THE BEHAVIOR OF THE ORBITS OF POWER BOUNDED OPERATORS

H. S. Mustafayev

(Communicated by D. R. Larson)

Abstract

Let T be a power bounded operator on a Banach space X and let $\sigma_{T}(x)$ be the local spectrum of T at $x \in X$. In this paper, we study the asymptotic behavior of the orbits $\left\{T^{n} x: n \geqslant 0\right\}$ in terms of the local spectrum of T at x.

1. Introduction

Let X be a complex Banach space and let $B(X)$ be the algebra of all bounded, linear operators on X. For $T \in B(X)$, we denote by $\sigma(T)$, the spectrum of T and by $R_{z}(T):=(z I-T)^{-1} \quad(z \notin \sigma(T))$ the resolvent of T. The unit circle in the complex plane will be denoted by Γ, whereas D indicates the open unit disc. The set $\sigma(T) \cap \Gamma$ will be called the unitary spectrum of T.

Recall that $T \in B(X)$ is called stable if $\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|=0$ for all $x \in X$. Generally speaking, the asymptotic behavior of the orbits $\left\{T^{n} x: n \geqslant 0\right\}$ is frequently related to unitary spectrum of underlying operator. This is well illustrated by the following classical result of Nagy-Foias [16, Proposition II. 6.7]. If T is a completely non-unitary contraction on a Hilbert space and if the unitary spectrum of T is of Lebesgue measure zero, then T is stable.

For arbitrary $T \in B(X)$ and $x \in X$, we define $\rho_{T}(x)$ to be the set of all $\lambda \in \mathbb{C}$ for which there exists a neighborhood O_{λ} of λ with $u(z)$ analytic on O_{λ} having values in X such that $(z I-T) u(z)=x, \forall z \in O_{\lambda}$. This set is open and contains the resolvent set $\rho(T)$ of T. By definition, the local spectrum of T at x, denoted by $\sigma_{T}(x)$ is the complement of $\rho_{T}(x)$, so it is a closed subset of $\sigma(T)$. This object is most tractable if the operator T has the single-valued extension property (SVEP) i.e. for every open set U in \mathbb{C}, the only analytic function $f: U \rightarrow X$ for which the equation $(z I-T) f(z)=0$ holds, is the constant function $f \equiv 0$. In that case, for every $x \in X$ there exists a maximal analytic extension of $R_{z}(T) x$ to $\rho_{T}(x)$. It follows that if T has the SVEP, then $\sigma_{T}(x) \neq \emptyset$, whenever $x \neq 0$. It is easy to see that an operator $T \in B(X)$ having spectrum without interior points has the SVEP.

Note that the local spectrum of T may be "very small" with respect to its usual spectrum. To see this, let σ be a "small" part of $\sigma(T)$ such that both σ and $\sigma(T) \backslash \sigma$ are closed sets. Let P_{σ} be the spectral projection associated with σ and let $X_{\sigma}:=P_{\sigma} X$.

[^0]Then, X_{σ} is a closed T-invariant subspace of X and $\sigma\left(\left.T\right|_{X_{\sigma}}\right)=\sigma$. It is easy to check that $\sigma_{T}(x) \subset \sigma$, for every $x \in X_{\sigma}$.

An operator T acting on a Banach space is called power bounded if

$$
\sup _{n \geqslant 0}\left\|T^{n}\right\|<\infty
$$

(by changing to an equivalent norm it can be made contractive). If T is power bounded, then $\sigma(T) \subset \bar{D}$ and $\sigma_{T}(x) \cap \Gamma$, the local unitary spectrum of $x \in X$ consists of all $\xi \in$ Γ such that the function $R_{z}(T) x(|z|>1)$ has no analytic extension to a neighborhood of ξ. Clearly,

$$
\sigma(T) \cap \Gamma=\bigcup_{x \in X}\left(\sigma_{T}(x) \cap \Gamma\right)
$$

An operator $T \in B(X)$ is called stable at $x \in X$ if $\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|=0$. Local version of the Nagy-Foias Theorem was proved in [9]: If T is a completely non-unitary contraction on a Hilbert space and if $\sigma_{T}(x) \cap \Gamma$ is of Lebesgue measure zero, then T is stable at $x \in X$.

Let T be a power bounded operator on a Banach space. Assume that the unitary spectrum of T is countable. Discrete version of Arendt-Batty-Lyubich-Phong (ABLP) theorem asserts that if T^{*} has no unitary eigenvalues, then T is stable (see, [2] and [17, Chapter 5]).

In this paper, for the stability of T at $x \in X$, some spectral conditions are found on T and on x.

2. Preliminaries

This section deals with some preliminaries that will be used later.
If E is an invariant subspace of $T \in B(X)$, we denote by T_{E} or by $\left.T\right|_{E}$ the restriction of T to E. We will need the following.

Lemma 2.1. Let T be a power bounded operator on a Banach space X and let E be a (closed) T-invariant subspace of X. Then, for every $x \in E$, we have

$$
\sigma_{T_{E}}(x) \cap \Gamma=\sigma_{T}(x) \cap \Gamma .
$$

Proof. Let $x \in E$. Clearly, $\rho_{T_{E}}(x) \subset \rho_{T}(x)$ and so

$$
\sigma_{T}(x) \cap \Gamma \subset \sigma_{T_{E}}(x) \cap \Gamma
$$

For the reverse inclusion, let $\xi \in \rho_{T}(x) \cap \Gamma$ and let $\pi: X \rightarrow X / E$ be the canonical mapping. Then, there exists a neighborhood O_{ξ} of ξ with $u(z)$ analytic on O_{ξ} having values in X such that $(z I-T) u(z)=x$ on O_{ξ}. Notice that

$$
u(z)=R_{z}(T) x=\sum_{n=0}^{\infty} z^{-n-1} T^{n} x \in E
$$

for all $z \in O_{\xi}$ with $|z|>1$. Therefore, we have $\pi u(z)=0$, for all $z \in O_{\xi}$ with $|z|>1$. By uniqueness theorem, $\pi u(z)=0$, for all $z \in O_{\xi}$. Hence, we obtain that $u(z) \in E$, for all $z \in O_{\xi}$. Consequently, we can write

$$
\left(z I-T_{E}\right) u(z)=x, \forall z \in O_{\xi} .
$$

This shows that $\xi \in \rho_{T_{E}}(x) \cap \Gamma$.
As an illustration of Lemma 2.1, consider the following example. Let K be a Hilbert space and let $H^{2}(K)$ be the Hardy space of K-valued analytic functions on D. By S_{K}, we denote the forward shift operator on $H^{2}(K)$;

$$
\left(S_{K} f\right)(z)=z f(z)
$$

Its adjoint, the backward shift, is given by

$$
\left(S_{K}^{*} f\right)(z)=\frac{f(z)-f(0)}{z}, f \in H^{2}(K)
$$

It is easy to verify that for every $f \in H^{2}(K)$ and $\lambda \in \mathbb{C}$ with $|\lambda|>1$,

$$
\left(\lambda I-S_{K}^{*}\right)^{-1} f(z)=\frac{\lambda^{-1} f\left(\lambda^{-1}\right)-z f(z)}{1-\lambda z}
$$

Hence, $\sigma_{S_{K}^{*}}(f) \cap \Gamma$ consists of all $\xi \in \Gamma$ for which the function f has no analytic extension to a neighborhood of ξ. Now, let T be a stable contraction on a Hilbert space H i.e.

$$
\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|=0, \forall x \in H
$$

Let $\mathscr{D}:=\left(I-T^{*} T\right)^{\frac{1}{2}}$ and $K:=\overline{\mathscr{D} H}$. By well-known Model Theorem of Nagy-Foias [16, Chapter VI], there exists S_{K}^{*}-invariant subspace E of $H^{2}(K)$ and a unitary operator $U: H \rightarrow E$ such that

$$
T=U^{-1}\left(\left.S_{K}^{*}\right|_{E}\right) U
$$

where

$$
(U x)(z)=\sum_{n=0}^{\infty} z^{n} \mathscr{D} T^{n} x(x \in H)
$$

It follows from Lemma 2.1 that if $x \in H$, then

$$
\sigma_{T}(x) \cap \Gamma=\sigma_{S_{K}^{*} \mid E}(U x) \cap \Gamma=\sigma_{S_{K}^{*}}(U x) \cap \Gamma
$$

Hence, $\sigma_{T}(x) \cap \Gamma$ consists of all $\xi \in \Gamma$ such that the function $z \mapsto(U x)(z)$ has no analytic extension to a neighborhood of ξ.

Let V be an isometry on a Banach space. It is well known that if $\sigma(V) \neq \bar{D}$, then V is invertible. Recall also that $x \in X$ is a cyclic vector of $T \in B(X)$ if

$$
\overline{\operatorname{span}}\left\{T^{n} x: n \geqslant 0\right\}=X
$$

The following result was proved in [9, Lemma 1.3].

Lemma 2.2. Let V be an isometry on a Banach space X. If $x \in X$ is a cyclic vector of V, then

$$
\sigma(V) \cap \Gamma=\sigma_{V}(x) \cap \Gamma
$$

By l.i.m. ${ }_{n} a_{n}$ we will denote Banach limit of the bounded sequence $\left\{a_{n}\right\}$.
The following result is well known (see for instance, [9, 11] and [17, Chapter 5]).
LEMMA 2.3. If T is a power bounded operator on a Banach space X, then there exist a Banach space Y, a bounded linear operator $J: X \rightarrow Y$ with dense range, and an isometry V on Y with the following properties:
(a) $V J=J T$.
(b) $\|J x\|=$ l.i.m.n $\left\|T^{n} x\right\|, \quad \forall x \in X$.
(c) $\sigma(V) \subset \sigma(T)$.

If X is assumed to be a Hilbert space, then Y is a Hilbert space, also.
The triple (Y, J, V) will be called the limit isometry associated with T. Notice that $J x=0$ if and only if $\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|=0$. Notice also that if $x \in X$ is a cyclic vector of T, then $J x$ is a cyclic vector of V.

Lemma 2.4. Let T be a power bounded operator on a Banach space X and let (Y, J, V) be the limit isometry associated with T. Then we have

$$
\sigma_{V}(J x) \subset \sigma_{T}(x), \forall x \in X
$$

Proof. If $\lambda \in \rho_{T}(x)$, then there exists a neighborhood U_{λ} of λ with $u(z)$ analytic on U_{λ} having values in X such that $(z I-T) u(z)=x, \forall z \in U_{\lambda}$. It follows that $(z J-J T) u(z)=J x$. Since $J T=V J$, we have $(z I-V) J u(z)=J x, \forall z \in U_{\lambda}$. This shows that $\lambda \in \rho_{V}(J x)$.

The following lemma was proved in [14, Lemma 3].

Lemma 2.5. Let V be an invertible isometry on a Banach space X with countable spectrum. For arbitrary $\varphi \in X^{*}$, there exist a Hilbert space H_{φ}, a bounded linear operator $J_{\varphi}: X \rightarrow H_{\varphi}$ with dense range, and a unitary operator U_{φ} on H_{φ} with the following properties:
(a) $U_{\varphi} J_{\varphi}=J_{\varphi} V$.
(b) $\sigma\left(U_{\varphi}\right) \subset \sigma(V)$.
(c) $\bigcap_{\varphi \in X^{*}} \operatorname{ker} J_{\varphi}=\{0\}$.

The triple $\left(H_{\varphi}, J_{\varphi}, U_{\varphi}\right)$ will be called the unitary operator associated with the pair (V, φ). As in the proof of Lemma 2.4, we can see that for every $\varphi \in X^{*}$ and $x \in X$,

$$
\begin{equation*}
\sigma_{U_{\varphi}}\left(J_{\varphi} x\right) \subset \sigma_{V}(x) \tag{2.1}
\end{equation*}
$$

3. Hilbert space operators

In this section, we consider stability problem for operators on Hilbert space with "thin" spectra.

We denote by \mathscr{A} the set of all continuous functions on Γ having an absolutely convergent Fourier series. \mathscr{A} is a commutative Banach algebra under the norm

$$
\|f\|_{1}:=\sum_{n \in \mathbb{Z}}|\widehat{f}(n)|
$$

where $\widehat{f}(n)$ is the nth Fourier coefficient of $f \in \mathscr{A}$.
Recall [19, Chapter 5] that a closed set S in Γ is a Helson set if for every continuous function g on S there corresponds a function $f \in \mathscr{A}$ such that $f(s)=g(s)$, for all $s \in S$.

Let $M(\Gamma)$ be the space of regular complex Borel measures on Γ. The nth Fourier coefficient of $\mu \in M(\Gamma)$ is defined by

$$
\widehat{\mu}(n)=\int_{0}^{2 \pi} e^{-i n t} d \mu(t) \quad(n \in \mathbb{Z})
$$

It is well known that if $\widehat{\mu}(n)=0$ for all $n \in \mathbb{Z}$, then $\mu=0$.
The Helson Theorem [19, Theorem 5.6.10] asserts the following.

Theorem 3.1. Let $S \subset \Gamma$ be a Helson set and let $\mu \in M(\Gamma)$ be given such that suрр $\mu \subset S$. If $\lim _{|n| \rightarrow \infty}|\widehat{\mu}(n)|=0$, then $\mu=0$.

As an application, we have the following.
THEOREM 3.2. Let T be a power bounded operator on a Hilbert space H and let $x \in H$. Assume that
(i) $\sigma_{T}(x) \cap \Gamma$ is contained in a Helson set,
(ii) $T^{n} x \rightarrow 0$ weakly as $n \rightarrow \infty$.

Then,

$$
\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|=0
$$

Proof. Let L be the closed linear span of $\left\{T^{n} x: n \geqslant 0\right\}$. Then, L is a T-invariant subspace of H. Let (K, J, V) be the limit isometry associated with T_{L}. By Lemma 2.4, $\sigma_{V}(J x) \subset \sigma_{T_{L}}(x)$. Consequently, we have

$$
\sigma_{V}(J x) \cap \Gamma \subset \sigma_{T_{L}}(x) \cap \Gamma
$$

Taking into account Lemma 2.1, we can write

$$
\sigma_{V}(J x) \cap \Gamma \subset \sigma_{T}(x) \cap \Gamma
$$

Further, since $J x$ is a cyclic vector of V by Lemma 2.2, we obtain

$$
\sigma(V) \cap \Gamma=\sigma_{V}(J x) \cap \Gamma \subset \sigma_{T}(x) \cap \Gamma
$$

Consequently, V is a unitary operator and $\sigma(V)$ is contained in a Helson set.
Let $E(\cdot)$ be the spectral measure of V and let $\mu_{J x}$ be the scalar measure defined on the Borel subsets of Γ by

$$
\mu_{J x}(\Delta)=\langle E(\Delta) J x, J x\rangle=\|E(\Delta) J x\|^{2}
$$

From the spectral decomposition of V, we can write

$$
\begin{aligned}
\widehat{\mu_{J x}}(n) & =\int_{0}^{2 \pi} e^{-i n t} d \mu_{J x}(t) \\
& =\int_{0}^{2 \pi} e^{-i n t} d\left\langle E_{t} J x, J x\right\rangle=\left\langle V^{* n} J x, J x\right\rangle(n \in \mathbb{Z})
\end{aligned}
$$

On the other hand, from Lemma 2.3 (a), we have $J^{*} V^{* n}=T_{L}^{*} J^{*}(n \in \mathbb{N})$ which implies

$$
\begin{aligned}
\left\langle V^{* n} J x, J x\right\rangle & =\left\langle J^{*} V^{* n} J x, x\right\rangle \\
\left\langle J^{*} J x, T^{n} x\right\rangle & =\left\langle T_{L}^{* n} J^{*} J x, x\right\rangle \\
\left\langle T^{n} x, J^{*} J x\right\rangle & 0(n \rightarrow \infty)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\widehat{\mu_{J x}}(-n) & =\left\langle V^{n} J x, J x\right\rangle \\
& =\left\langle J T^{n} x, J x\right\rangle=\left\langle T^{n} x, J^{*} J x\right\rangle \rightarrow 0(n \rightarrow \infty) .
\end{aligned}
$$

Thus, we have

$$
\lim _{|n| \rightarrow \infty}\left|\widehat{\mu_{J x}}(n)\right|=0
$$

Since supp $\mu_{J x}$ is contained in a Helson set, by Theorem 3.1, $\mu_{J x}=0$. Consequently, $E(\Delta) J x=0$ for every Borel subset Δ of Γ. Therefore, we have $V J x=0$. It follows that $J x=0$. This means that $\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|=0$.

If Λ is a subset of \mathbb{Z}, we denote by C_{Λ} the space of all continuous functions f on Γ such that $\widehat{f}(n)=0$ if $n \notin \Lambda$. A subset Λ of \mathbb{Z} is called a Sidon set if for every trigonometric polynomial $f \in C_{\Lambda}$, there exists a constant $C>0$ such that

$$
\sum|\widehat{f}(n)| \leqslant C\|f\|_{\infty}
$$

We need the following result [20].
Theorem 3.3. Suppose that Λ is a Sidon set in \mathbb{Z}_{+}. If $\mu \in M(\Gamma)$ is such that $\widehat{\mu}(n)=0$ for each $n \in \mathbb{Z}_{+} \backslash \Lambda$, then μ is absolutely continuous with respect to Lebesgue measure on Γ.

As an application, we have the following.
ThEOREM 3.4. Let T be a power bounded operator on a Hilbert space H and let $x \in H$. Let Λ be a Sidon set in \mathbb{Z}_{+}. Assume that
(i) The Lebesgue measure of $\sigma_{T}(x) \cap \Gamma$ is zero,
(ii) $\lim _{k \rightarrow \infty}\left\langle T^{k+n} x, T^{k} x\right\rangle=0, \forall n \in \mathbb{Z}_{+} \backslash \Lambda$.

Then,

$$
\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|=0
$$

Proof. Let L be the closed linear span of $\left\{T^{n} x: n \geqslant 0\right\}$ and let (K, J, V) be the limit isometry associated with T_{L}. As in the proof of Theorem 3.2, we have

$$
\sigma(V) \cap \Gamma \subset \sigma_{T}(x) \cap \Gamma
$$

It follows that V is unitary and

$$
\sigma(V) \subset \sigma_{T}(x) \cap \Gamma
$$

Consequently, the Lebesgue measure of $\sigma(V)$ is zero.
We can write

$$
\begin{aligned}
\left\langle V^{n} J x, J x\right\rangle & =\left\langle J T^{n} x, J x\right\rangle \\
& =\text { 1.i.m. } \cdot k\left\langle T^{k+n} x, T^{k} x\right\rangle=0, \forall n \in \mathbb{Z}_{+} \backslash \Lambda .
\end{aligned}
$$

Let $E(\cdot)$ be the spectral measure of V and let $\mu_{J x}$ be the scalar measure defined on the Borel subsets of Γ by

$$
\mu_{J x}(\Delta)=\langle E(\Delta) J x, J x\rangle=\|E(\Delta) J x\|^{2}
$$

We have

$$
\widehat{\mu_{J x}}(n)=\left\langle V^{n} J x, J x\right\rangle=0, \forall n \in \mathbb{Z}_{+} \backslash \Lambda .
$$

By the preceding theorem, $\mu_{J x}$ is absolutely continuous with respect to Lebesgue measure. Consequently, $E(\Delta) J x=0$ for every Borel subset Δ of $\sigma(V)$. Therefore, we have $V J x=0$. It follows that $J x=0$. This means that $\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|=0$.

Recall that \mathscr{A} is a commutative regular semisimple Banach algebra. The elements of \mathscr{A}^{*} are called pseudomeasures. We will write $\varphi=\{\widehat{\varphi}(n)\}_{n \in \mathbb{Z}}$, where

$$
\widehat{\varphi}(n):=\left\langle\varphi, e^{i n t}\right\rangle(n \in \mathbb{Z})
$$

is the Fourier coefficients of a pseudomeasure φ. If $f \in \mathscr{A}$, then the duality being implemented by the formula

$$
\langle\varphi, f\rangle=\sum_{n \in \mathbb{Z}} \widehat{\varphi}(n) \widehat{f}(n)
$$

The hull (I) of an ideal $I \subset \mathscr{A}$ is defined as

$$
\operatorname{hull}(I)=\{\xi \in \Gamma: f(\xi)=0, \forall f \in I\}
$$

If φ is a pseudomeasure, then

$$
I_{\varphi}:=\{f \in \mathscr{A}: \varphi \cdot f=0\}
$$

is a closed ideal in \mathscr{A}, where $\varphi \cdot f$ is a pseudomeasure defined by

$$
\langle\varphi \cdot f, g\rangle=\langle\varphi, f g\rangle, g \in \mathscr{A}
$$

Recall that the support of a pseudomeasure φ is defined as follows. For $\xi \in \Gamma$, we let $\xi \notin \operatorname{supp} \varphi$ iff there is a neighborhood O_{ξ} of ξ such that $\langle\varphi, f\rangle=0$ for all $f \in \mathscr{A}$ with $\operatorname{supp} f \subset O_{\xi}$. An equivalent definition for $\operatorname{supp} \varphi$ is that $\xi \in \operatorname{supp} \varphi$ iff $\varphi \cdot f=0$ implies $f(\xi)=0$. Consequently, for every pseudomeasure φ, we have

$$
\operatorname{supp} \varphi=\operatorname{hull}\left(I_{\varphi}\right)
$$

The well-known Loomis Theorem [13] states that if the support of a pseudomeasure φ is at most countable, then φ is almost periodic.

If $\mu \in M(\Gamma)$, then

$$
\varphi_{\mu}:=\{\widehat{\mu}(n)\}_{n \in \mathbb{Z}}
$$

is a pseudomeasure. Notice that $\operatorname{supp} \varphi_{\mu}$ and $\operatorname{supp} \mu$ in the usual sense are the same. Notice also that if φ_{μ} is an almost periodic pseudomeasure, then

$$
C_{\xi}\left(\varphi_{\mu}\right)=\mu\{\xi\}
$$

where $C_{\xi}\left(\varphi_{\mu}\right)$ is the Fourier-Bohr coefficients of φ_{μ}. It follows from the uniqueness theorem that if φ_{μ} is a nonzero almost periodic pseudomeasure, then the corresponding measure μ has a nontrivial discrete part.

Next, we have the following.
THEOREM 3.5. Let T be a power bounded operator on a Hilbert space H which has no unitary eigenvalues. Assume that there exists a vector $x \in H$ such that
(i) $\inf _{n \geqslant 0}\left\|T^{n} x\right\|>0$,
(ii) $\sigma_{T}(x) \cap \Gamma$ is countable.

Then, there exists a nonzero vector $y \in H$ such that

$$
\lim _{n \rightarrow \infty}\left\|T^{n} y\right\|=0
$$

Proof. Let L be the closed linear span of $\left\{T^{n} x: n \geqslant 0\right\}$ and let (K, J, V) be the limit isometry associated with T_{L}. As in the proof of Theorem 3.2, we can see that V is unitary and

$$
\sigma(V) \subset \sigma_{T}(x) \cap \Gamma
$$

Consequently, $\sigma(V)$ is countable.
Let $E(\cdot)$ be the spectral measure of V and let $\mu_{J x}$ be the scalar measure defined on the Borel subsets of Γ by

$$
\mu_{J x}(\Delta)=\langle E(\Delta) J x, J x\rangle=\|E(\Delta) J x\|^{2}
$$

We have

$$
\left\langle V^{n} J x, J x\right\rangle=\widehat{\mu_{J x}}(n) \quad(n \in \mathbb{Z})
$$

and $\operatorname{supp} \mu_{J x} \subset \sigma(V)$. Consequently, $\operatorname{supp} \mu_{J x}$ is countable. By Loomis theorem,

$$
\varphi_{\mu_{J x}}:=\left\{\widehat{\mu_{J x}}(n)\right\}_{n \in \mathbb{Z}}
$$

is an almost periodic pseudomeasure and

$$
\widehat{\mu_{J x}}(0)=\|J x\|^{2}=\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|^{2}>0
$$

It follows that the measure $\mu_{J x}$ has a nontrivial discrete part. Therefore, $\mu_{J x}\left\{\xi_{0}\right\} \neq 0$ for some $\xi_{0} \in \Gamma$. Consequently, we have $E\left\{\xi_{0}\right\} J x \neq 0$.

Let us show that $E\left\{\xi_{0}\right\} J x=J u$ for some $u \in L$. For this purpose, consider the function

$$
f(z):=\frac{1+\overline{\xi_{0}} z}{2}
$$

Then, $f\left(\xi_{0}\right)=1$ and $|f(z)|<1$ for all $z \in \bar{D} \backslash\left\{\xi_{0}\right\}$. We claim that the operator

$$
f(T):=\frac{1+\bar{\xi}_{0} T}{2}
$$

is power bounded. Indeed, we have

$$
\begin{aligned}
\left\|f(T)^{n}\right\| & =\frac{1}{2^{n}}\left\|\left(1+\overline{\xi_{0}} T\right)^{n}\right\|=\frac{1}{2^{n}}\left\|\sum_{k=0}^{n}\binom{n}{k}{\overline{\xi_{0}}}^{k} T^{k}\right\| \\
& \leqslant \frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k}\left\|T^{k}\right\| \leqslant \sup _{k}\left\|T^{k}\right\| .
\end{aligned}
$$

Taking a subsequence if necessary we can assume that $\left\{f(T)^{n} x\right\}_{n \in \mathbb{N}}$ is weakly convergent to some $u \in L$. It follows that $J f(T)^{n} x \rightarrow J u$ weakly. Let arbitrary $v \in L$ be given. In view of Lemma 2.3 (a), we can write

$$
f(V)^{n} J x=J f(T)^{n} x(n \in \mathbb{N})
$$

Consequently, we have

$$
\begin{aligned}
\langle J u, v\rangle & =\lim _{n \rightarrow \infty}\left\langle J f(T)^{n} x, v\right\rangle \\
& =\lim _{n \rightarrow \infty}\left\langle f(V)^{n} J x, v\right\rangle=\lim _{n \rightarrow \infty} \int_{\Gamma} f^{n}(\xi) d\langle E(\xi) J x, v\rangle \\
& =\left\langle E\left(\xi_{0}\right) J x, v\right\rangle+\lim _{n \rightarrow \infty} \int_{\Gamma \backslash\left\{\xi_{0}\right\}} f^{n}(\xi) d\langle E(\xi) J x, v\rangle \\
& =\left\langle E\left(\xi_{0}\right) J x, v\right\rangle .
\end{aligned}
$$

Thus, we obtain that $E\left\{\xi_{0}\right\} J x=J u$. As $E\left\{\xi_{0}\right\} J x \neq 0$, we have $u \neq 0$.

Notice that $E\left\{\xi_{0}\right\} J x$ is an eigenvector of V corresponding to the eigenvalue ξ_{0}. Therefore, $J u$ is an eigenvector of V corresponding to the eigenvalue ξ_{0};

$$
V J u=\xi_{0} J u .
$$

Since $V J u=J T u$, we have $J T u=\xi_{0} J u$. By Lemma 2.3 (b), this means that

$$
\lim _{n \rightarrow \infty}\left\|T^{n}\left(T u-\xi_{0} u\right)\right\|=0
$$

Let $y:=T u-\xi_{0} u$. Since T has no unitary eigenvalues, we have that $y \neq 0$ and $\lim _{n \rightarrow \infty}\left\|T^{n} y\right\|=0$.

Recall that the subspace E of X is hyperinvariant for $T \in B(X)$ if $S E \subset E$ for every $S \in B(X)$ which commutes with T.

Corollary 3.6. Let T be a power bounded operator on a Hilbert space H which is not a multiple of the identity. Assume that there exists $x \in H$ such that:
(i) $\inf _{n \geqslant 0}\left\|T^{n} x\right\|>0$;
(ii) $\sigma_{T}(x) \cap \Gamma$ is countable.

Then, T has a nontrivial hyperinvariant subspace.

4. Banach space operators

In this section, we present local version of a theorem of Gelfand [6] on doubly power bounded operators, and another of Katznelson and Tzafriri [8] on power bounded operators ones.

An invertible operator T on a Banach space is called doubly power bounded if

$$
\sup _{n \in \mathbb{Z}}\left\|T^{n}\right\|<\infty
$$

Now, let T be a doubly power bounded operator on a Banach space X. Then, $\sigma(T) \subset \Gamma$ and therefore T has the SVEP. For a given $f \in \mathscr{A}$, we can define $f(T) \in B(X)$ by

$$
f(T)=\sum_{n \in \mathbb{Z}} \widehat{f}(n) T^{n}
$$

Then, $h: f \rightarrow f(T)$ is a continuous algebra homomorphism with the norm

$$
\|h\|=\sup _{n \in \mathbb{Z}}\left\|T^{n}\right\|
$$

It is easy to check that $\sigma(T)=\operatorname{hull}(\operatorname{ker} T)$.
Recall that the Carleman transform $\Phi(z)$ of a pseudomeasure $\varphi=\{\widehat{\varphi}(n)\}_{n \in \mathbb{Z}}$ is defined by the relation

$$
\Phi(z)= \begin{cases}\sum_{n=0}^{\infty} \frac{\widehat{\varphi}(n)}{z^{n}}, & |z|>1 \\ -\sum_{n=1}^{\infty} \widehat{\varphi}(-n) z^{n}, & |z|<1\end{cases}
$$

We know [4, Chapter 3] that $\Phi(z)$ is a function analytic on $\mathbb{C} \backslash \operatorname{supp} \varphi$.
For a given $\varphi \in X^{*}$ and $x \in X$, let φ_{x} be a pseudomeasure defined by

$$
\left\langle\varphi_{x}, f\right\rangle=\langle\varphi, f(T) x\rangle, f \in \mathscr{A}
$$

Since $\widehat{\varphi}_{x}(n)=\varphi\left(T^{n} x\right)(n \in \mathbb{Z})$, from the identity

$$
R_{z}(T) x= \begin{cases}\sum_{n=0}^{\infty} \frac{T^{n} x}{z^{n+1}}, & |z|>1 \\ -\sum_{n=1}^{\infty} z^{n-1} T^{-n} x, & |z|<1\end{cases}
$$

we have

$$
z\left\langle\varphi, R_{z}(T) x\right\rangle= \begin{cases}\sum_{n=0}^{\infty} \frac{\widehat{\varphi}_{x}(n)}{z^{n}}, & |z|>1 \\ -\sum_{n=1}^{\infty} z^{n} \widehat{\varphi}_{x}(-n), & |z|<1\end{cases}
$$

This shows that $z\left\langle\varphi, R_{z}(T) x\right\rangle(|z| \neq 1)$ is the Carleman transform of φ_{x}. It follows that

$$
\sigma_{T}(x)=\overline{\bigcup_{\varphi \in X^{*}} \operatorname{supp} \varphi_{x}}
$$

for every $x \in X$.
If $x \in X$, then

$$
I_{x}:=\{f \in \mathscr{A}: f(T) x=0\}
$$

is a closed ideal of \mathscr{A} and

$$
I_{x}=\bigcap_{\varphi \in X^{*}} I_{\varphi_{x}}
$$

Recall that

$$
I_{\varphi_{x}}=\left\{f \in \mathscr{A}: \varphi_{x} \cdot f=0\right\} .
$$

Since

$$
\operatorname{hull}\left(I_{\varphi_{x}}\right)=\operatorname{supp} \varphi_{x},
$$

it follows from the general theory of Banach algebras that

$$
\operatorname{hull}\left(I_{x}\right)=\overline{\bigcup_{\varphi \in X^{*}} \operatorname{hull}\left(I_{\varphi_{x}}\right)}=\overline{\bigcup_{\varphi \in X^{*}} \operatorname{supp} \varphi_{x}}=\sigma_{T}(x)
$$

Hence, we have the following.

Proposition 4.1. If T is a doubly power bounded operator on a Banach space X, then for every $x \in X$, we have

$$
\sigma_{T}(x)=\operatorname{hull}\left(I_{x}\right)
$$

From the preceding proposition, it easily follows that for every $f \in \mathscr{A}$ and $x \in X$, the following relations hold:

$$
\begin{gather*}
\sigma_{T}(f(T) x) \subset \sigma_{T}(x) \cap \operatorname{supp} f \tag{4.1}\\
\sigma_{T}(x) \cap\{\xi \in \Gamma: f(\xi) \neq 0\} \subset \sigma_{T}(f(T) x) \tag{4.2}
\end{gather*}
$$

Let T be an invertible operator on X. Recall that $x \in X$ is a doubly cyclic vector of T if

$$
\overline{\operatorname{span}}\left\{T^{n} x: n \in \mathbb{Z}\right\}=X
$$

COROLLARY 4.2. Let T be a doubly power bounded operator on a Banach space X. If $x \in X$ is a doubly cyclic vector of T, then

$$
\sigma_{T}(x)=\sigma(T)
$$

REMARK 4.3. An invertible operator T on X is called nonquasianalytic [3, Chapter XII] if

$$
\sum_{n \in \mathbb{Z}} \frac{\log \left\|T^{n}\right\|}{1+n^{2}}<\infty
$$

The assertion of the preceding proposition remains valid for nonquasianalytic operators, too.

Given a closed subset S of Γ, there are two distinguished closed ideals of \mathscr{A} with hull equal to S, namely

$$
J_{S}=\overline{\{f \in \mathscr{A}: \operatorname{supp} f \cap S=\emptyset\}}
$$

and

$$
I_{S}=\{f \in \mathscr{A}: f(\xi)=0, \forall \xi \in S\}
$$

The set S is called a set of synthesis if $J_{S}=I_{S}$ ([10, Chapter 8]).
Well-known Gelfand's theorem [6] states that if T is a doubly power bounded operator with $\sigma(T)=\{1\}$, then $T=I$.

We include here the following result which seems to be unnoticed.
Proposition 4.4. Let T be a doubly power bounded operator on a Banach space X and let $x \in X$. If $\sigma_{T}(x)=\left\{\xi_{1}, \ldots, \xi_{n}\right\} \quad\left(\xi_{i} \neq \xi_{j}, i \neq j\right)$, then

$$
x \in \operatorname{ker}\left(T-\xi_{1} I\right) \oplus \cdots \oplus \operatorname{ker}\left(T-\xi_{n} I\right)
$$

Proof. Let U_{1}, \ldots, U_{n} be a disjoint neighborhoods of ξ_{1}, \ldots, ξ_{n}, respectively. Let V_{k} be a neighborhood of ξ_{k} such that $\overline{V_{k}} \subset U_{k}(k=1, \ldots, n)$. Then, there exist functions f_{1}, \ldots, f_{n} in \mathscr{A} such that $f_{k}=1$ on V_{k} and $f_{k}=0$ outside $U_{k}(k=1, \ldots, n)$. Put $f=$ $f_{1}+\ldots+f_{n}$. Since $1-f$ vanishes in a neighborhood of $\sigma_{T}(x)$, the function $1-f$ belongs to the smallest ideal of \mathscr{A} whose hull is $\sigma_{T}(x)$. It follows from Proposition 4.1
that $1-f \in I_{x}$, so that $f(T) x=x$. Hence, we have $x=x_{1}+\ldots+x_{n}$, where $x_{k}=f_{k}(T) x$ ($k=1, \ldots, n$). Further, it follows from the relations (4.1) and (4.2) that

$$
\left\{\xi_{k}\right\} \subset \sigma_{T}\left(x_{k}\right) \subset \sigma_{T}(x) \cap \operatorname{supp} f_{k}=\left\{\xi_{k}\right\}
$$

Hence, we obtain $\sigma_{T}\left(x_{k}\right)=\left\{\xi_{k}\right\}$. It remains to show that if $y \in X$ with $\sigma_{T}(y)=\{\xi\}$, then $T y=\xi y$. By Proposition 4.1, hull $\left(I_{y}\right)=\{\xi\}$. Since $\{\xi\}$ is a set of synthesis [10, Chapter 8], we have $I_{y}=I_{\{\xi\}}$, so that

$$
\{f \in \mathscr{A}: f(T) y=0\}=\{f \in \mathscr{A}: f(\xi)=0\}
$$

If we put in the last identity $f=\zeta-\xi(\zeta \in \Gamma)$, then we have $T y=\xi y$.
REmark 4.5. Let T be an invertible operator on a Banach space. Assume that there exists $0 \leqslant \alpha<1$ such that

$$
\left\|T^{n}\right\| \leqslant \operatorname{const}(1+|n|)^{\alpha}, \forall n \in \mathbb{Z}
$$

In this case, the assertion of the preceding proposition remains valid.
We denote by \mathscr{A}_{+}the set of all functions

$$
f(z)=\sum_{n=0}^{\infty} \widehat{f}(n) z^{n}
$$

analytic on D and satisfying

$$
\|f\|_{1}:=\sum_{n=0}^{\infty}|\widehat{f}(n)|<\infty
$$

(whence f is a continuous function on \bar{D}). \mathscr{A}_{+}is a commutative Banach algebra under this norm. Let $\varphi \in \mathscr{A}_{+}^{*}$ and $\widehat{\varphi}(n):=\left\langle\varphi, z^{n}\right\rangle(n \geqslant 0)$. If $f \in \mathscr{A}_{+}$, then the duality being implemented by the formula

$$
\langle\varphi, f\rangle=\sum_{n=0}^{\infty} \widehat{\varphi}(n) \widehat{f}(n)
$$

If T is a power bounded operator on a Banach space X, then for a given $f \in \mathscr{A}_{+}$, we can define $f(T) \in B(X)$ by

$$
f(T)=\sum_{n=0}^{\infty} \widehat{f}(n) T^{n}
$$

Then, $h: f \rightarrow f(T)$ is a continuous algebra homomorphism with the norm

$$
\|h\|=\sup _{n \geqslant 0}\left\|T^{n}\right\|
$$

It follows that if f is a power bounded element of \mathscr{A}_{+}(in particular, if $\|f\|_{1} \leqslant 1$), then $f(T)$ is power bounded. Standard Banach algebra techniques shows that the spectral mapping property $\sigma(f(T))=f(\sigma(T))\left(f \in \mathscr{A}_{+}\right)$holds.

If $x \in X$, then

$$
I_{x}^{+}:=\left\{f \in \mathscr{A}_{+}: f(T) x=0\right\}
$$

is a closed ideal of \mathscr{A}_{+}.
We have the following.
Proposition 4.6. If T is a power bounded operator on a Banach space X, then for every $x \in X$, we have

$$
\sigma_{T}(x) \subset \operatorname{hull}\left(I_{x}^{+}\right)
$$

For the proof, we need some preliminary results. For a given $\varphi \in \mathscr{A}_{+}^{*}$ and $f \in \mathscr{A}_{+}$, define

$$
\begin{gather*}
\varphi^{+}(z):=\sum_{n=0}^{\infty} \frac{\widehat{\varphi}(n)}{z^{n}}(|z|>1) \tag{4.3}\\
\widehat{\varphi}(-n):=\sum_{k=0}^{\infty} \widehat{\varphi}(k) \widehat{f}(k+n) \quad(n=1,2 \ldots)
\end{gather*}
$$

and

$$
\begin{equation*}
\psi(z):=\sum_{n=1}^{\infty} \widehat{\varphi}(-n) z^{n}(|z|<1) . \tag{4.4}
\end{equation*}
$$

The following result is contained in [18, Chapter 4, Theorem 10].
Lemma 4.7. Let $\varphi \in \mathscr{A}_{+}^{*}$ and $f \in \mathscr{A}_{+}$. Assume that the functions $\varphi^{+}(z)$ and $\psi(z)$ are defined as in (4.3) and (4.4), respectively. If

$$
\sum_{k=0}^{\infty} \widehat{\varphi}(k+n) \widehat{f}(k)=0(\forall n \geqslant 0)
$$

then

$$
\Phi(z):= \begin{cases}\varphi^{+}(z), & |z|>1 \\ \frac{\psi(z)}{f(z)}, & |z|<1\end{cases}
$$

is an analytic function on the complex plane possible expectation of zero set of f.
Proof of Proposition 4.6. Assume that $\lambda \in \bar{D} \backslash$ hull $\left(I_{x}^{+}\right)$. Then, there exists a function $f \in \mathscr{A}_{+}$such that $f(T) x=0$ but $f(\lambda) \neq 0$. For a given $\varphi \in X^{*}$, define $\varphi_{x} \in \mathscr{A}_{+}^{*}$ by

$$
\left\langle\varphi_{x}, f\right\rangle=\langle\varphi, f(T) x\rangle, f \in \mathscr{A}_{+} .
$$

Since $\widehat{\varphi}_{x}(n)=\varphi\left(T^{n} x\right)$ and

$$
R_{z}(T) x=\sum_{n=0}^{\infty} \frac{T^{n} x}{z^{n+1}}(|z|>1)
$$

we have

$$
\varphi_{x}^{+}(z)=\sum_{n=0}^{\infty} \frac{\widehat{\varphi}_{x}(n)}{z^{n}}=\sum_{n=0}^{\infty} \frac{\varphi\left(T^{n} x\right)}{z^{n}}=z\left\langle\varphi, R_{z}(T) x\right\rangle(|z|>1) .
$$

On the other hand, as $f(T) x=0$, we have $f(T) T^{k} x=0 \quad(k \geqslant 0)$ which implies

$$
0=\sum_{n=0}^{\infty} \widehat{f}(n) \varphi\left(T^{n+k} x\right)=\sum_{n=0}^{\infty} \widehat{f}(n) \widehat{\varphi}_{x}(n+k)
$$

By the preceding lemma, the function $z \mapsto\left\langle\varphi, R_{z}(T) x\right\rangle$ can be analytically extended to a neighborhood of λ for every $\varphi \in X^{*}$. It follows that $\lambda \in \rho_{T}(x)$.

Katznelson and Tzafriri [8] obtained the following generalization of Gelfand's theorem. If T is a power bounded operator on a Banach space, then

$$
\lim _{n \rightarrow \infty}\left\|T^{n+1}-T^{n}\right\|=0
$$

if and only if $\sigma(T) \cap \Gamma \subset\{1\}$.
We denote by \mathscr{A}_{+}^{1} the set of all $f \in \mathscr{A}_{+}$such that $\|f\|_{1} \leqslant 1, f(1)=1$, and $|f(z)|<1$ for all $z \in \bar{D} \backslash\{1\}$. For example, if $\left\{a_{n}\right\}_{n=0}^{\infty}$ is a sequence such that $0<$ $a_{n}<1 \quad(n=0,1, \ldots)$ and $\sum_{n=0}^{\infty} a_{n}=1$, then the function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is in \mathscr{A}_{+}^{1}. Notice that if $f \in \mathscr{A}_{+}^{1}$, then $f(T)$ is power bounded and by the spectral mapping property, $\sigma(f(T)) \cap \Gamma \subset\{1\}$. Consequently, for every $f \in \mathscr{A}_{+}$, we have that

$$
\lim _{n \rightarrow \infty}\left\|f(T)^{n+1}-f(T)^{n}\right\|=0
$$

Below, we present local quantitative version of Katznelson-Tzafriri theorem (see also [1]).

An entire function f is said to be of order ρ if

$$
\rho=\varlimsup_{r \rightarrow \infty} \frac{\log \log M(r)}{\log r}
$$

where $M(r)=\sup \{|f(z)|:|z| \leqslant r\}$. An entire function of finite order ρ is said to be of type σ if

$$
\sigma=\varlimsup_{r \rightarrow \infty} \frac{\log M(r)}{r^{\rho}}
$$

If the entire function f is of order less than 1 or f is of order 1 and type less than or equal to σ, we say f is of exponential type $\sigma[5, \mathrm{p} .8]$.

For a given $\sigma>0$, we denote by B_{σ} the set of all bounded on the real line entire functions f of exponential type $\leqslant \sigma$, i.e., for every $\varepsilon>0$, there exists a constant $C_{\varepsilon}>0$ such that

$$
|f(z)| \leqslant C_{\varepsilon} e^{(\sigma+\varepsilon)|z|}, \forall z \in \mathbb{C}
$$

It follows from the Phragmen-Lindelöf theorem that if $f \in B_{\sigma}$ and

$$
C_{f}:=\sup _{t \in \mathbb{R}}|f(t)|
$$

then

$$
|f(z)| \leqslant C_{f} e^{\sigma|\operatorname{Im} z|}
$$

Notice that B_{σ} is a Banach space under the norm given by

$$
\|f\|_{\sigma}:=\sup _{z \in \mathbb{C}}\left[e^{-\sigma|\operatorname{Im} z|}|f(z)|\right]
$$

In fact,

$$
\|f\|_{\sigma}=\sup _{t \in \mathbb{R}}|f(t)|
$$

The following inequality of Bernstein type is well known [7]. If $f \in B_{\sigma}$, where $0 \leqslant \sigma h \leqslant \frac{\pi}{2}$, then

$$
\sup _{t \in \mathbb{R}}|f(t+h)-f(t-h)| \leqslant 2 \sin \sigma h\|f\|_{\sigma}
$$

It follows that for every $f \in B_{\sigma}$,

$$
\begin{array}{r}
|f(1)-f(0)| \leqslant 2 \sin \frac{\sigma}{2}\|f\|_{\sigma}(\sigma \leqslant \pi) \\
|f(1)-f(-1)| \leqslant 2 \sin \sigma\|f\|_{\sigma}\left(\sigma \leqslant \frac{\pi}{2}\right)
\end{array}
$$

On the other hand, by Cartwright theorem (see, [5, Chapter 10] and [7]), the inequality

$$
\|f\|_{\sigma} \leqslant \sec \frac{\sigma}{2} \sup _{n \in \mathbb{Z}}|f(n)|
$$

holds for every $f \in B_{\sigma}(\sigma<\pi)$. So, we have

$$
\begin{gather*}
|f(1)-f(0)| \leqslant 2 \tan \frac{\sigma}{2}\left(\sup _{n \in \mathbb{Z}}|f(n)|\right), \forall f \in B_{\sigma}(\sigma<\pi) \tag{4.5}\\
|f(1)-f(-1)| \leqslant 2 \sin \frac{\sigma}{2}\left(\sup _{n \in \mathbb{Z}}|f(n)|\right), \forall f \in B_{\sigma}\left(\sigma \leqslant \frac{\pi}{2}\right) . \tag{4.6}
\end{gather*}
$$

Let V be an invertible isometry on a Banach space X. Notice that if $\sigma(V)=\Gamma$, then $\|V-I\|=2$. Now, assume that $\sigma(V)$ is contained in the arc

$$
\Lambda_{\sigma}:=\left\{e^{i \theta} \in \Gamma:|\theta| \leqslant \sigma\right\}
$$

where $0 \leqslant \sigma<\pi$ (any proper closed subset of Γ can be rotated so as to lie inside some such Λ_{σ}). Then $V=e^{i S}$ for some $S \in B(X)$, where $\sigma(S) \subseteq[-\sigma, \sigma]$. For a given $\varphi \in B(X)^{*}$ with norm one, consider the entire function $f(z):=\varphi\left(e^{i z S}\right)$. Since $\left\|e^{i n S}\right\|=1$ for all $n \in \mathbb{Z}$, we have $|f(t)| \leqslant e^{\|S\|}$ for all $t \in \mathbb{R}$. On the other hand, the inequality

$$
|f(z)| \leqslant e^{|z|| | S \|}
$$

gives us that the order of f is less than or equal to 1 . Notice also that the nth derivative of f at zero is $\varphi\left(i^{n} S^{n}\right)$. Thus, by Levin's theorem [12, p. 84], the type of f is less than or equal to

$$
\lim _{n \rightarrow \infty}\left\|S^{n}\right\|^{\frac{1}{n}}
$$

On the other hand, the last expression is less than or equal to σ. Consequently, $f \in B_{\sigma}$. Now, applying the inequalities (4.5) and (4.6) to f, we obtain the following inequalities

$$
\begin{gather*}
\|V-I\| \leqslant 2 \tan \frac{\sigma}{2}(\sigma<\pi) \tag{4.7}\\
\left\|V^{2}-I\right\|=\left\|V-V^{-1}\right\| \leqslant 2 \sin \frac{\sigma}{2}\left(\sigma \leqslant \frac{\pi}{2}\right) \tag{4.8}
\end{gather*}
$$

Proposition 4.8. Let T be a contraction on a Banach space X and let $x \in X$.
(a) If $\sigma_{T}(x) \cap \Gamma \subset \Lambda_{\sigma}(\sigma<\pi)$, then

$$
\lim _{n \rightarrow \infty}\left\|T^{n+1} x-T^{n} x\right\| \leqslant 2 \tan \frac{\sigma}{2}\|x\|
$$

(b) If $\sigma_{T}(x) \cap \Gamma \subset \Lambda_{\sigma}\left(\sigma \leqslant \frac{\pi}{2}\right)$, then

$$
\lim _{n \rightarrow \infty}\left\|T^{n+2} x-T^{n} x\right\| \leqslant 2 \sin \frac{\sigma}{2}\|x\|
$$

Proof. Let L be the closed linear span of $\left\{T^{n} x: n \geqslant 0\right\}$ and let (Y, J, V) be the limit isometry associated with T_{L}. As in the proof of Theorem 3.2, we can see that

$$
\sigma(V) \cap \Gamma \subset \sigma_{T}(x) \cap \Gamma \subset \Lambda_{\sigma}
$$

Hence, V is an invertible isometry and $\sigma(V) \subset \Lambda_{\sigma}$. Now, from the identities

$$
(V-I) J x=J(T x-x),\left(V^{2}-I\right) J x=J\left(T^{2} x-x\right)
$$

and from the inequalities (4.7) and (4.8), we can write

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\|T^{n+1} x-T^{n} x\right\| & =\|J(T x-x)\|=\|(V-I) J x\| \\
& \leqslant\|V-I\|\|x\| \leqslant 2 \tan \frac{\sigma}{2}\|x\| \\
\lim _{n \rightarrow \infty}\left\|T^{n+2} x-T^{n} x\right\| & =\left\|J\left(T^{2} x-x\right)\right\|=\left\|\left(V^{2}-I\right) J x\right\| \\
& \leqslant\left\|V^{2}-I\right\|\|x\| \leqslant 2 \sin \frac{\sigma}{2}\|x\| .
\end{aligned}
$$

It follows from the preceding proposition that if T is power bounded and if $x \in X$ with $\sigma_{T}(x) \cap \Gamma \subset\{1\}$, then

$$
\lim _{n \rightarrow \infty}\left\|T^{n+1} x-T^{n} x\right\|=0
$$

Note that the converse of this fact is not true in general. To see this, let S be the forward shift on the Hardy space H^{2}. As $\lim _{n \rightarrow \infty}\left\|S^{* n} f\right\|=0$, we have

$$
\lim _{n \rightarrow \infty}\left\|S^{* n+1} f-S^{* n} f\right\|=0, \forall f \in H^{2}
$$

Let μ be a positive singular measure on Γ such that supp $\mu \nsubseteq\{1\}$. Consider the inner function

$$
f(z)=\exp \left(-\int_{\Gamma} \frac{\zeta+z}{\zeta-z} d \mu_{\zeta}\right)
$$

We know (see, [16, Theorem III.5.1]) that supp μ consists of all $\xi \in \Gamma$ for which the function f has no analytic extension to a neighborhood of ξ. Now, as $\sigma_{S^{*}}(f)=\operatorname{supp} \mu$, we have $\sigma_{S^{*}}(f) \cap \Gamma \nsubseteq\{1\}$.

Proposition 4.9. Let T be a power bounded operator on a Banach space X and let $x \in X$. Assume that

$$
\text { 1.i.m.n }\left\|T^{n+1} x-T^{n} x\right\|=0
$$

If

$$
\frac{T x+\ldots+T^{n} x}{n} \rightarrow 0 \text { weakly as } n \rightarrow \infty
$$

then

$$
\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|=0
$$

Proof. Let L be the closed linear span of $\left\{T^{n} x: n \geqslant 0\right\}$ and let (Y, J, V) be the limit isometry associated with T_{L}. From the identity

$$
V J x-J x=J(T x-x)
$$

we have

$$
\|V J x-J x\|=\text { l.i.m. } .^{n}\left\|T^{n+1} x-T^{n} x\right\|=0
$$

so that $V J x=J x$. Since $J x$ is a cyclic vector of V, we have $V=I$. From the identities $J x=J T^{n} x(n \in \mathbb{N})$, we can write

$$
J x=J \frac{T x+\ldots+T^{n} x}{n}
$$

Let $y^{*} \in Y^{*}$ be given. Then, we have

$$
\left\langle y^{*}, J x\right\rangle=\left\langle J^{*} y^{*}, \frac{T x+\ldots+T^{n} x}{n}\right\rangle \rightarrow 0
$$

Hence, $J x=0$. This means that $\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|=0$.

REMARK 4.10. If T is a power-bounded operator on X and if $x \in X$, then

$$
\frac{1}{n} \sum_{k=1}^{\infty} T^{k} x \rightarrow 0
$$

weakly $(n \rightarrow \infty)$, implies that $x \in \overline{\operatorname{Ran}(T-I)}$. Consequently, $\frac{1}{n} \sum_{k=1}^{\infty} T^{k} x \rightarrow 0$ strongly as $n \rightarrow \infty$.

5. Ergodic conditions

In this section, for the stability of T at $x \in X$, some ergodic spectral conditions are found on T and on x.

The C_{0}-semigroup version of the following theorem was proved in [17, Theorem 5.1.11].

THEOREM 5.1. Let T be a power bounded operator on a Banach X and let $x \in$ X. Assume that
(i) $\sigma_{T}(x) \cap \Gamma$ is countable,
(ii) $\frac{1}{n} \sum_{k=1}^{n} \xi^{-k} T^{k} x \rightarrow 0$ weakly $(n \rightarrow \infty), \forall \xi \in \sigma_{T}(x) \cap \Gamma$.

Then,

$$
\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|=0
$$

For the proof of Theorem 5.1 we need the following lemma.
Lemma 5.2. Let V be an invertible isometry on a Banach space X and let $x \in X$. Assume that
(i) $\sigma_{V}(x)$ is countable,
(ii) $\frac{1}{n} \sum_{k=1}^{n} \xi^{-k} V^{k} x \rightarrow 0$ weakly $(n \rightarrow \infty), \forall \xi \in \sigma_{V}(x)$.

Then, $x=0$.

Proof. Let $\varphi \in X^{*}$ and let $\left(H_{\varphi}, J_{\varphi}, U_{\varphi}\right)$ be the unitary operator associated with the pair (V, φ). By (2.1), we have $\sigma_{U_{\varphi}}\left(J_{\varphi} x\right) \subset \sigma_{V}(x)$ and consequently, $\sigma_{U_{\varphi}}\left(J_{\varphi} x\right)$ is countable. In view of Lemma 2.5 (a), we can write

$$
\left\langle U_{\varphi}^{k} J_{\varphi} x, J_{\varphi} x\right\rangle=\left\langle J_{\varphi} V^{k} x, J_{\varphi} x\right\rangle=\left\langle V^{k} x, J_{\varphi}^{*} J_{\varphi} x\right\rangle(k \in \mathbb{N})
$$

It follows that for every $\xi \in \sigma_{U_{\varphi}}\left(J_{\varphi} x\right)$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \xi^{-k}\left\langle U_{\varphi}^{k} J_{\varphi} x, J_{\varphi} x\right\rangle=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \xi^{-k}\left\langle V^{k} x, J_{\varphi}^{*} J_{\varphi} x\right\rangle=0
$$

By Lemma 2.5 (c), it suffices to show that $J_{\varphi} x=0$.

To simplify the notation, we put $U:=U_{\varphi}$ and $y:=J_{\varphi} x$. Let $E(\cdot)$ be the spectral measure of U and let μ_{y} be the scalar measure defined on the Borel subsets of Γ by

$$
\mu_{y}(\Delta)=\langle E(\Delta) y, y\rangle=\|E(\Delta) y\|^{2}
$$

Then, for every $\xi \in \operatorname{supp} \mu_{y}=\sigma_{U}(y)$, we can write

$$
0=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \xi^{-k}\left\langle U^{k} y, y\right\rangle=\lim _{n \rightarrow \infty} \int_{\Gamma}\left(\frac{1}{n} \sum_{k=1}^{n} \xi^{-k} \zeta^{k}\right) d \mu_{y}(\zeta)=\mu_{y}\{\xi\}
$$

This shows that μ_{y} is a continuous measure. As is well known, there is no nonzero continuous measure supported by countable set. Consequently, $\mu_{y}=0$. This clearly implies that $y=0$.

Proof of Theorem 5.1. Let L be the closed linear span of $\left\{T^{n} x: n \geqslant 0\right\}$ and let (Y, J, V) be the limit isometry associated with T_{L}. As in the proof of Theorem 3.2, we have

$$
\sigma(V) \cap \Gamma \subset \sigma_{T}(x) \cap \Gamma
$$

Consequently, V is an invertible isometry, $\sigma(V) \subset \sigma_{T}(x) \cap \Gamma$, and $\sigma(V)$ is countable. Since

$$
\left\langle V^{k} J x, J x\right\rangle=\left\langle J T_{L}^{k} x, J x\right\rangle=\left\langle T^{k} x, J^{*} J x\right\rangle(k \in \mathbb{N})
$$

we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \xi^{-k}\left\langle V^{k} J x, J x\right\rangle=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \xi^{-k}\left\langle T^{k} x, J^{*} J x\right\rangle=0,
$$

for every $\xi \in \sigma(V)$. It follows from the preceding lemma that $J x=0$. Hence, $\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|=0$.

Let T be a power bounded operator on a Banach space X and let $x \in X$. Assume that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left|\left\langle\varphi, T^{k} x\right\rangle\right|=0, \forall \varphi \in X^{*}
$$

It follows that $x \in \overline{(\xi-T) X}$, for every $\xi \in \Gamma$. Consequently, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left\|\sum_{k=1}^{n} \xi^{-k} T^{k} x\right\|=0, \forall \xi \in \Gamma
$$

Hence, we have the following.
Corollary 5.3. Let T be a power bounded operator on a Banach space X and let $x \in X$. Assume that
(i) $\sigma_{T}(x) \cap \Gamma$ is at most countable,
(ii) $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left|\left\langle\varphi, T^{k} x\right\rangle\right|=0, \forall \varphi \in X^{*}$.

Then, $\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|=0$.

REMARK 5.4. Note that the condition (ii) in the preceding corollary can be replaced by the condition

$$
\exists \alpha>0, \forall \varphi \in X^{*}, \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left|\left\langle\varphi, T^{k} x\right\rangle\right|^{\alpha}=0
$$

For this, it is enough to show that the above condition implies the following.

$$
\forall \beta>0, \forall \varphi \in X^{*}, \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left|\left\langle\varphi, T^{k} x\right\rangle\right|^{\beta}=0
$$

This follows from the following simple fact. If $\left\{a_{n}\right\}$ is a bounded positive sequence and if $\frac{a_{1}^{\alpha}+\ldots+a_{n}^{\alpha}}{n} \rightarrow 0$, for some $\alpha>0$, then $\frac{a_{1}^{\beta}+\ldots+a_{n}^{\beta}}{n} \rightarrow 0$, for every $\beta>0$. To see this, assume on the contrary that $\frac{a_{1}^{\beta}+\ldots+a_{n}^{\beta}}{n} \nrightarrow 0$. Then, $\frac{a_{1}^{\beta}+\ldots+a_{n_{i}}^{\beta}}{n_{i}} \geqslant \delta>0$ for some subsequence $\left\{n_{i}\right\}$. As the sequence $\left\{a_{n_{i}}\right\}$ is bounded, $a_{n_{i_{j}}} \rightarrow a$ for some subsequence $\left\{n_{i_{j}}\right\}$. Since $a_{n_{i_{j}}}^{\alpha} \rightarrow a^{\alpha}$, we have $\frac{a_{1}^{\alpha}+\ldots+a_{n_{i_{j}}}^{\alpha}}{n_{i_{j}}} \rightarrow a^{\alpha}$, so that $a=0$. Thus we have $a_{n_{i_{j}}} \rightarrow$ 0 and so $a_{n_{i_{j}}}^{\beta} \rightarrow 0$. Consequently, $\frac{a_{1}^{\beta}+\ldots+a_{n_{j}}}{n_{i_{j}}} \rightarrow 0$. This is a contradiction.

Below, we present some applications of Theorem 5.1.
If $T \in B(X)$, we let A_{T} denote the closure in the uniform operator topology of all polynomials in T. Note that A_{T} is a commutative unital Banach algebra. The Gelfand space of A_{T} can be identified with $\sigma_{A_{T}}(T)$, the spectrum of T with respect to the algebra A_{T}. It follows from the Shilov's Theorem [10, Theorem 2.3.1] that if T is power bounded, then $\sigma_{A_{T}}(T) \cap \Gamma=\sigma(T) \cap \Gamma$. Since $\sigma(T)$ is a (closed) subset of $\sigma_{A_{T}}(T)$, for every $\lambda \in \sigma(T)$, there exists a multiplicative functional ϕ_{λ} on A_{T} such that $\phi_{\lambda}(T)=\lambda$. By \widehat{S}, we will denote the Gelfand transform of $S \in A_{T}$. Here, instead of $\widehat{S}\left(\phi_{\lambda}\right)\left(=\phi_{\lambda}(S)\right)$, where $\lambda \in \sigma(T)$, we will use the notation $\widehat{S}(\lambda)$. Notice that $\lambda \mapsto \widehat{S}(\lambda)$ is a continuous function on $\sigma(T)$.

Let T be a power bounded operator on a Hilbert space H and let $Q \in\{T\}^{\prime}$, the commutant of T. In [11], it was proved that if

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left\|\sum_{k=1}^{n} \xi^{-k} T^{k} Q\right\|=0
$$

holds for every $\xi \in \sigma(T) \cap \Gamma$, then $\lim _{n \rightarrow \infty}\left\|T^{n} Q\right\|=0$.
For a given $T \in B(X)$, we denote by L_{T}, the left multiplication operator on $B(X)$; $L_{T} Q=T Q$. We know that $\sigma\left(L_{T}\right)=\sigma(T)$. Now, applying Theorem 5.1 to the operator L_{T} on the space $B(X)$, we have the following.

COROLLARY 5.5. Let T be a power bounded operator on a Banach space X with countable unitary spectrum. Then, the following statements are equivalent for $Q \in B(X)$.
(i) $\lim _{n \rightarrow \infty} \frac{1}{n}\left\|\sum_{k=1}^{n} \xi^{-k} T^{k} Q\right\|=0, \forall \xi \in \sigma(T) \cap \Gamma$.
(ii) $\lim _{n \rightarrow \infty}\left\|T^{n} Q\right\|=0$.

Corollary 5.6. Let T be a power bounded operator on a Banach space X with countable unitary spectrum. The following statements are equivalent for compact operator K on X.
(i) $\frac{1}{n} \sum_{k=1}^{n} \xi^{-k} T^{k} K \rightarrow 0(n \rightarrow \infty)$ in the weak operator topology, $\forall \xi \in \sigma(T) \cap \Gamma$.
(ii) $\lim _{n \rightarrow \infty}\left\|T^{n} K\right\|=0$.

Proof. For every $x \in X$ and $\xi \in \sigma(T) \cap \Gamma$, we have

$$
\frac{1}{n} \sum_{k=1}^{n} \xi^{-k} T^{k} K x \rightarrow 0 \text { weakly }
$$

By Theorem 5.1,

$$
\lim _{n \rightarrow \infty}\left\|T^{n} K x\right\|=0, \forall x \in X
$$

Since the set $\{K x:\|x\| \leqslant 1\}$ is relatively compact, for a given $\varepsilon>0$, it has a finite ε-mesh, say $\left\{K x_{1}, \ldots, K x_{m}\right\}$, where $\left\|x_{i}\right\| \leqslant 1(i=1, \ldots, m)$. So, we have

$$
\left\|T^{n} K\right\| \leqslant \max _{i}\left\{\left\|T^{n} K x_{i}\right\|\right\}+\varepsilon \sup _{n \geqslant 0}\left\|T^{n}\right\|, \quad(n \in \mathbb{N})
$$

It follows that $\lim _{n \rightarrow \infty}\left\|T^{n} K\right\|=0$.
An operator T acting on a Banach space is called polynomially bounded if there exists a constant $C>0$ such that

$$
\|P(T)\| \leqslant C\|P\|_{\infty}
$$

for all polynomials P. By the von Neumann inequality, every Hilbert space contraction is polynomially bounded with constant $C=1$. Notice also that every polynomially bounded operator is power bounded. In [15] it was proved that if T is a polynomially bounded operator with constant C, then for every $Q \in A_{T}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T^{n} Q\right\| \leqslant C \sup _{\xi \in \sigma(T) \cap \Gamma}|\widehat{Q}(\xi)| \tag{5.1}
\end{equation*}
$$

We finish the paper with the following.
PROPOSITION 5.7. If T is a polynomially bounded operator on a Banach space, then the following statements are equivalent for $Q \in A_{T}$.
(i) $\lim _{n \rightarrow \infty} \frac{1}{n}\left\|\sum_{k=1}^{n} \xi^{-k} T^{k} Q\right\|=0, \forall \xi \in \sigma(T) \cap \Gamma$.
(ii) $\lim _{n \rightarrow \infty}\left\|T^{n} Q\right\|=0$.

Proof. For every $\xi \in \sigma(T) \cap \Gamma$, there exists a multiplicative functional ϕ_{ξ} on A_{T} such that $\phi_{\xi}(T)=\xi$. Then, we have

$$
|\widehat{Q}(\xi)|=\frac{1}{n}\left|\left\langle\phi_{\xi}, \sum_{k=1}^{n} \xi^{-k} T^{k} Q\right\rangle\right| \leqslant \frac{1}{n}\left\|\sum_{k=1}^{n} \xi^{-k} T^{k} Q\right\| \rightarrow 0(n \rightarrow \infty)
$$

So, \widehat{Q} vanishes on $\sigma(T) \cap \Gamma$. It follows from (5.1) that $\lim _{n \rightarrow \infty}\left\|T^{n} Q\right\|=0$.

REFERENCES

[1] G. R. Allan and T. J. Ransford, Power-dominated elements in a Banach algebra, Studia Math., 94 (1989), 63-79.
[2] C. J. K. Batty, J. van Neerven and F. Räbiger, Local spectra and individual stability of uniformly bounded C_{0}-semigroups, Trans. Amer. Math. Soc., 350 (1998), 2071-2085.
[3] B. Beauzamy, Introduction to Operator Theory and Invariant Subspaces, North-Holland, Amsterdam, 1988.
[4] J. Benedetto, Harmonic Analysis on Totally Disconnected Sets, Lecture Notes in Math., 202, Springer-Verlag, 1971.
[5] R. P. Boas, Entire Functions, Academic Press, New York, 1954.
[6] I. M. Gelfand, Zur theorie der charactere der abelschen topologischen gruppen, Rec. Math. N. S. (Mat. Sb), 51 (1941), 49-50.
[7] E. A. Gorin, Bernstein's inequality from the point of view of operator theory, Selecta Math. Soviet, 7 (1988), 191-209 (transl. from Vestnik Kharkov Univ. 45 (1980), 77-105).
[8] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal., 68 (1986), 313328.
[9] L. KÉrchy and J. van Neerven, Polynomially bounded operators whose spectrum on the unit circle has measure zero, Acta Sci. Math. (Szeged), 63 (1997), 551-562.
[10] R. Larsen, Banach Algebras, Marcel-Dekker Inc., New York, 1973.
[11] Z. Leka, A Katznelson-Tzafriri type theorem in Hilbert spaces, Proc. Amer. Math. Soc., 137 (2009), 3763-3768.
[12] B. Ya. Levin, Distributions of Zeros of Entire Functions, Amer. Math. Soc. Providence, 1964.
[13] L. H. Loomis, The spectral characterization of a class of almost periodic functions, Ann. Math., 72 (1960), 362-368.
[14] H. S. Mustafayev, The Banach algebra generated by a contraction, Proc. Amer. Math. Soc., 134 (2006), 2677-2683.
[15] H. S. Mustafayev, Asymptotic behavior of polynomially bounded operators, C. R. Acad. Sci. Paris, Ser. I, 348 (2010), 517-520.
[16] B. Sz.-NAGY and C. Foias, Harmonic Analysis of Operators on Hilbert Space, (Russian), Mir, Moscow, 1970.
[17] J. Van Neerven, The Asymptotic Behavior of Semigroups of Linear Operators, Oper. Theory Adv. Appl., 88, Birkhäuser Verlag, Basel, 1996.
[18] B. NYMAN, On the one-dimensional translation group and semi-group in certain function spaces, Inaugural Dissertation, Uppsala, 1950.
[19] W. Rudin, Fourier Analysis on Groups, Wiley-Interscience Publication, New-York, 1962.
[20] W. Rudin, Trigonometric series with gaps, J. Math. Mech., 9 (1960), 203-228.

[^0]: Mathematics subject classification (2010): 47A11, 47A35, 43A46.
 Keywords and phrases: Power bounded operator, local spectrum, Helson set, Sidon set, stability.

