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PROPERTIES OF COMPLEX SYMMETRIC OPERATORS

SUNGEUN JUNG, EUNGIL KO AND JI EUN LEE

(Communicated by R. Curto)

Abstract. An operator T ∈L (H ) is said to be complex symmetric if there exists a conjugation
C on H such that T = CT ∗C . In this paper, we prove that every complex symmetric operator
is biquasitriangular. Also, we show that if a complex symmetric operator T is weakly hyper-
cyclic, then both T and T ∗ have the single-valued extension property and that if T is a complex
symmetric operator which has the property (δ ) , then Weyl’s theorem holds for f (T ) and f (T )∗
where f is any analytic function in a neighborhood of σ(T ) . Finally, we establish equivalence
relations among Weyl type theorems for complex symmetric operators.

1. Introduction

Let L (H ) be the algebra of all bounded linear operators on a separable complex
Hilbert space H and let K (H ) be the ideal of all compact operators on H . If T ∈
L (H ) , we write σ(T ) , σsu(T ) , σa(T ) , σe(T ) , σle(T ) , and σre(T ) for the spectrum,
the surjective spectrum, the approximate point spectrum, the essential spectrum, the left
essential spectrum, and the right essential spectrum of T , respectively.

A conjugationon H is an antilinear operator C : H →H which satisfies 〈Cx,Cy〉
= 〈y,x〉 for all x,y ∈ H and C2 = I. For any conjugation C , there is an orthonormal
basis {en}∞

n=0 for H such that Cen = en for all n (see [15] for more details). An
operator T ∈ L (H ) is said to be complex symmetric if there exists a conjugation C
on H such that T = CT ∗C . In this case, we say that T is complex symmetric with
conjugation C . This concept is due to the fact that T is a complex symmetric opera-
tor if and only if it is unitarily equivalent to a symmetric matrix with complex entries,
regarded as an operator acting on an l2 -space of the appropriate dimension (see [13]).
The class of complex symmetric operators is unexpectedly large. This class includes
all normal operators, Hankel operators, some truncated Toeplitz operators, and some
Volterra integration operators. We refer the reader to [13], [14], [15], [16], [17], [18]
for more details, including historical comments and references.

The aim of this paper is to study local spectral and spectral properties of complex
symmetric operators. In this paper, we prove that every complex symmetric operator
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is biquasitriangular. Also, we show that if a complex symmetric operator T is weakly
hypercyclic, then both T and T ∗ have the single-valued extension property and that if
T is a complex symmetric operator which has the property (δ ) , then Weyl’s theorem
holds for f (T ) and f (T )∗ where f is any analytic function in a neighborhood of σ(T ) .
Finally, we establish equivalence relations among Weyl type theorems for complex
symmetric operators.

2. Preliminaries

An operator T ∈ L (H ) is said to have the single-valued extension property (or
SVEP) if for every open subset G of C and any H -valued analytic function f on G
such that (T − z) f (z) ≡ 0 on G , we have f (z) ≡ 0 on G . For an operator T ∈ L (H )
and for x ∈ H , the local resolvent set ρT (x) of T at x is defined as the union of
every open subset G of C on which there is an analytic function f : G →H such that
(T − z) f (z) ≡ x for all z ∈ G . The local spectrum of T at x is given by

σT (x) = C\ρT (x).

We define the local spectral subspace of an operator T ∈ L (H ) by

HT (F) = {x ∈ H : σT (x) ⊂ F}

for a subset F of C . An operator T ∈ L (H ) is said to have Dunford’s property (C)
if HT (F) is closed for each closed subset F of C. An operator T ∈ L (H ) is said to
have Bishop’s property (β ) if for every open subset G of C and every sequence { fn}
of H -valued analytic functions on G such that (T − z) fn(z) converges uniformly to 0
in norm on compact subsets of G , we get that fn(z) converges uniformly to 0 in norm
on compact subsets of G . We say that T has the property (δ ) if for every x ∈ H and
for every open cover {U,V} of C , we can write x = u+ v where u and v are vectors
in H such that (T − z) f (z) ≡ u on C \U and (T − z)g(z) ≡ v on C \V for some
analytic functions f : C\U →H and g : C\V → H . When T has the single-valued
extension property, T has the property (δ ) if and only if for any open cover {U,V} of
C , the decomposition H = HT (U)+HT (V ) holds. An operator T ∈L (H ) is said to
be decomposable if for every open cover {U,V} of C there are T -invariant subspaces
X and Y such that H = X + Y , σ(T |X ) ⊂ U , and σ(T |Y ) ⊂ V . An operator
T ∈ L (H ) is decomposable precisely when it has the properties (β ) and (δ ) . It is
well known that

Bishop’s property (β ) ⇒ Dunford’s property (C) ⇒ SVEP.

Any of the converse implications does not hold, in general. In addition, T has the
property (β ) if and only if T ∗ has the property (δ ) (see [8] and [28] for more details).

An operator T ∈ L (H ) is called upper semi-Fredholm if T has closed range
and dimker(T ) < ∞ , and T is called lower semi-Fredholm if T has closed range and
dim(H /ran(T )) < ∞ . When T is upper semi-Fredholm or lower semi-Fredholm, T
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is said to be semi-Fredholm. The index of a semi-Fredholm operator T ∈ L (H ) ,
denoted ind(T ) , is given by

ind(T ) = dimker(T )−dim(H /ran(T ))

and this value is an integer or ±∞ . Also an operator T ∈L (H ) is said to be Fredholm
if it is both upper and lower semi-Fredholm. An operator T ∈ L (H ) is said to be
Weyl if it is Fredholm of index zero. If there is a positive integer m such that ker(Tm) =
ker(Tm+1) , then T is said to have finite ascent. If there is a positive integer n satisfying
ran(Tn) = ran(Tn+1) , then T is said to have finite descent. We say that T ∈ L (H ) is
Browder if it has finite ascent and finite descent. We define the Weyl spectrum σw(T )
and the Browder spectrum σb(T ) by

σw(T ) = {λ ∈ C : T −λ is not Weyl}
and

σb(T ) = {λ ∈ C : T −λ is not Browder}.
It is evident that

σe(T ) ⊂ σw(T ) ⊂ σb(T ).

We say that Weyl’s theorem holds for T if

σ(T )\π00(T ) = σw(T ), or equivalently, σ(T )\σw(T ) = π00(T ),

where π00(T ) = {λ ∈ iso(σ(T )) : 0 < dimker(T −λ ) < ∞} and iso(σ(T )) denotes the
set of all isolated points of σ(T ) . We say that Browder’s theorem holds for T ∈L (H )
if σb(T ) = σw(T ).

For an operator T ∈L (H ) , a hole in σe(T ) is a bounded component of C\σe(T )
and thus is an open set. A pseudohole in σe(T ) is a component of σe(T ) \σle(T ) or
σe(T )\σre(T ) , which is a subset of σe(T ) and open in C . The spectral picture of an
operator T ∈ L (H ) (notation : SP(T )) is the structure consisting of the set σe(T ) ,
the collection of holes and pseudoholes in σe(T ) , and the indices associated with these
holes and pseudoholes (see [33] for more details).

3. Main results

In this section, we first show that every complex symmetric operator T ∈ L (H )
is biquasitriangular. An operator T in L (H ) is called quasitriangular if T can be
written as sum T = T0 + K, where T0 is a triangular operator (i.e., there exists an
orthonormal basis for H with respect to which the matrix for T0 has upper triangular
form) and K ∈ K (H ) . We say that T is biquasitriangular if both T and T ∗ are
quasitriangular (see [33] for more details). We denote the Calkin map by π : L (H )→
L (H )/K (H ) and put Δ∗ := {λ : λ ∈ Δ} for any set Δ in C .

THEOREM 3.1. Let T ∈L (H ) be complex symmetric. Then SP(T ∗) consists of
holes in σe(T )∗ and pseudoholes in σe(T )∗ \σle(T )∗ or σe(T )∗ \σre(T )∗ associated
with zero indices. Moreover, it is biquasitriangular.



960 S. JUNG, E. KO AND J. E. LEE

Proof. Since T is complex symmetric, σle(T )∗ = σle(T ∗) and σre(T )∗ = σre(T ∗)
by [24]. Furthermore, it follows from [24] that dimker(T −λ ) = dimker(T −λ )∗ and
that T − λ has closed range if and only if (T − λ )∗ does. Hence ind(T − λ ) = 0
for all λ 
∈ σle(T )∩σre(T ) , and so we get the first assertion. Since we know from
[23, Theorem 6.15] that an operator S ∈ L (H ) is biquasitriangular if and only if
ind(S−λ )= 0 for all λ 
∈σle(S)∩σre(S) , we conclude that T is biquasitriangular. �

Remark that if T ∈ L (H ) is an operator such that SP(T ) or SP(T∗) contains a
hole or pseudohole associated with a negative index, then T or T ∗ is not quasitriangular
from [10]. Hence T is not complex symmetric from Theorem 3.1.

COROLLARY 3.2. Let T ∈L (H ) be complex symmetric. If T is invertible, then
T−1 is biquasitriangular.

Proof. If T is complex symmetric with conjugation C , then we have CT−1C =
(CTC)−1 = T ∗−1, and so T−1 is complex symmetric with the same conjugation C .
Hence the proof follows from Theorem 3.1. �

The following corollary follows from [29].

COROLLARY 3.3. If T ∈ L (H ) is complex symmetric, then
(i) T ∈ {R ∈ L (H ) : σ(R) is totally disconnected}− and
(ii) T ∈ {R ∈ L (H ) : R is similar to S ∈ N (H )+K (H )}−

where N (H ) denotes the class of all normal operators in L (H ) and the closures
are uniform.

From Theorem 3.1, we observe that the class of complex symmetric operators is
contained in that of biquasitriangular operators. Normal operators, 2-normal operators,
algebraic operators of order 2, some Volterra integration operators, Hankel operators,
and some truncated Toeplitz operators are examples of complex symmetric operators
(see [15], [16], and [18]), and hence they are biquasitriangular. On the other hand, the
following example, used in the proof of [18, Theorem 2], indicates that there exists a
biquasitriangular operator which is not complex symmetric.

EXAMPLE 3.4. Let T =

⎛
⎝

0 a 0
0 0 b
0 0 0

⎞
⎠⊕D be with |a| 
= |b| where D is a diagonal

operator on C
n−3 with n � 3. Then T is an algebraic operator of order n and so it is

biquasitriangular from [33]. But T is not complex symmetric as stated in the proof of
[18, Theorem 2]. Hence the class of complex symmetric operators is properly contained
in the class of biquasitriangular operators.

Now we shall introduce some important T -invariant subspaces. For an operator
T ∈ L (H ) , the algebraic core Alg(T ) is defined as the greatest subspace M of H
for which TM = M . We note that x ∈ Alg(T ) if and only if there exists a sequence
{un} ⊂ H such that x = u0 and Tun+1 = un for every integer n � 0. The analytical
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core Anal(T ) of T is the set of all x ∈ H with the property that there is a sequence
{un} ⊂ H and a constant δ > 0 such that x = u0 , Tun+1 = un , and ‖un‖ � δ n‖x‖ for
every integer n � 0. In this sense, this subspace is regarded as the analytic counterpart
of the algebraic core Alg(T ) (see [1] for more details). An operator T ∈ L (H ) is
irreducible if it has no nontrivial reducing subspaces. For an operator T ∈ L (H ) ,
we say that a T -invariant subspace M is a spectral maximal subspace of T provided
that it contains any T -invariant subspace N with σ(T |N ) ⊂ σ(T |M ) . In the follow-
ing theorem, we show that if T is complex symmetric with conjugation C , then the
mapping C induces some one-to-one correspondences.

THEOREM 3.5. Let T ∈L (H ) be complex symmetric with conjugation C. Then
the following assertions hold.

(i) Alg(T ∗) = C(Alg(T )) and Anal(T ∗) =CAnal(T ).
(ii) M is a spectral maximal subspace of T if and only if CM is a spectral max-

imal subspace of T ∗ . Moreover, σ(T |M )∗ = σ(T ∗|CM ) for any T -invariant subspace
M of H .

(iii) M is a hyperinvariant subspace for T if and only if CM is a hyperinvariant
subspace for T ∗ .

(iv) T is irreducible if and only if T ∗ is irreducible.

Proof. (i) Since T (Alg(T )) = Alg(T ) , we have

T ∗C(Alg(T )) = CT (Alg(T )) = C(Alg(T )).

In addition, if M is a subspace of H such that T ∗M = M , then it holds that TCM =
CT ∗M = CM and so CM ⊂ Alg(T ) , i.e., M ⊂ C(Alg(T )) . Hence Alg(T ∗) =
C(Alg(T )) .

For the second identity, let x ∈ Anal(T ). Then there exists a sequence {un} ⊂ H
and a constant δ > 0 such that x = u0 , Tun+1 = un , and ‖un‖� δ n‖x‖ for every integer
n � 0. This implies that Cx = Cu0 , T ∗Cun+1 = CTun+1 = Cun , and ‖Cun‖ = ‖un‖ �
δ n‖x‖ = δ n‖Cx‖ for every integer n � 0. Thus Cx ∈ Anal(T ∗). Hence CAnal(T ) ⊂
Anal(T ∗). Since T ∗ is also complex symmetric, we obtain that CAnal(T ∗)⊂ Anal(T ).
Since C2 = I , we have Anal(T ∗) = CAnal(T ).

(ii) Let M be a T -invariant subspace and let λ ∈ ρ(T |M ) be arbitrary. We first
note that CM is a T ∗ -invariant subspace by [25]. If (T ∗|CM − λ )x = 0 for some
x ∈ CM , then 0 = C(T ∗ − λ )x = (T − λ )Cx and Cx ∈ M . Hence Cx = 0. Since
C2 = I , we have x = 0, and so T ∗|CM − λ is one-to-one. If y ∈ CM , then there is
x ∈ M such that (T −λ )x = Cy . This implies that y = C(T −λ )x = (T ∗ −λ)Cx and
Cx ∈ CM , which ensures that T ∗|CM − λ is onto. Thus λ ∈ ρ(T ∗|CM ) . Therefore
we get that σ(T |M )∗ ⊃ σ(T ∗|CM ) . The opposite inclusion holds similarly, and so
σ(T |M )∗ = σ(T ∗|CM ) .

We now suppose that M is a spectral maximal subspace of T . Then CM is a T ∗ -
invariant subspace. If N is any T ∗ -invariant subspace with σ(T ∗|N ) ⊂ σ(T ∗|CM ) ,
then we have

σ(T |CN ) = σ(T ∗|N )∗ ⊂ σ(T ∗|CM )∗ = σ(T |M ).
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Hence CN ⊂ M , which means that N ⊂ CM . Thus CM is a spectral maximal
subspace of T ∗ . The converse argument holds by a similar way.

(iii) It suffices to show one direction. Let M be a hyperinvariant subspace for
T , and let S ∈ {T ∗}′

. We first note that CM is a closed subspace of H by [25].
Moreover, since CSC ∈ {T}′ , we have S(CM ) = C(CSCM ) ⊂CM . Hence CM is
a hyperinvariant subspace for T ∗ .

(iv) If M is a reducing subspace for T , then M is an invariant subspace for T
and T ∗ . Thus CM is an invariant subspace for T ∗ and T by the proof of (iii) (or see
[25]). Since M is nontrivial if and only if CM is, we complete the proof. �

COROLLARY 3.6. Let T ∈ L (H ) be complex symmetric with conjugation C.
Then the following assertions hold.

(i) CAnal(T ∗) ⊂ Alg(T ) . In particular, if Alg(T ) is closed, then the identity
CAnal(T ∗) = Alg(T ) holds and M ⊂ CAnal(T ∗) for any subspace M of H with
TM = M .

(ii) Alg(T ) = T∞(H ) if and only if Alg(T ∗) = T ∗∞(H ) , where T∞(H ) =
∩∞

n=0T
nH .

(iii) If σ ⊂ σ(T ) is a spectral set (i.e., open and closed in σ(T )) and Pσ is the
spectral projection associated with σ , then CPσ (H ) is a spectral maximal subspace
of T ∗.

(iv) If T has the single-valued extension property and M is a spectral maximal
subspace of T , then σT ∗(x) = σT ∗|CM

(x) for every x ∈CM .
(v) If T has Dunford’s property (C) , then CHT (F) is a spectral maximal subspace

of T ∗ and σ(T ∗|CHT (F)) ⊂ F∗ ∩σ(T ∗) for any closed set F in C .

Proof. (i) Since Anal(T ) = CAnal(T ∗) by Theorem 3.5, the proof follows from
[1].

(ii) If Alg(T )= T ∞(H ) , then CAlg(T ∗)= T ∞(H ) by Theorem 3.5. This implies
that

Alg(T ∗) = CT ∞(H ) = ∩∞
n=0CTnH = ∩∞

n=0T
∗nCH = ∩∞

n=0T
∗nH = T ∗∞(H ).

The converse holds similarly.
(iii) Since Pσ (H ) is a spectral maximal subspace of T by [1], we complete the

proof from Theorem 3.5.
(iv) Since T ∗ has the single-valued extension property by [24] and CM is a spec-

tral maximal subspace of T ∗ by Theorem 3.5, the proof follows from [1] or [8].
(v) If T has Dunford’s property (C) , then HT (F) is a spectral maximal subspace

of T and σ(T |HT (F)) ⊂ F ∩σ(T ) for any closed set F in C (see [8] or [28]), and so
the proof follows from Theorem 3.5. �

For an operator T ∈ L (H ) , the quasinilpotent part of T is defined by

H0(T ) := {x ∈ H : lim
n→∞

‖Tnx‖ 1
n = 0}.
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Then H0(T ) is a linear (not necessarily closed) subspace of H . We remark from [2]
that if T has the single-valued extension property, then

H0(T −λ ) = {x ∈ H : lim
n→∞

‖(T −λ )nx‖ 1
n = 0} = HT ({λ})

for all λ ∈ C . It is well known from [1] and [2] that if H0(T −λ ) = {0} for all λ ∈ C ,
then T has the single-valued extension property. Next we give some applications of
H0(T ). We denote by H (σ(T )) the space of functions analytic in an open neighbor-
hood of σ(T ) .

THEOREM 3.7. Let T ∈ L (H ) be complex symmetric. If T has the property
(δ ) , then Weyl’s theorem holds for f (T ) and f (T )∗ , where f ∈ H (σ(T )). In partic-
ular, Weyl’s theorem holds for T and T ∗.

Proof. If T has the property (δ ) , then T is subscalar by [25]. Hence [1] implies
that for each λ ∈ C , there exists mλ ∈ N such that

H0(T −λ) = ker(T −λ )mλ . (1)

Let CTC = T ∗ for some conjugation C and set nλ = mλ for λ ∈ C . Since H0(T ∗ −
λ ) ⊃ ker(T ∗ −λ )nλ is trivial for any λ ∈ C , it suffices to show the reverse inclusion.
Let x ∈ H0(T ∗ −λ ) . Then we obtain that

‖(T −λ)nCx‖ 1
n = ‖C(T ∗ −λ )nx‖ 1

n = ‖(T ∗ −λ )nx‖ 1
n → 0 as n → ∞. (2)

Since Cx ∈ H0(T −λ ) = ker(T −λ )nλ , we have (T ∗ − λ )nλ x = C(T −λ )nλ Cx = 0,
and so H0(T ∗ −λ ) ⊂ ker(T ∗ −λ )nλ . Consequently, for each λ ∈ C

H0(T ∗ −λ ) = ker(T ∗ −λ )nλ . (3)

Hence, combining (1) and (3) with [1], we get that Weyl’s theorem holds for f (T ) and
f (T )∗ , where f ∈ H (σ(T )). �

COROLLARY 3.8. Let T ∈L (H ) be complex symmetric. Suppose that for each
λ ∈ C , there exists a positive integer mλ such that H0(T −λ) = ker(T −λ )mλ . If M
is any T ∗ -invariant subspace, then H0(T ∗|M −λ ) = ker(T ∗|M −λ )nλ for all λ ∈ C ,
where nλ = mλ . Furthermore, Weyl’s theorem holds for T ∗|M .

Proof. Suppose that T is complex symmetric and M is any T ∗ -invariant sub-
space. From the proof of Theorem 3.7, we have H0(T ∗ −λ) = ker(T ∗ −λ )nλ for all
λ ∈ C , where nλ = mλ . Hence we get that

H0(T ∗|M −λ )⊂ ker(T ∗ −λ )nλ ∩M = ker(T ∗|M −λ )nλ

for all λ ∈ C . Since the opposite inclusion holds obviously, it follows that

H0(T ∗|M −λ ) = ker(T ∗|M −λ )nλ

for all λ ∈C . Therefore, we conclude from [1] that Weyl’s theorem holds for T ∗|M . �
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COROLLARY 3.9. Let T ∈L (H ) be complex symmetric. If H0(T −λ ) is closed
for all λ ∈ C , then HT ∗({λ}) is closed for all λ ∈ C , T ∗ has the single-valued exten-
sion property, and Browder’s theorem holds for T ∗ .

Proof. Choose a conjugation C with CTC = T ∗ . Suppose that H0(T − λ ) is
closed for every λ ∈ C . Then T has the single-valued extension property from [1], and
so does T ∗ by [25]. Therefore, Browder’s theorem holds for T ∗ by [1] and HT ∗({λ})=
H0(T ∗ −λ) for all λ ∈ C by [2]. It follows from (2) that

HT ∗({λ}) = H0(T ∗ −λ ) = CH0(T −λ)

for all λ ∈ C . Since it is easy to see that C maps any closed subspace onto a closed
one, we obtain that HT∗({λ}) is closed for all λ ∈ C . �

Let {T}′ = {S ∈ L (H ) : ST = TS} denote the commutant of an operator T ∈
L (H ) . Recall that the local spectral subspace of T ∈ L (H ) is defined by HT (F) =
{x ∈ H : σT (x) ⊂ F} , where F is a subset of C . By [8] or [28], if T has Dunford’s
property (C) , then HT (F) is a spectral maximal subspace of T for any closed set F in
C . In the following theorem, we give some properties of local spectral subspaces for
complex symmetric operators.

THEOREM 3.10. Let Ω be any closed subset of C , and let T be complex sym-
metric with conjugation C. For any ε > 0 , put Ωε = {λ ∈ C : dist(λ ,Ω) < ε} .

If T has the property (β ) and S ∈ {T}′ , then the following relations hold.
(i) ran(CSC) ⊂ HT ∗(Ω) if and only if HT ∗(C\Ωε) ⊂ ker(CSC) for any ε > 0 .
(ii) ran(CSC) ⊂CHT (Ω∗) if and only if CHT (C\Ω∗

ε) ⊂ ker(CSC) for any ε > 0 .

Proof. (i) Assume that ran(CSC) ⊂ HT∗(Ω) and x ∈ HT ∗(C \Ωε) is arbitrary.
Since CSC commutes with T ∗ , it follows that σT ∗(CSCx) ⊂ σT ∗(x) ⊂ C\Ωε . Hence
σT ∗(CSCx) ⊂ Ω∩ (C\Ωε) = /0 and so CSCx ∈ HT∗( /0). Since T has the property (β )
and it is complex symmetric, T ∗ has the single-valued extension property from [24],
and thus CSCx = 0. Hence HT ∗(C\Ωε) ⊂ ker(CSC).

On the other hand, suppose that HT ∗(C\Ωε)⊂ ker(CSC) for any ε > 0. Let ε > 0
be given and choose δ with 0 < δ < ε . Since T has the property (β ), it follows from
[25] and [28] that T ∗ has both the single-valued extension property and the property
(δ ) . Since C = Ωε ∪ (C\Ωδ) , we get that

H = HT ∗(Ωε)+HT∗(C\Ωδ ) ⊂ HT ∗(Ωε)+ker(CSC).

For any x ∈ H , set x = u+ v where u ∈ HT ∗(Ωε ) and v ∈ ker(CSC) . Then it holds
that

CSCx = CSCu ∈ HT ∗(Ωε).

Since ε is an arbitrary positive number and Ω is closed, CSCx ∈ HT ∗(Ω) . Therefore
ran(CSC)⊂HT ∗(Ω) . Since T has Dunford’s property (C) , so does T ∗ by [24], and so
we conclude that ran(CSC) ⊂ HT∗(Ω).

(ii) Since we obtain from [24] that HT ∗(F) = CHT (F∗) for any set F in C , the
proof follows from (i). �
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COROLLARY 3.11. Assume that T ∈ L (H ) is complex symmetric with conju-
gation C and has the property (β ). If there exists an operator S ∈ {T}′ such that
ran(CSC) ⊂ HT ∗(Ω) and σp(T )∗ \ Ωε 
= /0 for some closed set Ω in C and some
ε > 0 , where Ωε denotes the open ε -neighborhood of Ω , then ker(CSC) 
= {0} and
so σp(CSC) 
= /0 .

Proof. Since ran(CSC) ⊂ HT ∗(Ω) , Theorem 3.10 implies that

HT ∗(C\Ωε) ⊂ ker(CSC).

Thus it is enough to show that HT ∗(C\Ωε) 
= {0} . Suppose that HT ∗(C\Ωε) = {0} .
Choose any point λ0 ∈ σp(T )∗ \Ωε . Since T is complex symmetric, λ0 ∈ σp(T ∗)
from [24] and then there exists a nonzero vector x ∈ ker(T ∗ −λ0) . By [28], we get
that x ∈ HT ∗({λ0}) . Since λ0 
∈ Ωε , we have x ∈ HT ∗(C \Ωε) = {0} , which is a
contradiction. So we obtain that HT ∗(C\Ωε) 
= {0}. �

We say that an operator T ∈ L (H ) has the property (E) (respectively, (Es)) if
there exist sequences {Bn}⊂ {T}′

and {Kn}⊂K (H ) (respectively, {En}⊂L (H ))
such that ‖Bn−T‖→ 0, KnBn = BnKn (respectively, EnBn = BnEn ) for each n∈N and
{Kn} is a nontrivial sequence of compact operators (respectively, {En} is a sequence
of finite-rank projections weakly convergent to the identity operator I on H ). An
operator T in L (H ) will be said to have the property (PS) if there exist sequences
{Sn} ⊂ {T}′

and {Kn} ⊂ K (H ) such that ‖Sn−Kn‖ → 0 and {Kn} is a nontrivial
sequence of compact operators. An operator T ∈ L (H ) is said to have the property
(A) provided that for every (not necessarily strict) contraction S , every operator X with
dense range such that TX = XS , and every vector x ∈ H , there exists a nonzero poly-
nomial p(z) such that p(T )x belongs to ran(X) (see [5] for more details). An operator
T ∈L (H ) is said to have the property (K ) if for every λ ∈ σ(T ) and for every ε > 0,

there exists a unit vector xλ ,ε in H such that limsupn→∞ ‖(T −λ )nxλ ,ε‖ 1
n < ε . An op-

erator T ∈ L (H ) is called power regular if limn→∞ ‖Tnx‖ 1
n exists for every x ∈ H .

Preserver problems concern characterizations of maps on matrices, operators, or other
algebraic objects with special properties. In the following proposition, we show that a
complex symmetric operator and its adjoint preserve some properties each other.

PROPOSITION 3.12. Let T ∈ L (H ) be complex symmetric. Then the following
relations hold.

(i) T has the property P if and only if T ∗ does, where P is (E) , (PS) , (A) or
(K) .

(ii) T is power regular if and only if T ∗ is.

Proof. Assume that T is complex symmetric with conjugation C .
(i) If T has the property (E) , then there exist sequences {Bn}⊂ {T}′ and {Kn} ⊂

K (H ) such that ‖Bn−T‖→ 0, KnBn = BnKn for each n∈N , and {Kn} is a nontriv-
ial sequence of compact operators. It is obvious that {CBnC} ⊂ {T ∗}′ , (CKnC)(CBnC)
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= (CBnC)(CKnC) for each n ∈ N , and {CKnC} is a nontrivial sequence of compact
operators. Furthermore, we have

‖CBnC−T ∗‖ = ‖C(Bn−T )C‖ = ‖Bn−T‖→ 0.

Hence T ∗ has the property (E) . The converse holds similarly.
If T has the property (PS) , we can choose sequences {Sn} ⊂ {T}′

and {Kn} ⊂
K (H ) such that ‖Sn −Kn‖ → 0 and {Kn} is a nontrivial sequence of compact op-
erators. Clearly, {CSnC} ⊂ {T ∗}′

and {CKnC} is a nontrivial sequence of compact
operators. Since ‖CSnC−CKnC‖ = ‖C(Sn−Kn)C‖ = ‖Sn−Kn‖→ 0, we get that T ∗
has the property (PS) . The converse statement holds similarly.

We suppose that T has the property (A) . Let S be a contraction, X be an operator
with dense range such that T ∗X = XS , and let x ∈ H . It is trivial that T (CXC) =
(CXC)(CSC) and ‖CSC‖= ‖S‖� 1. Moreover, there is a sequence {xn} with ‖Xxn−
Cx‖→ 0 as n → ∞ , which implies that

‖(CXC)(Cxn)− x‖ = ‖C(Xxn−Cx)‖ = ‖Xxn−Cx‖→ 0 as n → ∞.

Hence CXC has dense range. Since T has the property (A) , it follows that there
exists a nonzero polynomial p(z) = ∑m

j=0 a jz j , with a j ∈ C and m ∈ N , such that

p(T )Cx = CXCy for some y ∈ H . Setting the nonzero polynomial q(z) = p(z) , we
get that

q(T ∗)x =
m

∑
j=0

a jT
∗ jx = C

( m

∑
j=0

a jT
jCx

)
= Cp(T )Cx = XCy ∈ ran(X).

Thus T ∗ has the property (A) . By replacing T with T ∗ , the converse statement also
holds.

Suppose that T has the property (K) . Then for every λ ∈ σ(T ) and every ε > 0,

there exists a unit vector xλ ,ε in H such that limsupn→∞ ‖(T −λ )nxλ ,ε‖ 1
n < ε . Let

μ ∈ σ(T ∗) and ε > 0 be given. Since σ(T ∗) = σ(T )∗ by [24], we have μ ∈ σ(T ) and
so

‖(T ∗ − μ)nCxμ,ε‖ = ‖(T − μ)nxμ,ε‖.
Moreover, Cxμ,ε is a unit vector. Hence T ∗ has the property (K) . The converse state-
ment holds similarly.

(ii) Suppose that T is power regular. Since

‖T ∗nx‖ = ‖CTnCx‖ = ‖TnCx‖ (4)

for all n and T is power regular, limn→∞ ‖T ∗nx‖ 1
n exists for every x ∈ H , i.e., T ∗ is

power regular. The converse statement holds in a similar way. �

EXAMPLE 3.13. If T 2 = T , then T is quasidiagonal from [11], and hence T has
the property (Es) by [26]. Therefore, T has the property (E) . Since T is complex
symmetric from [18], Proposition 3.12 implies that T ∗ also has the property (E) .
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COROLLARY 3.14. Let T ∈ L (H ) be a complex symmetric operator that is not
a scalar multiple of the identity operator on H . Then the following assertions hold:

(i) If T has the property (A) , then for every contraction S and every operator X
with dense range such that T ∗X = XS, there exists a nonzero polynomial p(z) and an
operator Z such that p(T ∗) = XZ . In addition, if X is one-to-one, then p(S) = ZX .

(ii) If T has the property (β ), then T and T ∗ are power regular.

Proof. (i) If T has the property (A) , then so does T ∗ by Proposition 3.12, and
hence the proof follows from [5].

(ii) It is known that every operator with the property (β ) is power regular. Hence
T is power regular, and so is T ∗ by Proposition 3.12. �

For an operator T ∈ L (H ) , a vector x ∈H is said to be cyclic if the linear span
of the orbit O(x,T ) = {Tnx : n = 0,1,2, · · ·} is norm dense in H , i.e.,

∨
O(x,T ) = H .

If there is a cyclic vector x for T , then we say that T is a cyclic operator. If O(x,T )
is norm dense in H for some x ∈ H , then T is called hypercyclic. An operator
T ∈ L (H ) having a vector x ∈ H whose orbit is weakly dense in H is said to be
weakly hypercyclic. A net in H is a pair

(
(J,�),x

)
where x is a function from J to

H and (J,�) is a directed set, i.e., a partially ordered set such that if i1, i2 ∈ J , then
there is i3 ∈ J such that i3 � i1 and i3 � i2 . Usually, we will write xi instead of x(i) ,
and {xi} will be called a net in H . We say that a net {xi} in H converges (weakly)
to x0 if for every (weakly) open subset U of H with x0 ∈ U , there is i0 = i0(U )
such that xi ∈ U for all i � i0 . It is well known that a net {xi} converges weakly to x0

if and only if 〈xi,y〉 → 〈x0,y〉 for any y ∈ H . In the following theorem, we consider a
complex symmetric operator which is weakly hypercyclic.

THEOREM 3.15. Let T ∈ L (H ) be complex symmetric. If T is weakly hyper-
cyclic, then both T and T ∗ have the single-valued extension property.

Proof. Suppose that T is a complex symmetric operator that is weakly hyper-
cyclic. We will first show that T ∗ is also weakly hypercyclic. Since

CO(x,T ) = {CTnx : n = 0,1,2, · · ·}
= {T ∗nCx : n = 0,1,2, · · ·} = O(Cx,T ∗)

for any x ∈ H , it suffices to prove the following claim.
Claim. If M is a weakly dense set in H , then so is CM .
Let M be a weakly dense set in H and let x0 ∈H be given. Since Cx0 belongs

to the weak closure of M , there exists a net {xi} in M converging weakly to Cx0 .
Then we get that

〈x0 −Cxi,y〉 = 〈Cy,Cx0 − xi〉 → 0

for all y ∈ H . That is, {Cxi} is a net in CM which converges weakly to x0 , and so
CM is weakly dense in H .
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From the claim above, T ∗ is weakly hypercyclic. Hence σp(T ) = σp(T ∗) = /0
from [32], and these identities imply that T and T ∗ have the single-valued extension
property by [28]. �

COROLLARY 3.16. If a complex symmetric operator T is weakly hypercyclic,
then the following statements hold.

(i) σ(T ) = σa(T ) = σsu(T ) = ∪{σT (x) : x ∈ H } .
(ii) HT ({λ}) = H0(T −λ ) and HT ∗({λ}) = H0(T ∗ −λ ) for all λ ∈ C .

Proof. Since both T and T ∗ have the single-valued extension property by Theo-
rem 3.15, the proof follows from [8] or [28]. �

For an operator T ∈ L (H ) and a vector x ∈ H , we define the local spectral

radius of T at x by rT (x) = limsupn→∞ ‖Tnx‖ 1
n .

PROPOSITION 3.17. If T ∈ L (H ) is complex symmetric with conjugation C,
then the following statements hold.

(i) σT (x) = σ(T ) for every cyclic vector x ∈ H of T if and only if σT ∗(y) =
σ(T ∗) for every cyclic vector y ∈ H of T ∗ .

(ii) The equality rT (x) = rT ∗(Cx) holds for every x∈H . Moreover, rT (x) = r(T )
for every cyclic vector x ∈ H of T if and only if rT ∗(y) = r(T ) for every cyclic vector
y ∈ H of T ∗ .

Proof. (i) It suffices to show one direction. Suppose that σT (x) = σ(T ) for every
cyclic vector x ∈ H of T . If y ∈ H is a cyclic vector for T ∗ , then

H = CH =
∞∨

n=0

{CT ∗ny} =
∞∨

n=0

{TnCy}.

This means that Cy is cyclic for T , and so σT (Cy) = σ(T ) . Hence, we obtain from
[24] that

σT ∗(y) = σT (Cy)∗ = σ(T )∗ = σ(T ∗).

(ii) Note that rT (x) = rT ∗(Cx) holds for every x ∈ H from the equalities (4).
Assume that rT (x) = r(T ) for every cyclic vector x ∈ H of T and y ∈ H is a cyclic
vector for T ∗ . Since Cy is cyclic for T as in (i), we get that r(T ) = rT (Cy) = rT ∗(y) .
The converse statement is true by a similar method. �

COROLLARY 3.18. If T ∈L (H ) is complex symmetric, then the following prop-
erties hold.

(i) If T has Bishop’s property (β ) , then σT ∗(x) = σ(T ∗) and rT ∗(x) = r(T ) for

any cyclic vector x in H of T ∗ . Moreover, rT ∗(x) = limn→∞ ‖T ∗nx‖ 1
n for all x ∈ H .

(ii) For all x ∈ H , limn→∞ ‖Tnx‖ = 0 if and only if limn→∞ ‖T ∗nx‖ = 0 .
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Proof. Suppose that T is complex symmetric with conjugation C .
(i) If T has Bishop’s property (β ) , then σT (x) = σ(T ) and rT (x) = r(T ) for

every cyclic vector x ∈ H of T by [28]. Therefore the first statement follows from
Proposition 3.17. In addition, rT (x) = limn→∞ ‖Tnx‖ 1

n for any x ∈ H by [28]. Hence
we obtain from Proposition 3.17 that

rT ∗(x) = rT (Cx) = lim
n→∞

‖TnCx‖ 1
n = lim

n→∞
‖T ∗nx‖ 1

n

for any x ∈ H .
(ii) If limn→∞ ‖Tnx‖ = 0 for all x ∈ H , then from equalities (4) we get

limn→∞ ‖T ∗nx‖ = limn→∞ ‖TnCx‖ = 0 for all x ∈ H . The converse implication holds
in a similar way. �

4. Weyl type Theorem

In this section, we deal with Weyl type theorems for complex symmetric operators.
We recall the definitions of some spectra;

σea(T ) := ∩{σa(T +K) : K ∈ K (H )}
is the essential approximate point spectrum, and

σab(T ) := ∩{σa(T +K) : TK = KT and K ∈ K (H )}
is the Browder essential approximate point spectrum. We put

π00(T ) := {λ ∈ iso σ(T ) : 0 < dimker(T −λ ) < ∞}
and

πa
00(T ) := {λ ∈ iso σa(T ) : 0 < dimker(T −λ ) < ∞}.

Let T ∈ L (H ) . We say that
(i) a-Browder’s theorem holds for T if σea(T ) = σab(T );
(ii) a-Weyl’s theorem holds for T if σa(T )\σea(T ) = πa

00(T );
(iii) T has the property (w) if σa(T )\σea(T ) = π00(T ).
It is known that

Property (w) =⇒ a -Browder’s theorem

⇓ ⇑
Weyl’s theorem ⇐= a -Weyl’s theorem.

We refer the reader to [1], [20], [21] for more details.
Let Tn = T |ran(Tn) for each nonnegative integer n ; in particular, T0 = T . If Tn is

upper semi-Fredholm for some nonnegative integer n , then T is called a upper semi-
B-Fredholm operator. In this case, by [6], Tm is a upper semi-Fredholm operator and
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ind(Tm) = ind(Tn) for each m � n . Thus, one can consider the index of T , denoted
by indB(T ) , as the index of the semi-Fredholm operator Tn. Similarly, we define lower
semi-B-Fredholm operators. We say that T ∈ L (H ) is B-Fredholm if it is both upper
and lower semi-B-Fredholm. In [6], Berkani proved that T ∈ L (H ) is B-Fredholm if
and only if T = T1 ⊕T2 where T1 is Fredholm and T2 is nilpotent. Let SBF−

+ (H ) be
the class of all upper semi-B-Fredholm operators such that indB(T ) � 0, and let

σSBF−
+

(T ) := {λ ∈ C : T −λ 
∈ SBF−
+ (H )}.

An operator T ∈L (H ) is called B-Weyl if it is B-Fredholm of index zero. The B-Weyl
spectrum σBW (T ) of T is defined by

σBW (T ) := {λ ∈ C : T −λ is not a B-Weyl operator }.

We say that λ ∈ σa(T ) is a left pole of T if it has finite ascent, i.e., a(T ) < ∞ and
ran(Ta(T)+1) is closed where a(T ) = dimker(T ) . The notation p0(T ) (respectively,
pa

0(T )) denotes the set of all poles (respectively, left poles) of T , while π0(T ) (respec-
tively, πa

0 (T )) is the set of all eigenvalues of T which is an isolated point in σ(T )
(respectively, σa(T )).

Let T ∈ L (H ) . We say that
(i) T satisfies generalized Browder’s theorem if σBW (T ) = σ(T )\ p0(T );
(ii) T satisfies generalized a-Browder’s theorem if σSBF−

+
(T ) = σa(T )\ pa

0(T ) ;
(iii) T satisfies generalized Weyl’s theorem if σBW (T ) = σ(T )\π0(T );
(iv) T satisfies generalized a-Weyl’s theorem if σSBF−

+
(T ) = σa(T )\πa

0(T ) .
It is known that

generalized a -Weyl’s theorem =⇒ generalized Weyl’s theorem

⇓ ⇓
generalized a -Browder’s theorem =⇒ generalized Browder’s theorem.

We now establish equivalence relations among Weyl type theorems for complex
symmetric operators. We begin with the following lemma.

LEMMA 4.1. If T ∈L (H ) is complex symmetric, the following statements hold:
(i) σ(T ) = σa(T ) .
(ii) σle(T ) = σre(T ) = σe(T ) = σea(T ) = σw(T ).
(iii) If σp(T ) = /0, then

σ(T ) = σa(T ) = σe(T ) = σle(T ) = σre(T ) = σea(T ) = σw(T ).

Proof. (i) Since T is a complex symmetric operator, it follows from [24] that
σa(T )∗ = σa(T ∗) . Hence we have σ(T ) = σa(T )∪σa(T ∗)∗ = σa(T ) by [19].

(ii) Note that σre(S)∗ = σle(S∗) and σe(S) = σle(S)∪σre(S) for any S ∈ L (H ) .
Since T is complex symmetric, it follows from [24] that σle(T )∗ = σle(T ∗) . Thus we
get that σle(T ) = σre(T ) and so σle(T ) = σre(T ) = σe(T ). In addition, we note that
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T − λ is Weyl for any λ 
∈ σle(T )∩σre(T ) as in the proof of Theorem 3.1 and it is
known that λ 
∈ σea(T ) if and only if T − λ is semi-Fredholm with ind(T − λ ) � 0
(see [1]). Thus we obtain that σe(T ) = σw(T ) = σea(T ) .

(iii) Assume that T is a complex symmetric operator with σp(T ) = /0 . For all S ∈
L (H ) , σ(S) = σe(S)∪σp(S)∪σp(S∗)∗ . Since T is complex symmetric, σp(T ∗)∗ =
σp(T ) = /0 by [25] and thus σ(T ) = σe(T ) . Therefore we complete the proof from (i)
and (ii). �

THEOREM 4.2. If T ∈ L (H ) is complex symmetric, then the following state-
ments are equivalent:

(i) a-Weyl’s theorem holds for T .
(ii) Weyl’s theorem holds for T .
(iii) T has the property (w) .

Proof. It is obvious that (i) ⇒ (ii). Assume that T satisfies Weyl’s theorem.
Since T is complex symmetric, it follows from Lemma 4.1 that σa(T ) = σ(T ) and
σw(T ) = σea(T ) , which yields that

πa
00(T ) = π00(T ) = σ(T )\σw(T ) = σa(T )\σea(T ).

Hence a -Weyl’s theorem holds for T , and so we have (ii) ⇒ (i). Similarly, since
πa

00(T ) = π00(T ) , we can show that (i) ⇔ (iii). So we complete the proof. �

COROLLARY 4.3. Let T ∈ L (H ) be a complex symmetric operator. Then the
following statements holds.

(i) T satisfies a-Weyl’s theorem if and only if T ∗ does.
(ii) T has the property (w) if and only if T ∗ does.

Proof. (i) If T satisfies a -Weyl’s theorem, then Weyl’s theorem holds for T , and
so Weyl’s theorem holds for T ∗ by [24]. Since T ∗ is also complex symmetric, it
satisfies a -Weyl’s theorem by Theorem 4.2. The converse statement holds by replacing
T with T ∗ .

(ii) Since Theorem 4.2 gives the equivalent relation that a -Weyl’s theorem holds
for T (respectively, T ∗ ) if and only if T (respectively, T ∗ ) has the property (w) , the
proof follows from (i). �

THEOREM 4.4. If T ∈ L (H ) is a complex symmetric operator with the single-
valued extension property, then the following statements are equivalent.

(i) T satisfies generalized a-Weyl’s theorem.
(ii) T satisfies generalized Weyl’s theorem.

Proof. Since (i) ⇒ (ii) follows from [7, Theorem 3.7], it suffices to show that (ii)
⇒ (i). Suppose that T satisfies generalized Weyl’s theorem. Then we have σBW (T ) =
σ(T )\π0(T ) . Since T is complex symmetric, it follows from Lemma 4.1 that σa(T ) =
σ(T ) and so

σBW (T ) = σ(T )\π0(T ) = σa(T )\πa
0(T ).
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Hence it suffices to show that σSBF−
+

(T ) = σBW (T ) . If λ 
∈ σSBF−
+

(T ), then T − λ
is semi-B-Fredholm and indB(T −λ ) � 0. Since T is a complex symmetric operator
with the single-valued extension property, it follows from [25] that T ∗ has the single-
valued extension property. Therefore, we obtain from [1] that indB(T − λ ) � 0 for
every λ 
∈ σSBF−

+
(T ). Thus we have indB(T −λ ) = 0 for every λ 
∈ σSBF−

+
(T ). This

means that σSBF−
+

(T ) ⊃ σBW (T ) . Since σSBF−
+

(T ) ⊂ σBW (T ) is clear, we obtain that

σSBF−
+

(T ) = σBW (T ) = σa(T )\πa
00(T ),

that is, generalized a -Weyl’s theorem holds for T . �

COROLLARY 4.5. If T ∈ L (H ) is a complex symmetric operator which sat-
isfies that for every λ ∈ C , there is a positive integer mλ such that H0(T −λ) =
ker(T − λ )mλ , then f (T ) and f (T )∗ obey generalized a-Weyl’s theorem where f is
any analytic function in a neighborhood of σ(T ) .

Proof. As the proof of Theorem 3.7, it holds for all λ ∈ C that H0(T ∗ −λ) =
ker(T ∗−λ )nλ where nλ = mλ . Since σ(T ) = σa(T ) and σ(T ∗) = σa(T ∗) by Lemma
4.1, we complete the proof from [30, Proposition 1.9]. �

In the following theorem, we consider Browder type theorems for complex sym-
metric operators.

THEOREM 4.6. Let T ∈ L (H ) be a complex symmetric operator. Then the fol-
lowing arguments are equivalent.

(i) T satisfies Browder’s theorem.
(ii) T satisfies a-Browder’s theorem.
(iii) T satisfies the generalized Browder’s theorem.
(iv) T satisfies the generalized a-Browder’s theorem.

Proof. Since σ(T ) = σa(T ) from Lemma 4.1, we have p0(T ) = pa
0(T ) . More-

over, σSBF−
+

(T ) = σBW (T ) as in the proof of Theorem 4.4. Using these results, we
get that (iii) ⇔ (iv). Since it is well known that (i) ⇔ (iii) and (ii) ⇔ (iv) from [3,
Theorem 2.1 and Theorem 2.2], we complete the proof. �

REMARK. A similar equivalent statement to Corollary 4.3 is satisfied for a -Brow-
der’s theorem of complex symmetric operators. Let T ∈ L (H ) be a complex sym-
metric operator. We obtain from Lemma 4.1 that

σea(T )∗ = σe(T )∗ = σe(T ∗) = σea(T ∗).

In addition, since we know from [1, Corollary 3.45 and Theorem 3.65] that

σab(S) = σea(S)∪acc(σa(S))
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for any operator S ∈ L (H ) , where acc(σ(S)) denotes the set of all accumulation
points of σ(S) , it follows that

σab(T ∗) = σea(T ∗)∪acc(σa(T ∗)) = σea(T ∗)∪acc(σa(T )∗)
= [σea(T )∪acc(σa(T ))]∗ = σab(T )∗.

Hence we conclude that T satisfies a -Browder’s theorem if and only if T ∗ does.
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