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Abstract. This paper answers the questions posed in the article “A note on permanents and gen-
eralized complementary basic matrices”, Linear Algebra Appl. 436 (2012), by M. Fiedler and
F. Hall. Determinant and permanent compound products which are intrinsic are also explored,
along with extensions to total unimodularity.

1. Introduction

In [8] and [9] the complementary basic matrices, CB-matrices for short, (see [5],
[6], [7]) were extended in the following way. Let A1 , A2 , ..., As be matrices of respec-
tive orders k1, k2, . . . ,ks , ki � 2 for all i . Denote n = ∑s

i=1 ki − s+ 1, and form the
block diagonal matrices G1, G2, . . . , Gs as follows:

G1 =
[

A1 0
0 In−k1

]
, G2 =

⎡
⎣ Ik1−1 0 0

0 A2 0
0 0 In−k1−k2+1

⎤
⎦ , . . . ,

Gs−1 =

⎡
⎣ In−ks−1−ks+1 0 0

0 As−1 0
0 0 Iks−1

⎤
⎦ , Gs =

[
In−ks 0

0 As

]
.

Then, for any permutation (i1, i2, . . . , is) of (1,2, . . . ,s) , we can consider the prod-
uct

Gi1Gi2 · · ·Gis (1)

We call products of this form generalized complementary basic matrices, GCB-matrices
for short. We have continued to use the notation ∏Gk for these more general products.
The diagonal blocks Ak are called distinguished blocks and the matrices Gk are called
generators of ∏Gk . (In the CB-matrices, these distinguished blocks are all of order 2.)
Let us also remark that strictly speaking, every square matrix can be considered as a
(trivial) GCB-matrix with s = 1.
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Let A be an n×n real matrix. Then the permanent of A is defined by

per(A) = ∑a1i1a2i2 · · ·anin

where the summation extends over all the n -permutations (i1, i2, . . . , in) of the integers
1,2, . . . ,n . So, per(A) is the same as the determinant function apart from a factor of
±1 preceding each of the products in the summation. As pointed out in [2], certain
determinantal laws have direct analogues for permanents. In particular, the Laplace
expansion for determinants has a simple counterpart for permanents. But the basic law
of determinants

det(AB) = det(A)det(B) (2)

is flagrantly false for permanents. The latter fact is the case even for intrinsic products
(see Section 3), as was observed in [9] in the example

A =

⎡
⎣ 1 1 0

1 1 0
0 1 1

⎤
⎦ , B =

⎡
⎣ 1 0 1

0 1 0
0 0 1

⎤
⎦ .

Many striking properties of GCB-matrices have already been exhibited in [8] and
[9]. In particular, in [9], it was proved that

per(AB) = per(A)per(B)

holds for products which are GCB-matrices.

THEOREM 1.1. Suppose the integers n, k satisfy n > k > 1. Let A0 be a matrix
of order k , B0 be a matrix of order n− k+1 (the sum of the orders of A0 and B0 thus
exceeds n by one). Then, for the n×n matrix AB, where

A =
[

A0 0
0 In−k

]
and B =

[
Ik−1 0
0 B0

]
,

we have that
per(AB) = per(A)per(B). (3)

This result was then extended to the GCB-matrices.

COROLLARY 1.2. Independent of the ordering of the factors, for the generalized
complementary basic matrix ∏Gk , we have that

per(∏Gk) = ∏per(Gk).

The purpose of this paper is to answer the questions posed in [9]. Determinant and
permanent compound products which are intrinsic are considered as well, along with
extensions to total unimodularity.
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2. Permanent compounds

For an n×n matrix A and index sets α,β ⊆ {1, ...,n} , A(α,β ) denotes the sub-
matrix of A that lies at the intersection of the rows indexed by α and the columns
indexed by β . We simply let A(α) denote the principal submatrix of A that lies in
the rows and columns indexed by α . The usual hth compound matrix of A , denoted
by Ch(A) , is the matrix of order

(n
h

)
whose entries are det(A(α,β )) , where α and

β are of cardinality h . Similarly, the hth permanent compound matrix of A , denoted
by Ph(A) , is the matrix of order

(n
h

)
whose entries are per(A(α,β )) , where α and β

are of cardinality h . There are many possibilities for ordering the family of index sets
of cardinality h . Usually, the lexicographic ordering is preferred and this will be the
understood order unless otherwise specified. When a different ordering is used, we ob-
tain a compound matrix permutationally similar to Ph(A) , or Ch(A) (in lexicographic
order).

We also recall the multiplicativity of the usual compound matrix:

Ch(AB) = Ch(A)Ch(B).

In contrast, we do not have the same property for permanent compounds.
In [9] a number of interesting related papers, including [1], [3], and [4], were cited.

Specifically, for compound matrices, the authors in [1] show that for nonnegative n×n
matrices A and B

Ph(AB) � Ph(A)Ph(B). (4)

Now (4) implies for nonnegative matrices that we have

per((AB)(α)) � per(A(α))per(B(α)), (5)

for any index set α ⊆ {1, ...,n} . The inequality (5) was also shown in [3].
Let the cardinality of the set α be denoted by h . As mentioned in [9] it is straight-

forward to show that for matrices A and B as in Theorem 1.1, and for h = 1,2, and
n , we in fact have equality in (5). The result for h = n actually follows from Theorem
1.1. The following question was then raised. For GCB-matrices, to what extent can we
prove equality in (4) and (5) for the other values of h , namely h = 3, . . . ,n−1? One of
the purposes of this section is to answer this question.

Regarding (5), we can answer the question in the affirmative. Referring to matrices
A and B in Theorem 1.1, let us write

A0 =

⎡
⎣ a11 · · · a1k

· · ·
ak1 · · · akk

⎤
⎦

and

B0 =

⎡
⎣ bkk · · · bkn

· · ·
bnk · · · bnn

⎤
⎦ .
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Then

AB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 · · · a1,k−1 a1kbkk · · · a1kbkn

a21 · · · a2,k−1 a2kbkk · · · a2kbkn

· · · · · ·
ak1 · · · ak,k−1 akkbkk · · · akkbkn

bk+1,k · · · bk+1,n

· · ·
bn,k · · · bn,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

THEOREM 2.1. In the notation of Theorem 1.1, for any index set α ⊆ {1, ...,n} ,
we have

per(AB(α)) = per(A(α))per(B(α)). (7)

Proof. We can divide the proof into cases, each of which is easy to prove:
(i) α ⊆ {1, ...,k} with two subcases α ⊆ {1, ...,k−1} and k ∈ α
(ii) α ⊆ {k, ...,n} with two subcases α ⊆ {k+1, ...,n} and k ∈ α
(iii) α ∩{1, ...,k−1} �= /0 and α ∩{k+1, ...,n} �= /0.
Here, if k ∈ α , the proof follows from the result of Theorem 1.1; if k /∈ α , it is

very easy.
The arguments for these cases can be done by analyzing the matrix in (6). �
We then have a variation of Corollary 1.2.

COROLLARY 2.2. Independent of the ordering of the factors, for the generalized
complementary basic matrix ∏Gk , for any index set α ⊆ {1, ...,n} , we have that

per((∏Gk)(α)) = ∏per(Gk(α)).

Proof. We use induction with respect to s . If s = 2, the result follows from The-
orem 2.1. Suppose that s > 2 and that the result holds for s−1 matrices. Observe that
the matrices Gi and Gk commute if |i− k| > 1. This means that if 1 is before 2 in the
permutation (i1, i2, . . . , is) , we can move G1 into the first position without changing the
product. The product Π of the remaining s−1 matrices Gk has the form

Π = Gj2 · · ·Gjs =
[

Ik1−1 0
0 B0

]
,

where ( j2, · · · , js) is a permutation of (2, · · · ,s) . By the induction hypothesis,

per((Π)(α)) = per((Gj2)(α)) · · ·per((Gjs)(α)),

where we can view G2,G3, . . . ,Gs as s−1 generators of an n×n GCB-matrix. Then
by Theorem 2.1,

per((∏Gk)(α)) = per((G1Π)(α))

= per((G1)(α))per((Π)(α)) = ∏per((Gk)(α)).
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If 1 is behind 2 in the permutation, we can move G1 into the last position without
changing the product. The previous proof then applies to the transpose of the product.
Since the permanent of a matrix and its transpose are the same, the proof of this case
can proceed as follows:

per((∏Gk)(α)) = per((ΠG1)(α)) = per([(ΠG1)(α)]T )

= per((ΠG1)T (α)) = per((G1
T ΠT )(α)) = ∏per((GT

ik )(α))

= ∏per([(Gik )(α)]T ) = ∏per((Gik )(α)) = ∏per((Gk)(α)). �

COROLLARY 2.3. If all the distinguished blocks Ak have positive principal per-
manental minors, then independent of the ordering of the factors, the generalized com-
plementary basic matrix ∏Gk has positive principal permanental minors.

REMARK 2.4. For equality in (4), we have a counterexample for 3× 3 matrices
using 2× 2 distinguished diagonal blocks, ie, using CB-matrices. Specifically, using
distinguished blocks of 1’s, we get

P2(AB) =

⎡
⎣ 2 2 2

1 1 2
1 1 2

⎤
⎦ ,

while

P2(A)P2(B) =

⎡
⎣ 2 2 0

1 1 2
1 1 2

⎤
⎦ ,

differing in only the (1,3)-entry.
Furthermore, note the block diagonal forms

P2(A) =

⎡
⎣ 2 0 0

0 1 1
0 1 1

⎤
⎦ , P2(B) =

⎡
⎣ 1 1 0

1 1 0
0 0 2

⎤
⎦ .

Finally in this section, we give a structural characterization of Ph(A) and Ph(B) ,
where A and B are as in Theorem 1.1.

LEMMA 2.5. For n×n matrices A and B as in Theorem 1.1 and different index
sets α,β of the same cardinality we have that

(i.) A(α,β ) has a zero line if α and β differ by at least one index in the set {k +
1, . . . ,n} , and

(ii.) B(α,β ) has a zero line if α and β differ by at least one index in the set
{1, . . . ,k−1} .
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Proof. We prove (i.) ; the proof of (ii.) is similar. By assumption, without loss
of generality, there exists i ∈ α ∩{k + 1, . . . ,n} such that i /∈ β . So, A(α,β ) cannot
contain the 1 in the (i, i) position of A (since i /∈ β ). Hence, the corresponding row of
A(α,β ) is a zero row. �

THEOREM 2.6. For n×n matrices A and B as in Theorem 1.1 and any 1 � h �
n, we have the following:

(i.) Ph(A) is permutationally similar to a block diagonal matrix with
(n−k

h−i

)
diagonal

blocks of order
(k

i

)
, for i = 0,1, . . . ,h, and

(ii.) Ph(B) is permutationally similar to a block diagonal matrix with
(k−1

i

)
diagonal

blocks of order
(n−k+1

h−i

)
, for i = 0,1, . . . ,h.

(As usual,
(a
b

)
= 0 if b > a or b < 0 .)

Proof. For the purpose of this proof, we call the indices in the set {1, . . . ,k− 1}
green indices and indices in the set {k+ 1, . . . ,n} red indices. We first prove (i.) and
fix h, 1 � h � n . Consider index sets α,β of the same cardinality h . Observe by
Lemma 2.5 that A(α,β ) has a zero line if α and β differ by at least one red index.

Choose any i∈ {0,1, . . . ,h} , fix some h− i red indices, and then make all possible(k
i

)
choices of non-red indices. We then obtain

(k
i

)
different index sets of cardinality h

where any two of them have exactly those same red indices. Keeping these index sets
together yields a diagonal submatrix of order

(k
i

)
.

Next, observe that in this way we then obtain
(n−k

h−i

)
diagonal blocks of order(k

i

)
, where any two of them are associated with different subsets of red indices. This

completes the proof of part (i.) .
Note that (

n
h

)
=

h

∑
i=0

(
k
i

)(
n− k
h− i

)
,

which holds for any fixed k ∈ {0,1, . . . ,n} (with our matrices A and B , k ∈ {2, . . . ,n−
1} ).

The proof of part (ii.) is similar to the proof of (i.) . By Lemma 2.5, B(α,β ) has
a zero line if α and β differ by at least one green index. In this case, we choose any
i ∈ {0,1, . . . ,h} , fix some i green indices, and then make all possible

(n−k+1
h−i

)
choices

of non-green indices, thereby obtaining
(n−k+1

h−i

)
different index sets of cardinality h

where any two of them have exactly those same green indices. We thus obtain
(k−1

i

)
diagonal blocks of order

(n−k+1
h−i

)
, where any two of them are associated with different

subsets of green indices. That completes the proof of (ii.) .
Observe that (

n
h

)
=

h

∑
i=0

(
n− k+1

h− i

)(
k−1

i

)
,

which also holds for any fixed k ∈ {0,1, . . . ,n} . �
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OBSERVATION 2.7. Since lexicographical ordering meets the requirements of the
proof of part (ii.) of Theorem 2.6, ie. for each choice of i green indices the index sets
with those same green indices are grouped together, Ph(B) itself is a block diagonal
matrix.

3. Intrinsic products

Following [6], we say that the product of a row vector and a column vector is
intrinsic if there is at most one non-zero product of the corresponding coordinates.
Analogously we speak about the intrinsic product of two or more matrices, as well
as about intrinsic factorizations of matrices. The entries of the intrinsic product are
products of (some) entries of the multiplied matrices. Thus there is no addition; we
could also call intrinsic multiplication sum-free multiplication.

OBSERVATION 3.1. Let A, B, C be matrices such that the product ABC is intrin-
sic in the sense that in every entry (ABC)i� (of the form ∑ j,k ai jb jkck�) there is at most
one non-zero term. If A has no zero column and C no zero row, then both products AB
and BC are intrinsic.

REMARK 3.2. In general, when ABC,AB, and BC are all intrinsic, we say that
the product ABC is completely intrinsic, and this will be used even for more than three
factors.

As was already observed in [8], independent of the ordering of the factors, the
GCB-matrices ∏Gk are completely intrinsic.

We now return to compound matrices.

THEOREM 3.3. For n×n matrices A and B as in Theorem 1.1 and any 1 � h �
n, the product Ch(A)Ch(B) is intrinsic.

Proof. Let
α = {i1, . . . , is−1, is, is+1, . . . , ih},

where
{i1, . . . , is} ⊆ {1, . . . ,k}, {is+1, . . . , ih} ⊆ {k+1, . . . ,n}

and
β = { j1, . . . , jt , jt+1, jt+2, . . . , jh},

where
{ j1, . . . , jt} ⊆ {1, . . . ,k−1}, { jt+1, . . . , jh} ⊆ {k, . . . ,n}.

We are looking for index sets γ of cardinality h which satisfy two conditions:

(i.) A(α,γ) does not necessarily have a zero line, and

(ii.) B(γ,β ) does not necessarily have a zero line.
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Now, by Lemma 2.5, (i.) implies that γ and α have the same indices in the set {k +
1, . . . ,n} , and (ii.) implies that γ and β have the same indices in the set {1, . . . ,k−1} .
Hence, { j1, . . . , jt , is+1, . . . , ih} ⊆ γ and index k may or may not be in γ .

If k /∈ γ , then γ is uniquely determined as γ = { j1, . . . , jt , is+1, . . . , ih} , which also
implies that t = s .

If k ∈ γ , then γ is uniquely determined as γ = { j1, . . . , jt ,k, is+1, . . . , ih} , which
implies that t = s−1.

Since we cannot have both t = s and t = s− 1, there exists a unique γ which
satisfies both (i.) and (ii.) . Hence, the (α,β )-entry has at most one nonzero term,
namely [Ch(A)](α ,γ)[Ch(B)](γ,β ) . �

As in previous cases, this result can be extended to the product ∏Gk .

COROLLARY 3.4. For any 1 � h � n, independent of the ordering of the fac-
tors, for the generalized complementary basic matrix ∏Gk , we have that the product
∏Ch(Gk) is completely intrinsic.

REMARK 3.5. Since square matrices which have a zero line have both determi-
nant and permanent equal to zero, Theorem 3.3 also holds for permanent compounds:
For n× n matrices A and B as in Theorem 1.1 and any 1 � h � n , the product
Ph(A)Ph(B) is intrinsic.

We next formulate a generalization of intrinsic products. Let A and B be n× n
matrices. We say that the product AB is totally intrinsic if the determinant of every
square submatrix of AB is either zero, or a product of two determinants, one of a square
submatrix of A , the second of a square submatrix of B .

Since Ch(AB) =Ch(A)Ch(B) , by Theorem 3.3 we immediately have the following:

THEOREM 3.6. For n×n matrices A and B as in Theorem 1.1, the product AB
is totally intrinsic.

COROLLARY 3.7. Independent of the ordering of the factors, for the generalized
complementary basic matrix ∏Gk , the determinant of every square submatrix of ∏Gk

is either zero, or a product of some determinants of submatrices of the Gk , in fact, at
most one determinant from each Gk .

Next, we recall a definition, see [2]. An m×n integer matrix A is totally unimod-
ular if the determinant of every square submatrix is 0,1 or −1. The last corollary then
implies that total unimodularity is an inherited property:

COROLLARY 3.8. Independent of the ordering of the factors, for the generalized
complementary basic matrix ∏Gk , if each of the distinguished blocks Ak is totally
unimodular, then ∏Gk is totally unimodular.

We can note that this inheritance works in a more general sense: if all det(Ak) are
in a sub-semi-group S of the complex numbers, then ∏Gk is totally unimodular with
respect to S .
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Next, we shall use Remark 3.5 and a version of the Cauchy-Binet theorem (see
[10]) to establish a final result on permanent compounds.

LEMMA 3.9. If an n×n matrix A contains a p×q block of zeros with p+q > n,
then per(A) = 0 .

Proof. Since A has a p×q block of zeros with p+q > n , the minimum number
of lines that cover all the nonzero enties in A is less then or equal to n− p + n− q ,
which is less than n . So, by the Theorem of Konig, see [2], the maximum number of
nonzero entries in A with no two of the nonzero entries on a line is less than n . Hence,
per(A) = 0. �

THEOREM 3.10. For n× n matrices A and B as in Theorem 1.1 and any index
sets α and β of the same cardinality h, where 1 � h � n, we have the following:

[Ph(A)Ph(B)](α ,β ) =

⎧⎪⎨
⎪⎩

[Ph(AB)](α ,β ) = 0, if σα ,β > h;

[Ph(AB)](α ,β ) , if σα ,β = h−1 or h;

0, if σα ,β < h−1,

where σα ,β is the number of indices in the set

(α ∩{k+1, . . . ,n})∪ (β ∩{1, . . . ,k−1}).

In the third case where σα ,β < h−1 , [Ph(AB)](α ,β ) may or may not be equal to 0 .

Proof. For the proof we will use the the Binet-Cauchy Theorem for permanents
(see [10]). First, we introduce a new family of index sets, Gh,n , which consists of all
nondecreasing sequences of h integers chosen from {1, . . . ,n} . We will also use the
previous family of strictly increasing sequences of h integers chosen from {1, . . . ,n} .
We will denote this latter set by Qh,n .

Now, since [AB](α,β ) = A(α,{1, . . . ,n})B({1, . . . ,n},β ) , by the Binet-Cauchy
Theorem for permanents, we get

[Ph(AB)](α ,β ) = ∑
γ∈Gh,n

[Ph(A)](α ,γ) [Ph(B)](γ,β )

μ(γ)
,

where μ(γ) is the product of factorials of the multiplicities of distinct integers appear-
ing in the sequence γ .

On the other hand, the (α,β ) entry of [Ph(A)Ph(B)] can be written as

[Ph(A)Ph(B)](α ,β ) = ∑
γ∈Qh,n

[Ph(A)](α ,γ) [Ph(B)](γ,β ) .

We will denote by γ∗ the set of indices in Gh,n or Qh,n , such that both [Ph(A)](α ,γ∗)
and [Ph(B)](γ∗,β ) do not equal to zero.
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Next, let α = {i1, . . . , is, is+1, . . . , ih} , where

{is+1, . . . , ih} = α ∩{k+1, . . . ,n}
and β = { j1, . . . , it , jt+1, . . . , jh} , where

{ j1, . . . , jt} = β ∩{1, . . . ,k−1},
which implies σα ,β = h− s+ t .

Observe further that although Lemma 2.5 was formulated for index sets from Qh,n ,
the similar assertions are true for index sequences from Gh,n , as well. Hence, γ∗ must
contain { j1, . . . , jt} and {is+1, . . . , ih} together in both cases of Qh,n and Gh,n .

Next, we observe that if γ ∈Gh,n contains a repeating index from the set {is+1, . . . ,
ih} , then A(α,γ) has a p×q block of zeros with p+q > h . Similarly, if γ ∈Gh,n con-
tains a repeating index from the set { j1, . . . , jt} , then B(γ,β ) has a p×q block of zeros
with p+q> h. By Lemma 3.9, this implies that per(A(α,γ)) = 0 or per(B(γ,β )) = 0.
Hence, γ∗ cannot contain repeating indices other than k .

Now, we consider all possible cases for the values of σα ,β and exhibit the explicit
form for a γ∗ index sequence.

Case 1. σα ,β > h . In this case there are no γ∗ index sequences in either Qh,n or
Gh,n, which implies [Ph(A)Ph(B)](α ,β ) = [Ph(AB)](α ,β ) = 0.

Case 2.
Subcase 2.1 σα ,β = h . Here, γ∗ is uniquely determined as γ∗ = { j1, . . . , jt , is+1,

. . . , ih} in both Qh,n and Gh,n , with μ(γ∗) = 1.
Subcase 2.2 σα ,β = h−1. Here, γ∗ is uniquely determined as γ∗ = { j1, . . . , jt ,k,

is+1, . . . , ih} in both Qh,n and Gh,n , with μ(γ∗) = 1.
Hence, for any α and β which satisfy σα ,β = h−1 or h , we get

[Ph(A)Ph(B)](α ,β ) = [Ph(AB)](α ,β ) = per(A(α,γ∗))per(B(γ∗,β )).

Case 3. σα ,β < h− 1. In this case there are no γ∗ index sequences in Qh,n and
there is a unique γ∗ = { j1, . . . , jt ,k, . . . ,k, is+1, . . . , ih} in Gh,n where index k appears
h−σα ,β times. Hence, [Ph(A)Ph(B)](α ,β ) = 0 while

[Ph(AB)](α ,β ) =
per(A(α,γ∗))per(B(γ∗,β ))

μ(γ∗)

which is not equal to zero in general. �

OBSERVATION 3.11. We note that Theorem 2.1 is a special case of Theorem 3.10.

REMARK 3.12. We recall that in Remark 2.4, P2(A)P2(B) and P2(AB) differed
only in the second super-diagonal position. With the use of Theorem 3.10, one can
extend this fact to n× n matrices A and B as in Theorem 1.1 and any 1 � h < n and
obtain the following. With respect to a certain hierarchical ordering of the index sets,
Ph(A)Ph(B)−Ph(AB) is permutationally similar to a block upper-triangular matrix with
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both the block diagonal and first block super-diagonal consisting entirely of zero blocks.
An even more explicit determination of Ph(∏Gk) appears to be formidable in general,
even for just three generators.

Acknowledgement. The authors thank the referee for useful comments.
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