THE BEHAVIOR OF THE ORBITS OF POWER BOUNDED OPERATORS

H. S. MUSTAFAYEV

(Communicated by D. R. Larson)

Abstract. Let *T* be a power bounded operator on a Banach space *X* and let $\sigma_T(x)$ be the local spectrum of *T* at $x \in X$. In this paper, we study the asymptotic behavior of the orbits $\{T^n x : n \ge 0\}$ in terms of the local spectrum of *T* at *x*.

1. Introduction

Let *X* be a complex Banach space and let B(X) be the algebra of all bounded, linear operators on *X*. For $T \in B(X)$, we denote by $\sigma(T)$, the spectrum of *T* and by $R_z(T) := (zI - T)^{-1}$ ($z \notin \sigma(T)$) the resolvent of *T*. The unit circle in the complex plane will be denoted by Γ , whereas *D* indicates the open unit disc. The set $\sigma(T) \cap \Gamma$ will be called the *unitary spectrum* of *T*.

Recall that $T \in B(X)$ is called *stable* if $\lim_{n\to\infty} ||T^nx|| = 0$ for all $x \in X$. Generally speaking, the asymptotic behavior of the orbits $\{T^nx : n \ge 0\}$ is frequently related to unitary spectrum of underlying operator. This is well illustrated by the following classical result of Nagy-Foias [16, Proposition II. 6.7]. If *T* is a completely non-unitary contraction on a Hilbert space and if the unitary spectrum of *T* is of Lebesgue measure zero, then *T* is stable.

For arbitrary $T \in B(X)$ and $x \in X$, we define $\rho_T(x)$ to be the set of all $\lambda \in \mathbb{C}$ for which there exists a neighborhood O_{λ} of λ with u(z) analytic on O_{λ} having values in X such that (zI - T)u(z) = x, $\forall z \in O_{\lambda}$. This set is open and contains the resolvent set $\rho(T)$ of T. By definition, the *local spectrum* of T at x, denoted by $\sigma_T(x)$ is the complement of $\rho_T(x)$, so it is a closed subset of $\sigma(T)$. This object is most tractable if the operator T has the *single-valued extension property* (SVEP) i.e. for every open set U in \mathbb{C} , the only analytic function $f : U \to X$ for which the equation (zI - T) f(z) = 0holds, is the constant function $f \equiv 0$. In that case, for every $x \in X$ there exists a maximal analytic extension of $R_z(T)x$ to $\rho_T(x)$. It follows that if T has the SVEP, then $\sigma_T(x) \neq \emptyset$, whenever $x \neq 0$. It is easy to see that an operator $T \in B(X)$ having spectrum without interior points has the SVEP.

Note that the local spectrum of *T* may be "very small" with respect to its usual spectrum. To see this, let σ be a "small" part of $\sigma(T)$ such that both σ and $\sigma(T) \setminus \sigma$ are closed sets. Let P_{σ} be the spectral projection associated with σ and let $X_{\sigma} := P_{\sigma}X$.

Keywords and phrases: Power bounded operator, local spectrum, Helson set, Sidon set, stability.

Mathematics subject classification (2010): 47A11, 47A35, 43A46.

Then, X_{σ} is a closed *T*-invariant subspace of *X* and $\sigma(T|_{X_{\sigma}}) = \sigma$. It is easy to check that $\sigma_T(x) \subset \sigma$, for every $x \in X_{\sigma}$.

An operator T acting on a Banach space is called *power bounded* if

$$\sup_{n \ge 0} \|T^n\| < \infty$$

(by changing to an equivalent norm it can be made contractive). If *T* is power bounded, then $\sigma(T) \subset \overline{D}$ and $\sigma_T(x) \cap \Gamma$, the *local unitary spectrum* of $x \in X$ consists of all $\xi \in \Gamma$ such that the function $R_z(T)x$ (|z| > 1) has no analytic extension to a neighborhood of ξ . Clearly,

$$\sigma(T)\cap\Gamma=\bigcup_{x\in X}(\sigma_T(x)\cap\Gamma).$$

An operator $T \in B(X)$ is called *stable* at $x \in X$ if $\lim_{n\to\infty} ||T^n x|| = 0$. Local version of the Nagy-Foias Theorem was proved in [9]: If T is a completely non-unitary contraction on a Hilbert space and if $\sigma_T(x) \cap \Gamma$ is of Lebesgue measure zero, then T is stable at $x \in X$.

Let *T* be a power bounded operator on a Banach space. Assume that the unitary spectrum of *T* is countable. Discrete version of Arendt-Batty-Lyubich-Phong (ABLP) theorem asserts that if T^* has no unitary eigenvalues, then *T* is stable (see, [2] and [17, Chapter 5]).

In this paper, for the stability of T at $x \in X$, some spectral conditions are found on T and on x.

2. Preliminaries

This section deals with some preliminaries that will be used later.

If *E* is an invariant subspace of $T \in B(X)$, we denote by T_E or by $T|_E$ the restriction of *T* to *E*. We will need the following.

LEMMA 2.1. Let T be a power bounded operator on a Banach space X and let E be a (closed) T-invariant subspace of X. Then, for every $x \in E$, we have

$$\sigma_{T_E}(x) \cap \Gamma = \sigma_T(x) \cap \Gamma.$$

Proof. Let $x \in E$. Clearly, $\rho_{T_E}(x) \subset \rho_T(x)$ and so

$$\sigma_T(x) \cap \Gamma \subset \sigma_{T_F}(x) \cap \Gamma.$$

For the reverse inclusion, let $\xi \in \rho_T(x) \cap \Gamma$ and let $\pi : X \to X \nearrow E$ be the canonical mapping. Then, there exists a neighborhood O_{ξ} of ξ with u(z) analytic on O_{ξ} having values in X such that (zI - T)u(z) = x on O_{ξ} . Notice that

$$u(z) = R_z(T)x = \sum_{n=0}^{\infty} z^{-n-1}T^n x \in E,$$

for all $z \in O_{\xi}$ with |z| > 1. Therefore, we have $\pi u(z) = 0$, for all $z \in O_{\xi}$ with |z| > 1. By uniqueness theorem, $\pi u(z) = 0$, for all $z \in O_{\xi}$. Hence, we obtain that $u(z) \in E$, for all $z \in O_{\xi}$. Consequently, we can write

$$(zI-T_E)u(z)=x, \ \forall z\in O_{\xi}.$$

This shows that $\xi \in \rho_{T_E}(x) \cap \Gamma$. \Box

As an illustration of Lemma 2.1, consider the following example. Let *K* be a Hilbert space and let $H^2(K)$ be the Hardy space of *K*-valued analytic functions on *D*. By S_K , we denote the forward shift operator on $H^2(K)$;

$$(S_K f)(z) = z f(z).$$

Its adjoint, the backward shift, is given by

$$(S_{K}^{*}f)(z) = \frac{f(z) - f(0)}{z}, \ f \in H^{2}(K).$$

It is easy to verify that for every $f \in H^2(K)$ and $\lambda \in \mathbb{C}$ with $|\lambda| > 1$,

$$\left(\lambda I - S_K^*\right)^{-1} f\left(z\right) = \frac{\lambda^{-1} f\left(\lambda^{-1}\right) - z f\left(z\right)}{1 - \lambda z}.$$

Hence, $\sigma_{S_K^*}(f) \cap \Gamma$ consists of all $\xi \in \Gamma$ for which the function f has no analytic extension to a neighborhood of ξ . Now, let T be a stable contraction on a Hilbert space H i.e.

$$\lim_{n \to \infty} \|T^n x\| = 0, \forall x \in H$$

Let $\mathscr{D} := (I - T^*T)^{\frac{1}{2}}$ and $K := \overline{\mathscr{D}H}$. By well-known Model Theorem of Nagy-Foias [16, Chapter VI], there exists S_K^* -invariant subspace E of $H^2(K)$ and a unitary operator $U: H \to E$ such that

$$T = U^{-1} \left(S_K^* \mid_E \right) U,$$

where

$$(Ux)(z) = \sum_{n=0}^{\infty} z^n \mathscr{D} T^n x \ (x \in H).$$

It follows from Lemma 2.1 that if $x \in H$, then

$$\sigma_T(x) \cap \Gamma = \sigma_{S_K^*|_E}(Ux) \cap \Gamma = \sigma_{S_K^*}(Ux) \cap \Gamma.$$

Hence, $\sigma_T(x) \cap \Gamma$ consists of all $\xi \in \Gamma$ such that the function $z \mapsto (Ux)(z)$ has no analytic extension to a neighborhood of ξ .

Let *V* be an isometry on a Banach space. It is well known that if $\sigma(V) \neq \overline{D}$, then *V* is invertible. Recall also that $x \in X$ is a *cyclic vector* of $T \in B(X)$ if

$$\overline{\operatorname{span}}\left\{T^n x : n \ge 0\right\} = X.$$

The following result was proved in [9, Lemma 1.3].

LEMMA 2.2. Let V be an isometry on a Banach space X. If $x \in X$ is a cyclic vector of V, then

$$\sigma(V) \cap \Gamma = \sigma_V(x) \cap \Gamma.$$

By l.i.m. $_na_n$ we will denote Banach limit of the bounded sequence $\{a_n\}$. The following result is well known (see for instance, [9, 11] and [17, Chapter 5]).

LEMMA 2.3. If T is a power bounded operator on a Banach space X, then there exist a Banach space Y, a bounded linear operator $J : X \to Y$ with dense range, and an isometry V on Y with the following properties:

- (a) VJ = JT.
- (b) $||Jx|| = l.i.m._n ||T^nx||, \forall x \in X.$
- (c) $\sigma(V) \subset \sigma(T)$.

If X is assumed to be a Hilbert space, then Y is a Hilbert space, also.

The triple (Y, J, V) will be called the *limit isometry associated with* T. Notice that Jx = 0 if and only if $\lim_{n\to\infty} ||T^nx|| = 0$. Notice also that if $x \in X$ is a cyclic vector of T, then Jx is a cyclic vector of V.

LEMMA 2.4. Let T be a power bounded operator on a Banach space X and let (Y,J,V) be the limit isometry associated with T. Then we have

$$\sigma_V(Jx) \subset \sigma_T(x), \ \forall x \in X.$$

Proof. If $\lambda \in \rho_T(x)$, then there exists a neighborhood U_{λ} of λ with u(z) analytic on U_{λ} having values in X such that (zI - T)u(z) = x, $\forall z \in U_{\lambda}$. It follows that (zJ - JT)u(z) = Jx. Since JT = VJ, we have (zI - V)Ju(z) = Jx, $\forall z \in U_{\lambda}$. This shows that $\lambda \in \rho_V(Jx)$. \Box

The following lemma was proved in [14, Lemma 3].

LEMMA 2.5. Let V be an invertible isometry on a Banach space X with countable spectrum. For arbitrary $\varphi \in X^*$, there exist a Hilbert space H_{φ} , a bounded linear operator $J_{\varphi} : X \to H_{\varphi}$ with dense range, and a unitary operator U_{φ} on H_{φ} with the following properties:

- (a) $U_{\varphi}J_{\varphi} = J_{\varphi}V.$
- (b) $\sigma(U_{\varphi}) \subset \sigma(V)$.
- (c) $\bigcap_{\varphi \in X^*} \ker J_{\varphi} = \{0\}.$

The triple $(H_{\varphi}, J_{\varphi}, U_{\varphi})$ will be called the *unitary operator associated with the pair* (V, φ) . As in the proof of Lemma 2.4, we can see that for every $\varphi \in X^*$ and $x \in X$,

$$\sigma_{U_{\varphi}}\left(J_{\varphi}x\right) \subset \sigma_{V}\left(x\right). \tag{2.1}$$

3. Hilbert space operators

In this section, we consider stability problem for operators on Hilbert space with "thin" spectra.

We denote by \mathscr{A} the set of all continuous functions on Γ having an absolutely convergent Fourier series. \mathscr{A} is a commutative Banach algebra under the norm

$$\|f\|_1 := \sum_{n \in \mathbb{Z}} \left| \widehat{f}(n) \right|,$$

where $\hat{f}(n)$ is the *n*th Fourier coefficient of $f \in \mathscr{A}$.

Recall [19, Chapter 5] that a closed set *S* in Γ is a *Helson set* if for every continuous function *g* on *S* there corresponds a function $f \in \mathscr{A}$ such that f(s) = g(s), for all $s \in S$.

Let $M(\Gamma)$ be the space of regular complex Borel measures on Γ . The *n*th Fourier coefficient of $\mu \in M(\Gamma)$ is defined by

$$\widehat{\mu}(n) = \int_{0}^{2\pi} e^{-int} d\mu(t) \quad (n \in \mathbb{Z}).$$

It is well known that if $\hat{\mu}(n) = 0$ for all $n \in \mathbb{Z}$, then $\mu = 0$.

The Helson Theorem [19, Theorem 5.6.10] asserts the following.

THEOREM 3.1. Let $S \subset \Gamma$ be a Helson set and let $\mu \in M(\Gamma)$ be given such that $supp \mu \subset S$. If $\lim_{|n|\to\infty} |\widehat{\mu}(n)| = 0$, then $\mu = 0$.

As an application, we have the following.

THEOREM 3.2. Let T be a power bounded operator on a Hilbert space H and let $x \in H$. Assume that

(*i*) $\sigma_T(x) \cap \Gamma$ is contained in a Helson set, (*ii*) $T^n x \to 0$ weakly as $n \to \infty$. Then,

$$\lim_{n\to\infty} \|T^n x\| = 0.$$

Proof. Let *L* be the closed linear span of $\{T^n x : n \ge 0\}$. Then, *L* is a *T*-invariant subspace of *H*. Let (K, J, V) be the limit isometry associated with T_L . By Lemma 2.4, $\sigma_V(Jx) \subset \sigma_{T_L}(x)$. Consequently, we have

$$\sigma_V(Jx) \cap \Gamma \subset \sigma_{T_I}(x) \cap \Gamma.$$

Taking into account Lemma 2.1, we can write

$$\sigma_V(Jx) \cap \Gamma \subset \sigma_T(x) \cap \Gamma$$

Further, since Jx is a cyclic vector of V by Lemma 2.2, we obtain

$$\sigma(V) \cap \Gamma = \sigma_V(Jx) \cap \Gamma \subset \sigma_T(x) \cap \Gamma.$$

Consequently, V is a unitary operator and $\sigma(V)$ is contained in a Helson set.

Let $E(\cdot)$ be the spectral measure of V and let μ_{Jx} be the scalar measure defined on the Borel subsets of Γ by

$$\mu_{Jx}\left(\Delta\right) = \left\langle E\left(\Delta\right) Jx, Jx \right\rangle = \left\| E\left(\Delta\right) Jx \right\|^{2}.$$

From the spectral decomposition of V, we can write

$$\widehat{\mu_{Jx}}(n) = \int_{0}^{2\pi} e^{-int} d\mu_{Jx}(t)$$
$$= \int_{0}^{2\pi} e^{-int} d\langle E_t J x, J x \rangle = \langle V^{*n} J x, J x \rangle \ (n \in \mathbb{Z}).$$

On the other hand, from Lemma 2.3 (a), we have $J^*V^{*n} = T_L^*J^*$ $(n \in \mathbb{N})$ which implies

$$\begin{array}{l} \langle V^{*n}Jx,Jx\rangle = \langle J^*V^{*n}Jx,x\rangle = \langle T_L^{*n}J^*Jx,x\rangle \\ \langle J^*Jx,T^nx\rangle = \overline{\langle T^nx,J^*Jx\rangle} \to 0 \ (n\to\infty) \,. \end{array}$$

Similarly,

$$\begin{aligned} \widehat{\mu_{Jx}}\left(-n\right) &= \left\langle V^n J x, J x \right\rangle \\ &= \left\langle J T^n x, J x \right\rangle = \left\langle T^n x, J^* J x \right\rangle \to 0 \, (n \to \infty) \,. \end{aligned}$$

Thus, we have

$$\lim_{|n|\to\infty}\left|\widehat{\mu_{Jx}}(n)\right|=0.$$

Since supp μ_{Jx} is contained in a Helson set, by Theorem 3.1, $\mu_{Jx} = 0$. Consequently, $E(\Delta)Jx = 0$ for every Borel subset Δ of Γ . Therefore, we have VJx = 0. It follows that Jx = 0. This means that $\lim_{n\to\infty} ||T^nx|| = 0$. \Box

If Λ is a subset of \mathbb{Z} , we denote by C_{Λ} the space of all continuous functions f on Γ such that $\hat{f}(n) = 0$ if $n \notin \Lambda$. A subset Λ of \mathbb{Z} is called a *Sidon set* if for every trigonometric polynomial $f \in C_{\Lambda}$, there exists a constant C > 0 such that

$$\sum \left| \widehat{f}(n) \right| \leqslant C \, \|f\|_{\infty} \, .$$

We need the following result [20].

THEOREM 3.3. Suppose that Λ is a Sidon set in \mathbb{Z}_+ . If $\mu \in M(\Gamma)$ is such that $\widehat{\mu}(n) = 0$ for each $n \in \mathbb{Z}_+ \setminus \Lambda$, then μ is absolutely continuous with respect to Lebesgue measure on Γ .

As an application, we have the following.

THEOREM 3.4. Let T be a power bounded operator on a Hilbert space H and let $x \in H$. Let Λ be a Sidon set in \mathbb{Z}_+ . Assume that

(*i*) The Lebesgue measure of $\sigma_T(x) \cap \Gamma$ is zero, (*ii*) $\lim_{k\to\infty} \langle T^{k+n}x, T^kx \rangle = 0, \forall n \in \mathbb{Z}_+ \setminus \Lambda$. Then,

$$\lim_{n\to\infty}\|T^nx\|=0.$$

Proof. Let *L* be the closed linear span of $\{T^n x : n \ge 0\}$ and let (K, J, V) be the limit isometry associated with T_L . As in the proof of Theorem 3.2, we have

$$\sigma(V)\cap\Gamma\subset\sigma_T(x)\cap\Gamma.$$

It follows that V is unitary and

$$\sigma(V) \subset \sigma_T(x) \cap \Gamma.$$

Consequently, the Lebesgue measure of $\sigma(V)$ is zero.

We can write

Let $E(\cdot)$ be the spectral measure of V and let μ_{Jx} be the scalar measure defined on the Borel subsets of Γ by

$$\mu_{Jx}(\Delta) = \langle E(\Delta)Jx, Jx \rangle = \|E(\Delta)Jx\|^2.$$

We have

$$\widehat{\mu_{Jx}}(n) = \langle V^n J x, J x \rangle = 0, \, \forall n \in \mathbb{Z}_+ \setminus \Lambda.$$

By the preceding theorem, μ_{Jx} is absolutely continuous with respect to Lebesgue measure. Consequently, $E(\Delta)Jx = 0$ for every Borel subset Δ of $\sigma(V)$. Therefore, we have VJx = 0. It follows that Jx = 0. This means that $\lim_{n\to\infty} ||T^nx|| = 0$.

Recall that \mathscr{A} is a commutative regular semisimple Banach algebra. The elements of \mathscr{A}^* are called *pseudomeasures*. We will write $\varphi = \{\widehat{\varphi}(n)\}_{n \in \mathbb{Z}}$, where

$$\widehat{\boldsymbol{\varphi}}(n) := \langle \boldsymbol{\varphi}, e^{int} \rangle \ (n \in \mathbb{Z})$$

is the Fourier coefficients of a pseudomeasure φ . If $f \in \mathscr{A}$, then the duality being implemented by the formula

$$\langle \varphi, f \rangle = \sum_{n \in \mathbb{Z}} \widehat{\varphi}(n) \widehat{f}(n).$$

The hull (*I*) of an ideal $I \subset \mathscr{A}$ is defined as

$$\operatorname{hull}\left(I\right) = \left\{\xi \in \Gamma : f\left(\xi\right) = 0, \, \forall f \in I\right\}.$$

If φ is a pseudomeasure, then

$$I_{\varphi} := \{ f \in \mathscr{A} : \varphi \cdot f = 0 \}$$

is a closed ideal in \mathscr{A} , where $\varphi \cdot f$ is a pseudomeasure defined by

$$\langle \boldsymbol{\varphi} \cdot f, g \rangle = \langle \boldsymbol{\varphi}, fg \rangle, \ g \in \mathscr{A}.$$

Recall that the *support* of a pseudomeasure φ is defined as follows. For $\xi \in \Gamma$, we let $\xi \notin \text{supp } \varphi$ iff there is a neighborhood O_{ξ} of ξ such that $\langle \varphi, f \rangle = 0$ for all $f \in \mathscr{A}$ with $\text{supp } f \subset O_{\xi}$. An equivalent definition for $\text{supp } \varphi$ is that $\xi \in \text{supp } \varphi$ iff $\varphi \cdot f = 0$ implies $f(\xi) = 0$. Consequently, for every pseudomeasure φ , we have

$$\operatorname{supp} \varphi = \operatorname{hull} (I_{\varphi}).$$

The well-known Loomis Theorem [13] states that if the support of a pseudomeasure φ is at most countable, then φ is almost periodic.

If $\mu \in M(\Gamma)$, then

$$\varphi_{\mu} := \left\{ \widehat{\mu} \left(n \right) \right\}_{n \in \mathbb{Z}}$$

is a pseudomeasure. Notice that $\operatorname{supp} \varphi_{\mu}$ and $\operatorname{supp} \mu$ in the usual sense are the same. Notice also that if φ_{μ} is an almost periodic pseudomeasure, then

$$C_{\xi}\left(\varphi_{\mu}\right)=\mu\left\{\xi\right\},$$

where $C_{\xi}(\varphi_{\mu})$ is the Fourier-Bohr coefficients of φ_{μ} . It follows from the uniqueness theorem that if φ_{μ} is a nonzero almost periodic pseudomeasure, then the corresponding measure μ has a nontrivial discrete part.

Next, we have the following.

THEOREM 3.5. Let T be a power bounded operator on a Hilbert space H which has no unitary eigenvalues. Assume that there exists a vector $x \in H$ such that

(*i*) $\inf_{n \ge 0} ||T^n x|| > 0$,

(*ii*) $\sigma_T(x) \cap \Gamma$ *is countable*.

Then, there exists a nonzero vector $y \in H$ such that

$$\lim_{n\to\infty}\|T^ny\|=0.$$

Proof. Let *L* be the closed linear span of $\{T^n x : n \ge 0\}$ and let (K, J, V) be the limit isometry associated with T_L . As in the proof of Theorem 3.2, we can see that *V* is unitary and

 $\sigma(V) \subset \sigma_T(x) \cap \Gamma.$

Consequently, $\sigma(V)$ is countable.

Let $E(\cdot)$ be the spectral measure of V and let μ_{Jx} be the scalar measure defined on the Borel subsets of Γ by

$$\mu_{Jx}\left(\Delta\right) = \left\langle E\left(\Delta\right) Jx, Jx \right\rangle = \left\| E\left(\Delta\right) Jx \right\|^{2}.$$

We have

$$\langle V^n J x, J x \rangle = \widehat{\mu_{Jx}}(n) \ (n \in \mathbb{Z})$$

and supp $\mu_{Jx} \subset \sigma(V)$. Consequently, supp μ_{Jx} is countable. By Loomis theorem,

$$\varphi_{\mu_{J_x}} := \left\{\widehat{\mu_{J_x}}\left(n\right)\right\}_{n \in \mathbb{Z}}$$

is an almost periodic pseudomeasure and

$$\widehat{\mu}_{J_X}(0) = \|J_X\|^2 = \lim_{n \to \infty} \|T^n x\|^2 > 0.$$

It follows that the measure μ_{Jx} has a nontrivial discrete part. Therefore, $\mu_{Jx} \{\xi_0\} \neq 0$ for some $\xi_0 \in \Gamma$. Consequently, we have $E\{\xi_0\}Jx \neq 0$.

Let us show that $E \{\xi_0\} Jx = Ju$ for some $u \in L$. For this purpose, consider the function

$$f(z) := \frac{1 + \overline{\xi_0 z}}{2}$$

Then, $f(\xi_0) = 1$ and |f(z)| < 1 for all $z \in \overline{D} \setminus {\{\xi_0\}}$. We claim that the operator

$$f(T) := \frac{1 + \overline{\xi_0}T}{2}$$

is power bounded. Indeed, we have

$$\begin{split} \|f(T)^{n}\| &= \frac{1}{2^{n}} \left\| \left(1 + \overline{\xi_{0}}T \right)^{n} \right\| = \frac{1}{2^{n}} \left\| \sum_{k=0}^{n} \binom{n}{k} \overline{\xi_{0}}^{k} T^{k} \right\| \\ &\leqslant \frac{1}{2^{n}} \sum_{k=0}^{n} \binom{n}{k} \left\| T^{k} \right\| \leqslant \sup_{k} \left\| T^{k} \right\|. \end{split}$$

Taking a subsequence if necessary we can assume that $\{f(T)^n x\}_{n \in \mathbb{N}}$ is weakly convergent to some $u \in L$. It follows that $Jf(T)^n x \to Ju$ weakly. Let arbitrary $v \in L$ be given. In view of Lemma 2.3 (a), we can write

$$f(V)^{n}Jx = Jf(T)^{n}x \ (n \in \mathbb{N}).$$

Consequently, we have

$$\begin{split} \langle Ju, v \rangle &= \lim_{n \to \infty} \langle Jf(T)^n x, v \rangle \\ &= \lim_{n \to \infty} \langle f(V)^n Jx, v \rangle = \lim_{n \to \infty} \int_{\Gamma} f^n(\xi) d\langle E(\xi) Jx, v \rangle \\ &= \langle E(\xi_0) Jx, v \rangle + \lim_{n \to \infty} \int_{\Gamma \setminus \{\xi_0\}} f^n(\xi) d\langle E(\xi) Jx, v \rangle \\ &= \langle E(\xi_0) Jx, v \rangle. \end{split}$$

Thus, we obtain that $E \{\xi_0\} Jx = Ju$. As $E \{\xi_0\} Jx \neq 0$, we have $u \neq 0$.

Notice that $E \{\xi_0\} Jx$ is an eigenvector of V corresponding to the eigenvalue ξ_0 . Therefore, Ju is an eigenvector of V corresponding to the eigenvalue ξ_0 ;

$$VJu = \xi_0 Ju.$$

Since VJu = JTu, we have $JTu = \xi_0 Ju$. By Lemma 2.3 (b), this means that

$$\lim_{n \to \infty} \|T^n (Tu - \xi_0 u)\| = 0.$$

Let $y := Tu - \xi_0 u$. Since T has no unitary eigenvalues, we have that $y \neq 0$ and $\lim_{n\to\infty} ||T^n y|| = 0$. \Box

Recall that the subspace *E* of *X* is *hyperinvariant* for $T \in B(X)$ if $SE \subset E$ for every $S \in B(X)$ which commutes with *T*.

COROLLARY 3.6. Let T be a power bounded operator on a Hilbert space H which is not a multiple of the identity. Assume that there exists $x \in H$ such that:

(*i*) $\inf_{n \ge 0} ||T^n x|| > 0;$

(*ii*) $\sigma_T(x) \cap \Gamma$ *is countable*.

Then, T has a nontrivial hyperinvariant subspace.

4. Banach space operators

In this section, we present local version of a theorem of Gelfand [6] on doubly power bounded operators, and another of Katznelson and Tzafriri [8] on power bounded operators ones.

An invertible operator T on a Banach space is called *doubly power bounded* if

$$\sup_{n\in\mathbb{Z}}\|T^n\|<\infty.$$

Now, let *T* be a doubly power bounded operator on a Banach space *X*. Then, $\sigma(T) \subset \Gamma$ and therefore *T* has the SVEP. For a given $f \in \mathscr{A}$, we can define $f(T) \in B(X)$ by

$$f(T) = \sum_{n \in \mathbb{Z}} \widehat{f}(n) T^n$$

Then, $h: f \to f(T)$ is a continuous algebra homomorphism with the norm

$$\|h\| = \sup_{n \in \mathbb{Z}} \|T^n\|.$$

It is easy to check that $\sigma(T) = \text{hull}(\ker T)$.

Recall that the *Carleman transform* $\Phi(z)$ of a pseudomeasure $\varphi = \{\widehat{\varphi}(n)\}_{n \in \mathbb{Z}}$ is defined by the relation

$$\Phi(z) = \begin{cases} \sum_{n=0}^{\infty} \frac{\widehat{\varphi}(n)}{z^n}, & |z| > 1; \\ -\sum_{n=1}^{\infty} \widehat{\varphi}(-n) z^n, & |z| < 1. \end{cases}$$

We know [4, Chapter 3] that $\Phi(z)$ is a function analytic on $\mathbb{C} \setminus \operatorname{supp} \varphi$.

For a given $\varphi \in X^*$ and $x \in X$, let φ_x be a pseudomeasure defined by

$$\langle \varphi_x, f \rangle = \langle \varphi, f(T) x \rangle, f \in \mathscr{A}.$$

Since $\widehat{\varphi_x}(n) = \varphi(T^n x) \ (n \in \mathbb{Z})$, from the identity

$$R_{z}(T)x = \begin{cases} \sum_{n=0}^{\infty} \frac{T^{n}x}{z^{n+1}}, & |z| > 1; \\ -\sum_{n=1}^{\infty} z^{n-1}T^{-n}x, & |z| < 1, \end{cases}$$

we have

$$z\langle \varphi, R_z(T) x \rangle = \begin{cases} \sum_{n=0}^{\infty} \frac{\widehat{\varphi}_x(n)}{z^n}, & |z| > 1; \\ -\sum_{n=1}^{\infty} z^n \widehat{\varphi}_x(-n), & |z| < 1. \end{cases}$$

This shows that $z\langle \varphi, R_z(T)x \rangle$ ($|z| \neq 1$) is the Carleman transform of φ_x . It follows that

$$\sigma_T(x) = \overline{\bigcup_{\varphi \in X^*} \operatorname{supp} \varphi_x},$$

for every $x \in X$. If $x \in X$, then

$$I_x := \{ f \in \mathscr{A} : f(T)x = 0 \}$$

is a closed ideal of ${\mathscr A}$ and

$$I_{x} = \bigcap_{\varphi \in X^{*}} I_{\varphi_{x}}.$$

Recall that

$$I_{\varphi_x} = \{f \in \mathscr{A} : \varphi_x \cdot f = 0\}.$$

Since

hull
$$(I_{\varphi_x}) = \operatorname{supp} \varphi_x,$$

it follows from the general theory of Banach algebras that

$$\operatorname{hull}(I_{x}) = \overline{\bigcup_{\varphi \in X^{*}} \operatorname{hull}(I_{\varphi_{x}})} = \overline{\bigcup_{\varphi \in X^{*}} \operatorname{supp}\varphi_{x}} = \sigma_{T}(x).$$

Hence, we have the following.

PROPOSITION 4.1. If *T* is a doubly power bounded operator on a Banach space *X*, then for every $x \in X$, we have

$$\sigma_T(x) = hull(I_x).$$

From the preceding proposition, it easily follows that for every $f \in \mathscr{A}$ and $x \in X$, the following relations hold:

$$\sigma_T(f(T)x) \subset \sigma_T(x) \cap \operatorname{supp} f, \tag{4.1}$$

$$\sigma_T(x) \cap \{\xi \in \Gamma : f(\xi) \neq 0\} \subset \sigma_T(f(T)x).$$
(4.2)

Let *T* be an invertible operator on *X*. Recall that $x \in X$ is a *doubly cyclic vector* of *T* if

$$\overline{\text{span}} \{ T^n x : n \in \mathbb{Z} \} = X$$

COROLLARY 4.2. Let T be a doubly power bounded operator on a Banach space X. If $x \in X$ is a doubly cyclic vector of T, then

$$\sigma_T(x) = \sigma(T).$$

REMARK 4.3. An invertible operator T on X is called *nonquasianalytic* [3, Chapter XII] if

$$\sum_{n\in\mathbb{Z}}\frac{\log\|T^n\|}{1+n^2}<\infty.$$

The assertion of the preceding proposition remains valid for nonquasianalytic operators, too.

Given a closed subset S of Γ , there are two distinguished closed ideals of \mathscr{A} with hull equal to S, namely

$$J_S = \overline{\{f \in \mathscr{A} : \operatorname{supp} f \cap S = \emptyset\}}$$

and

$$I_{S} = \{f \in \mathscr{A} : f(\xi) = 0, \forall \xi \in S\}.$$

The set *S* is called a *set of synthesis* if $J_S = I_S$ ([10, Chapter 8]).

Well-known Gelfand's theorem [6] states that if *T* is a doubly power bounded operator with $\sigma(T) = \{1\}$, then T = I.

We include here the following result which seems to be unnoticed.

PROPOSITION 4.4. Let *T* be a doubly power bounded operator on a Banach space *X* and let $x \in X$. If $\sigma_T(x) = \{\xi_1, ..., \xi_n\}$ $(\xi_i \neq \xi_j, i \neq j)$, then

$$x \in \ker(T-\xi_1 I) \oplus \cdots \oplus \ker(T-\xi_n I)$$
.

Proof. Let $U_1, ..., U_n$ be a disjoint neighborhoods of $\xi_1, ..., \xi_n$, respectively. Let V_k be a neighborhood of ξ_k such that $\overline{V_k} \subset U_k$ (k = 1, ..., n). Then, there exist functions $f_1, ..., f_n$ in \mathscr{A} such that $f_k = 1$ on V_k and $f_k = 0$ outside U_k (k = 1, ..., n). Put $f = f_1 + ... + f_n$. Since 1 - f vanishes in a neighborhood of $\sigma_T(x)$, the function 1 - f belongs to the smallest ideal of \mathscr{A} whose hull is $\sigma_T(x)$. It follows from Proposition 4.1

that $1 - f \in I_x$, so that f(T)x = x. Hence, we have $x = x_1 + ... + x_n$, where $x_k = f_k(T)x$ (k = 1, ..., n). Further, it follows from the relations (4.1) and (4.2) that

$$\{\xi_k\} \subset \sigma_T(x_k) \subset \sigma_T(x) \cap \operatorname{supp} f_k = \{\xi_k\}.$$

Hence, we obtain $\sigma_T(x_k) = \{\xi_k\}$. It remains to show that if $y \in X$ with $\sigma_T(y) = \{\xi\}$, then $Ty = \xi y$. By Proposition 4.1, hull $(I_y) = \{\xi\}$. Since $\{\xi\}$ is a set of synthesis [10, Chapter 8], we have $I_y = I_{\{\xi\}}$, so that

$$\{f \in \mathscr{A} : f(T)y = 0\} = \{f \in \mathscr{A} : f(\xi) = 0\}.$$

If we put in the last identity $f = \zeta - \xi$ ($\zeta \in \Gamma$), then we have $Ty = \xi y$. \Box

REMARK 4.5. Let T be an invertible operator on a Banach space. Assume that there exists $0 \le \alpha < 1$ such that

$$||T^n|| \leq \operatorname{const}(1+|n|)^{\alpha}, \forall n \in \mathbb{Z}.$$

In this case, the assertion of the preceding proposition remains valid.

We denote by \mathscr{A}_+ the set of all functions

$$f(z) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n$$

analytic on D and satisfying

$$\|f\|_1 := \sum_{n=0}^{\infty} \left|\widehat{f}(n)\right| < \infty.$$

(whence f is a continuous function on \overline{D}). \mathscr{A}_+ is a commutative Banach algebra under this norm. Let $\varphi \in \mathscr{A}^*_+$ and $\widehat{\varphi}(n) := \langle \varphi, z^n \rangle$ $(n \ge 0)$. If $f \in \mathscr{A}_+$, then the duality being implemented by the formula

$$\langle \varphi, f \rangle = \sum_{n=0}^{\infty} \widehat{\varphi}(n) \widehat{f}(n).$$

If *T* is a power bounded operator on a Banach space *X*, then for a given $f \in \mathscr{A}_+$, we can define $f(T) \in B(X)$ by

$$f(T) = \sum_{n=0}^{\infty} \widehat{f}(n) T^n.$$

Then, $h: f \to f(T)$ is a continuous algebra homomorphism with the norm

$$\|h\| = \sup_{n \ge 0} \|T^n\|.$$

It follows that if *f* is a power bounded element of \mathscr{A}_+ (in particular, if $||f||_1 \leq 1$), then f(T) is power bounded. Standard Banach algebra techniques shows that the spectral mapping property $\sigma(f(T)) = f(\sigma(T))$ ($f \in \mathscr{A}_+$) holds.

If $x \in X$, then

$$I_{x}^{+} := \{ f \in \mathscr{A}_{+} : f(T) | x = 0 \}$$

is a closed ideal of \mathscr{A}_+ .

We have the following.

PROPOSITION 4.6. If *T* is a power bounded operator on a Banach space *X*, then for every $x \in X$, we have

$$\sigma_T(x) \subset hull(I_x^+).$$

For the proof, we need some preliminary results. For a given $\varphi \in \mathscr{A}_+^*$ and $f \in \mathscr{A}_+$, define

$$\varphi^{+}(z) := \sum_{n=0}^{\infty} \frac{\overline{\varphi}(n)}{z^{n}} \ (|z| > 1),$$
(4.3)

$$\widehat{\varphi}(-n) := \sum_{k=0}^{\infty} \widehat{\varphi}(k) \widehat{f}(k+n) \quad (n = 1, 2...),$$

and

$$\psi(z) := \sum_{n=1}^{\infty} \widehat{\varphi}(-n) z^n \quad (|z| < 1).$$

$$(4.4)$$

The following result is contained in [18, Chapter 4, Theorem 10].

LEMMA 4.7. Let $\varphi \in \mathscr{A}_+^*$ and $f \in \mathscr{A}_+$. Assume that the functions $\varphi^+(z)$ and $\psi(z)$ are defined as in (4.3) and (4.4), respectively. If

$$\sum_{k=0}^{\infty}\widehat{\varphi}\left(k+n\right)\widehat{f}\left(k\right)=0\;\left(\forall n\geqslant0\right),$$

then

$$\Phi(z) := \begin{cases} \varphi^+(z), \ |z| > 1; \\ \frac{\psi(z)}{f(z)}, \ |z| < 1 \end{cases}$$

is an analytic function on the complex plane possible expectation of zero set of f.

Proof of Proposition 4.6. Assume that $\lambda \in \overline{D} \setminus \text{hull}(I_x^+)$. Then, there exists a function $f \in \mathscr{A}_+$ such that f(T)x = 0 but $f(\lambda) \neq 0$. For a given $\varphi \in X^*$, define $\varphi_x \in \mathscr{A}_+^*$ by

$$\langle \varphi_x, f \rangle = \langle \varphi, f(T)x \rangle, \ f \in \mathscr{A}_+.$$

Since $\widehat{\varphi}_x(n) = \varphi(T^n x)$ and

$$R_{z}(T)x = \sum_{n=0}^{\infty} \frac{T^{n}x}{z^{n+1}} \, (|z| > 1),$$

we have

$$\varphi_x^+(z) = \sum_{n=0}^{\infty} \frac{\widehat{\varphi}_x(n)}{z^n} = \sum_{n=0}^{\infty} \frac{\varphi(T^n x)}{z^n} = z \langle \varphi, R_z(T) x \rangle \ (|z| > 1).$$

On the other hand, as f(T)x = 0, we have $f(T)T^{k}x = 0$ $(k \ge 0)$ which implies

$$0 = \sum_{n=0}^{\infty} \widehat{f}(n) \varphi\left(T^{n+k}x\right) = \sum_{n=0}^{\infty} \widehat{f}(n) \widehat{\varphi}_x(n+k).$$

By the preceding lemma, the function $z \mapsto \langle \varphi, R_z(T) x \rangle$ can be analytically extended to a neighborhood of λ for every $\varphi \in X^*$. It follows that $\lambda \in \rho_T(x)$.

Katznelson and Tzafriri [8] obtained the following generalization of Gelfand's theorem. If T is a power bounded operator on a Banach space, then

$$\lim_{n\to\infty} \left\| T^{n+1} - T^n \right\| = 0$$

if and only if $\sigma(T) \cap \Gamma \subset \{1\}$.

We denote by \mathscr{A}^1_+ the set of all $f \in \mathscr{A}_+$ such that $||f||_1 \leq 1$, f(1) = 1, and |f(z)| < 1 for all $z \in \overline{D} \setminus \{1\}$. For example, if $\{a_n\}_{n=0}^{\infty}$ is a sequence such that $0 < a_n < 1$ (n = 0, 1, ...) and $\sum_{n=0}^{\infty} a_n = 1$, then the function $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is in \mathscr{A}^1_+ . Notice that if $f \in \mathscr{A}^1_+$, then f(T) is power bounded and by the spectral mapping property, $\sigma(f(T)) \cap \Gamma \subset \{1\}$. Consequently, for every $f \in \mathscr{A}_+$, we have that

$$\lim_{n \to \infty} \left\| f(T)^{n+1} - f(T)^n \right\| = 0.$$

Below, we present local quantitative version of Katznelson-Tzafriri theorem (see also [1]).

An entire function f is said to be of *order* ρ if

$$\rho = \overline{\lim_{r \to \infty}} \frac{\log \log M(r)}{\log r}$$

where $M(r) = \sup \{ |f(z)| : |z| \le r \}$. An entire function of finite order ρ is said to be of *type* σ if

$$\sigma = \overline{\lim_{r \to \infty}} \frac{\log M(r)}{r^{\rho}}.$$

If the entire function f is of order less than 1 or f is of order 1 and type less than or equal to σ , we say f is of *exponential type* σ [5, p. 8].

For a given $\sigma > 0$, we denote by B_{σ} the set of all bounded on the real line entire functions f of exponential type $\leq \sigma$, i.e., for every $\varepsilon > 0$, there exists a constant $C_{\varepsilon} > 0$ such that

$$|f(z)| \leq C_{\varepsilon} e^{(\sigma+\varepsilon)|z|}, \ \forall z \in \mathbb{C}.$$

It follows from the Phragmen-Lindelöf theorem that if $f \in B_{\sigma}$ and

$$C_f := \sup_{t \in \mathbb{R}} \left| f(t) \right|,$$

then

$$|f(z)| \leqslant C_f e^{\sigma |\operatorname{Im} z|}$$

Notice that B_{σ} is a Banach space under the norm given by

$$\|f\|_{\sigma} := \sup_{z \in \mathbb{C}} \left[e^{-\sigma |\operatorname{Im} z|} |f(z)| \right].$$

In fact,

$$\|f\|_{\sigma} = \sup_{t \in \mathbb{R}} |f(t)|.$$

The following inequality of Bernstein type is well known [7]. If $f \in B_{\sigma}$, where $0 \leq \sigma h \leq \frac{\pi}{2}$, then

$$\sup_{t \in \mathbb{R}} |f(t+h) - f(t-h)| \leq 2\sin\sigma h \|f\|_{\sigma}.$$

It follows that for every $f \in B_{\sigma}$,

$$|f(1) - f(0)| \leq 2\sin\frac{\sigma}{2} ||f||_{\sigma} \ (\sigma \leq \pi),$$
$$|f(1) - f(-1)| \leq 2\sin\sigma ||f||_{\sigma} \ \left(\sigma \leq \frac{\pi}{2}\right).$$

On the other hand, by Cartwright theorem (see, [5, Chapter 10] and [7]), the inequality

$$\|f\|_{\sigma} \leq \sec \frac{\sigma}{2} \sup_{n \in \mathbb{Z}} |f(n)|$$

holds for every $f \in B_{\sigma}$ ($\sigma < \pi$). So, we have

$$|f(1) - f(0)| \leq 2\tan\frac{\sigma}{2} \left(\sup_{n \in \mathbb{Z}} |f(n)| \right), \ \forall f \in B_{\sigma} \ (\sigma < \pi),$$

$$(4.5)$$

$$|f(1) - f(-1)| \leq 2\sin\frac{\sigma}{2}\left(\sup_{n \in \mathbb{Z}} |f(n)|\right), \ \forall f \in B_{\sigma} \ \left(\sigma \leq \frac{\pi}{2}\right).$$
(4.6)

Let *V* be an invertible isometry on a Banach space *X*. Notice that if $\sigma(V) = \Gamma$, then ||V - I|| = 2. Now, assume that $\sigma(V)$ is contained in the arc

$$\Lambda_{\sigma} := \left\{ e^{i\theta} \in \Gamma : |\theta| \leqslant \sigma \right\},\,$$

where $0 \le \sigma < \pi$ (any proper closed subset of Γ can be rotated so as to lie inside some such Λ_{σ}). Then $V = e^{iS}$ for some $S \in B(X)$, where $\sigma(S) \subseteq [-\sigma, \sigma]$. For a given $\varphi \in B(X)^*$ with norm one, consider the entire function $f(z) := \varphi(e^{izS})$. Since $||e^{inS}|| = 1$ for all $n \in \mathbb{Z}$, we have $|f(t)| \le e^{||S||}$ for all $t \in \mathbb{R}$. On the other hand, the inequality

$$|f(z)| \leqslant e^{|z|||S|}$$

gives us that the order of f is less than or equal to 1. Notice also that the *n*th derivative of f at zero is $\varphi(i^n S^n)$. Thus, by Levin's theorem [12, p. 84], the type of f is less than or equal to

$$\lim_{n\to\infty}\|S^n\|^{\frac{1}{n}}.$$

On the other hand, the last expression is less than or equal to σ . Consequently, $f \in B_{\sigma}$. Now, applying the inequalities (4.5) and (4.6) to f, we obtain the following inequalities

$$\|V - I\| \leq 2\tan\frac{\sigma}{2} \ (\sigma < \pi), \qquad (4.7)$$

$$\left\|V^2 - I\right\| = \left\|V - V^{-1}\right\| \leq 2\sin\frac{\sigma}{2} \left(\sigma \leq \frac{\pi}{2}\right).$$
(4.8)

PROPOSITION 4.8. Let *T* be a contraction on a Banach space *X* and let $x \in X$. (*a*) If $\sigma_T(x) \cap \Gamma \subset \Lambda_{\sigma}$ ($\sigma < \pi$), then

$$\lim_{n\to\infty} \left\| T^{n+1}x - T^nx \right\| \leq 2\tan\frac{\sigma}{2} \|x\|.$$

(b) If $\sigma_T(x) \cap \Gamma \subset \Lambda_{\sigma}$ $\left(\sigma \leq \frac{\pi}{2}\right)$, then

$$\lim_{n\to\infty} \left\| T^{n+2}x - T^nx \right\| \leq 2\sin\frac{\sigma}{2} \left\| x \right\|.$$

Proof. Let *L* be the closed linear span of $\{T^n x : n \ge 0\}$ and let (Y, J, V) be the limit isometry associated with T_L . As in the proof of Theorem 3.2, we can see that

$$\sigma(V)\cap\Gamma\subset\sigma_T(x)\cap\Gamma\subset\Lambda_{\sigma}.$$

Hence, V is an invertible isometry and $\sigma(V) \subset \Lambda_{\sigma}$. Now, from the identities

$$(V-I)Jx = J(Tx-x), (V^2-I)Jx = J(T^2x-x)$$

and from the inequalities (4.7) and (4.8), we can write

$$\lim_{n \to \infty} \|T^{n+1}x - T^n x\| = \|J(Tx - x)\| = \|(V - I)Jx\|$$

$$\leq \|V - I\| \|x\| \leq 2\tan\frac{\sigma}{2} \|x\|,$$

$$\lim_{n \to \infty} \|T^{n+2}x - T^n x\| = \|J(T^2 x - x)\| = \|(V^2 - I)Jx\|$$

$$\leq \|V^2 - I\|\|x\| \leq 2\sin\frac{\sigma}{2}\|x\|. \quad \Box$$

It follows from the preceding proposition that if *T* is power bounded and if $x \in X$ with $\sigma_T(x) \cap \Gamma \subset \{1\}$, then

$$\lim_{n\to\infty} \left\| T^{n+1}x - T^nx \right\| = 0.$$

Note that the converse of this fact is not true in general. To see this, let *S* be the forward shift on the Hardy space H^2 . As $\lim_{n\to\infty} ||S^{*n}f|| = 0$, we have

$$\lim_{n\to\infty}\left\|S^{*n+1}f-S^{*n}f\right\|=0,\ \forall f\in H^2.$$

Let μ be a positive singular measure on Γ such that supp $\mu \not\subseteq \{1\}$. Consider the inner function

$$f(z) = \exp\left(-\int_{\Gamma} \frac{\zeta+z}{\zeta-z} d\mu_{\zeta}\right).$$

We know (see, [16, Theorem III.5.1]) that supp μ consists of all $\xi \in \Gamma$ for which the function f has no analytic extension to a neighborhood of ξ . Now, as $\sigma_{S^*}(f) = \operatorname{supp} \mu$, we have $\sigma_{S^*}(f) \cap \Gamma \not\subseteq \{1\}$.

PROPOSITION 4.9. Let T be a power bounded operator on a Banach space X and let $x \in X$. Assume that

$$1.i.m._n \|T^{n+1}x - T^nx\| = 0.$$

If

$$\frac{Tx + \dots + T^n x}{n} \to 0 \text{ weakly as } n \to \infty,$$

then

$$\lim_{n\to\infty} \|T^n x\| = 0.$$

Proof. Let *L* be the closed linear span of $\{T^n x : n \ge 0\}$ and let (Y, J, V) be the limit isometry associated with T_L . From the identity

$$VJx - Jx = J\left(Tx - x\right),$$

we have

$$||VJx - Jx|| = 1.i.m._n ||T^{n+1}x - T^nx|| = 0,$$

so that VJx = Jx. Since Jx is a cyclic vector of V, we have V = I. From the identities $Jx = JT^n x \ (n \in \mathbb{N})$, we can write

$$Jx = J\frac{Tx + \dots + T^n x}{n}$$

Let $y^* \in Y^*$ be given. Then, we have

$$\langle y^*, Jx \rangle = \left\langle J^*y^*, \frac{Tx + \dots + T^nx}{n} \right\rangle \to 0.$$

Hence, Jx = 0. This means that $\lim_{n\to\infty} ||T^nx|| = 0$. \Box

REMARK 4.10. If T is a power-bounded operator on X and if $x \in X$, then

$$\frac{1}{n}\sum_{k=1}^{\infty}T^kx\to 0$$

weakly $(n \to \infty)$, implies that $x \in \overline{\text{Ran}(T-I)}$. Consequently, $\frac{1}{n} \sum_{k=1}^{\infty} T^k x \to 0$ strongly as $n \to \infty$.

5. Ergodic conditions

In this section, for the stability of T at $x \in X$, some ergodic spectral conditions are found on T and on x.

The C_0 -semigroup version of the following theorem was proved in [17, Theorem 5.1.11].

THEOREM 5.1. Let T be a power bounded operator on a Banach X and let $x \in X$. Assume that

(i)
$$\sigma_T(x) \cap \Gamma$$
 is countable,
(ii) $\frac{1}{n} \sum_{k=1}^n \xi^{-k} T^k x \to 0$ weakly $(n \to \infty)$, $\forall \xi \in \sigma_T(x) \cap \Gamma$.
Then,
 $\lim_{n \to \infty} ||T^n x|| = 0.$

For the proof of Theorem 5.1 we need the following lemma.

LEMMA 5.2. Let V be an invertible isometry on a Banach space X and let $x \in X$. Assume that

(*i*)
$$\sigma_V(x)$$
 is countable,
(*ii*) $\frac{1}{n} \sum_{k=1}^n \xi^{-k} V^k x \to 0$ weakly $(n \to \infty)$, $\forall \xi \in \sigma_V(x)$.
Then, $x = 0$.

Proof. Let $\varphi \in X^*$ and let $(H_{\varphi}, J_{\varphi}, U_{\varphi})$ be the unitary operator associated with the pair (V, φ) . By (2.1), we have $\sigma_{U_{\varphi}}(J_{\varphi}x) \subset \sigma_V(x)$ and consequently, $\sigma_{U_{\varphi}}(J_{\varphi}x)$ is countable. In view of Lemma 2.5 (a), we can write

$$\langle U_{\varphi}^{k}J_{\varphi}x, J_{\varphi}x \rangle = \langle J_{\varphi}V^{k}x, J_{\varphi}x \rangle = \langle V^{k}x, J_{\varphi}^{*}J_{\varphi}x \rangle \ (k \in \mathbb{N}).$$

It follows that for every $\xi \in \sigma_{U_{\varphi}}(J_{\varphi}x)$,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\xi^{-k}\langle U_{\varphi}^kJ_{\varphi}x,J_{\varphi}x\rangle=\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\xi^{-k}\langle V^kx,J_{\varphi}^*J_{\varphi}x\rangle=0.$$

By Lemma 2.5 (c), it suffices to show that $J_{\varphi}x = 0$.

To simplify the notation, we put $U := U_{\varphi}$ and $y := J_{\varphi}x$. Let $E(\cdot)$ be the spectral measure of U and let μ_{y} be the scalar measure defined on the Borel subsets of Γ by

$$\mu_{y}(\Delta) = \langle E(\Delta) y, y \rangle = \left\| E(\Delta) y \right\|^{2}.$$

Then, for every $\xi \in \operatorname{supp} \mu_y = \sigma_U(y)$, we can write

$$0 = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \xi^{-k} \langle U^{k} y, y \rangle = \lim_{n \to \infty} \int_{\Gamma} \left(\frac{1}{n} \sum_{k=1}^{n} \xi^{-k} \zeta^{k} \right) d\mu_{y}(\zeta) = \mu_{y} \{\xi\}.$$

This shows that μ_y is a continuous measure. As is well known, there is no nonzero continuous measure supported by countable set. Consequently, $\mu_y = 0$. This clearly implies that y = 0. \Box

Proof of Theorem 5.1. Let *L* be the closed linear span of $\{T^n x : n \ge 0\}$ and let (Y, J, V) be the limit isometry associated with T_L . As in the proof of Theorem 3.2, we have

$$\sigma(V) \cap \Gamma \subset \sigma_T(x) \cap \Gamma.$$

Consequently, *V* is an invertible isometry, $\sigma(V) \subset \sigma_T(x) \cap \Gamma$, and $\sigma(V)$ is countable. Since

$$\langle V^k J x, J x \rangle = \langle J T_L^k x, J x \rangle = \langle T^k x, J^* J x \rangle \ (k \in \mathbb{N}),$$

we have

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\xi^{-k}\langle V^kJx,Jx\rangle = \lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\xi^{-k}\langle T^kx,J^*Jx\rangle = 0,$$

for every $\xi \in \sigma(V)$. It follows from the preceding lemma that Jx = 0. Hence, $\lim_{n \to \infty} ||T^n x|| = 0$. \Box

Let *T* be a power bounded operator on a Banach space *X* and let $x \in X$. Assume that

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}\left|\langle\varphi,T^{k}x\rangle\right|=0,\;\forall\varphi\in X^{*}.$$

It follows that $x \in \overline{(\xi - T)X}$, for every $\xi \in \Gamma$. Consequently, we have

$$\lim_{n\to\infty}\frac{1}{n}\left\|\sum_{k=1}^n\xi^{-k}T^kx\right\|=0,\,\forall\xi\in\Gamma.$$

Hence, we have the following.

COROLLARY 5.3. Let T be a power bounded operator on a Banach space X and let $x \in X$. Assume that

(i)
$$\sigma_T(x) \cap \Gamma$$
 is at most countable,
(ii) $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \left| \langle \varphi, T^k x \rangle \right| = 0, \ \forall \varphi \in X^*.$
Then, $\lim_{n \to \infty} ||T^n x|| = 0.$

REMARK 5.4. Note that the condition (ii) in the preceding corollary can be replaced by the condition

$$\exists \alpha > 0, \ \forall \varphi \in X^*, \ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \left| \langle \varphi, T^k x \rangle \right|^{\alpha} = 0.$$

For this, it is enough to show that the above condition implies the following.

$$\forall \beta > 0, \ \forall \varphi \in X^*, \ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \left| \langle \varphi, T^k x \rangle \right|^{\beta} = 0.$$

This follows from the following simple fact. If $\{a_n\}$ is a bounded positive sequence and if $\frac{a_1^{\alpha} + ... + a_n^{\alpha}}{n} \to 0$, for some $\alpha > 0$, then $\frac{a_1^{\beta} + ... + a_n^{\beta}}{n} \to 0$, for every $\beta > 0$. To see this, assume on the contrary that $\frac{a_1^{\beta} + ... + a_n^{\beta}}{n} \to 0$. Then, $\frac{a_1^{\beta} + ... + a_{n_i}^{\beta}}{n_i} \ge \delta > 0$ for some subsequence $\{n_i\}$. As the sequence $\{a_{n_i}\}$ is bounded, $a_{n_{i_j}} \to a$ for some subsequence $\{n_{i_j}\}$. Since $a_{n_{i_j}}^{\alpha} \to a^{\alpha}$, we have $\frac{a_1^{\alpha} + ... + a_{n_{i_j}}^{\alpha}}{n_{i_j}} \to a^{\alpha}$, so that a = 0. Thus we have $a_{n_{i_j}} \to 0$ 0 and so $a_{n_{i_j}}^{\beta} \to 0$. Consequently, $\frac{a_1^{\beta} + ... + a_{n_{i_j}}^{\beta}}{n_{i_j}} \to 0$. This is a contradiction.

Below, we present some applications of Theorem 5.1.

If $T \in B(X)$, we let A_T denote the closure in the uniform operator topology of all polynomials in T. Note that A_T is a commutative unital Banach algebra. The Gelfand space of A_T can be identified with $\sigma_{A_T}(T)$, the spectrum of T with respect to the algebra A_T . It follows from the Shilov's Theorem [10, Theorem 2.3.1] that if Tis power bounded, then $\sigma_{A_T}(T) \cap \Gamma = \sigma(T) \cap \Gamma$. Since $\sigma(T)$ is a (closed) subset of $\sigma_{A_T}(T)$, for every $\lambda \in \sigma(T)$, there exists a multiplicative functional ϕ_{λ} on A_T such that $\phi_{\lambda}(T) = \lambda$. By \hat{S} , we will denote the Gelfand transform of $S \in A_T$. Here, instead of $\hat{S}(\phi_{\lambda}) (= \phi_{\lambda}(S))$, where $\lambda \in \sigma(T)$, we will use the notation $\hat{S}(\lambda)$. Notice that $\lambda \mapsto \hat{S}(\lambda)$ is a continuous function on $\sigma(T)$.

Let T be a power bounded operator on a Hilbert space H and let $Q \in \{T\}'$, the commutant of T. In [11], it was proved that if

$$\lim_{n \to \infty} \frac{1}{n} \left\| \sum_{k=1}^{n} \xi^{-k} T^{k} Q \right\| = 0$$

holds for every $\xi \in \sigma(T) \cap \Gamma$, then $\lim_{n \to \infty} ||T^n Q|| = 0$.

For a given $T \in B(X)$, we denote by L_T , the left multiplication operator on B(X); $L_T Q = TQ$. We know that $\sigma(L_T) = \sigma(T)$. Now, applying Theorem 5.1 to the operator L_T on the space B(X), we have the following.

COROLLARY 5.5. Let T be a power bounded operator on a Banach space X with countable unitary spectrum. Then, the following statements are equivalent for $Q \in B(X)$.

(i)
$$\lim_{n\to\infty} \frac{1}{n} \left\| \sum_{k=1}^{n} \xi^{-k} T^{k} Q \right\| = 0, \ \forall \xi \in \sigma(T) \cap \Gamma.$$

(ii) $\lim_{n\to\infty} \|T^{n} Q\| = 0.$

COROLLARY 5.6. Let T be a power bounded operator on a Banach space X with countable unitary spectrum. The following statements are equivalent for compact operator K on X.

(*i*) $\frac{1}{n} \sum_{k=1}^{n} \xi^{-k} T^{k} K \to 0 \quad (n \to \infty) \text{ in the weak operator topology, } \forall \xi \in \sigma(T) \cap \Gamma.$ (*ii*) $\lim_{n \to \infty} ||T^{n} K|| = 0.$

Proof. For every $x \in X$ and $\xi \in \sigma(T) \cap \Gamma$, we have

$$\frac{1}{n}\sum_{k=1}^{n}\xi^{-k}T^{k}Kx \to 0 \text{ weakly,}$$

By Theorem 5.1,

$$\lim_{n\to\infty} \|T^n K x\| = 0, \ \forall x \in X.$$

Since the set $\{Kx : ||x|| \le 1\}$ is relatively compact, for a given $\varepsilon > 0$, it has a finite ε -mesh, say $\{Kx_1, ..., Kx_m\}$, where $||x_i|| \le 1$ (i = 1, ..., m). So, we have

$$||T^nK|| \leq \max_i \{||T^nKx_i||\} + \varepsilon \sup_{n\geq 0} ||T^n||, \ (n\in\mathbb{N}).$$

It follows that $\lim_{n\to\infty} ||T^nK|| = 0.$ \Box

An operator T acting on a Banach space is called *polynomially bounded* if there exists a constant C > 0 such that

$$\|P(T)\| \leqslant C \|P\|_{\infty},$$

for all polynomials *P*. By the von Neumann inequality, every Hilbert space contraction is polynomially bounded with constant C = 1. Notice also that every polynomially bounded operator is power bounded. In [15] it was proved that if *T* is a polynomially bounded operator with constant *C*, then for every $Q \in A_T$,

$$\lim_{n \to \infty} \|T^n Q\| \leqslant C \sup_{\xi \in \sigma(T) \cap \Gamma} \left| \widehat{Q}(\xi) \right|.$$
(5.1)

We finish the paper with the following.

PROPOSITION 5.7. If T is a polynomially bounded operator on a Banach space, then the following statements are equivalent for $Q \in A_T$.

(*i*) $\lim_{n\to\infty} \frac{1}{n} \left\| \sum_{k=1}^{n} \xi^{-k} T^{k} Q \right\| = 0, \ \forall \xi \in \sigma(T) \cap \Gamma.$ (*ii*) $\lim_{n\to\infty} \|T^{n}Q\| = 0.$ *Proof.* For every $\xi \in \sigma(T) \cap \Gamma$, there exists a multiplicative functional ϕ_{ξ} on A_T such that $\phi_{\xi}(T) = \xi$. Then, we have

$$\left|\widehat{\mathcal{Q}}(\xi)\right| = \frac{1}{n} \left| \langle \phi_{\xi}, \sum_{k=1}^{n} \xi^{-k} T^{k} \mathcal{Q} \rangle \right| \leq \frac{1}{n} \left\| \sum_{k=1}^{n} \xi^{-k} T^{k} \mathcal{Q} \right\| \to 0 \ (n \to \infty).$$

So, \widehat{Q} vanishes on $\sigma(T) \cap \Gamma$. It follows from (5.1) that $\lim_{n \to \infty} ||T^n Q|| = 0$. \Box

REFERENCES

- G. R. ALLAN AND T. J. RANSFORD, Power-dominated elements in a Banach algebra, Studia Math., 94 (1989), 63–79.
- [2] C. J. K. BATTY, J. VAN NEERVEN AND F. RÄBIGER, Local spectra and individual stability of uniformly bounded C₀-semigroups, Trans. Amer. Math. Soc., 350 (1998), 2071–2085.
- [3] B. BEAUZAMY, Introduction to Operator Theory and Invariant Subspaces, North-Holland, Amsterdam, 1988.
- [4] J. BENEDETTO, Harmonic Analysis on Totally Disconnected Sets, Lecture Notes in Math., 202, Springer-Verlag, 1971.
- [5] R. P. BOAS, Entire Functions, Academic Press, New York, 1954.
- [6] I. M. GELFAND, Zur theorie der charactere der abelschen topologischen gruppen, Rec. Math. N. S. (Mat. Sb), 51 (1941), 49–50.
- [7] E. A. GORIN, Bernstein's inequality from the point of view of operator theory, Selecta Math. Soviet, 7 (1988), 191–209 (transl. from Vestnik Kharkov Univ. 45 (1980), 77–105).
- [8] Y. KATZNELSON AND L. TZAFRIRI, On power bounded operators, J. Funct. Anal., 68 (1986), 313– 328.
- [9] L. KÉRCHY AND J. VAN NEERVEN, Polynomially bounded operators whose spectrum on the unit circle has measure zero, Acta Sci. Math. (Szeged), 63 (1997), 551–562.
- [10] R. LARSEN, Banach Algebras, Marcel-Dekker Inc., New York, 1973.
- [11] Z. LEKA, A Katznelson-Tzafriri type theorem in Hilbert spaces, Proc. Amer. Math. Soc., 137 (2009), 3763–3768.
- [12] B. YA. LEVIN, Distributions of Zeros of Entire Functions, Amer. Math. Soc. Providence, 1964.
- [13] L. H. LOOMIS, The spectral characterization of a class of almost periodic functions, Ann. Math., 72 (1960), 362–368.
- [14] H. S. MUSTAFAYEV, The Banach algebra generated by a contraction, Proc. Amer. Math. Soc., 134 (2006), 2677–2683.
- [15] H. S. MUSTAFAYEV, Asymptotic behavior of polynomially bounded operators, C. R. Acad. Sci. Paris, Ser. I, 348 (2010), 517–520.
- [16] B. SZ.-NAGY AND C. FOIAS, Harmonic Analysis of Operators on Hilbert Space, (Russian), Mir, Moscow, 1970.
- [17] J. VAN NEERVEN, The Asymptotic Behavior of Semigroups of Linear Operators, Oper. Theory Adv. Appl., 88, Birkhäuser Verlag, Basel, 1996.
- [18] B. NYMAN, On the one-dimensional translation group and semi-group in certain function spaces, Inaugural Dissertation, Uppsala, 1950.
- [19] W. RUDIN, Fourier Analysis on Groups, Wiley-Interscience Publication, New-York, 1962.
- [20] W. RUDIN, Trigonometric series with gaps, J. Math. Mech., 9 (1960), 203–228.

(Received September 29, 2012)

H. S. Mustafayev Yuzuncu Yil University, Faculty of Sciences Department of Mathematics 65080, Van, Turkey e-mail: hsmustafayev@yahoo.com

Operators and Matrices www.ele-math.com oam@ele-math.com