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(Communicated by L. Rodman)

Abstract. Let α and β be orientation-preserving diffeomorphisms (shifts) of R+ = (0,∞) onto
itself with the only fixed points 0 and ∞ , where the derivatives α ′ and β ′ may have dis-
continuities of slowly oscillating type at 0 and ∞ . For p ∈ (1,∞) , we consider the weighted
shift operators Uα and Uβ given on the Lebesgue space Lp(R+) by Uα f = (α ′)1/p( f ◦α)
and Uβ f = (β ′)1/p( f ◦ β) . We apply the theory of Mellin pseudodifferential operators with
symbols of limited smoothness to study the simplest singular integral operators with two shifts
Ai j =Ui

α P+ +U j
β P− on the space Lp(R+) , where P± = (I±S)/2 are operators associated to the

Cauchy singular integral operator S , and i, j ∈ Z . We prove that all Ai j are Fredholm operators
on Lp(R+) and have zero indices.

1. Introduction

Let B(X) be the Banach algebra of all bounded linear operators acting on a Ba-
nach space X , and let K (X) be the ideal of all compact operators in B(X) . An
operator A ∈ B(X) is called Fredholm if its image is closed and the spaces kerA and
kerA∗ are finite-dimensional. In that case the number

IndA = dimkerA−dimkerA∗

is referred to as the index of A (see, e.g., [3, Chap. 4]).
A bounded continuous function f on R+ = (0,∞) is called slowly oscillating (at

0 and ∞) if for each (equivalently, for some) λ ∈ (0,1) ,

lim
r→s

sup
t,τ∈[λ r,r]

| f (t)− f (τ)| = 0 for s ∈ {0,∞}.

The set SO(R+) of all slowly oscillating functions forms a C∗ -algebra. This algebra
properly contains C(R+) , the C∗ -algebra of all continuous functions on R+ := [0,+∞] .
Suppose α is an orientation-preserving diffeomorphism of R+ onto itself, which has
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only two fixed points 0 and ∞ . We say that α is a slowly oscillating shift if logα ′
is bounded and α ′ ∈ SO(R+) . The set of all slowly oscillating shifts is denoted by
SOS(R+) .

We suppose that 1 < p < ∞ . It is easily seen that if α ∈ SOS(R+) , then the shift
operator Wα defined by Wα f = f ◦α is bounded and invertible on all spaces Lp(R+)
and its inverse is given by W−1

α =Wα−1 , where α−1 is the inverse function to α . Along
with Wα we consider the weighted shift operator

Uα := (α ′)1/pWα

being an isometric isomorphism of the Lebesgue space Lp(R+) onto itself. It is well
known that the Cauchy singular integral operator S given by

(S f )(t) := lim
ε→0

1
π i

∫
R+\(t−ε,t+ε)

f (τ)
τ − t

dτ, t ∈ R+,

is bounded on all Lebesgue spaces Lp(R+) for 1 < p < ∞ . Put

P± := (I±S)/2.

This paper is in some sense a continuation of our papers [7, 8] where we found a
Fredholm criterion for the singular integral operator

N = (aI−bWα)P+ +(cI−dWα)P−

with coefficients a,b,c,d ∈ SO(R+) and a shift α ∈ SOS(R+) . Here we make the next
step towards the completion of the Fredholm theory for the operator N and compute
indices of simplest singular integral operators with shifts

Ai j := Ui
αP+ +U j

βP−, i, j ∈ Z, (1.1)

whose coefficients are pure isometric shift operators Ui
α and/or U j

β under the mild
assumption that α,β ∈ SOS(R+) . To achieve this goal, we employ the machinery of
Mellin pseudodifferential operators with slowly oscillating symbols developed in the
series of papers of the second author [10, 11, 12, 13]. The main result of this paper is a
necessary piece of our work in progress [9] dedicated to the calculation of the index of
N . The techniques of that work are quite heavy and deserve to be illustrated on a simple
example. Here we show in detail how the Fredholm theory for Mellin pseudodifferential
operators can be used to study operators beyond that class on the example of simplest
operators of the form (1.1).

The main result of this paper is the following.

THEOREM 1.1. Let α,β ∈ SOS(R+) . For all i, j ∈ Z , the operator Ai j given by
(1.1) is Fredholm on the space Lp(R+) and IndAi j = 0 .
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The paper is organized as follows. In Section 2 we collect necessary facts on
slowly oscillating functions and shifts and also on the algebra A generated by the
operators I and S . In particular, we recall its description in terms of Mellin convolu-
tion operators and that it contains the family Ry , y ∈ (1,∞) , of operators with fixed
singularities given by

(Ry f )(t) :=
1
π i

∞∫
0

( t
τ

)1/y−1/p f (τ)
τ + t

dτ, t ∈ R+. (1.2)

The operator R := Rp is of special importance because S2 = I +R2 (in contrast to the
case of the real line, where S2 = I , whence P± are projections). We conclude Sec-
tion 2 with the important fact that the operators in A commute with Uα and U−1

α up
to compact operators. In Section 3 we gather all needed facts on Mellin pseudodiffer-
ential operators with slowly oscillating symbols: the boundedness, compactness, and
Fredholmness results. The latter is valid for symbols in the algebra Ẽ (R+,V (R)) . In
Section 4 we show that the operators UαRy and U−1

α Ry for all y∈ (1,∞) can be realized

as Mellin pseudodifferential operators with symbols in the algebra Ẽ (R+,V (R)) up to
compact summands. By using the above mentioned results, in Section 5 we show that
the operator (UαP+ +P−)(U−1

α P+ + P−) can be realized as a Mellin pseudodifferen-
tial operator with a symbol in the algebra Ẽ (R+,V (R)) up to a compact summand. We
prove that the latter pseudodifferenial operator is Fredholm of index zero by using a fact
from Section 3. Then we infer that the operators UαP+ +P− and U−1

α P+ +P− are both
Fredholm and their indices are equal to zero. From this result we almost immediately
get Theorem 1.1.

2. Preliminaries

2.1. Slowly oscillating functions and shifts

Repeating the proof of [6, Proposition 3.3] with minor modifications, we obtain
the following statement.

LEMMA 2.1. Suppose ϕ ∈ C1(R+) and put ψ(t) := tϕ ′(t) for t ∈ R+ . If ϕ ,ψ
belong to SO(R+) , then

lim
t→s

ψ(t) = 0 for s ∈ {0,∞}.

LEMMA 2.2. ([7, Lemma 2.2]) An orientation-preserving shift α : R+ → R+ be-
longs to SOS(R+) if and only if

α(t) = teω(t), t ∈ R+,

for some real-valued function ω ∈ SO(R+)∩C1(R+) such that the function t �→ tω ′(t)
also belongs to SO(R+) and

inf
t∈R+

(
1+ tω ′(t)

)
> 0.
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LEMMA 2.3. ([7, Lemma 2.4]) If α ∈ SOS(R+) , then α−1 ∈ SOS(R+) .

LEMMA 2.4. (a) If c ∈ SO(R+) and α ∈ SOS(R+) , then c◦α ∈ SO(R+) and

lim
t→s

(c(t)− c[α(t)]) = 0 for s ∈ {0,∞}.

(b) If α,β ∈ SOS(R+) , then α ◦β ∈ SOS(R+) .

Proof. Part (a) was proved in [7, Lemma 2.3].
(b) Let γ = α ◦ β . Since α,β ∈ SOS(R+) , the logarithms of their derivatives

logα ′ and logβ ′ are bounded. In view of

logγ ′ = log(α ′ ◦β )+ logβ ′,

the logarithm of the derivative logγ ′ is bounded, too. Further, by definition of slowly
oscillating shifts, the functions α ′ and β ′ belong to SO(R+) . Therefore, by part (a),
the function α ′ ◦β belongs to SO(R+) . Taking into account the fact that SO(R+) is
an algebra, we conclude that γ ′ = (α ′ ◦β ) ·β ′ ∈ SO(R+) . This completes the proof of
γ ∈ SOS(R+) . �

For a shift α ∈ SOS(R+) , put α0(t) := t and αi(t) := α[αi−1(t)] for i ∈ Z and
t ∈ R+ . From Lemmas 2.3 and 2.4(b) we immediately get the following.

COROLLARY 2.5. If α,β ∈ SOS(R+) , then αi ◦β j ∈ SOS(R+) for all i, j ∈ Z .

2.2. Fourier and Mellin convolution operators

Let F : L2(R) → L2(R) denote the Fourier transform,

(F f )(x) :=
∫
R

f (y)e−ixydy, x ∈ R,

and let F−1 : L2(R) → L2(R) be the inverse of F . A function a ∈ L∞(R) is called a
Fourier multiplier on Lp(R) if the mapping f �→ F−1aF f maps L2(R)∩Lp(R) onto
itself and extends to a bounded operator on Lp(R) . The latter operator is then denoted
by W 0(a) . We let Mp(R) stand for the set of all Fourier multipliers on Lp(R) . One
can show that Mp(R) is a Banach algebra under the norm

‖a‖Mp(R) := ‖W 0(a)‖B(Lp(R)).

Let dμ(t) = dt/t be the (normalized) invariant measure on R+ . Consider the
Fourier transform on L2(R+,dμ) , which is usually referred to as the Mellin transform
and is defined by

M : L2(R+,dμ) → L2(R), (M f )(x) =
∫

R+

f (t)t−ix dt
t

.
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It is an invertible operator, with inverse given by

M−1 : L2(R) → L2(R+,dμ), (M−1g)(t) =
1
2π

∫
R

g(x)tix dx.

Let E be the isometric isomorphism

E : Lp(R+,dμ) → Lp(R), (E f )(x) := f (ex), x ∈ R. (2.1)

Then the map

A �→ E−1AE

transforms the Fourier convolution operator W 0(a) = F−1aF to the Mellin convolu-
tion operator

Co(a) := M−1aM

with the same symbol a . Hence the class of Fourier multipliers on Lp(R) coincides
with the class of Mellin multipliers on Lp(R+,dμ) .

2.3. Algebra of singular integral operators

Let A be the smallest closed subalgebra of B(Lp(R+)) that contains the opera-
tors I and S . Consider the isometric isomorphism

Φ : Lp(R+) → Lp(R+,dμ), (Φ f )(t) := t1/p f (t) (t ∈ R+). (2.2)

The following statement is well known (see, e.g., [2], [5, Section 2.1.2] and [15, Sec-
tions 4.2.2–4.2.3]).

LEMMA 2.6. Let 1 < p < ∞ .
(a) For every y ∈ (1,∞) , the function sy given by

sy(x) := coth[π(x+ i/y)], x ∈ R,

belongs to Mp(R) and S = Φ−1 Co(sp)Φ .
(b) For every y ∈ (1,∞) , the function ry given by

ry(x) := 1/sinh[π(x+ i/y)], x ∈ R,

belongs to Mp(R) , the singular integral operator with fixed singularities Ry given by
(1.2) belongs to the algebra A , and Ry = Φ−1 Co(ry)Φ .

(c) The algebra A is commutative and S2−R2
p = I .

The relation of Lemma 2.6(c) shows the importance of the operator Rp . For sim-
plicity of notation, we will denote Rp by R .
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2.4. Compactness of commutators

For bounded linear operators A and B , we will write A 
 B if A−B is a compact
operator.

LEMMA 2.7. If α ∈ SOS(R+) , A ∈ A , then UαA 
 AUα and U−1
α A 
 AU−1

α .

Proof. If α ∈ SOS(R+) , then α ′ ∈ SO(R+) . Taking into account that SO(R+) is
a C∗ -algebra and α ′ > 0, we get (α ′)1/p ∈ SO(R+) . Then, by [7, Corollary 6.4],

(α ′)1/pA 
 A(α ′)1/pI, WαA 
 AWα

for all A ∈ A . Hence

UαA = (α ′)1/pWαA 
 (α ′)1/pAWα 
 A(α ′)1/pWα = AUα .

In view of Lemma 2.3, α−1 ∈ SOS(R+) . Then, by the relation just proved,

U−1
α A = Uα−1A 
 AUα−1 = AU−1

α ,

which completes the proof. �

3. Mellin pseudodifferential operators

3.1. Boundedness of Mellin pseudodifferential operators

A handy theory of Fourier pseudodifferential operators with slowly oscillating
symbols of limited smoothness was developed in [10]. On the other hand, as we have
seen in Subsection 2.3, singular integral operators P± and R on R+ can be realized
as Mellin convolution operators. Hence, for our purposes the Mellin setting is more
convenient. In this section we translate necessary results from [10] to the Mellin setting
with the aid of the transformation

A �→ E−1AE,

where A ∈ B(Lp(R)) and the isometric isomorphism E : Lp(R+,dμ) → Lp(R) is de-
fined by (2.1).

Let a be an absolutely continuous function of finite total variation

V (a) =
∫
R

|a′(x)|dx

on R . The set V (R) of all absolutely continuous functions of finite total variation on
R becomes a Banach algebra equipped with the norm

‖a‖V := ‖a‖L∞(R) +V(a).
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Following [10, 11], let Cb(R+,V (R)) denote the Banach algebra of all bounded con-
tinuous V (R)-valued functions on R+ with the norm

‖a(·, ·)‖Cb(R+,V (R)) = sup
t∈R+

‖a(t, ·)‖V .

As usual, let C∞
0 (R+) be the set of all infinitely differentiable functions of compact

support on R+ .
The following boundedness result for Mellin pseudodifferential operators follows

from [11, Theorem 6.1] (see also [10, Theorem 3.1]).

THEOREM 3.1. If a∈Cb(R+,V (R)) , then the Mellin pseudodifferential operator
Op(a) , defined for functions f ∈C∞

0 (R+) by the iterated integral

[Op(a) f ](t) =
1
2π

∫
R

dx
∫

R+

a(t,x)
( t

τ

)ix
f (τ)

dτ
τ

for t ∈ R+,

extends to a bounded linear operator on the space Lp(R+,dμ) and there is a number
Cp ∈ (0,∞) depending only on p such that

‖Op(a)‖B(Lp(R+,dμ)) � Cp‖a‖Cb(R+,V (R)).

Obviously, if a(t,x) = a(x) for all (t,x) ∈ R+ ×R , then the Mellin pseudodiffer-
ential operator Op(a) becomes the Mellin convolution operator

Op(a) = Co(a).

3.2. Compactness of Mellin pseudodifferential operators

Let SO(R+,V (R)) denote the Banach subalgebra of Cb(R+,V (R)) consisting of
all V (R)-valued functions a on R+ that slowly oscillate at 0 and ∞ , that is,

lim
r→0

cmC
r (a) = lim

r→∞
cmC

r (a) = 0,

where
cmC

r (a) = max
{∥∥a(t, ·)−a(τ, ·)∥∥L∞(R) : t,τ ∈ [r,2r]

}
.

Let E (R+,V (R)) be the Banach algebra of all V (R)-valued functions a in the
algebra SO(R+,V (R)) such that

lim
|h|→0

sup
t∈R+

∥∥a(t, ·)−ah(t, ·)∥∥V = 0

where ah(t,x) := a(t,x+h) for all (t,x) ∈ R+ ×R .
Applying the relation

Op(a) = E−1a(x,D)E (3.1)
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between the Mellin pseudodifferential operator Op(a) and the Fourier pseudodifferen-
tial operator a(x,D) considered in [10], where

a(t,x) = a(lnt,x), (t,x) ∈ R+ ×R, (3.2)

and E is given by (2.1), we infer from [10, Theorem 4.4] the following compactness
result.

THEOREM 3.2. If a ∈ E (R+,V (R)) and

lim
ln2 t+x2→∞

a(t,x) = 0,

then the Mellin pseudodifferential operator Op(a) is compact on the space Lp(R+,dμ) .

3.3. Products of Mellin pseudodifferential operators

The next result on compactness of semi-commutators of Mellin pseudodifferential
operators immediately follows from (2.1), (3.1)–(3.2) and [10, Theorem 8.3].

THEOREM 3.3. If a,b ∈ E (R+,V (R)) , then

Op(a)Op(b) 
 Op(ab).

From (2.1), (3.1)–(3.2), [10, Lemmas 7.1, 7.2], and the proof of [10, Lemma 8.1]
we can extract the following.

LEMMA 3.4. If a,b,c ∈ E (R+,V (R)) are such that a depends only on the first
variable and c depends only on the second variable, then

Op(a)Op(b)Op(c) = Op(abc).

3.4. Fredholmness of Mellin pseudodifferential operators

For a unital commutative Banach algebra A , let M(A) denote its maximal ideal
space. Identifying the points t ∈ R+ with the evaluation functionals t( f ) = f (t) for
f ∈C(R+) , we get M(C(R+)) = R+ . Consider the fibers

Ms(SO(R+)) :=
{

ξ ∈ M(SO(R+)) : ξ |C(R+) = s
}

of the maximal ideal space M(SO(R+)) over the points s ∈ {0,∞} . By [13, Proposi-
tion 2.1], the set

Δ := M0(SO(R+))∪M∞(SO(R+))

coincides with (closSO∗ R+)\R+ where closSO∗ R+ is the weak-star closure of R+ in
the dual space of SO(R+) . Then M(SO(R+)) = Δ∪R+ .

Let a ∈ E (R+,V (R)) . For every t ∈ R+ , the function a(t, ·) belongs to V (R)
and, therefore, has finite limits at ±∞ , which will be denoted by a(t,±∞) . Now we
explain how to extend the function a to Δ×R . By analogy with [10, Lemma 2.7] one
can prove the following.
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LEMMA 3.5. Let s ∈ {0,∞} and a ∈ E (R+,V (R)) . For each ξ ∈ Ms(SO(R+))
there exist a sequence {tn} ⊂ R+ and a function a(ξ , ·) ∈ V (R) such that tn → s as
n → ∞ and

a(ξ ,x) = lim
n→∞

a(tn,x) for every x ∈ R.

To study the Fredholmness of Mellin pseudodifferential operators, we need the
Banach algebra Ẽ (R+,V (R)) consisting of all functions a belonging to E (R+,V (R))
and such that

lim
m→∞

sup
t∈R+

∫
R\[−m,m]

∣∣∣∣∂a(t,x)
∂x

∣∣∣∣ dx = 0. (3.3)

Below we need the following Fredholm criterion and index formula for Mellin
pseudodifferential operators Op(a) with symbols a ∈ Ẽ (R+,V (R)) , which were ob-
tained in [13, Theorem 4.3] on the base of [10, Theorems 12.2 and 12.5] and (2.1),
(3.1)–(3.2). Note that for infinite differentiable slowly oscillating symbols a such re-
sult was obtained earlier in [14, Theorem 2.6].

THEOREM 3.6. If a ∈ Ẽ (R+,V (R)) , then the Mellin pseudodifferential operator
Op(a) is Fredholm on the space Lp(R+,dμ) if and only if

a(t,±∞) = 0 for all t ∈ R+, a(ξ ,x) = 0 for all (ξ ,x) ∈ Δ×R. (3.4)

In the case of Fredholmness

IndOp(a) = lim
τ→+∞

1
2π
{

arga(t,x)
}

(t,x)∈∂Πτ
,

where Πτ = [τ−1,τ]×R and
{

arga(t,x)
}

(t,x)∈∂Πτ
denotes the increment of arga(t,x)

when the point (t,x) traces the boundary ∂Πτ of Πτ counter-clockwise.

4. Applications of Mellin pseudodifferential operators

4.1. Some important functions in the algebra Ẽ (R+,V (R))

We start with the following obvious auxiliary statement.

LEMMA 4.1. For every p ∈ (1,∞) and j ∈ {0,1} , we have

C∞
j (p) := sup

x∈R

|x| j|rp(x)| < ∞, (4.1)

C1
j (p) :=

∫
R

|x| j|rp(x)|dx < ∞, (4.2)

M0(p) := sup
x∈R

∣∣πsp(x)
∣∣< ∞. (4.3)

Consider now simple “bricks” in our construction, functions depending only on
one variable.
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LEMMA 4.2. Let g ∈ SO(R+) . Then for every p ∈ (1,∞) the functions

g(t,x) := g(t), sp(t,x) := sp(x), rp(t,x) := rp(x), (t,x) ∈ R+×R,

belong to the Banach algebra Ẽ (R+,V (R)) .

Proof. We have already shown in [7, Lemma 7.1] that these functions belong to
the algebra E (R+,V (R)) . Since g does not depend on x , condition (3.3) holds trivially
for g . Thus, g ∈ Ẽ (R+,V (R)) .

From s′p(x) = −π(rp(x))2 and r′p(x) = −πsp(x)rp(x) , taking into account (4.1)
and (4.3), we see that

lim
m→∞

sup
t∈R+

∫
R\[−m,m]

∣∣∣∣∂sp(t,x)
∂x

∣∣∣∣ dxπ � C∞
0 (p) lim

m→∞

∫
R\[−m,m]

|rp(x)|dx = 0,

lim
m→∞

sup
t∈R+

∫
R\[−m,m]

∣∣∣∣∂ rp(t,x)
∂x

∣∣∣∣ dx � M0(p) lim
m→∞

∫
R\[−m,m]

|rp(x)|dx = 0.

Thus, sp,rp ∈ Ẽ (R+,V (R)) . �
The next statement is crucial for our analysis.

LEMMA 4.3. Suppose ω ∈ SO(R+) is a real-valued function. Then for every
p ∈ (1,∞) the function

b(t,x) := eiω(t)xrp(x), (t,x) ∈ R+×R, (4.4)

belongs to the Banach algebra Ẽ (R+,V (R)) and there is a constant C(p) ∈ (0,∞)
depending only on p such that

‖b‖Cb(R+,V (R)) � C(p)

(
1+ sup

t∈R+

|ω(t)|
)

. (4.5)

Proof. First, by analogywith [7, Lemma 7.3] we will show that b∈Cb(R+,V (R)) .
Through the proof we assume that t,τ ∈ R+ and x ∈ R . From (4.4) and (4.1) it follows
that

‖b(t, ·)‖L∞(R) � C∞
0 (p). (4.6)

Since ω ∈ SO(R+) , we have

M1(ω) := sup
t∈R+

|ω(t)| < ∞. (4.7)

From (4.4) it easily follows that

∂b

∂x
(t,x) =

(
iω(t)−πsp(x)

)
b(t,x), (4.8)

∂ 2b

∂x2 (t,x) =
(
π2(rp(x))2 +(iω(t)−πsp(x))2)b(t,x). (4.9)
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From (4.8), (4.7) and (4.2), (4.3) we obtain

V (b(t, ·)) =
∫
R

∣∣∣∣∂b(t,x)
∂x

∣∣∣∣ dx � (M1(ω)+M0(p))C1
0(p). (4.10)

Combining (4.6) and (4.10), we arrive at

‖b(t, ·)‖V � C∞
0 (p)+ (M1(ω)+M0(p))C1

0(p) � C(p)(1+M1(ω)), (4.11)

where C(p) := max(C∞
0 (p)+C1

0(p)M0(p),C1
0(p)) . Further from (4.4), we get

∣∣b(t,x)−b(τ,x)
∣∣=
∣∣∣∣∣∣∣ix
⎛⎜⎝ ω(t)∫

ω(τ)

eiθxdθ

⎞⎟⎠rp(x)

∣∣∣∣∣∣∣� |ω(t)−ω(τ)| |x| |rp(x)|. (4.12)

From (4.12) and (4.1) we obtain

‖b(t, ·)−b(τ, ·)‖L∞(R) � C∞
1 (p)|ω(t)−ω(τ)|. (4.13)

From (4.8) it follows that

∂b(t,x)
∂x

− ∂b(τ,x)
∂x

=i(ω(t)−ω(τ))b(t,x)

+ (iω(τ)−πsp(x))(b(t,x)−b(τ,x)). (4.14)

Starting with (4.14) and taking into account (4.12), (4.3), and (4.7), we arrive at∣∣∣∣∂b(t,x)
∂x

− ∂b(τ,x)
∂x

∣∣∣∣� |ω(t)−ω(τ)|(|rp(x)|+(M1(ω)+M0(p))|x| |rp(x)|
)
.

Therefore, taking into account (4.2), we infer from the latter inequality that

V (b(t, ·)−b(τ, ·)) =
∫
R

∣∣∣∣∂b(t,x)
∂x

− ∂b(τ,x)
∂x

∣∣∣∣ dx � L1(ω , p)|ω(t)−ω(τ)|, (4.15)

where L1(ω , p) := C1
0(p)+(M1(ω)+M0(p))C1

1(p) . Combining (4.13) and (4.15), we
arrive at

‖b(t, ·)−b(τ, ·)‖V � L2(ω , p)|ω(t)−ω(τ)| (4.16)

for t,τ ∈ R+ , where L2(ω , p) := C∞
1 (p)+L1(ω , p) . From (4.11) and (4.16) it follows

that b is a bounded and continuous V (R)-valued function. Thus, b ∈ Cb(R+,V (R)) .
Estimate (4.5) follows immediately from (4.11).

Further, we will show by analogy with [7, Lemma 7.4] that b belongs to the alge-
bra E (R+,V (R)) . Estimate (4.13) immediately implies that

cmC
r (b) � C∞

1 (p)osc(ω , [r,2r]), r ∈ R+.
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Since ω ∈ SO(R+) , from this estimate we obtain

lim
r→s

cmC
r (b) = lim

r→s
osc(ω , [r,2r]) = 0, s ∈ {0,∞}.

Thus, b ∈ SO(R+,V (R)) .
From (4.8), (4.7) and (4.1), (4.3) we infer that∣∣∣∣∂b(t,x)

∂x

∣∣∣∣� M2(ω , p),

where M2(ω , p) := (M1(ω)+M0(p))C∞
0 (p) < ∞ .

Let h ∈ R . Then

|b(t,x)−bh(t,x)| =
∣∣∣∣∣∣

x+h∫
x

∂b

∂y
(t,y)dy

∣∣∣∣∣∣�
∣∣∣∣∣∣

x+h∫
x

∣∣∣∣∂b

∂y
(t,y)

∣∣∣∣dy

∣∣∣∣∣∣� M2(ω , p)|h|.

Therefore,
sup
t∈R+

‖b(t, ·)−bh(t, ·)‖L∞(R) � M2(ω , p)|h|, h ∈ R. (4.17)

From (4.9), (4.7) and (4.1), (4.3) we obtain∣∣∣∣∂ 2b(t,x)
∂x2

∣∣∣∣� M3(ω , p)|rp(x)|,

where M3(ω , p) := (πC∞
0 (p))2 +(M1(ω)+M0(p))2 < ∞ . Fix h > 0. Then

V (b(t, ·)−bh(t, ·)) =
∫
R

∣∣∣∣∂b

∂x
(t,x+h)− ∂b

∂x
(t,x)

∣∣∣∣dx =
∫
R

∣∣∣∣∣∣
x+h∫
x

∂ 2b

∂y2 (t,y)dy

∣∣∣∣∣∣dx

�
∫
R

x+h∫
x

∣∣∣∣∂ 2b

∂y2 (t,y)
∣∣∣∣dydx � M3(ω , p)

∫
R

x+h∫
x

|rp(y)|dydx. (4.18)

Changing the order of integration in the integral on the right-hand side of (4.18) and
taking into account (4.1), we get for h ∈ R ,

∫
R

x+h∫
x

|rp(y)|dydx =
∫
R

y∫
y−h

|rp(y)|dxdy = h
∫
R

|rp(y)|dy = C1
0(p)h. (4.19)

Combining (4.18) and (4.19), we see that

V (b(t, ·)−bh(t, ·)) � M4(ω , p)h (h > 0), (4.20)

where M4(ω , p) := C1
0(p)M3(ω , p) . Analogously it can be shown that

V (b(t, ·)−bh(t, ·)) � M4(ω , p)(−h) (h < 0). (4.21)
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From (4.20) and (4.21) we get for h ∈ R ,

sup
t∈R+

V
(
b(t, ·)−bh(t, ·))� M4(ω , p)|h|. (4.22)

Combining (4.17) with (4.22), we arrive at

lim
|h|→0

sup
t∈R+

‖b(t, ·)−bh(t, ·)‖V � (M2(ω , p)+M4(ω , p)) lim
|h|→0

|h| = 0,

which implies that b ∈ SO(R+,V (R)) actually belongs to E (R+,V (R)) .
Finally, from (4.8), (4.7) and (4.3) it follows that

lim
m→∞

sup
t∈R+

∫
R\[−m,m]

∣∣∣∣∂b

∂x
(t,x)

∣∣∣∣ dx � (M1(ω)+M0(p)) lim
m→∞

∫
R\[−m,m]

|rp(x)|dx = 0,

which in view of (3.3) implies that b ∈ Ẽ (R+,V (R)) . �

4.2. Product of a shift operator and an operator with fixed singularities

In this subsection we show that the operators UαRy and U−1
α Ry can be realized

as Mellin pseudodifferential operators with symbols in the algebra Ẽ (R+,V (R)) for
arbitrary y ∈ (1,∞) .

LEMMA 4.4. Let α ∈ SOS(R+) and Uα be the associated isometric shift opera-
tor on Lp(R+) . For every y ∈ (1,∞) , the operator UαRy can be realized as the Mellin
pseudodifferential operator:

UαRy = Φ−1 Op(cα ,y)Φ,

where the function cα ,y , given for (t,x) ∈ R+ ×R by

cα ,y(t,x) := (1+ tω ′(t))1/peiω(t)xry(x) with ω(t) := log[α(t)/t], (4.23)

belongs to the algebra Ẽ (R+,V (R)) .

Proof. We follow the proof of [7, Lemma 8.3]. By Lemma 2.2, α(t) = teω(t) ,
where ω ∈ SO(R+)∩C1(R+) is a real-valued function. Hence

α ′(t) = Ω(t)eω(t), where Ω(t) := 1+ tω ′(t), t ∈ R+. (4.24)
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Assume that f ∈C∞
0 (R+) . Taking into account (4.24), we have

(ΦUαRyΦ−1 f )(t) =
(α ′(t))1/p

π i

∫
R+

(
α(t)

τ

)1/y−1/p f (τ)(t/τ)1/p

τ + α(t)
dτ

=
(Ω(t))1/peω(t)/p

π i

∫
R+

(
teω(t)

τ

)1/y−1/p
f (τ)(t/τ)1/p

1+ eω(t)(t/τ)
dτ
τ

=
(Ω(t))1/peω(t)/y

π i

∫
R+

f (τ)(t/τ)1/y

1+ eω(t)(t/τ)
dτ
τ

= (Ω(t))1/p(Iy f )(t), (4.25)

where

(Iy f )(t) :=
eω(t)/y

π i

∫
R+

f (τ)(t/τ)1/y

1+ eω(t)(t/τ)
dτ
τ

, y ∈ (1,∞). (4.26)

From [4, formula 3.194.4] it follows that for y ∈ (1,∞) , k > 0, and x ∈ R ,

1
π i

∫
R+

t1/y

1+ kt
t−ix dt

t
=

1

k1/y−ix
· 1
isin[π(1/y− ix)]

= ei(x+i/y) logkry(x).

Taking the inverse Mellin transform, we get

1
π i

t1/y

1+ kt
=

1
2π

∫
R

ei(x+i/y) logkry(x)tix dx. (4.27)

Hence, for y ∈ (1,∞) , we infer from (4.26)–(4.27) that

(Iy f )(t) =
eω(t)/y

2π

∫
R+

⎛⎝∫
R

eiω(t)(x+i/y)ry(x)
( t

τ

)ix
dx

⎞⎠ f (τ)
dτ
τ

=
1
2π

∫
R

dx
∫

R+

eiω(t)xry(x)
( t

τ

)ix
f (τ)

dτ
τ

. (4.28)

From (4.25) and (4.28) we obtain for f ∈C∞
0 (R+) ,

ΦUαRyΦ−1 f = Op(cα ,y) f . (4.29)

By Lemma 2.2, the function Ω belongs to SO(R+) . Then Ω1/p is also in SO(R+) .
Therefore, from Lemmas 4.2 and 4.3 it follows that the function cα ,y belongs to the
algebra Ẽ (R+,V (R)) ⊂Cb(R+,V (R)) . Then Theorem 3.1 implies that Op(cα ,y) ex-
tends to a bounded operators on Lp(R+,dμ) and, therefore, from (4.29) we obtain
ΦUαRyΦ−1 = Op(cα ,y) , which completes the proof. �
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Now we show that the symbol in the lemma above can be simplified if we allow
equality up to a compact summand instead of the exact equality. Moreover, the operator
U−1

α Ry can be similarly treated as well.

LEMMA 4.5. Let α ∈ SOS(R+) and Uα be the associated isometric shift opera-
tor on Lp(R+) . For every y ∈ (1,∞) , the operators UαRy and U−1

α Ry can be realized
as the Mellin pseudodifferential operators up to compact operators:

U±1
α Ry 
 Φ−1 Op(c±α ,y)Φ,

where the functions c±α ,y given for (t,x) ∈ R+×R by

c±α ,y(t,x) := e±iω(t)xry(x) with ω(t) := log[α(t)/t],

belong to the algebra Ẽ (R+,V (R)) .

Proof. The functions c±α ,y belong to the algebra Ẽ (R+,V (R)) due to Lemma 4.3.
Let us first prove that

UαRy 
 Φ−1 Op(c+α ,y)Φ. (4.30)

In view of Lemma 4.4 it is sufficient to show that

Op(cα ,y) 
 Op(c+α ,y), (4.31)

where the function cα ,y is given by (4.23). Let Ω be given by (4.24) and

mΩ := inf
t∈R+

Ω(t), MΩ := sup
t∈R+

Ω(t).

From Lemma 2.2 it follows that mΩ > 0 and ω ∈ SO(R+)∩C1(R+) . Moreover, tω ′(t)
is also in SO(R+) . Then Ω ∈ SO(R+) , whence MΩ < ∞ . By Lemma 2.1,

lim
t→s

(tω ′(t)) = 0, s ∈ {0,∞},

whence

lim
t→s

(Ω(t))1/p =
(
1+ lim

t→s
(tω ′(t))

)1/p
= 1 for s ∈ {0,∞}. (4.32)

On the other hand, obviously,

lim
|x|→∞

ry(x) = 0, y ∈ (1,∞). (4.33)

Combining (4.32)–(4.33) with the definitions of cα ,y and c+α ,y , we arrive at

lim
ln2 t+x2→∞

(cα ,y(t,x)− c+α ,y(t,x)) = 0.

From these equalities and Theorem 3.2 we get (4.31).
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Now let us prove that

U−1
α Ry 
 Φ−1 Op(c−α ,y)Φ. (4.34)

In view of Lemma 2.3, α−1 ∈ SOS(R+) along with α . Then, in view of (4.30) with
the shift α−1 in place of the shift α , we get

U−1
α Ry = Uα−1Ry 
 Φ−1 Op(̃c+α ,y)Φ, (4.35)

where the function c̃+α ,y , defined by c̃+α ,y(t,x) := eiω̃(t)xry(x) for (t,x) ∈ R+ ×R , be-

longs to Ẽ (R+,V (R)) and ω̃(t) := log[α−1(t)/t] is a real-valued function in SO(R+)
(see also Lemma 2.2). On the other hand, for t ∈ R+ ,

ω̃(t) = log
α−1(t)

t
= − log

t
α−1(t)

= − log
α[α−1(t)]

α−1(t)
= −ω [α−1(t)].

Hence, for (t,x) ∈ R+×R we have

|c−α ,y(t,x)− c̃+α ,y(t,x)| =
∣∣∣e−iω(t)x − e−iω[α−1(t)]x

∣∣∣ |ry(x)|

=

∣∣∣∣∣∣∣ix
⎛⎜⎝ −ω(t)∫
−ω[α−1(t)]

eiθx dθ

⎞⎟⎠ry(x)

∣∣∣∣∣∣∣
� |ω(t)−ω [α−1(t)]| |x| |ry(x)|. (4.36)

By Lemma 2.4(a), for s ∈ {0,∞} ,

lim
t→s

|ω(t)−ω [α−1(t)]| = 0. (4.37)

On the other hand, obviously,

lim
|x|→∞

|xry(x)| = 0. (4.38)

Combining (4.36)–(4.38), we arrive at the equality

lim
ln2 t+x2→∞

(c−α ,y(t,x)− c̃+α ,y(t,x)) = 0. (4.39)

From the latter equality and Theorem 3.2 it follows that

Op(̃c+α ,y) 
 Op(c−α ,y). (4.40)

Finally, from (4.35) and (4.40) we obtain (4.34). �
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5. Proof of the main result

5.1. Technical lemma

We start with the following technical lemma.

LEMMA 5.1. Let p ∈ (1,∞) , ω be a real-valued function in SO(R+) , and

g̃(t,x,θ ) := 1− (eiθω(t)x + e−iθω(t)x−2)
(rp(x))2

4
, (t,x,θ ) ∈ R+×R× [0,1], (5.1)

with
g̃(t,±∞,θ ) := lim

x→±∞
g̃(t,x,θ ) = 1 for (t,θ ) ∈ R+ × [0,1].

Then there is a constant c = c(ω , p) > 0 depending only on ω and p such that

|g̃(t,x,θ )| � c for all (t,x,θ ) ∈ R+×R× [0,1]. (5.2)

Proof. By using elementary transformations of hyperbolic trigonometry (see, e.g.,
[1, Section 4.5]), g̃ can be rewritten as

g̃(t,x,θ ) =
(
cosh[2π(x+ i/p)]− cosh[iθω(t)x]

)(rp(x))2

2

=
sinh[π(x+ i/p)+ iθω(t)x/2]

sinh[π(x+ i/p)]
· sinh[π(x+ i/p)− iθω(t)x/2]

sinh[π(x+ i/p)]
,

whence, by [1, formula 4.5.54],

|g̃(t,x,θ )| =
√

sinh2(πx)+ sin2(π/p+ θω(t)x/2)
sinh2(πx)+ sin2(π/p)

×
√

sinh2(πx)+ sin2(π/p−θω(t)x/2)
sinh2(πx)+ sin2(π/p)

. (5.3)

Let the constant M1(ω) be given by (4.7). Assume that 2 � p < ∞ and t ∈ R+ ,
θ ∈ [0,1] . If |x| � π/(pM1(ω)) , then∣∣∣∣θω(t)x

2

∣∣∣∣� θM1(ω)
2

· π
pM1(ω)

� π
2p

.

Hence

π
2p

=
π
p
− π

2p
� π

p
± θω(t)x

2
� π

p
+

π
2p

� π − π
p

+
π
2p

= π − π
2p

.

From here it follows that

sin2
(

π
p
± θω(t)x

2

)
� sin2

(
π
2p

)
for |x| � π

pM1(ω)
. (5.4)
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If p ∈ (1,2) , then p′ := p/(p−1)∈ (2,∞) . In this case from (5.4) we get

sin2
(

π
p
± θω(t)x

2

)
= sin2

(
π −

(
π
p′

∓ θω(t)x
2

))
= sin2

(
π
p′

∓ θω(t)x
2

)
� sin2

(
π

2p′

)
for |x| � π

p′M1(ω)
. (5.5)

Now let p ∈ (1,∞) and put q := max(p, p′) . Taking into account that the function
ϕ(x) = sinh2(πx) is even on R and is increasing and positive on R+ , from (5.3)–(5.5)
we obtain for |x| � π/(qM1(ω)) ,

|g̃(t,x,θ )| � sin2(π/(2q))
sinh2(π2/(qM1(ω)))+ sin2(π/p)

=: c1(ω , p) > 0; (5.6)

and for |x| > π/(qM1(ω)) ,

|g̃(t,x,θ )| � sinh2(πx)
sinh2(πx)+ sin2(π/p)

=
1

1+ sin2(π/p)sinh−2(πx)

� 1

1+ sin2(π/p)sinh−2(π2/(qM1(ω)))
=: c2(ω , p) > 0. (5.7)

Combining (5.6)–(5.7), we arrive at (5.2) with c := min(c1(ω , p),c2(ω , p)) > 0. �

5.2. Singular integral operators with one shift

Let X be a Banach space and A ∈ B(X) . Recall that an operator Br ∈ B(X)
(resp. Bl ∈ B(X)) is said to be a right (resp. left) regularizer for A if

ABr − I ∈ K (X) (resp. BlA− I ∈ K (X)).

It is well known that the operator A is Fredholm on X if and only if it admits simul-
taneously a right and a left regularizers. Moreover, each right regularizer differs from
each left regularizer by a compact operator (see, e.g., [3, Chap. 4, Section 7]).

Now we will prove Theorem 1.1 for i = ±1 and j = 0.

THEOREM 5.2. If α ∈ SOS(R+) , then the operators

Gα := UαP+ +P−, Gα−1 := U−1
α P+ +P−

are Fredholm on the space Lp(R+) and IndGα = IndGα−1 = 0 .

Proof. We will follow the proof of [12, Theorem 9.4], where this result was proved
for weighted Lp spaces, but under stronger conditions on the smoothness of the slowly
oscillating shift.

From Lemma 2.7 it follows that

GαGα−1 
 P2
+ +UαP+P− +U−1

α P−P+ +P2
−, (5.8)

Gα−1Gα 
 P2
+ +U−1

α P+P−+UαP−P+ +P2
−. (5.9)
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From Lemma 2.6(c) we immediately get the following identities:

P+P− = P−P+ = −R2

4
, P2

± = P± +
R2

4
. (5.10)

Combining (5.8)–(5.10), we arrive at

GαGα−1 
 Gα−1Gα 
 I− (Uα +U−1
α −2I)

R2

4
. (5.11)

From Lemma 2.6(b) and Lemma 4.2 it follows that

R = Φ−1 Op(rp)Φ, (5.12)

where rp(t,x) = rp(x) belongs to Ẽ (R+,V (R)) . By Lemma 4.5,

(Uα +U−1
α −2I)R 
 Φ−1 Op(f)Φ, (5.13)

where the function f , given for (t,x) ∈ R+×R by

f(t,x) := (eiω(t)x + e−iω(t)x−2)rp(x) with ω(t) = log[α(t)/t],

belongs to Ẽ (R+,V (R)) . From (5.12)–(5.13) and Lemma 3.4 we conclude that

I− (Uα −U−1
α −2I)

R2

4

 I−Φ−1 Op(f)Op(rp/4)Φ = Φ−1 Op(g)Φ, (5.14)

where

g(t,x) := 1− (eiω(t)x + e−iω(t)x −2)
(rp(x))2

4
, (t,x) ∈ R+×R, (5.15)

belongs to Ẽ (R+,V (R)) . From (5.15) and Lemmas 3.5 and 5.1 it follows that

g(t,±∞) = 1 = 0 for all t ∈ R+, g(ξ ,x) = 0 for all (ξ ,x) ∈ Δ×R.

Thus, by Theorem 3.6, the operator F := Φ−1 Op(g)Φ is Fredholm on Lp(R+) . Let

F(−1)
r and F (−1)

l be some of its right and left regularizers. From (5.11) and (5.14) we
obtain

Gα(Gα−1F
(−1)
r ) 
 FF(−1)

r 
 I, (F (−1)
l Gα−1)Gα 
 F (−1)

l F 
 I,

whence Gα−1F
(−1)
r is a right regularizer and F (−1)

l Gα−1 is a left regularizer for Gα .
Thus, Gα is Fredholm. Similarly one can show that Gα−1 is Fredholm.

For τ > 1, consider Πτ := [τ−1,τ]×R . Since the function g̃ given by (5.1) is con-
tinuous and separated from 0 for all (t,x,θ ) ∈ R+ ×R× [0,1] in view of Lemma 5.1,
we conclude that {arg g̃(t,x,θ )}(t,x)∈∂Πτ does not depend on θ ∈ [0,1] . Consequently,

{argg(t,x)}(t,x)∈∂Πτ = {arg g̃(t,x,0)}(t,x)∈∂Πτ = 0. (5.16)
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By Theorem 3.6 and (5.16),

IndΦ−1 Op(g)Φ = lim
τ→∞

1
2π

{argg(t,x)}(t,x)∈∂Πτ = 0. (5.17)

From (5.11) and (5.14) it follows that

IndGα + IndGα−1 = IndΦ−1 Op(g)Φ = 0. (5.18)

Let C be the operator of complex conjugation given by C f = f . This operator is
isometric and anti-linear on Lp(R+) . It is not difficult to see that CUαC = Uα and
C P±C = P∓ . Then

C GαC = UαP− +P+ = UαGα−1 .

Hence IndGα = IndGα−1 , which implies due to (5.18) that IndGα = IndGα−1 = 0. �

5.3. Singular integral operators with two shifts

Proof of Theorem 1.1. The result is trivial for i = j = 0. By Corollary 2.5, the
shifts αi , β j , and γi j := αi ◦β− j belong to SOS(R+) for all i, j ∈ Z . By Theorem 5.2,
the operator Ai0 = UαiP+ +P− is Fredholm and IndAi0 = 0 for all i ∈ Z \ {0} . In all
remaining cases Ai j =U j

β (Uγi j P++P−) , where Uγi j =Uβ− j
Uαi =U− j

β Ui
α . The operator

Uγi jP+ +P− is Fredholm and its index is equal to zero due to Theorem 5.2. It remains to

observe that the operator U j
β is invertible. Thus, Ai j is Fredholm and IndAi j = 0. �
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