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Abstract. An s-entanglement breaking map between operator systems is a point-norm limit of
entanglement breaking maps, which are a generalization of the corresponding notion in matrix
algebras. We develop some of the key properties of this map, and obtain some conditions when
the completely positive linear maps between operator systems coincide with the s-entanglement
breaking maps. Especially we show that a linear map from a nuclear operator system to the
maximal operator system structure of an Archimedean ordered ∗ -vector space is completely
positive if and only if it is s-entanglement breaking. We also discuss the relationships between
s-entanglement breaking maps and weak ∗ -entanglement breaking maps, and nuclear maps be-
tween operator systems.

1. Introduction

In [4], Kadison proved that every function system, i.e., an ordered real vector space
with an Archimedean order unit, can be represented as a vector subspace of the space of
continuous real-valued functions on a compact Hausdorff space via an order-preserving
map which carries the order unit to the constant function 1. This result motivated Choi
and Effros to obtain a noncommutative analogy: any operator system, i.e., a matrix
ordered ∗ -vector space with an Archimedean matrix order unit, is completely order
isomorphic to a selfadjoint subspace of a unital C∗ -algebra that contains the unit [1].
Choi and Effros’s characterization is a very useful tool in a number of areas: operator
spaces and completely bounded maps [7], metric aspect of noncommutative spaces
[11, 12], quantum information theory [10], etc..

To create a theory for operator systems themselves, Paulsen, Todorov and Tom-
forde introduced the operator system version of the MIN and MAX functors from the
category of normed spaces into the category of operator spaces. Some key properties
were developed [9]. As an application, they investigated the relation of completely
positive linear maps to the entanglement breaking maps between matrix algebras. In
particular, they proved that a linear map φ : Mn → Mm is entanglement breaking if
and only if there exist positive linear functionals sl : Mn → C and matrices Pl ∈ M+

m ,
where l = 1, . . . ,q , such that φ(X) = ∑q

l=1 sl(X)Pl . There they raised the question:
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Given an operator system (S ,{Cn}∞
n=1,e) and an Archimedean ordered ∗ -vector space

(W,W+, f ) , is a completely positive linear map from S to OMAX(W ) a ‘limit’ of
sums of maps of the form φ(a) = s(a)P , where s is a positive linear functional on S
and P ∈W+ ?

In this paper we discuss the problem above in the point-order topology on oper-
ator systems. We begin by investigating the order topology on operator systems and
introducing entanglement breaking maps and s-entanglement breaking maps between
operator systems. We obtain some key properties of s-entanglement breaking maps
between operator systems which are the generalizations of the matrix algebra case.
In Section 4 we discuss the relation of s-entanglement breaking maps to completely
positive linear maps between different operator system structures. We give a nuclear
characterization of s-entanglement breaking maps between operator systems in Section
5. The next section is devoted to some notions on operator system structures.

2. Operator system structures

In this section we recall basic definitions. Let W be a real vector space. A cone in
W is a nonempty subset P ⊆W with the properties:

1. λ p ∈ P for any λ � 0 and p ∈ P ;

2. p+q∈ P for any p,q ∈ P .

An ordered real vector space (V,V+) is a pair consisting of a real vector space V and a
cone V+ ⊆V satisfying V+∩−V+ = {0} . In an ordered real vector space (V,V+) , an
element e ∈V is called an order unit for V if for each v ∈V there exists a real number
r > 0 such that re− v ∈V+ .

A ∗ -vector space is a complex vector space V with a conjugate linear involutive
map ∗ :V �→V . In a ∗ -vector space V , the hermitian elements of V are the elements in
the set Vh = {v ∈V : v∗ = v} . An ordered ∗ -vector space (V,V+) is a ∗ -vector space
V together with a subset V+ ⊆Vh satisfying the following properties

1. V+ is a cone in Vh ;

2. V+∩−V+ = {0} .

When we have an ordered ∗ -vector space (V,V+) , a partial ordering � is defined on
Vh : v � w if and only if v−w ∈V+ .

A hermitian element e in an ordered ∗ -vector space (V,V+) is called an order unit
for V if, for any v∈Vh , there exists a real number r > 0 such that re � v . And an order
unit e for an ordered ∗ -vector space (V,V+) is called Archimedean if whenever v ∈V
and re+v � 0 for all real number r > 0, we have that v∈V+ . An Archimedean ordered
∗ -vector space is a triple (V,V+,e) , where (V,V+) is an ordered ∗ -vector space and e
is an Archimedean order unit for V . A linear functional f on an Archimedean ordered
∗ -vector space (V,V+,e) is positive if f (V+) ⊆ [0,+∞) and a state if it is positive and
f (e) = 1. We let S(V) denote the set of all states on V and call it the state space of V .
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Let V be a ∗ -vector space. For m,n ∈ N , we let Mm,n(V ) denote the set of all
m×n matrices with entries in V . We write Mn(V ) := Mn,n(V ) , Mm,n := Mm,n(C) and
Mn := Mn,n . With the natural addition, scalar multiplication and ∗ -operation, Mn(V )
becomes a ∗ -vector space. The multiplication by scalar matrices on the left and right
can be defined in a way similar to the multiplication of two scalar matrices. We let 0n

be the n×n zero matrix.
A matrix ordering on a ∗ -vector space V is a sequence of sets {Cn}∞

n=1 satisfying

1. each Cn is a cone in Mn(V )h ;

2. Cn∩−Cn = {0n} for all n ∈ N ;

3. X∗CnX ⊆Cm for all m,n ∈ N and any X ∈ Mn,m .

And a ∗ -vector space with a matrix ordering is called a matrix ordered ∗ -vector space.
In a matrix ordered ∗ -vector space (V,{Cn}∞

n=1) , for v ∈V we denote

vn =

⎛
⎜⎝

v
. . .

v

⎞
⎟⎠ ∈ Mn(V ).

An element e ∈ Vh is called a matrix order unit for V if en is an order unit for
(Mn(V ),Cn) for each n . An element e ∈Vh is called an Archimedean matrix order unit
for V if for each n , en is an Archimedean order unit for (Mn(V ),Cn) . An (abstract)
operator system is a triple (V,{Cn}∞

n=1,e) , where (V,{Cn}∞
n=1) is a matrix ordered ∗ -

vector space, and e ∈Vh is an Archimedean matrix order unit for V .
Given an Archimedean ordered ∗ -vector space (V,V+,e) . A matrix ordering

on (V,V+,e) is a matrix ordering {Cn}∞
n=1 on V such that C1 = V+ . An operator

system structure on (V,V+,e) is a matrix ordering {Cn}∞
n=1 on (V,V+,e) such that

(V,{Cn}∞
n=1,e) is an operator system. For two matrix orderings P = {Pn}∞

n=1 and
Q = {Qn}∞

n=1 on (V,V+,e) , we say that P is stronger than Q or Q is weaker than
P if Pn ⊆ Qn for all n . On any Archimedean ordered ∗ -vector space (V,V+,e) there
are two operator system structures C min(V ) = {Cmin

n (V )}∞
n=1 , where

Cmin
n (V ) =

{
(vi j) ∈ Mn(V ) :

n

∑
i, j=1

λiλ jvi j ∈V+ for all λ1, . . . ,λn ∈ C

}
,

and C max(V ) = {Cmax
n (V )}∞

n=1 , where

Cmax
n (V ) = {A ∈ Mn(V ) : ren +A ∈ Dmax

n (V ) for all r > 0}
and

Dmax
n (V ) =

{
k

∑
i=1

ai ⊗ vi : vi ∈V+,ai ∈ M+
n , i = 1, . . . ,k,k ∈ N

}
,

which represent, respectively, the weakest and strongest operator system structures on
(V,V+,e) [9]. The operator systems (V,C min(V ),e) and (V,C max(V ),e) will be simply
denoted by OMIN(V ) and OMAX(V ) .
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Let S and T be vector spaces. A linear map φ : S �→ T induces a linear map
φ (n) : Mn(S ) �→ Mn(T ) given by

φ (n)((si, j)1�i, j�n) = (φ(si, j))1�i, j�n.

If (S ,{Cn}∞
n=1,e) and (T ,{Dn}∞

n=1, f ) are operator systems, then a linear map φ :
S �→T is called n-positive if φ (n)(Cn)⊆Dn for some n∈N , and completely positive
if φ (n)(Cn)⊆Dn for each n∈N . A 1-positive linear map will be called a positive map.

3. s-entanglement breaking maps

In this section we introduce the s-entanglement breaking maps between operator
systems. Some key properties of s-entanglement breaking maps will be developed.

Let (V,V+) be an ordered real vector space with order unit e . For v ∈V , let

‖v‖ = inf{r ∈ R : re+ v � 0 and re− v � 0}.
Then ‖ · ‖ is a seminorm on V , the order seminorm on V determined by e . Moreover,
when e is an Archimedean order unit, ‖ · ‖ is a norm by Proposition 2.23 in [8]. In
this case, it is referred to as the order norm and the topology induced by it is called the
order topology on V .

Let (V,V+) be an ordered ∗ -vector space with order unit e , and let ‖ · ‖ be the
order seminorm on Vh . A seminorm p(·) on V is called a ∗ -seminorm if p(v∗) = p(v)
for all v ∈V . An order seminorm on V is a ∗ -seminorm ||| · ||| on V with the property
that |||v||| = ‖v‖ for all v ∈Vh . If a ∗ -seminorm or an order seminorm on V is in fact
a norm, it is called a ∗ -norm or an order norm on V , respectively. In general, there
are many order seminorms on an ordered ∗ -vector space. Given an operator system
(S ,{Cn}∞

n=1,e) , we obtain an Archimedean ordered ∗ -vector space (S ,C1,e) . So
we have an order norm on S which is unique up to equivalence by Proposition 2.23,
Proposition 4.9 and Proposition 4.11 in [8]. The topology induced by the norm will be
called the order topology on S .

PROPOSITION 3.1. Let (S ,{Cn}∞
n=1,e) be an operator system. Then each

(Mn(S ),Cn,en) is an Archimedean ordered ∗ -vector space. For any Xλ = (xλ
i j) with

λ ∈ Λ and X = (xi j) in Mn(S ) , we have that limλ Xλ = X in the order topology
on Mn(S ) if and only if limλ xλ

i j = xi j in the order topology on S for all i, j ∈
{1,2, . . . ,n} .

Proof. Since for any n∈N , (Mn(S )h,Cn,en) is an ordered real vector space with
an Archimedean order unit en , an order norm ‖ · ‖n on Mn(S )h is determined by en .
For Y = (yi j) ∈ Mn(S ) , we set

|||Y |||n =
∥∥∥∥
(

0n Y
Y ∗ 0n

)∥∥∥∥
2n

.

Then ||| · |||n is a ∗ -norm on Mn(S ) . Moreover, it is an order norm on Mn(S ) .
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For any i ∈ {1,2, . . . ,n} , let Ei be the n×1 matrix with i-th row is one and others
are zero. Given Y = (yi j) ∈ Mn(S ) and any ε > 0, for any i, j ∈ {1,2, . . . ,n} we have

(|||Y |||n + ε)e2±
(

0 yi j

y∗i j 0

)

=
(

(|||Y |||n + ε)e ±E∗
i YE j

±E∗
j Y

∗Ei (|||Y |||n + ε)e

)

=
(

E∗
i (|||Y |||n + ε)enEi ±E∗

i YE j

±E∗
j Y

∗Ei E∗
j (|||Y |||n + ε)enE j

)

=
(

E∗
i 0
0 E∗

j

)(
(|||Y |||n + ε)en ±Y

±Y ∗ (|||Y |||n + ε)en

)(
Ei 0
0 Ej

)
∈C2.

Hence |||yi j|||1 � |||Y |||n . Similarly, we can prove that |||Eiyi jE∗
j |||n � |||yi j|||1 for any

i, j ∈ {1,2, . . . ,n} . So we obtain

|||yi j|||1 � |||Y |||n = |||Σn
i, j=1Eiyi jE

∗
j |||n � Σn

i, j=1|||Eiyi jE
∗
j |||n � Σn

i, j=1|||yi j|||1,
for any i, j ∈ {1,2, . . . ,n} . Now we have

|||xλ
i j − xi j|||1 � |||Xλ −X |||n � Σn

i, j=1|||xλ
i j − xi j|||1,

for any i, j ∈ {1,2, . . . ,n} . This indicates that limλ Xλ = X in the order topology
on Mn(S ) if and only if limλ xλ

i j = xi j in the order topology on S for all i, j ∈
{1,2, . . . ,n} . �

We recall that a positive linear functional f : Mn ⊗Mm �→ C is called separable if
there exist l ∈N , positive linear functionals gi : Mn �→C and positive linear functionals
hi : Mm �→C for i = 1,2, . . . , l such that f = ∑l

i=1 gi⊗hi . A linear map φ : Mk �→Mm is
called entanglement breaking if s◦φ (n) is a separable state for any state s : Mn⊗Mm �→
C and any n ∈ N . By Theorem 6.10 in [9] a linear map φ : Mk �→ Mm is entanglement
breaking if and only if there exist q ∈ N , positive linear functionals fi : Mk �→ C and
positive semidefinite matrices Pi ∈ Mm for i = 1,2, . . . ,q such that φ(x) = ∑q

i=1 fi(x)Pi

for x ∈ Mk .

DEFINITION 3.2. Let (S ,{Cn}∞
n=1,e) and (T ,{Dn}∞

n=1, f ) be operator systems.
A linear map φ : S �→T is called entanglement breaking if there exist q∈ N , positive
linear functionals ωi on S and positive elements pi ∈ T for i = 1,2, . . . ,q such that

φ(x) =
q

∑
i=1

ωi(x)pi, x ∈ S .

A linear map φ : S �→ T is called s-entanglement breaking if there exists a net
{φλ}λ∈Λ of entanglement breaking maps from S to T such that φ(x) = limλ φλ (x)
for any x ∈ S in the order topology on T .

PROPOSITION 3.3. Let (S ,{Cn}∞
n=1,e) and (T ,{Dn}∞

n=1, f ) be operator sys-
tems, and let ψ be a linear map from S to T . If there exists a net of s-entanglement
breaking maps {ψi}i∈I from S to T such that limi ψi(x) = ψ(x) for any x ∈ S in
the order topology on T . Then ψ is s-entanglement breaking.
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Proof. Since each ψi is s-entanglement breaking, there exist a directed set Λi ,
positive linear functionals {ω j,λi

}nλi
j=1 on S and positive elements {p j,λi

}nλi
j=1 of T

such that

ψλi
(x) =

nλi

∑
j=1

ω j,λi
(x)p j,λi

,

and limλi
ψλi

(x) = ψi(x) for all x ∈ S in the order topology on T . Now we define a
new net of entanglement breaking maps {ψμ}μ∈Λ , where Λ = {(i,λi) : i ∈ I,λi ∈ Λi}
and ψμ = ψλi

for some λi , and we have

lim
μ∈Λ

ψμ(x) = ψ(x)

for any x ∈ S in the order topology on T . So ψ is s-entanglement breaking. �

LEMMA 3.4. Let (S ,{Cn}∞
n=1,e) and (T ,{Dn}∞

n=1, f ) be operator systems. If
φ is a positive linear map from S to T , then φ is continuous for the order topologies
on S and T .

Proof. Let ||| · |||1 and ||| · |||2 be two order norms on S and T , respectively.
For any hermitian element a ∈ S , we have that −|||a|||1e � a � |||a|||1e . Since
φ is positive, we obtain that −|||a|||1φ(e) � φ(a) � |||a|||1φ(e) . Also we have that
−|||φ(e)|||2 f � φ(e) � |||φ(e)|||2 f . So we have

−|||a|||1|||φ(e)|||2 f � φ(a) � |||a|||1|||φ(e)|||2 f .

Hence |||φ(a)|||2 � |||φ(e)|||2|||a|||1 .
Now for any a ∈ S , we have that a = a+a∗

2 + i a−a∗
2i . So we get

|||φ(a)|||2 �
∥∥∥∥
∣∣∣∣φ
(

a+a∗

2

)∥∥∥∥
∣∣∣∣
2
+
∥∥∥∥
∣∣∣∣φ
(

a−a∗

2i

)∥∥∥∥
∣∣∣∣
2

� ‖|φ(e)‖|2
∥∥∥∥
∣∣∣∣a+a∗

2

∥∥∥∥
∣∣∣∣
1
+‖|φ(e)‖|2

∥∥∥∥
∣∣∣∣a−a∗

2i

∥∥∥∥
∣∣∣∣
1

� 2|||φ(e)|||2|||a|||1.
Therefore, φ is continuous for the order topologies on S and T . �

LEMMA 3.5. Let (R,{Cn}∞
n=1,e) , (S ,{Dn}∞

n=1, f ) , (T ,{En}∞
n=1,g) and

(U ,{Fn}∞
n=1,h) be operator systems. If φ : S �→ T is an s-entanglement breaking

map and ϕ : R �→ S and ψ : T �→ U are positive linear maps, then φ ◦ϕ : R �→ T
and ψ ◦φ : S �→ U are also s-entanglement breaking.

Proof. Since φ is s-entanglement breaking, there exists a net of entanglement
breaking maps φλ (x) = ∑nλ

i=1 ωi,λ (x)pi,λ with λ ∈ Λ , such that limλ φλ (x) = φ(x) for
any x ∈ S in the order topology on T . For any λ and any r ∈ R , we have

φλ (ϕ(r)) =
nλ

∑
i=1

ωi,λ (ϕ(r))pi,λ .
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Since ϕ is positive, all ωi,λ ◦ϕ are positive linear functionals on R . It is clear that

lim
λ

φλ (ϕ(r)) = φ(ϕ(r))

for any r ∈ R in the order topology on T . Hence φ ◦ϕ is s-entanglement breaking.
Similarly, since ψ is positive, we have that all ψ(pi,λ ) are positive elements of U ,
and

ψ(φλ (x)) =
nλ

∑
i=1

ωi,λ (x)ψ(pi,λ )

for all λ and x ∈ S . By Lemma 3.4, ψ is continuous for the order topologies on T
and U , and so we have

ψ(φ(x)) = lim
λ

ψ(φλ (x)) = lim
λ

nλ

∑
i=1

ωi,λ (x)ψ(pi,λ )

for x ∈ S . Therefore, ψ ◦φ is s-entanglement breaking. �
Given an operator system (S ,{Cn}∞

n=1,e) , a positive linear functional φ : Mn(S )
�→C is called weak∗ -separable if it is a weak∗ -limit of sums of functionals of the form
f ⊗g , where f is a positive linear functional on Mn and g is a positive linear functional
on S . We recall that a linear map φ from the operator system (S ,{Cn}∞

n=1,e) to an
operator system (T ,{Dn}∞

n=1, f ) is called weak∗ -entanglement breaking if for every
n∈N and every positive linear functional s : Mn(T ) �→C , the map s◦φ (n) : Mn(S ) �→
C is weak∗ -separable [9].

THEOREM 3.6. Let (S ,{Cn}∞
n=1,e) and (T ,{Dn}∞

n=1, f ) be operator systems,
and let φ be a linear map from S to T . If φ is s-entanglement breaking, then

1. φ : OMIN(S ) �→ OMAX(T ) is completely positive,

2. φ : S �→ OMAX(T ) is completely positive,

3. φ : OMIN(S ) �→ T is completely positive,

4. φ is weak∗ -entanglement breaking.

Proof. First we assume that φ(x) = ∑m
k=1 ωk(x)pk , where each ωk is a positive

linear functional on S and each pk ∈ T + . For any n ∈ N and X = (xi j) ∈Cmin
n (S ) ,

since every positive linear functional on any operator system is completely positive [7,

Proposition 3.8], we know that ω(n)
k (X) = (ωk(xi j)) ∈ M+

n for each k . So we have

φ (n)(X) = (φ(xi j)) =

(
m

∑
k=1

ωk(xi j)pk

)
=

m

∑
k=1

ω(n)
k (X)⊗ pk ∈ Dmax

n (T ).

For the general case, we suppose that φ(x) = limλ φλ (x) for any x ∈ S in the
order topology on T and each φλ has the form ∑nλ

i=1 ωi,λ (x)pi,λ as above. For any
X = (xi j) ∈Cmin

n (S ) , by Proposition 3.1 we have

lim
λ

φ (n)
λ (X) = lim

λ
(φλ (xi j)) = (φ(xi j)) = φ (n)(X)
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in the order topology on Mn(T ) . Since φ (n)
λ (X) ∈ Dmax

n (T ) and Cmax
n (T ) is the

closure of Dmax
n (T ) in the order topology on Mn(T ) by Proposition 3.20 in [9], we

obtain that φ (n)(X) ∈ Cmax
n (T ) . Hence φ : OMIN(S ) �→ OMAX(T ) is completely

positive, and so φ satisfies (1).
Since {Cmin

n }∞
n=1 is the weakest and {Cmax

n }∞
n=1 is the strongest in all of the oper-

ator system structures on an Archimedean ordered ∗ -vector space, (2) and (3) follow
from (1). By Theorem 6.15 in [9], (3) and (4) are equivalent. This proves (4). �

4. Completely positive linear maps

In this section we discuss the relationship between completely positive linear maps
and s-entanglement breaking maps between different operator system structures.

LEMMA 4.1. Let (V,V+,e) be an Archimedean ordered ∗ -vector space. If
OMAX(V ) �= OMIN(V ) , then there exist an operator system (S ,{Cn}∞

n=1, f ) and a
completely positive linear map φ from the operator system (S ,{Cn}∞

n=1, f ) to the op-
erator system OMAX(V ) which is not s-entanglement breaking.

Proof. Choosing (S ,{Cn}∞
n=1, f ) = OMAX(V ) and φ = idV . Then φ is a com-

pletely positive linear map from the operator system (S ,{Cn}∞
n=1, f ) to the operator

system OMAX(V ) . However, φ is not s-entanglement breaking, otherwise by (1) of
Theorem 3.6 we have that φ : OMIN(S ) �→ OMAX(V ) is completely positive. And
by the definition of minimal operator system we have that OMIN(S ) = OMIN(V ) .
Since φ is the identity map, we get that Cmin

n (V ) = Cmax
n (V ) for all n . This contradicts

the assumption. �

EXAMPLE 4.2. For m,n∈N , a linear operator a∈B(Cm⊗Cn) is said to be block
positive if 〈a(ξ ⊗η),ξ ⊗η〉 � 0 for all ξ ∈ Cm and η ∈ Cn . A linear operator a ∈
B(Cm⊗Cn) is called separable positive if it can be written in the form a = ∑k

i=1 bi⊗ci

for some positive semidefinite operators bi ∈ B(Cm) and ci ∈ B(Cn) for i = 1,2, . . . ,k .
It is known that Cmin

m (Mn) is the set of block positive linear operators on Cm ⊗Cn and
Cmax

m (Mn) is the set of separable positive linear operators on Cm ⊗Cn [3]. For n � 2,

let {e(n)
i j }n

i, j=1 be the matrix units of Mn . Take

a = e(2)
11 ⊗ e(n)

11 + e(2)
21 ⊗ e(n)

12 + e(2)
12 ⊗ e(n)

21 + e(2)
22 ⊗ e(n)

22 .

For any ξ = (ξ1,ξ2)t ∈ C
2 and η = (η1, . . . ,ηn)t ∈ C

n , we have

〈a(ξ ⊗η),ξ ⊗η〉 = (ξ1η1 + ξ2η2)(ξ1η1 + ξ2η2) � 0.

So a ∈ M2 ⊗Mn is block positive. Since −1 is an eigenvalue of a , it is not positive
semidefinite. Hence a is not separable positive. Therefore, Cmin

2 (Mn) �=Cmax
2 (Mn) , i.e.,

C min(Mn) �= C max(Mn) . So by Lemma 4.1, there exist an operator system
(S ,{Cn}∞

n=1, f ) and a completely positive linear map φ from the operator system
(S ,{Cn}∞

n=1, f ) to the operator system OMAX(Mn) which is not s-entanglement break-
ing.
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LEMMA 4.3. Let (V,V+,e) be an Archimedean ordered ∗ -vector space, and let

(Mn,{M+
m (Mn)}∞

m=1,1n)

be the operator system arising from the identification of Mn with B(Cn) , where M+
m (Mn)

is the set of positive semidefinite matrices in Mm ⊗Mn
∼= Mmn . Then a linear map

φ : Mn �→OMAX(V ) is completely positive if and only if φ is s-entanglement breaking.

Proof. Let a be the matrix (e(n)
i j )1�i, j�n of matrix units, where {e(n)

i j }n
i, j=1 are

the matrix units of Mn . Then φ is completely positive if and only if φ (n)(a) =(
φ(e(n)

i j )
)

1�i, j�n
∈Cmax

n (V ) [7]. Since Cmax
n (V ) is the closure of Dmax

n (V ) in the order

topology on Mn(V ) , φ (n)(a) ∈Cmax
n (V ) if and only if there exists a family of elements

{Yλ}λ∈Λ in Dmax
n (V ) such that limλ Yλ = φ (n)(a) in the order topology on Mn(V ) . Let

Yλ = ∑kλ
l=1 Al,λ ⊗ pl,λ with Al,λ = (a(l,λ )

i j ) ∈ M+
n and pl,λ ∈V+ . We define

φλ (x) =
kλ

∑
l=1

Tr(At
l,λ x)pl,λ , x ∈ Mn,

where At
l,λ denotes the transpose of Al,λ . Since Al,λ � 0, it is not hard to see that each

ψl,λ (x) = Tr(At
l,λ x) is a positive linear functional on Mn . So each φλ is entanglement

breaking. Moreover, we have

φλ (e(n)
i j ) =

kλ

∑
l=1

Tr(At
l,λ e(n)

i j )pl,λ =
kλ

∑
l=1

a(l,λ )
i j pl,λ ,

for all i, j = 1,2, . . . ,n . So

(
φλ (e(n)

i j )
)

1�i, j�n
=

kλ

∑
l=1

(
a(l,λ )

i j pl,λ

)
1�i, j�n

=
kλ

∑
l=1

Al,λ ⊗ pl,λ = Yλ .

Hence limλ

(
φλ (e(n)

i j )
)

= φ (n)(a) =
(

φ(e(n)
i j )
)

in the order topology on Mn(V ) . By

Proposition 3.1, we have limλ φλ (e(n)
i j ) = φ(e(n)

i j ) in the order topology on V for any
i, j ∈ {1,2, . . . ,n} . Since each x ∈ Mn can be written as a linear combination of

{e(n)
i j }n

i, j=1 , we have that limλ φλ (x)= φ(x) in the order topology on V for each x∈Mn .
So by definition, φ is s-entanglement breaking. Conversely, if φ is s-entanglement
breaking, we can see φ is completely positive by Theorem 3.6. �

Let M be a von Neumann algebra, and let (S ,{Cn}∞
n=1,e) be an operator system.

A linear map φ from M to S is said to be normal if for every net {xi} in M with
limi xi = x ∈ M in the strong operator topology on M , we have that limi φ(xi) = φ(x)
in the order topology on S .

PROPOSITION 4.4. Let B(H) be the set of bounded linear operators on some
Hilbert space H , and let (V,V+,e) be an Archimedean ordered ∗ -vector space. If
φ : B(H) �→ OMAX(V ) is a normal and completely positive linear map, then φ is s-
entanglement breaking.
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Proof. If H is finite dimensional, by Lemma 4.3 we have that φ is s-entanglement
breaking. When H is infinite-dimensional, there exists a net of finite-dimensional pro-
jections {pi}i∈Λ in B(H) with limi pi = IH in the strong operator topology on B(H) ,
where IH is the identity operator on H . For i ∈ Λ , set

φi(x) = φ(pixpi), x ∈ B(piH).

Then each φi is a completely positive linear map from B(piH) to OMAX(V ) . By
Lemma 4.3 each φi is s-entanglement breaking. So there exist a directed set Λi , positive
linear functionals {ω j,λi

}nλi
j=1 on B(piH) and positive elements {p j,λi

}nλi
j=1 of V such

that

φλi
(x) =

nλi

∑
j=1

ω j,λi
(x)p j,λi

, λi ∈ Λi,

and limλi
φλi

(x) = φi(x) for all x ∈ B(piH) in the order topology on OMAX(V ) . Now
for each λi ∈ Λi , we define

ψλi
(x) =

nλi

∑
j=1

ω j,λi
(pixpi)p j,λi

, x ∈ B(H).

Then we have that each ψλi
is entanglement breaking, and

lim
λi

ψλi
(x) = lim

λi

φλi
(pixpi) = φi(pixpi)

for any i ∈ Λ and x ∈ B(H) in the order topology on OMAX(V ) . We define

ψi(x) = φi(pixpi), x ∈ B(H)

for i ∈ Λ . Then each ψi is an s-entanglement breaking map from B(H) to OMAX(V ) ,
and for any x ∈ B(H) we have

lim
i

ψi(x) = lim
i

φi(pixpi) = lim
i

φ(pi(pixpi)pi) = lim
i

φ(pixpi) = φ(x)

since limi pixpi = x in the strong operator topology on B(H) . Therefore, φ is s-
entanglement breaking by Proposition 3.3. �

An operator system (S ,{Cn}∞
n=1,e) is called nuclear if there exist nets of uni-

tal completely positive linear maps ϕλ : S �→ Mnλ and ψλ : Mnλ �→ S , such that
limλ ψλ (ϕλ (x)) = x for any x ∈ S in the order topology on S [2].

THEOREM 4.5. Let (S ,{Cn}∞
n=1,e) be a nuclear operator system, and let

(V,V+, f ) be an Archimedean ordered ∗ -vector space. Then a linear map φ : S �→
OMAX(V ) is completely positive if and only if φ is s-entanglement breaking.

Proof. Since S is nuclear, there exist completely positive linear maps ϕλ : S �→
Mnλ and ψλ : Mnλ �→ S such that limλ ψλ (ϕλ (x)) = x for any x ∈ S in the order
topology on S . If φ is completely positive, then φ ◦ψλ : Mnλ �→ OMAX(V ) is also
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completely positive. So by Lemma 4.3 we have that φ ◦ψλ is s-entanglement break-
ing. Set φλ = φ ◦ψλ ◦ϕλ , by Lemma 3.5 we see that φλ is s-entanglement break-
ing. From Lemma 3.4 we know that positive linear maps between operator systems
must be continuous for the order topologies on the two operator systems, we see that
limλ φλ (x) = limλ φ(ψλ (ϕλ (x))) = φ(x) for x ∈ S in the order topology on V . So φ
is s-entanglement breaking by Proposition 3.3.

Conversely, if φ is s-entanglement breaking, we can see φ is completely positive
by Theorem 3.6. �

We say an operator system (T ,{Cn}∞
n=1,e) is injective if for every pair of operator

systems (R,{Dn}∞
n=1, f ) and (S ,{En}∞

n=1, f ) such that R ⊆S , and each completely
positive linear map φ : R �→ T , there exists a completely positive extension ψ : S �→
T [1]. For example, B(H) is injective.

THEOREM 4.6. If (T ,{Cn}∞
n=1,e) is an injective operator system and if (V,V+,e)

is an Archimedean ordered ∗ -vector space, then a linear map φ : OMIN(V ) �→ T is
completely positive if and only if φ is s-entanglement breaking.

Proof. Assume that φ : OMIN(V ) �→ T is completely positive.
Since (T ,{Cn}∞

n=1,e) is injective, the map φ : OMIN(V ) �→ OMAX(T ) is com-
pletely positive by Proposition 6.11 in [9]. By Theorem 3.2 in [9], C min(V ) is the
operator system structure on (V,V+,e) induced by the inclusion τ of V into C(S(V )) .
So τ is positive. From the injectivity of (T ,{Cn}∞

n=1,e) , we can extend φ to a com-
pletely positive map φ ′ from C(S(V )) to OMAX(T ) . Since C(S(V )) is nuclear as a
unital C∗ -algebra, it is a nuclear operator system by Remark 5.15 in [5] and Corollary
3.2 in [2]. So by Theorem 4.5, φ ′ is s-entanglement breaking. It is clear that

φ = φ ′ ◦ τ

Therefore, φ is s-entanglement breaking by Lemma 3.5.
Conversely, if φ is s-entanglement breaking, we can see that φ is completely

positive by Theorem 3.6. �

PROPOSITION 4.7. Let (V,V+,e) be an Archimedean ordered ∗ -vector space.
If OMIN(V ) �= OMAX(V ) , then OMAX(V ) is not a nuclear operator system and
OMIN(V ) is not an injective operator system.

Proof. Let φ = idV . Then φ : OMAX(V ) �→ OMAX(V ) is completely positive. If
OMAX(V ) is nuclear, then φ is s-entanglement breaking by Theorem 4.5. So from (3)
of Theorem 3.6 we see that φ : OMIN(V ) �→ OMAX(V ) is completely positive. Hence
we obtain that OMIN(V ) = OMAX(V ) , which contradicts the assumptions.

Similarly, from the fact φ : OMIN(V ) �→ OMIN(V ) is completely positive and
OMIN(V ) is injective, we will get that φ is s-entanglement breaking by Theorem 4.6.
So φ : OMIN(V ) �→ OMAX(V ) is completely positive by (2) of Theorem 3.6. We
obtain that OMIN(V ) = OMAX(V ) , which also contradicts the assumptions. �
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EXAMPLE 4.8. For n � 2, we have that OMIN(Mn) �= OMAX(Mn) by Exam-
ple 4.2. From Proposition 4.7 and its proof we get a non-nuclear operator system
(S ,{Cn}∞

n=1,e) = OMAX(Mn) , an Archimedean ordered ∗ -vector space (Mn,M+
n ,1n)

and a linear map φ = idMn : S �→ OMAX(Mn) which is completely positive, but it is
not s-entanglement breaking.

Similarly, by Proposition 4.7 and its proof we get a non-injective operator system
(T ,{Dn}∞

n=1, f ) = OMIN(Mn) , an Archimedean ordered ∗ -vector space (Mn,M+
n ,1n)

and a linear map ψ = idMn : OMIN(Mn) �→ T which is completely positive, but it is
not s-entanglement breaking.

On the relationship between weak∗ -entanglement breaking maps and s-entangle-
ment breaking maps between operator systems, we have the following corollary.

COROLLARY 4.9. Let (S ,{Cn}∞
n=1,e) and (T ,{Dn}∞

n=1, f ) be operator sys-
tems. If (T ,{Dn}∞

n=1, f ) is injective, then a linear map φ : S �→ T is weak∗ -
entanglement breaking if and only if φ is s-entanglement breaking.

Proof. Assume first that φ is weak∗ -entanglement breaking. By Theorem 6.15
in [9], we have that the map φ : OMIN(S ) �→ T is completely positive. So φ is s-
entanglement breaking by Theorem 4.6. Conversely, if φ is s-entanglement breaking,
we can see that φ is weak∗ -entanglement breaking by Theorem 3.6. �

Generally, a weak∗ -entanglement breaking map need not to be s-entanglement
breaking. In fact, we have

PROPOSITION 4.10. Let (V,V+,e) be an Archimedean ordered ∗ -vector space.
If OMAX(V ) �= OMIN(V ) , then there exist an operator system (S ,{Cn}∞

n=1, f ) and a
linear map φ : S �→ OMIN(V ) such that φ is weak∗ -entanglement breaking, but it is
not s-entanglement breaking.

Proof. Let (S ,{Cn}∞
n=1, f ) = OMIN(V ) and φ = idV . Then φ is a completely

positive linear map from S to OMIN(V ) . So φ is weak∗ -entanglement breaking
by Theorem 6.15 in [9]. However, φ is not s-entanglement breaking. In fact, if φ is
s-entanglement breaking, then by (2) of Theorem 3.6, φ : OMIN(V ) �→ OMAX(V ) is
completely positive. So we have that OMIN(V ) = OMAX(V ) . This contradicts the
assumption. �

EXAMPLE 4.11. For n � 2, denote

(S ,{Cn}∞
n=1,e) = OMIN(Mn), (T ,{Dn}∞

n=1, f ) = OMIN(Mn).

Then from Example 4.2 and Proposition 4.7 we have that (T ,{Dn}∞
n=1, f ) is not injec-

tive. It is clear that the linear map φ = idMn : S �→T is completely positive. By Theo-
rem 6.15 in [9], φ is weak∗ -entanglement breaking. However, φ is not s-entanglement
breaking by Example 4.8.
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5. Nuclearity and s-entanglement breaking maps

In this section we give a nuclear characterization of s-entanglement breaking maps.

PROPOSITION 5.1. Let (S ,{Cn}∞
n=1,e) and (T ,{Dn}∞

n=1, f ) be operator sys-
tems. Then a linear map φ : S �→ T is s-entanglement breaking if and only if we can
find a net Xλ of compact spaces and completely positive linear maps ϕλ : S �→C(Xλ )
and ψλ : C(Xλ ) �→ T such that φ(x) = limλ (ψλ ◦ϕλ )(x) for any x ∈ S in the order
topology on T .

Proof. Assume that φ is s-entanglement breaking. Then there exist a directed set
Λ , positive linear functionals {ω j,λ}nλ

j=1 on S and positive elements {p j,λ}nλ
j=1 of T

such that

φλ (x) =
nλ

∑
j=1

ω j,λ (x)p j,λ ,

and limλ φλ (x) = φ(x) for all x ∈ S in the order topology on T . By changing coef-
ficients of ω j,λ we may assume that they are states. Set Xλ = {ω1,λ , ...,ωnλ ,λ} . Then
Xλ ⊆ S(S ) , where S(S ) is the state space of S . So each Xλ is compact in the
weak∗ - topology. Define the maps ϕλ : S �→C(Xλ ) and ψλ : C(Xλ ) �→ T by

ϕλ (x)(ωi,λ ) = ωi,λ (x), x ∈ S

and

ψλ ( f ) =
nλ

∑
i=1

f (ωi,λ )pi,λ , f ∈C(Xλ ).

Then ϕλ and ψλ are completely positive linear maps and φλ = ψλ ◦ϕλ . So we get the
desired factorization.

Conversely, suppose that there exist a net of compact spaces {Xλ}λ∈Λ and com-
pletely positive linear maps ϕλ : S �→ C(Xλ ) and ψλ : C(Xλ ) �→ T such that
limλ ψλ (ϕλ (x)) = φ(x) for any x ∈ S in the order topology on T . Since C(Xλ ) =
OMIN(C(Xλ )) by Proposition 5.2 in [9], we see that ψλ : C(Xλ ) �→ OMAX(T ) is
completely positive by Proposition 6.11 in [9]. Moreover C(Xλ ) is nuclear, and so ψλ
is s-entanglement breaking by Theorem 4.5. Hence ψλ ◦ϕλ is s-entanglement break-
ing by Lemma 3.5. Now that φ is s-entanglement breaking follows from Proposition
3.3. �

Considered the Problem 6.17 in [9] and compared with the factorization theorem
in [6], we conjecture that completely positive maps from OMIN(S ) to OMAX(T )
are s-entanglement breaking maps, so we have the following question.

QUESTION 5.2. Let (V,V+,e) and (W,W+, f ) be Archimedean ordered ∗ -vector
spaces. For any completely positive linear map φ : OMIN(V ) �→ OMAX(W ) , is φ s-
entanglement breaking?
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