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CONDITIONS Cp , C′
p , AND C′′

p FOR p–OPERATOR SPACES

JUNG-JIN LEE

(Communicated by Z.-J. Ruan)

Abstract. Conditions C , C′ , and C′′ were introduced for operator spaces in an attempt to study
local reflexivity and exactness of operator spaces [4, Chapter 14]. For example, it is known that
an operator space W is locally reflexive if and only if W satisfies condition C′′ [4, Theorem
14.3.1] and an operator space V is exact if and only if V satisfies condition C′ [4, Theorem
14.4.1]. It is also known that an operator space V satisfies condition C if and only if it satisfies
conditions C′ and C′′ [4, Lemma 14.2.1], [7, Theorem 5]. In this paper, we define p -operator
space analogues of these definitions, which will be called conditions Cp , C′

p , and C′′
p , and

show that a p -operator space on Lp space satisfies condition Cp if and only if it satisfies both
conditions C′

p and C′′
p . The p -operator space injective tensor product of p -operator spaces

plays a key role.

1. Introduction to p -operator spaces

A concrete operator space V is defined to be a closed subspace of B(H) , where
B(H) denotes the space of all bounded linear operators on a Hilbert space H . For
each n ∈ N , the matrix algebra Mn(B(H)) with entries in B(H) can be identified
with B(H ⊕·· ·⊕H︸ ︷︷ ︸

n

) via matrix multiplication

⎡
⎣ Ti j

⎤
⎦
⎡
⎢⎣ h1

...
hn

⎤
⎥⎦=

⎡
⎢⎣∑n

j=1 T1 jh j
...

∑n
j=1 Tn jh j

⎤
⎥⎦ , [Ti j] ∈ Mn(B(H)), h j ∈ H,

and this gives rise to a norm ‖ · ‖n on Mn(V ) , which we denote by Mn(V ) . It is then
easy to verify that the following two properties (called Ruan’s axioms) hold:

D∞ for u ∈ Mn(V ) and v ∈ Mm(V ) , we have

∥∥∥∥
[

u 0
0 v

]∥∥∥∥
n+m

= max{‖u‖n,‖v‖m} .

M for u∈Mm(V ) , α ∈Mn,m(C) , and β ∈Mm,n(C) , we have ‖αuβ‖n � ‖α‖‖u‖m‖β‖ ,
where ‖α‖ is the norm of α as a member of B(�m

2 , �n
2) , and similarly for β .
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An abstract operator space is a Banach space X together with a family of norms
‖ · ‖n defined on Mn(X) satisfying the conditions D∞ and M above. In [13], Ruan
showed that these two concepts coincide and after Ruan’s characterization, operator
space theory has really been taken off and quickly developed into an active research
area in modern analysis. Many important applications have been found in some related
areas. For example, let G be a locally compact group. It is well known that G is
amenable if and only if the convolution algebra L1(G) is amenable as a Banach alge-
bra [9]. We consider another Banach algebra called the Fourier algebra A(G) which
consists of all coefficient functions of the left regular representation λ of G , i.e.,

A(G) = {ω(·) = 〈λ (·)ξ ,η〉 : ξ ,η ∈ L2(G)}.
By [5], A(G) is a commutative Banach algebra with respect to pointwise multipli-

cation and can be regarded as the predual of VN(G) , the group von Neumann algebra
of G . If G is abelian, then its dual group Ĝ is also abelian and we have the isometric
isomorphism A(G) ∼= L1(Ĝ) , and this suggests a relationship between the amenability
of G and the amenability (as a Banach algebra) of A(G) . Indeed, if A(G) is amenable,
then G is amenable. In the opposite direction, Johnson showed that the Banach algebra
A(G) fails to be amenable even in the case of very simple compact groups, such as
SU(2,C) [10].

In [14], Ruan studied the operator amenability of A(G) which can be regarded as
the amenability of A(G) in the category of operator spaces, and proved that a locally
compact group G is amenable if and only if A(G) is operator amenable. This suggests
that A(G) is better viewed as an operator space, and motivated by this observation,
there has been some research [3, 1] to study Figà-Talamanca-Herz Algebra Ap(G) ,
which can be regarded as an Lp space generalization of the Fourier algebra A(G) (The
reader is referred to [6, 8] for more details on Ap(G)), in the framework of Lp space
generalization of operator spaces. This leads to the definition of p -operator spaces we
will give below. Throughout this paper, we let 1 < p < ∞ .

DEFINITION 1.1. Let SQp denote the collection of subspaces of quotients of Lp

spaces. A Banach space X is called a concrete p-operator space if X is a closed
subspace of B(E) for some E ∈ SQp , where B(E) denotes the space of all bounded
linear operators on E .

Let Mn(X) denote the linear space of all n× n matrices with entries in X . For
a concrete p -operator space X ⊆ B(E) and for each n ∈ N , define a norm ‖ · ‖n on
Mn(X) by identifying Mn(X) as a subspace of B(�n

p(E)) , and let Mn(X) denote the
corresponding normed space. The norms ‖ · ‖n then satisfy

D∞ for u ∈ Mn(X) and v ∈ Mm(X) , we have ‖u⊕ v‖n+m = max{‖u‖n,‖v‖m} .

Mp for u∈Mm(X) , α ∈Mn,m(C) , and β ∈Mm,n(C) , we have ‖αuβ‖n � ‖α‖‖u‖m‖β‖ ,
where ‖α‖ is the norm of α as a member of B(�m

p , �n
p) , and similarly for β .

REMARK 1.2. When p = 2, these are Ruan’s axioms and 2-operator spaces are
simply operator spaces because the SQ2 spaces are exactly Hilbert spaces.
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As in operator spaces, we can also define abstract p -operator spaces.

DEFINITION 1.3. An abstract p-operator space is a Banach space X together
with a sequence of norms ‖ · ‖n defined on Mn(X) satisfying the conditions D∞ and
Mp above.

Thanks to the following theorem by Le Merdy, we do not distinguish between
concrete p -operator spaces and abstract p -operator spaces, so from now on we will
merely speak of p -operator spaces.

THEOREM 1.4. [11, Theorem 4.1] An abstract p-operator space X can be iso-
metrically embedded in B(E) for some E ∈ SQp in such a way that the canonical
norms on Mn(X) arising from this embedding agree with the given norms.

Note that a linear map u : X → Y between p -operator spaces X and Y induces
a map un : Mn(X) → Mn(Y ) by applying u entrywise. We say that u is p -completely
bounded if ‖u‖pcb := supn ‖un‖ < ∞ . Similarly, we define p -completely contractive,
p -completely isometric, and p -completely quotient maps. We write CBp(X ,Y ) for
the space of all p -completely bounded maps from X into Y , and to turn the mapping
space C Bp(X ,Y ) into a p -operator space, we define a norm on Mn(C Bp(X ,Y )) by
identifying this space with CBp(X ,Mn(Y )) . Using Le Merdy’s theorem, one can show
that CBp(X ,Y ) itself is a p -operator space. In particular, the p -operator dual space
of X is defined to be C Bp(X ,C) . The next lemma by Daws shows that we may
identify the Banach dual space X ′ of X with the p -operator dual space CBp(X ,C) of
X .

LEMMA 1.5. [3, Lemma 4.2] Let X be a p-operator space, and let ϕ ∈ X ′ , the
Banach dual of X . Then ϕ is p-completely bounded as a map to C . Moreover,
‖ϕ‖pcb = ‖ϕ‖ .

If E = Lp(μ) for some measure μ and X ⊆ B(E) = B(Lp(μ)) , then we say
that X is a p -operator space on Lp space. These p -operator spaces are often easier
to work with. For example, let κX : X → X ′′ denote the canonical inclusion from
a p -operator space X into its second dual. Contrary to operator spaces, κX is not
always p -completely isometric. Thanks to the following theorem by Daws, however,
we can easily characterize those p -operator spaces with the property that the canonical
inclusion is p -completely isometric.

PROPOSITION 1.6. [3, Proposition 4.4] Let X be a p-operator space. Then κX

is a p-complete contraction. Moreover, κX is a p-complete isometry if and only if
X ⊆ B(Lp(μ)) p-completely isometrically for some measure μ .

Conditions C , C′ , and C′′ for operator spaces were introduced and studied in [4,
Chapter 14] and [7] and they play an important role in understanding local reflexivity
and exactness of operator spaces. For example, it is known that an operator space is
locally reflexive if and only if it satisfies condition C′′ [4, Theorem 14.3.1]. It is also
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known that an operator space is exact if and only if it satisfies condition C′ [4, Theorem
14.4.1]. In this paper, we define p -operator space analogues of these conditions, which
will be called conditions Cp , C′

p , and C′′
p , and show that a p -operator space on Lp

space satisfies condition Cp if and only if it satisfies both conditions C′
p and C′′

p .

2. Tensor product of p -operator spaces

In this section, we recall basic properties of tensor products on p -operator spaces
studied in [3, 1]. We mainly focus on p -projective tensor product and p -injective tensor
product.

DEFINITION 2.1. Let X ,Y be p -operator spaces. Let X ⊗Y denote the algebraic
tensor product of X and Y . For u ∈ Mn(X ⊗Y ) , let

‖u‖∧p = inf{‖α‖‖v‖‖w‖‖β‖ : u = α(v⊗w)β},

where the infimum is taken over r,s ∈ N , α ∈ Mn,r×s , v ∈ Mr(X) , w ∈ Ms(Y ) , and
β ∈ Mr×s,n .

Daws defined and studied the p -projective tensor product [3]. Note that ‖ · ‖∧p

gives the algebraic tensor product X ⊗Y a p -operator space structure [3, Proposition
4.8]. Furthermore, ‖ · ‖∧p is the largest subcross p -operator space norm on X ⊗Y in
the sense that ‖x⊗ y‖ � ‖x‖r‖y‖s for all x ∈ Mr(X) and all y ∈ Ms(Y ) [3, Proposition
4.8]. The p -operator space projective tensor product is defined to be the completion

of X ⊗Y with respect to this norm and is denoted by X
∧p⊗ Y .

REMARK 2.2.

a. One can show that p -operator space projective tensor product is commutative,

i.e., X
∧p⊗ Y = Y

∧p⊗ X p -completely isometrically.

b. By universality of the Banach space projective tensor product
π⊗ [11, A.3.3], we

have
‖u‖∧p � ‖u‖π

for all u ∈ X ⊗Y .

Let V,W , and Z be p -operator spaces, and let ψ : V ×W → Z be a bilinear map.
Define bilinear maps ψr,s;t,u by

ψr,s;t,u : Mr,s(V )×Mt,u(W ) → Mr×t,s×u(Z), (v,w) → (ψ(vi, j,wk,l)),

and let ψr;s = ψr,r;s,s . Finally define

‖ψ‖ jpcb = sup{‖ψr;s‖ : r,s ∈ N}.
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We say that ψ is jointly p-completely bounded (respectively, jointly p-completely
contractive) if ‖ψ‖ jpcb < ∞ (respectively, ‖ψ‖ jpcb � 1). The space of all jointly p -
completely bounded maps from V ×W to Z will be denoted by CBp(V ×W,Z) and
this space can be turned into a p -operator space in the same way as for C Bp(V,W ) .
Here we collect some results on the p -projective tensor product for convenience.

PROPOSITION 2.3. [3, Proposition 4.9] Let X ,Y , and Z be p-operator spaces.
Then we have natural p-completely isometric identifications

CBp(X
∧p⊗ Y,Z) = CBp(X ×Y,Z) = CBp(X ,CBp(Y,Z)).

In particular,

(X
∧p⊗ Y )′ = CBp(X ,Y ′).

As in operator spaces, the p -operator space projective tensor product is projective
in the following sense:

PROPOSITION 2.4. [3, Proposition 4.10] Let X ,X1,Y , and Y1 be p-operator spaces.
If u : X → X1 and v : Y → Y1 are p-complete quotient maps, then u⊗ v extends to a

p-complete quotient map u⊗ v : X
∧p⊗ Y → X1

∧p⊗ Y1 .

We now briefly introduce the p -operator space injective tensor product.

DEFINITION 2.5. Let X ,Y be p -operator spaces. Regarding the algebraic tensor
product X ⊗Y as a subspace of C Bp(X ′,Y ) , we define the p -operator space injective

tensor product X
∨p⊗ Y to be the completion of X ⊗Y in C Bp(X ′,Y ) .

To be precise, for u = [ui j] ∈ Mn(X ⊗Y ) with ui j = ∑
Ni j
k=1 xi j

k ⊗yi j
k , the p -operator

space injective tensor product norm ‖u‖∨p is defined by

‖u‖∨p =‖u‖Mn(CBp(X ′,Y )) = ‖u‖CBp(X ′,Mn(Y ))

=sup

⎧⎨
⎩
∥∥∥∥∥
[

Ni j

∑
k=1

fst (x
i j
k )yi j

k

]∥∥∥∥∥
Mmn(Y)

: m ∈ N, f = [ fst ] ∈ Mm(X ′)1

⎫⎬
⎭ ,

(2.1)

where Mm(X ′)1 denotes the closed unit ball of Mm(X ′) = CBp(X ,Mm) .

PROPOSITION 2.6. Suppose that X ,X1,Y , and Y1 are p-operator spaces. Given
p-complete contractions ϕ : X → X1 and ψ : Y → Y1 , the mapping

ϕ ⊗ψ : X ⊗Y → X1⊗Y1

extends to a p-complete contraction

ϕ ⊗ψ : X
∨p⊗ Y → X1

∨p⊗ Y1.
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Proof. Since ϕ ⊗ψ = (idX1 ⊗ψ)◦ (ϕ ⊗ idY ) , it suffices to show that ϕ ⊗ idY and
idX1 ⊗ψ extend to p -complete contractions. Let u = [ui j] ∈ Mn(X ⊗Y ) . Let us write

ui j = ∑
Ni j
k xi j

k ⊗ yi j
k for each ui j . Since

(ϕ ⊗ idY )n(u) =

[
Ni j

∑
k

ϕ(xi j
k )⊗ yi j

k

]
∈ Mn(X1⊗Y ),

from (2.1) it follows that

‖(ϕ⊗ idY )n(u)‖∨p = sup

⎧⎨
⎩
∥∥∥∥∥
[

Ni j

∑
k=1

gst(ϕ(xi j
k ))yi j

k

]∥∥∥∥∥
Mmn(Y )

: m ∈ N,g = [gst ] ∈ Mm(X ′
1)1

⎫⎬
⎭ .

Define hst = gst ◦ϕ for 1 � s,t � m , then h = [hst ] = g ◦ϕ ∈ Mm(X ′)1 and we have

‖(ϕ ⊗ idY )n(u)‖∨p � ‖u‖∨p.

To show that idX1 ⊗ψ is also p -completely contractive, let v = [vi j] ∈ Mn(X1 ⊗Y ) .
Writing vi j = ∑

Ni j
k wi j

k ⊗ yi j
k , we have

‖v‖∨p = sup

⎧⎨
⎩
∥∥∥∥∥
[

Ni j

∑
k=1

fst (w
i j
k )yi j

k

]∥∥∥∥∥
Mmn(Y)

: m ∈ N, f = [ fst ] ∈ Mm(X ′
1)1

⎫⎬
⎭ .

On the other hand,

‖(idX1 ⊗ψ)n(v)‖∨p

=sup

⎧⎨
⎩
∥∥∥∥∥
[

Ni j

∑
k=1

fst(w
i j
k )ψ(yi j

k )

]∥∥∥∥∥
Mmn(Y1)

: m ∈ N, f = [ fst ] ∈ Mm(X ′
1)1

⎫⎬
⎭

=sup

⎧⎨
⎩
∥∥∥∥∥ψmn

([
Ni j

∑
k=1

fst(w
i j
k )yi j

k

])∥∥∥∥∥
Mmn(Y1)

: m ∈ N, f = [ fst ] ∈ Mm(X ′
1)1

⎫⎬
⎭

�‖ψ‖pcb‖v‖∨p . �

(2.2)

REMARK 2.7.

a. By definition of the Banach space injective tensor product
ε⊗ , we have

‖u‖ε = ‖u‖B(X ′,Y ) � ‖u‖CBp(X ′,Y ) = ‖u‖∨p

for every u ∈ X ⊗Y .

b. Let u ∈ Mn(X ⊗Y ) . If Y ⊆ B(Lp(ν)) for some measure ν , then by Definition
2.5 and [3, Theorem 4.3, Proposition 4.4]

‖u‖∨p = sup{‖ψ(ϕst(ui j))‖Mrmn : m,k ∈ N,ϕ = [ϕst ] ∈ Mm(X ′)1,ψ ∈ Mk(Y ′)1}
= sup{‖(ϕ ⊗ψ)n(u)‖ : m,k ∈ N,ϕ ∈ Mm(X ′)1,ψ ∈ Mk(Y ′)1}.
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c. Let F : X ⊗Y → Y ⊗X denote the “flip”, that is, F(∑xi ⊗ yi) = ∑yi ⊗ xi . If
Y ⊆B(Lp(ν)) for some measure ν , then by (b) above, for every u∈Mn(X⊗Y ) ,
we get

‖u‖∨p = sup{‖(ϕ ⊗ψ)n(u)‖ : m,k ∈ N,ϕ ∈ Mm(X ′)1,ψ ∈ Mk(Y ′)1}.
On the other hand, if X ⊆ B(Lp(μ)) for some measure μ as well, then

‖Fn(u)‖∨p = sup{‖(ψ ⊗ϕ)n(Fn(u))‖ : m,k ∈ N,ϕ ∈ Mm(X ′)1,ψ ∈ Mk(Y ′)1}

and it follows that X
∨p⊗ Y = Y

∨p⊗ X p -completely isometrically.

d. Mr

∨p⊗ Ms is p -completely isometrically isomorphic to Mrs . This follows imme-
diately from [1, Theorem 3.2].

At this moment, we do not know whether the p -operator space injective tensor
product is injective, that is, if u : X → X̃ and v : Y → Ỹ are p -completely isometric in-
jections, then we do not know whether u⊗v always extends to a p -completely isomet-

ric injection u⊗ v : X
∨p⊗ Y → X̃

∨p⊗ Ỹ . But if we assume that all the p -operator spaces

under consideration are on Lp space, then we can show that u⊗ v : X
∨p⊗ Y → X̃

∨p⊗ Ỹ
is a p -complete isometry as in the following proposition. This fact supports that the
terminology p -injective tensor product is still reasonable.

PROPOSITION 2.8. Let μ1,μ2 be measures. For i = 1,2 , suppose Xi ⊆ Yi ⊆
B(Lp(μi)) . Then

X1

∨p⊗ X2 ⊆ Y1

∨p⊗ Y2

p-completely isometrically.

Proof. For i = 1,2, let ϕi : Xi ↪→Yi denote the ( p -completely isometric) inclusion.
Since ϕ1 ⊗ϕ2 = (ϕ1⊗ idY2)◦ (idX1 ⊗ϕ2) , by Remark 2.7 (c) above, it suffices to show
that

idX1 ⊗ϕ2 : X1

∨p⊗ X2 → X1

∨p⊗ Y2

is p -completely isometric. Note that the following diagram commutes:

X1

∨p⊗ X2� �

��

idX1⊗ϕ2 ��
X1

∨p⊗ Y2� �

��
CBp(X ′

1,X2)
� � �� CBp(X ′

1,Y2)

Since X1

∨p⊗ X2 ⊆ C Bp(X ′
1,X2) , X1

∨p⊗ Y2 ⊆ CBp(X ′
1,Y2) , and CBp(X ′

1,X2) ⊆
CBp(X ′

1,Y2) p -completely isometrically, we conclude that idX1 ⊗ϕ2 is p -completely
isometric. �
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3. Conditions C′
p , C′′

p , and Cp for p -operator spaces

In this section, we define conditions C′
p , C′′

p , and Cp for p -operator spaces and
prove the main result. Throughout the section, μ and ν will denote measures.

LEMMA 3.1. Let V and W be p-operator spaces. Then the bilinear mapping

Ψ̃ : V ′ ×W ′ → (V
∨p⊗W )′, ( f ,g) → f ⊗g

is jointly p-completely contractive and hence the canonical mapping Ψ : V ′ ∧p⊗W ′ →
(V

∨p⊗W )′ is p-completely contractive.

Proof. We identify [ fi j] ∈ Mr(V ′) with an operator F ∈ C Bp(V,Mr) , and like-

wise [gkl] ∈ Ms(W ′) with G ∈ CBp(W,Ms) . We have the identification Mrs((V
∨p⊗

W )′) = CBp(V
∨p⊗ W,Mrs) . Let H be the map [ fi j ⊗ gkl] : V

∨p⊗ W → Mrs . Then by
Proposition 2.6 and Remark 2.7 (d) we have the commutative diagram

V
∨p⊗ W

F⊗G
��

H �� Mrs

Mr

∨p⊗ Ms

∼=

�����������

with ‖F ⊗G‖pcb � ‖F‖pcb‖G‖pcb , and it follows that ‖[ fi j ⊗ gkl]‖ = ‖H‖pcb � ‖F ⊗
G‖pcb � ‖F‖pcb‖G‖pcb as required. �

LEMMA 3.2. Let V and W be p-operator spaces. Then ‖ · ‖∨p is a subcross
matrix norm. In particular, for every u ∈ Mn(V ⊗W) , we have ‖u‖∨p � ‖u‖∧p .

Proof. Just to fix notation, we identify Mr(V )⊗Mq(W ) with Mrq(V ⊗W ) by
(vi j)⊗ (wkl) → (vi j ⊗wkl)(i,k),( j,l) where we have the ordering (1,1) � (1,2) � · · · �
(1,q) � (2,1) � · · · � (r,q) . Hence Ir ⊗w ∈ Mr ⊗Mq(W ) = Mrq(W ) is identified
with a block matrix in Mr(Mq(W )) which has r copies of w down the diagonal and
0 elsewhere. Applying axiom D∞ repeatedly hence shows that ‖Ir ⊗w‖rq = ‖w‖q .
Then, for α ∈ Mr , the matrix α ⊗w ∈ Mr ⊗Mq(W ) = Mrq(W ) is the product (α ⊗
Iq)(Ir ⊗w) which has norm at most ‖α‖r‖w‖q by axiom Mp . Now let v ∈ Mr(V )

and w ∈ Mq(W ) , and consider v⊗w ∈ Mrq(V
∨p⊗ W ) . This tensor induces the opera-

tor T ∈ CBp(V ′,Mrq(W )) given by T ( f ) = ( f (vi j)wkl)(i,k),( j,l) = ( f (vi j))⊗w . For
f = ( fab) ∈ Mn(V ′) , we see that Tn( f ) = 〈〈 f ,v〉〉⊗w ∈ Mnrq(W ) , which by the previ-
ous paragraph has norm at most ‖〈〈 f ,v〉〉‖nr‖w‖q � ‖ f‖n‖v‖r‖w‖q . Hence ‖T‖pcb �
‖v‖r‖w‖q as required. �
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Let V and W be p -operator spaces and fix ϕ ∈ (V
∨p⊗W )′ . For v0 ∈V , we define

a bounded linear functional v0ϕ on W by

v0ϕ(w) = ϕ(v0⊗w), w ∈W.

In general, when v0 = [vi j] ∈ Mr(V ) and ϕ = [ϕkl ] ∈ Mn((V
∨p⊗W )′) , we define

v0ϕ = [vi j ϕkl] ∈ Mrn(W ′) . Similarly, for w0 ∈W , we define ϕw0 ∈V ′ by

ϕw0(v) = ϕ(v⊗w0), v ∈V.

As in v0ϕ above, we can extend the definition of ϕw0 for w0 ∈ Mr(W ) and ϕ ∈
Mn((V

∨p⊗W )′) . Define a linear map ΦR
V,W : V ⊗W ′′ → (V

∨p⊗W )′′ by

ΦR
V,W (v⊗w′′)(ϕ) = 〈vϕ ,w′′〉W ′,W ′′ , v ∈V, w′′ ∈W ′′, ϕ ∈ (V

∨p⊗W )′.

Similarly, define a linear map ΦL
V,W : V ′′ ⊗W → (V

∨p⊗W )′′ by

ΦL
V,W (v′′ ⊗w)(ϕ) = 〈ϕw,v′′〉V ′,V ′′ , v′′ ∈V ′′, w ∈W, ϕ ∈ (V

∨p⊗W )′.

LEMMA 3.3. The map ΦR
V,W (respectively, ΦL

V,W ) defined above extends to a p-

completely contractive map ΦR
V,W : V

∧p⊗W ′′ → (V
∨p⊗W )′′ (respectively, ΦL

V,W : V ′′ ∧p⊗
W → (V

∨p⊗W )′′ ).

Proof. Consider the bilinear map Φ : V ×W ′′ → (V
∨p⊗W )′′ given by

(v,w′′) → (ϕ → 〈vϕ ,w′′〉W ′,W ′′),

then we get

Φr;s : Mr(V )×Ms(W ′′) → Mrs((V
∨p⊗W )′′), ([vi j], [wkl

′′]) → [Φ(vi j,wkl
′′)]

and

‖[Φ(vi j,wkl
′′)]| = sup

n

{
‖〈〈Φr;s(v,w′′),ϕ〉〉‖ : ϕ ∈ Mn((V

∨p⊗W )′),‖ϕ‖ � 1

}
.

Since 〈〈Φr;s(v,w′′),ϕ〉〉 = 〈〈vϕ ,w′′〉〉 , we have

‖〈〈Φr;s(v,w′′),ϕ〉〉‖ = ‖〈〈vϕ ,w′′〉〉‖ � ‖vϕ‖Mrn(W ′) · ‖w′′‖Ms(W ′′)

and the result follows because
∨p⊗ is a subcross matrix norm and hence

‖vϕ‖Mrn(W ′) = supm {‖〈〈vϕ ,w〉〉‖Mrnm : w ∈ Mm(W ),‖w‖ � 1}
= supm {‖〈〈ϕ ,v⊗w〉〉‖Mrnm : w ∈ Mm(W ),‖w‖ � 1}
� ‖ϕ‖ · ‖v‖
� ‖v‖. �
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REMARK 3.4. Let α be a general subcross matrix norm.

a. We have a natural p -complete contraction V
∧p⊗ W → V ⊗α W and the adjoint

gives a contraction (V ⊗α W )′ → CBp(V,W ′) ⊆ B(V,W ′) given by

ϕ → Lϕ , 〈Lϕ (v),w〉 = ϕ(v⊗w), ϕ ∈ (V ⊗α W )′ v ∈V, w ∈W.

b. Using the natural p -complete contraction V
∧p⊗ W → V ⊗α W , each member in

(V ⊗α W )′ can be regarded as a member in (V
∧p⊗ W )′ .

c. We can define ΦR
V,W : V ⊗W ′′ → (V ⊗α W )′′ and ΦL

V,W : V ′′ ⊗W → (V ⊗α W )′′

for a general subcross norm α and Lemma 3.3 remains valid if
∨p⊗ is replaced

by ⊗α .

Let Ψ :V ′ ∧p⊗W ′ → (V
∨p⊗W )′ denote the canonical map, and consider the following

commutative diagram

V ⊗W ′′ ΦR
V,W �� (V

∨p⊗W )′′
Ψ′

�� (V ′ ∧p⊗W ′)′

CBσ
p,F(V ′,W ′′) � � ι �� CBp(V ′,W ′′)

,

where CBσ
p,F(V ′,W ′′) denotes the space of all weak∗ -continuous p -completely boun-

ded finite rank maps from V ′ to W ′′ and ι denotes the inclusion map. This commu-
tative diagram shows that ΦR

V,W is one-to-one, so one can equip V ⊗W ′′ with the p -

operator space norm inherited from (V
∨p⊗W )′′ , which will be denoted by, following the

notation in [4], V
∨p⊗ :W ′′ . We say that V satisfies condition C′

p (or V has property C′
p )

if this induced norm coincides with the p -operator space injective tensor product norm
for every W ⊆ B(Lp(ν)) .

Similarly, the following diagram

V ′′ ⊗W
ΦL

V,W �� (V
∨p⊗W )′′

Ψ′
�� (V ′ ∧p⊗W ′)′

CBσ
p,F(W ′,V ′′) � � ι �� CBp(W ′,V ′′)

is also commutative, ΦL
V,W is one-to-one, and one can hence equip V ′′ ⊗W with the p -

operator space norm inherited from (V
∨p⊗W )′′ , which will be denoted by V ′′ :

∨p⊗W . We
say that V satisfies condition C′′

p (or V has property C′′
p ) if this induced norm coincides

with the injective tensor product norm for every W ⊆ B(Lp(ν)) .
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EXAMPLE 3.5. We say that a p -operator space X is reflexive if the canonical
isometric inclusion κX : X →X ′′ is a p -completely isometric isomorphism from X onto
X ′′ . It is easy to verify that a p -operator space X is reflexive if and only if X is reflexive
as a Banach space and there is a measure μ such that X ⊆B(Lp(μ)) . In particular, for
any measure μ , Lc

p(μ) and Lr
p′(μ) are reflexive, where Lc

p(μ) (respectively, Lr
p′(μ))

denotes the p -operator space structure given on Lp(μ) (respectively, Lp′(μ)) by the
identification Lp(μ) = B(C,Lp(μ)) (respectively, Lp′(μ) = B(Lp(μ),C)). It is clear
that every reflexive p -operator space satisfies condition C′′

p .

In order to define condition Cp for p -operator spaces, we need the natural map

from V ′′ ⊗W ′′ to (V
∨p⊗ W )′′ . To do this, let α be a general subcross matrix norm on

V ⊗W and consider the diagram

(V
∧p⊗W ′′)′′

(ΦR
V,W )′′

������������

V ′′ ⊗W ′′

ΦL
V,W ′′ ������������

ΦR
V ′′,W ������������ (V ⊗α W )

′′′′ P �� (V ⊗α W )′′ ,

(V ′′ ∧p⊗W )′′
(ΦL

V,W )′′

������������

(3.1)

where P is the restriction mapping and (ΦR
V,W )′′ and (ΦL

V,W )′′ are from Remark 3.4 (c).
Consider the following p -complete contraction:

(V
∧p⊗W )′ ∼= C Bp(V,W ′) adj−−−−→ CBp(W ′′,V ′) ∼= (V

∧p⊗W ′′)′.

For ϕ ∈ (V
∧p⊗W )′ , let ϕ∧ ∈ (V

∧p⊗W ′′)′ denote the image of ϕ under this map. Then
we have

ϕ∧(v⊗w′′) = 〈vϕ ,w′′〉W ′,W ′′ = ΦR
V,W (v⊗w′′)(ϕ), v ∈V, w′′ ∈W ′′.

Moreover, ϕ∧ is weak*-continuous in the second variable. Similarly, we also consider
the p -complete contraction

(V
∧p⊗W )′ ∼= C Bp(W,V ′) adj−−−−→ CBp(V ′′,W ′) ∼= (V ′′ ∧p⊗W )′

and define ∧ϕ , and then we get that

∧ϕ(v′′ ⊗w) = 〈ϕw,v′′〉V ′,V ′′ = ΦL
V,W (v′′ ⊗w)(ϕ), v′′ ∈V ′′, w ∈W,

and that ∧ϕ is weak*-continuous in the first variable.

REMARK 3.6. Let α be a general subcross matrix norm. By Remark 3.4 (b),

we can still define ϕ∧ ∈ (V
∧p⊗W ′′)′ for any ϕ ∈ (V ⊗α W )′ . Similarly, we can define

∧ϕ ∈ (V ′′ ∧p⊗W )′ for any ϕ ∈ (V ⊗α W )′ .



1090 JUNG-JIN LEE

The next result follows by Remarks 3.4 and 3.6, and the same argument as in the
proof of [7, Theorem 1].

THEOREM 3.7. Let V and W be p-operator spaces. Let α be a subcross matrix
norm on V ⊗W and denote by V ⊗α W the resulting normed space. Then the following
are equivalent.

a. There exists a separately weak*-continuous extension

Φ : V ′′ ⊗W ′′ → (V ⊗α W )′′

of the natural inclusion ι : V ⊗W → (V ⊗α W )′′ .

b. The following diagram commutes

(V
∧p⊗W ′′)′′

(ΦR
V,W )′′

������������

V ′′ ⊗W ′′

ΦL
V,W ′′ ������������

ΦR
V ′′ ,W ������������ (V ⊗α W )

′′′′ P �� (V ⊗α W )′′ .

(V ′′ ∧p⊗W )′′
(ΦL

V,W )′′

������������

c. For every ϕ ∈ (V ⊗α W )′ , two functionals (∧ϕ)∧ and ∧(ϕ∧) coincide on V ′′ ⊗
W ′′ .

d. For every ϕ ∈ (V ⊗α W )′ , Lϕ : V →W ′ is weakly compact, where 〈Lϕ (v),w〉 =
ϕ(v⊗w) , v ∈V , w ∈W .

THEOREM 3.8. Let V ⊆ B(Lp(μ)) and W ⊆ B(Lp(ν)) . For every ϕ ∈ (V
∨p⊗

W )′ , Lϕ is weakly compact, where Lϕ is as in Theorem 3.7 (d).

Proof. Without loss of generality, we may assume ‖ϕ‖(= ‖ϕ‖pcb) � 1. Let ΦV

(respectively ΦW ) denote the embedding ΦV : V ↪→ B(Lp(μ)) (respectively, ΦW :
W ↪→ B(Lp(ν))). By Proposition 2.8 and [1, Theorem 3.2], we have p -completely
isometric embeddings

V
∨p⊗W ↪→ B(Lp(μ))

∨p⊗B(Lp(ν)) ↪→ B(Lp(μ ×ν)).
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Consider the diagram below:

V
∨p⊗W

ϕ ��
� �

ΦV⊗ΦW

��

C

B(Lp(μ))
∨p⊗B(Lp(ν))� �

��
B(Lp(μ ×ν))

ϕ̃

���
�

�
�

�
�

�
�

�
�

�
�

�
�

�

By Hahn-Banach Theorem, ϕ extends to ϕ̃ : B(Lp(μ ×ν)) → C . Applying the same
technique as in the proof of [1, Theorem 3.6], we can find a measure space (Ω,Σ,θ ) to-
gether with two vectors ξ ∈ Lp(θ ) , η ∈ Lp′(θ ) , and a unital p -completely contractive
homomorphism π : B(Lp(μ ×ν)) → B(Lp(θ )) such that ϕ̃(·) = 〈π(·)ξ ,η〉 .

Define T : B(Lp(μ)) → B(Lp(ν))′ by

〈T (x),y〉 = ϕ̃(x⊗ y), x ∈ B(Lp(μ)), y ∈ B(Lp(ν)).

Then it is easy to check that the following diagram is commutative:

V
Lϕ ��

� �

ΦV

��

W ′

B(Lp(μ)) T �� B(Lp(ν))′
(ΦW )′

		

Define R : B(Lp(μ)) → Lp(θ ) and S : B(Lp(ν)) → Lp′(θ ) by

R(x)= π(x⊗1)ξ , x∈B(Lp(μ)), and S(y)= (π(1⊗y))′η , y∈B(Lp(ν)),

then the diagram

B(Lp(μ)) T ��

R �����������
B(Lp(ν))′

Lp(θ )
S′

�����������

is commutative, because

〈S′R(x),y〉 = 〈R(x),S(y)〉 = 〈π(x⊗1)ξ ,(π(1⊗ y))′η〉 = 〈π(x⊗ y)ξ ,η〉
= ϕ̃(x⊗ y) = 〈T (x),y〉.

Combining these two commutative diagrams, we finally have Lϕ = (ΦW )′S′RΦV , that
is, Lϕ is factorized through a reflexive Banach space Lp(θ ) , so Lϕ is a weakly compact
operator [12, Propositions 3.5.4 and 3.5.11]. �
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COROLLARY 3.9. Let V,W be p-operator spaces on Lp space. Then there exists
a (necessarily unique) separately weak*-continuous extension

Φ : V ′′ ⊗W ′′ → (V
∨p⊗W )′′

of the natural inclusion ι : V ⊗W → (V
∨p⊗W )′′ .

Proof. Combine Theorem 3.7 and Theorem 3.8. Uniqueness follows from sepa-
rate weak*-continuity. �

Now we are ready to define condition Cp for p -operator spaces. Let Φ be as in
Corollary 3.9. The following commutative diagram

V ′′ ⊗W ′′ Φ �� (V
∨p⊗W )′′

Ψ′
�� (V ′ ∧p⊗W ′)′

CBσ
p,F(V ′,W ′′) � � ι �� CBp(V ′,W ′′)

shows that Φ is injective. Thus we can equip V ′′ ⊗W ′′ with the p -operator space

structure induced by Φ , which will be denoted by V ′′ :
∨p⊗ :W ′′ . We say that V ⊆

B(Lp(μ)) satisfies condition Cp (or has property Cp ) if the map Φ is isometric with
respect to the injective tensor product norm for every W ⊆ B(Lp(ν)) .

PROPOSITION 3.10. Suppose that V ⊆ B(Lp(μ)) . Then V satisfies condition
Cp if and only if V satisfies both conditions C′

p and C′′
p .

Proof. Suppose that V satisfies condition Cp and W ⊆B(Lp(ν)) . By Proposition

2.8 and [3, Theorem 4.3], we have a p -completely isometric embedding V
∨p⊗W ′′ ⊆

V ′′ ∨p⊗W ′′ and the bottom row in the following commutative diagram

V
∨p⊗ :W ′′ ��

� �

��

V
∨p⊗W ′′

� �

��

V ′′ :
∨p⊗ :W ′′ ��

V ′′ ∨p⊗W ′′

is isometric. Therefore the top row is also isometric and hence V satisfies condition
C′

p . That V satisfies condition C′′
p can be proved using a similar argument.

On the other hand, if V satisfies condition C′′
p , we get

V ′′ ∨p⊗W ′′ = V ′′ :
∨p⊗ :W ′′ ↪→ (V

∨p⊗W ′′)′′.
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If V also satisfies condition C′
p , then

V
∨p⊗W ′′ = V

∨p⊗ :W ′′ ↪→ (V
∨p⊗W )′′,

and hence we have isometric inclusion

V ′′ ∨p⊗W ′′ ↪→ (V
∨p⊗W )′′′′.

Since V ′′ ∨p⊗W ′′ ⊂ (V
∨p⊗W )′′ and (V

∨p⊗W )′′ ↪→ (V
∨p⊗W )′′′′ isometrically, the inclusion

V ′′ ∨p⊗W ′′ ⊆ (V
∨p⊗W )′′ must be isometric. �

RE F ER EN C ES

[1] GUIMEI AN, JUNG-JIN LEE, AND ZHONG-JIN RUAN, On p-approximation properties for p-
operator spaces, Journal of Functional Analysis, 259: 933–974, 2010.

[2] DAVID P. BLECHER AND CHRISTIAN LE MERDY, Operator algebras and their modules – an op-
erator space approach, volume 30 of London Mathematical Society Monographs. New Series. The
Clarendon Press Oxford University Press, Oxford, 2004. Oxford Science Publications.
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