polynomial P which arises if we delete the
last block row and block column (i.e. the last two rows and columns), approximately
given by −2.23169667970097.

Similarly, the right real corner of W 6
C2×C2×C2×C2×C2×C2(C P) is an eigenvalue of

the principal minor of the companion operator C P which arises if we delete the third
block row and block column (i.e. the fifth and sixth row and column), approximately
given by 2.735865482.

7. Monic operator polynomials with positive coefficients

In this section we consider operator polynomials on Hilbert lattices the coefficients
of which are positive operators. The classical result of Perron and Frobenius shows
that the spectral radius of a positive matrix is always contained in its spectrum (see
[23], [3]). Infinite dimensional analogues were proved by Kreı̆n/Rutman, Bonsall, and
Schaefer in different settings (see [8], [9], [2], [27, Prop. V.4.1]). A corresponding result
for the spectral radius and spectrum of monic operator polynomials P with positive
coefficients, and even more general cases, was established by Maibaum (see [16]1),
using that the corresponding companion operator is positive and has the same spectrum
as P .

1We thank the reviewer for bringing this reference to our attention.
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Here we prove the analogous theorem that the numerical and block numerical ra-
dius are contained in the numerical and block numerical range, respectively, of monic
operator polynomials P on a Hilbert lattice H with positive coefficients. The numer-
ical range analogue in the finite dimensional case was proved in [22]. The numerical
and block numerical range analogue for positive operators A proved in [24, Prop. 2.5
(ii), Prop. 3.3 (ii)] is the special case of a monic linear operator pencil P(z) = z−A
of the general result below.

DEFINITION 7.1.

i) An orderd vector space (HR,�) over R is called a vector lattice if sup{x,y} and
inf{x,y} exist for all x,y ∈ HR ; in this case we set |x| := sup{x,0}+ sup{−x,0}
for x ∈ HR .

ii) If there exists an inner product (·, ·) : HR ×HR → R such that (HR,(·, ·)) is a
Hilbert space and |x| � |y| implies (x,x) � (y,y) , x,y ∈ HR , then (HR,(·, ·) ,�)
is called a (real) Hilbert lattice.

iii) If H = HR ⊕ iHR with (α + iβ )(x+ iy) = αx−βy+ i(βx+ αy) for α,β ∈ R ,
x,y ∈ HR , is the complexification of HR , then (H,(·, ·) ,�) is called a complex
Hilbert lattice.

iv) The positive cone of H is defined as H+ := {x ∈ HR : x � 0} ; for z=x+iy ∈ H ,
x,y ∈ HR , we define

|z| := sup
0�θ<2π

|(cosθ )x+(sinθ )y| ∈ H+.

v) An operator T ∈ L(H) is called positive (T � 0) if TH+ ⊂ H+ .

vi) Let T ∈ L(H) and T1,T2 ∈ L(HR) such that T = T1 ⊕ iT2 . Then

|T | := sup
0�θ<2π

|(cosθ )T1 +(sinθ )T2|

if the supremum exists in the canonical order of L(HR) .

An extensive treatment of positive operators may be found in [27] and [20]. Note
that the above concept of a positive operator should not be mixed up with positive
(semi-)definite operators on Hilbert spaces for which the numerical range lies in (0,∞)
( [0,∞) , respectively).

DEFINITION 7.2. Let A ∈ L(H) and let L (·) = (Li j(·))n
i, j=1 : Ω → L(H) be an

operator function. Then the block numerical radius of A is defined as

wn(A ) := sup{|λ | : λ ∈Wn(A )},
and the block numerical radius of L is defined as

wn(L ) := sup{|λ | : λ ∈Wn(L )}. (7.1)
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Note that for the special case L (z) = A − z with A ∈ L(H) , the two definitions
coincide and that for n = 1 the block numerical radius is the usual numerical radius
w(A ) and w(L ) , respectively.

In order to comply with classical Perron-Frobenius theory where P(z) = z−A ,
we follow the same sign convention for higher order polynomials (unlike Section 6,
comp. (6.1)).

THEOREM 7.3. Let H = H1 ⊕ . . .⊕Hn be a Hilbert lattice such that H1, . . . ,Hn

are closed lattice ideals in H . Let P : C → L(H) be a monic operator polynomial of
degree d ∈ N of the form

P(z) = zd −A[d−1]zd−1 − . . .−A[1]z−A[0], z ∈ C,

with positive operators A[i] ∈ L(H) , i = 0, . . . ,d−1 . Then the following hold.

i) If wn(P) > 0 , then wn(P) ∈Wn(P) .

ii) If 0<wn(P)∈Wn(P) , then there exists x∈S n, x�0 , with 0∈σ
(
Px(wn(P))

)
.

For the proof of Theorem 7.3 we use two lemmas; the first one applies to arbitrary
operator polynomials, without positivity assumptions on the coefficients.

LEMMA 7.4. Let H be a Hilbert space, let P : C → L(H) be a monic operator
polynomial of degree d ∈ N , and define the operator function Q by

Q(z) := A[d−1] +A[d−2] 1
z + · · ·+A[0] 1

zd−1 , z ∈ C\ {0}. (7.2)

Then, for every λ ∈ C\ {0} ,

λ ∈Wn(P) ⇐⇒ λ ∈Wn(Q(λ )), (7.3)

λ ∈Wn(P) ⇐⇒ λ ∈Wn(Q(λ )). (7.4)

Proof. Let λ ∈ C\ {0} . The relation P(λ ) = λ d−1(λ IdH −Q(λ )) implies that

Wn(P(λ )) =Wn(λ IdH−Q(λ )) = (−1)nWn(Q(λ )−λ IdH) = (−1)n(Wn(Q(λ ))−λ )

and hence, by applying Lemma 4.5,

λ ∈Wn(P) ⇐⇒ 0 ∈Wn(P(λ )) ⇐⇒ 0 ∈ (Wn(Q(λ ))−λ ) ⇐⇒ λ ∈Wn(Q(λ )),

and analogously without closures. �
The next lemma shows that the block numerical radius of an operator function Q

of the form (7.2) with positive coefficients defines a monotonically decreasing function
on the positive real axis having a fixed point.

LEMMA 7.5. Under the assumptions of Theorem 7.3, the function

qn : (0,∞) → [0,∞), t �→ wn(Q(t)),

is continuous and monotonically decreasing. If wn(P)>0 , then qn(wn(P))=wn(P) .
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Proof. The proof is similar to the proof of [26, Prop. 2.1] of the analogous asser-
tion for the spectral radius. Let 0 < λ � μ . Then, as all the coefficients A[i] of Q are
positive, Q(z) is an operator polynomial of degree � d−1 in 1

z and hence zd−1Q(z)
is an operator polynomial, it follows that

0 � Q(μ) � Q(λ ), 0 � λ d−1Q(λ ) � μd−1Q(μ).

Hence

0 �λ d−1

μd−1 Q(λ ) � Q(μ) � Q(λ ) � μd−1

λ d−1 Q(μ).

Since the block numerical range is homogeneous and the block numerical radius is
monotonically increasing (see [24, Prop. 3.3 (v)]), this implies that

0 � λ d−1

μd−1 qn(λ ) � qn(μ) � qn(λ ) � μd−1

λ d−1 qn(μ),

which proves both the continuity and monotonicity of qn .
If wn(P) > 0, then there exists 0 �= λ ∈Wn(P) . Hence λ ∈ Q(λ ) by (7.3) and

thus wn(Q(λ )) > 0. Since |Q(λ )|� Q(|λ |) , the monotonicity of the block numerical
radius ([24, Prop. 3.3]) implies that 0 < wn(Q(λ )) � wn(Q(|λ |)) , and so qn �≡ 0.
Thus, since qn is monotonically decreasing, qn has a fixed point t0 ∈ (0,∞) .

Using [24, Prop. 3.3 (ii)] we conclude that

t0 = qn(t0) = wn(Q(t0)) ∈Wn(Q(t0)).

By Lemma 7.4 this implies t0 ∈Wn(P) , and thus t0 � wn(P) . Since qn is monoton-
ically decreasing by Lemma 7.5, we obtain

qn(wn(P)) � qn(t0) = t0 � wn(P). (7.5)

By the definition of wn(P) in (7.1), there exists ξ ∈ C , |ξ | = 1, with ξwn(P) ∈
Wn(P) . Again by Lemma 7.4 this yields ξwn(P) ∈Wn(Q(ξwn(P))) , and thus

|ξwn(P)| � wn(Q(ξwn(P))). (7.6)

Since |Q(ξwn(P))| � Q(wn(P)) , the monotonicity of the block numerical radius
yields

wn(Q(ξwn(P))) � wn(Q(wn(P))). (7.7)

Then, using (7.6), (7.7), and (7.5), we find that

|ξwn(P)| = wn(P) � wn(Q(wn(P))) = qn(wn(P)) � t0 � wn(P), (7.8)

and hence t0 = wn(P) . �

Proof of Theorem 7.3. i) If wn(P) > 0, then Lemma 7.5 yields that

wn(P) = wn(Q(wn(P))).
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As Q(wn(P)) � 0 we know that wn(P) ∈Wn(Q(wn(P))) by [24, Prop. 3.3]. The
assertion then follows from Lemma 7.4.

ii) If wn(P)∈Wn(P) , then wn(P)∈Wn(Q(wn(P))) . As Q(wn(P)) � 0 and
wn(P) = wn(Q(wn(P))) by Lemma 7.5, there exists x ∈ S n , x � 0, with wn(P) ∈
σ(Q(wn(P))x) by [24, Prop. 3.3 (iv)]. Using that P(λ ) = λ d−1(λ IdH −Q(λ )) as
in the proof of Lemma 7.4, we see that 0 ∈ σ

(
P(wn(P))x

)
. �

EXAMPLE 7.6. The cubic 4×4 matrix polynomial

P(z) = z3 −

⎛
⎜⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞
⎟⎟⎠z2 −

⎛
⎜⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞
⎟⎟⎠z−

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠ , z ∈ C,

satisfies the positivity assumptions in Theorem 7.3. The eigenvalues of P are the zeros
of the polynomial

det(P(z)) = z12 −4z11−4z10−4z8−4z7−4z5−4z4−4z2−4z−1, z ∈ C, (7.9)

of degree 12. It is not difficult to check that −1 and ± i are zeros of det(P(·)) ; then
the first and last term in (7.9) cancel and the middle terms cancel pairwise. Since the
eigenvalues belong to all block numerical ranges Wn(P) , we have wn(P) � 1 > 0
for n = 1,2,3,4. Hence Theorem 7.3 yields that wn(P) ∈ Wn(P) = Wn(P) for
n = 1,2,3,4.

Figure 5: W (P) , W 3
C×C2×C

(P) and eigenvalues of the cubic 4×4 matrix polynomial P in
Ex. 7.6.

In fact, all 12 zeros of det(P(·)) can be found explicitly e.g. using Maple; they are
all different, i.e. all eigenvalues of P are simple. The eigenvalue λmax with largest
modulus is real and given by

λmax = wn(P) =
1
6
(1196+12

√
177)1/3 +

56

3(1196+12
√

177)1/3
+

4
3
. (7.10)
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Figure 5, which shows the numerical and cubic numerical range together with the eigen-
values of P , suggests that the numerical radius w1(P) ∈ W (P) and the block nu-
merical radius w3(P)∈W 3(P) coincide with the eigenvalue λmax ∼ 4.864536513 of
largest modulus of P , and thus with the spectral radius of P .

8. An application to gyroscopic systems

Gyroscopic systems are non-proportionally damped systems which are known to
exhibit instabilities that are not well understood (see e.g. [30, Section 2.2] and refer-
ences therein). Separating time in the corresponding equations of motion, one arrives
at an eigenvalue problem for a quadratic operator polynomial

Q(μ) := μ2M + μG+K, μ ∈ C,

where M , G , and K are certain linear (differential) operators representing mass, gyro-
scopic terms, and stiffness; after a discretised finite element analysis, the corresponding
mass, gyroscopic and stiffness matrix are of the form

M =
(

M1 0
0 M1

)
, G =

(
0 −G1

G1 0

)
, K =

(
K1 0
0 K1

)
.

As an example, we consider an eight degrees of freedom approximation to a mechanical
system considered in [12, Ex. 7] where M , G , and K are 8×8 matrices with

M1 =

⎛
⎜⎜⎝

0.2 0 0 0
0 0.8 0 0
0 0 0.2 0
0 0 0 1

9

⎞
⎟⎟⎠ , G1 = 150

⎛
⎜⎜⎝

0.4 0 0 0
0 1.6 0 0
0 0 0.4 0
0 0 0 7

36

⎞
⎟⎟⎠ ,

K1 =

⎛
⎜⎜⎝
−2800 −1200 0 −1200
−1200 −15600 −1200 0

0 −1200 −2800 1200
−1200 0 1200 561.48

⎞
⎟⎟⎠ .

This example arises in the study of elastically supported rotors (see [21, Section 2.3.3.6]
and also [29]) if one chooses e.g.

k0 =ku =500
kg
s2 , kh =kw =1200

kg
s2 , m0 =mu =0.2kg, mR =0.8kg,

c=d =15cm, N=666kg
cm
s2 , K=118.8kg

cm
s2 ,

Ω=150Hz, C=6.25kgcm2, A=25kgcm2.

In [12, Ex. 7 and Fig. 7] it was stated that the eigenvalues of the associated operator
polynomial P(λ ) = Q(− iλ ) , λ ∈ C , are all real and distinct, and a sketch of the
numerical range W (P) was given. It was conjectured that W (P) consists of the real
segment [−300,300] on which the eigenvalues lie and an elliptical region symmetric
to the origin and to the real axis.
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W (Q) W 2
C4×C4(Q)

W 4
C1×C3×C3×C1(Q) W 4

C2×C2×C2×C2(Q)

W 6
C1×C2×C2×C1×C1×C1(Q) W 6

C2×C1×C1×C1×C1×C2(Q)

Figure 6: Numerical range and various block numerical ranges of the quadratic 8×8 matrix
polynomial Q for the gyroscopic system in Sect. 8.

We computed a series of numerical and block numerical ranges for the original
matrix polynomial Q (related to those of P by a rotation of 90◦). The block nu-
merical ranges exhibit more interesting structures than the numerical range. Some of
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them develop holes, others split into three connected components thus separating the
eigenvalues into three groups (see Figure 6).

REMARK 8.1. Note that each of the five block numerical ranges of Q in Figure 6
has two real corners that are no eigenvalues of Q . This is another example that the
corner result for the numerical range of linear operators fails for block numerical ranges
(see Remark 6.17 on Example 6.16).

These two points, given by ±147.668334804856 precisely, are eigenvalues of
certain principal minors of Q , namely of the principal minor consisting of the first three
rows and columns for W 6

C1×C2×C2×C1×C1×C1(Q) and of the principal minor consisting
of the last four rows and columns for all other block numerical ranges.
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