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2–SUMMING OPERATORS ON l2(X )

DUMITRU POPA

(Communicated by H. Bercovici)

Abstract. Let X = (Xn)n∈N
be a sequence of Banach spaces and l2 (X ) , c0 (X ) the cor-

responding vector valued sequence spaces. In this paper we characterize nuclear operators on
c0 (X ) . As an application we obtain the necessary condition for an operator on l2 (X ) to be
2-summing. In the case of multiplication operators from l2 (X ) into l2 (Y ) (respectively from
c0 (X ) into c0 (Y ) ) we show that the sufficient condition stated by Nahoum is also necessary.
We also give the necessary and sufficient conditions for a bounded linear operator from l2 (H )
into l2 (K ) to be 2-summing, where H and K are sequences of Hilbert spaces. Further
we give the necessary and/or sufficient conditions that Hardy and Hilbert type operators from
l2 (X ) into l2 (Y ) to be 2-summing.

1. Introduction and background

The concept of absolutely summing linear operator plays a key role in operator
theory. We recommend in this regard the books [2, 3, 9, 10, 12, 13]. Giving its spe-
cial importance, a lot of work was done in order to give the necessary and sufficient
conditions for some natural operators to be absolutely summing. For example, D. J.
H. Garling in [4, Theorem 9] has given an almost complete description of the summing
properties for the multiplication operators from ls to lt . Also, E. D. Gluskin, S. V. Kisl-
jakov, O. I. Reinov in [6] studied the same problem in a more general context. In this
paper we are mainly interested in studying the case of 2-summing operators defined on
the vector valued sequence space l2 (X ) . We first give a characterization of the nuclear
operators on c0 (X ) , Theorem 1. As an application, we obtain the necessary condition
for an operator on l2 (X ) to be 2-summing, Theorem 3. In the case of multiplication
operators from l2 (X ) into l2 (Y ) (respectively from c0 (X ) into c0 (Y ) ) we show
that the sufficient condition stated by Nahoum is also necessary, Corollary 1. We also
give the necessary and sufficient conditions for a bounded linear operator from l2 (H )
into l2 (K ) to be 2-summing, where H and K are sequences of Hilbert spaces,
Theorem 4. Further we give the necessary and/or sufficient conditions for the Hardy
and Hilbert type operators from l2 (X ) into l2 (Y ) to be 2-summing, see Corollaries
4, 5, 6.

Next, let us fix some notations and notions.
Let X = (Xn)n∈N

be a sequence of Banach spaces and we denote by l2 (X ) the

Banach space of all sequences (xn)n∈N
with xn ∈ Xn for all n ∈ N ,

∞
∑

n=1
‖xn‖2

Xn
< ∞,
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endowed to the norm
∥∥(xn)n∈N

∥∥
l2(X ) =

(
∞
∑

n=1
‖xn‖2

Xn

) 1
2

. Similarly, c0 (X ) denotes

the Banach space of all sequences (xn)n∈N
with xn ∈ Xn for all n ∈ N , ‖xn‖Xn

→ 0 as
n→∞ , endowed to the norm

∥∥(xn)n∈N

∥∥
c0(X ) = sup

n∈N

‖xn‖Xn
, see [13]. When Xn = X for

every natural number n , we will write l2 (X) respectively c0 (X) . We will also consider
the canonical mappings σk : Xk → l2 (X ) (respectively σk : Xk → c0 (X ) ) and pk :
l2 (X )→ Xk (respectively pk : c0 (X )→ Xk ) defined by σk (x) = (0, ...,0, x︸︷︷︸

kth

,0, ...) ,

pk
(
(xn)n∈N

)
= xk , where k is a natural number.

Let X , Y be Banach spaces. A bounded linear operator T : X → Y is 2-summing
if there is a constant C � 0 such that for every (xk)1�k�n ⊂ X the following relation

holds

(
n
∑

k=1
‖T (xk)‖2

) 1
2

� C sup
‖x∗‖�1

(
n
∑

k=1
|x∗ (xk)|2

) 1
2

. The 2-summing norm of T is

defined as π2 (T ) = inf{C |C as above} , see [2, 3, 9, 10, 12, 13].
A bounded linear operator T : X → Y is nuclear if there exists (x∗n)n∈N

⊂ X∗ ,

(yn)n∈N
⊂ Y such that

∞
∑

n=1
‖x∗n‖‖yn‖ < ∞ and T (x) =

∞
∑

n=1
x∗n (x)yn for x ∈ X . Such a

representation is called a nuclear representation of T . In this case ‖T‖nuc =

inf

{
∞
∑

n=1
‖x∗n‖‖yn‖

}
, where the infimum is taken over all nuclear representations of

T , see [2, 3, 9, 12, 13]. This class is denoted by (N ,‖ ‖nuc) .
Let X = (Xn)n∈N

, Y = (Yn)n∈N
be two sequences of Banach spaces and V =

(Vn)n∈N
a sequence of bounded linear operators Vn : Xn → Yn with sup

n∈N

‖Vn‖ < ∞ . The

multiplication operator MV : l2 (X ) → l2 (Y ) (respectively MV : c0 (X ) → c0 (Y ))
is defined by MV

(
(xn)n∈N

)
= (Vn (xn))n∈N

.

2. The results

Our first result gives a characterization of the nuclear operators defined on c0 (X ) .

THEOREM 1. Let T : c0 (X ) → Y be a bounded linear operator. The following
assertions are equivalent:

(i) T is nuclear.

(ii) all T ◦σn : Xn → Y are nuclear and
∞
∑

n=1
‖T ◦σn‖nuc < ∞ .

Moreover, ‖T‖nuc =
∞
∑

n=1
‖T ◦σn‖nuc .

Proof. Let x ∈ c0 (X ) . Then x =
∞
∑

n=1
(σn ◦ pn)(x) , where the series is convergent

in c0 (X ) . Since T is a bounded linear operator, we have

T (x) =
∞

∑
n=1

T ((σn ◦ pn) (x)) =
∞

∑
n=1

(T ◦σn)(pn (x)) . (1)
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(i)⇒(ii). By (i) let (ψk)k∈N
⊂ (c0 (X ))∗ , (yk)k∈N

⊂Y be such that
∞
∑

k=1
‖ψk‖‖yk‖< ∞

and

T (x) =
∞

∑
k=1

ψk (x)yk for x ∈ c0 (X ) . (2)

Let n ∈ N and x ∈ Xn . From (2) we deduce (T ◦σn)(x) =
∞
∑

k=1
(ψk ◦σn) (x)yk , thus all

T ◦σn are nuclear and ‖T ◦σn‖nuc �
∞
∑

k=1
‖ψk ◦σn‖X∗

n
‖yk‖ . Since, as it is well known

and easy to prove,
∞
∑

n=1
‖ψ ◦σn‖X∗

n
= ‖ψ‖ for ψ ∈ (c0 (X ))∗ , it follows that

∞

∑
n=1

‖T ◦σn‖nuc �
∞

∑
n=1

∞

∑
k=1

‖ψk ◦σn‖X∗
n
‖yk‖

=
∞

∑
k=1

(
∞

∑
n=1

‖ψk ◦σn‖X∗
n

)
‖yk‖ =

∞

∑
k=1

‖ψk‖‖yk‖ .

Taking the infimum over all the nuclear representation of T as above, we obtain
∞
∑

n=1
‖T ◦σn‖nuc � ‖T‖ i.e. (ii).

(ii)⇒(i). Since all T ◦σn are nuclear, then all T ◦σn◦ pn are nuclear, ‖T ◦σn ◦ pn‖nuc �
‖T ◦σn‖nuc , thus by (ii),

∞
∑

n=1
‖T ◦σn ◦ pn‖nuc < ∞ . By a general result, see [9, Theorem

6.2.3, p. 91], it follows that the series
∞
∑

n=1
T ◦σn ◦ pn is convergent in N (c0 (X ) ,Y )

and let S =
∞
∑

n=1
T ◦ σn ◦ pn be its sum. Note that ‖S‖nuc �

∞
∑

n=1
‖T ◦σn ◦ pn‖nuc �

∞
∑

n=1
‖T ◦σn‖nuc . We get that S (x) =

∞
∑

n=1
(T ◦σn ◦ pn) (x) for x ∈ c0 (X ) and by (1),

S = T i.e. T is nuclear. �

We recall Nahoum’s theorem, see [7, Lemme, p. 5], [13, Lemma 23, p. 274]. For
the sake of completeness we include a proof different from that in [7, Lemme, p. 5].

THEOREM 2. Let U : Z → l2 (Y ) (resp. U : Z → c0 (Y ) ) be defined by U (z) =

(Un (z))n∈N
. If all Un are 2 -summing and

∞
∑

n=1
[π2 (Un)]

2 < ∞ , then U is 2 -summing

and [π2 (U)]2 �
∞
∑

n=1
[π2 (Un)]2 .

Proof. First, let us note that ‖U (z)‖2 =
∞
∑

n=1
‖Un (z)‖2 for z ∈ Z (respectively

‖U (z)‖2 �
∞
∑

n=1
‖Un (z)‖2 for z ∈ Z ). Let (zi)1�i�k ⊂ Z , then we have



1098 DUMITRU POPA

k

∑
i=1

‖U (zi)‖2 �
∞

∑
n=1

k

∑
i=1

‖Un (zi)‖2 �
∞

∑
n=1

[π2 (Un)]
2

⎡
⎣ sup
‖x∗‖�1

(
k

∑
i=1

|x∗ (zi)|2
) 1

2
⎤
⎦

2

�
(

∞

∑
n=1

[π2 (Un)]2
)⎡⎣ sup

‖x∗‖�1

(
k

∑
i=1

|x∗ (zi)|2
) 1

2
⎤
⎦

2

and the statement follows. �
One of the main ingredients in our proof is the following result which is a comple-

tion of [8, Proposition 2.4.] and [11, Satz 8].

LEMMA 1. Let X
V→ Y be a bounded linear operator. The following assertions

are equivalent:
(i) V is 2 -summing.

(ii) For each Banach space Z , each 2 -summing operator Z
U→X , V ◦U is nuclear.

Moreover, sup
π2(U)�1

‖V ◦U‖nuc = π2 (V ) , where the supremum is taken over all Ba-

nach spaces Z and all 2 -summing operators Z
U→ X .

Proof. (i)⇒(ii). From Grothendieck’s theorem, see [3, Theorem 5.31], V ◦U is
nuclear and ‖V ◦U‖nuc � π2 (V )π2 (U) . Then

sup
π2(U)�1

‖V ◦U‖nuc � π2 (V ) . (1)

(ii)⇒(i). From (ii) it follows that for each Banach space Z the mapping hZ
V : Π2 (Z,X)

→ N (Z,Y ) defined by hZ
V (U) = V ◦U is well defined. By the closed graph theorem

hZ
V is bounded linear, thus sup

π2(U)�1

∥∥hZ
V (U)

∥∥
nuc =CZ

V < ∞ , where the supremum is taken

over all 2-summing operators Z
U→ X . We will prove that MV = sup

π2(U)�1
‖V ◦U‖nuc <

∞ , where the supremum is taken now over all Banach spaces Z and all 2-summing

operators Z
U→ X . Indeed, if sup

π2(U)�1
‖V ◦U‖nuc = ∞ , where the supremum is taken

over all Banach spaces Z and all 2-summing operators Z
U→ X , we deduce that there

exist Banach spaces Zn and 2-summing operators Zn
Tn→ X such that π2 (Tn) � 1 and

‖V ◦Tn‖nuc � n · 2n for all natural numbers n . Then Un = 1
2n Tn : Zn → X are such

that π2 (Un) � 1
2n and ‖V ◦Un‖nuc � n for all natural numbers n . Let us consider

the sequence Z = (Zn)n∈N
and define U : l2 (Z ) → X by U =

∞
∑

n=1
Un ◦ pn . Since

∞
∑

n=1
π2 (Un ◦ pn) �

∞
∑

n=1
π2 (Un) � 1, by a general result, see [9, Theorem 6.2.3, p. 91]
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it follows that U is 2-summing and π2 (U) � 1. Then ‖V ◦U‖nuc � Cl2(Z )
V and so

‖V ◦U ◦σn‖nuc � ‖V ◦U‖nuc �Cl2(Z )
V for all natural numbers n . But U ◦σn =Un and

hence n � ‖V ◦Un‖nuc � Cl2(Z )
V for all natural numbers n , which is impossible.

Now let l2
S→ X be a bounded linear operator. Let also a = (an)n∈N

∈ l2 . Then

c0
Ma→ l2 is 2-summing with π2 (Ma) = ‖a‖2 , hence c0

S◦Ma→ X will be 2-summing. Then
‖V ◦ S ◦Ma‖nuc � MV π2 (S ◦Ma) . Since, as is well-known

‖V ◦ S ◦Ma‖nuc =
∞

∑
n=1

‖(V ◦ S ◦Ma) (en)‖ =
∞

∑
n=1

|an| ‖V (S (en))‖

we get
∞
∑

n=1
|an|‖V (S (en))‖ � MV ‖a‖2 ‖S‖ . Since a = (an)n∈N

∈ l2 is arbitrary we

deduce that

(
∞
∑

n=1
‖V (S (en))‖2

) 1
2

� MV ‖S‖ . This means that V is 2-summing and

π2 (V ) � MV = sup
π2(U)�1

‖V ◦U‖nuc , (2)

see [3, Proposition 2.7 ], i.e. (i). From (1) and (2) we get also the equality from the
statement. �

If T : l2 → Y (respectively T : c0 → Y ) is a 2-summing operator, since for each

natural number n we have, sup
‖x∗‖�1

(
n
∑

k=1
|x∗ (ek)|2

) 1
2

= 1, then
n
∑

k=1
‖T (ek)‖2 � [π2 (T )]2

and thus
∞
∑

n=1
‖T (en)‖2 � [π2 (T )]2 .

The following result is the main result of this paper. It gives a necessary condition
that an operator on l2 (X ) (respectively c0 (X )) be 2-summing and can be regarded
as a vector version of the scalar case shown above.

THEOREM 3. Let X = (Xn)n∈N
be a sequence of Banach spaces, Y a Banach

space and T : l2 (X )→Y (respectively T : c0 (X )→Y ) a bounded linear operator. If

T is 2 -summing, then all T ◦σn are 2 -summing and
∞
∑

n=1
[π2 (T ◦σn)]2 < ∞ . Moreover,

∞
∑

n=1
[π2 (T ◦σn)]2 � [π2 (T )]2 .

Proof. Let Z = (Zn)n∈N
be a sequence of Banach spaces and Un : Zn → Xn be

such that Un are 2-summing and π2 (Un) � 1 for all n ∈ N . Let also a = (an)n∈N
∈ l2 .

We define U : c0 (Z ) → l2 (X ) (resp. U : c0 (Z ) → c0 (X )) by U (z) =
(anUn ◦ pn (z))n∈N

. From π2 (Un ◦ pn) � π2 (Un) � 1 for all n ∈ N and a ∈ l2 , by
Nahoum’s theorem 2, it follows that U is 2-summing and π2 (U) � ‖a‖2 . Since T is
2-summing, by Grothendieck’s theorem, see [3, Theorem 5.31], T ◦U : c0 (Z ) → Y is
nuclear and ‖T ◦U‖nuc � π2 (T )π2 (U) � π2 (T )‖a‖2 . By Theorem 1 it follows that
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all T ◦U ◦σn are nuclear and
∞
∑

n=1
‖T ◦U ◦σn‖nuc = ‖T ◦U‖nuc . By a simple calcula-

tions, we have U ◦σn = anσn ◦Un , T ◦U ◦σn = anT ◦σn ◦Un , so, all anT ◦σn ◦Un are

nuclear and
∞
∑

n=1
‖anT ◦σn ◦Un‖nuc = ‖T ◦U‖nuc . Since this is true for all a∈ l2 we de-

duce that all T ◦σn◦Un are nuclear (take a = en , n∈N) and
∞
∑

n=1
|an|‖T ◦σn ◦Un‖nuc =

‖T ◦U‖nuc . Then

n

∑
i=1

|ai|‖T ◦σi ◦Ui‖nuc � π2 (T )‖a‖2 for n ∈ N (1)

Taking in (1) the supremum, first for π2 (U1) � 1, then for π2 (U2) � 1, ..., for π2 (Un)

� 1, from Lemma 1, we obtain
n
∑
i=1

|ai|π2 (T ◦σi) � π2 (T )‖a‖2 for n ∈ N i.e.

∞
∑

n=1
|an|π2 (T ◦σn) � π2 (T )‖a‖2 . As it is well known, from here it follows that

∞
∑

n=1
[π2 (T ◦σn)]

2 < ∞ and

(
∞
∑

n=1
[π2 (T ◦σn)]

2
) 1

2

= sup
‖a‖2�1

(
∞
∑

n=1
|an|π2 (T ◦σn)

)
� π2 (T ) . �

In the case of multiplication operators from l2 (X ) into l2 (Y ) (respectively
c0 (X ) into c0 (Y )) we show that the sufficient condition stated by Nahoum is also
necessary.

COROLLARY 1. Let MV : l2 (X ) → l2 (Y ) (resp. MV : c0 (X ) → c0 (Y ) ) be
the multiplication operator. The following assertions are equivalent:

(i) MV is 2 -summing.
(ii) all Vn are 2 -summing and (π2 (Vn))n∈N

∈ l2 .

Moreover, [π2 (MV )]2 =
∞
∑

n=1
[π2 (Vn)]

2 .

Proof. We prove the case MV : l2 (X ) → l2 (Y ) ; the other one is similar.
In view of Nahoum’s theorem 2, we must prove only that (i)⇒(ii). If we write Y =

l2 (Y ) , then MV : l2 (X ) → Y and by a simple calculation we have MV ◦σn = σn ◦Vn

and pn ◦MV ◦σn = Vn . From these relations we deduce that MV ◦σn is 2-summing if
and only if Vn is 2-summing and π2 (Vn) = π2 (MV ◦σn) . Then (i)⇒(ii) follows from
Theorem 3 and the above relations. �

LEMMA 2. Let X = (Xn)n∈N
be a sequence of Banach spaces, Y a Banach space

and V : l2 (X ) → Y a bounded linear operator. We consider the assertions:
(i) V is 2 -summing.

(ii) all V ◦σn are 2 -summing and
∞
∑

n=1
[π2 (V ◦σn)]

2 < ∞ .

Then, always (i)⇒(ii). If moreover, X = (Xn)n∈N
is a sequence of Hilbert spaces,

Y a Hilbert space, then (i)⇔(ii) and in this case [π2 (V )]2 =
∞
∑

n=1
[π2 (V ◦σn)]2 .
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Proof. (i)⇒(ii) was shown in Theorem 3.
(ii)⇒(i) in the case when X = (Xn)n∈N

is a sequence of Hilbert spaces, Y a
Hilbert space. In this case, as it is well known, l2 (X ) is a Hilbert space and the

scalar product in l2 (X ) is defined by
〈
(xn)n∈N

,(yn)n∈N

〉
l2(X ) =

∞
∑

n=1
〈xn,yn〉Xn

. Since

V : l2 (X ) → Y is a bounded linear operator (between two Hilbert spaces) we can
consider the adjoint of V , V ∗ :Y → l2 (X ) . We prove that V ∗ (y) =

(
(V ◦σn)∗ (y)

)
n∈N

for y ∈Y . Indeed, let y ∈ Y and write V ∗ (y) = (An (y))n∈N
, where An : Y → Xn . Then

for each x ∈ Xn we have 〈V ∗ (y) ,σn (x)〉l2(X ) = 〈y,V (σn (x))〉Y i.e.

〈An (y) ,x〉Xn
= 〈y,(V ◦σn) (x)〉Y =

〈
(V ◦σn)

∗ (y) ,x
〉
Xn

thus, since x ∈ Xn is arbitrary, An (y) = (V ◦σn)∗ (y) . But, since on Hilbert spaces 2-
summing operators coincide with the Hilbert-Schmidt operators, by (ii), all V ◦σn are
Hilbert-Schmidt, and then as it is well known all (V ◦σn)∗ are also Hilbert-Schmidt

and ‖V ◦σn‖HS =
∥∥(V ◦σn)∗

∥∥
HS . Then

∞
∑

n=1

∥∥(V ◦σn)∗
∥∥2

HS < ∞ and by [1, Lemma 1],

V ∗ : Y → l2 (X ) is Hilbert-Schmidt, thus V is Hilbert-Schmidt, hence 2-summing i.e.
(ii). �

In the sequel we give the necessary or/and sufficient conditions for a bounded
linear operator from l2 (X ) into l2 (Y ) to be 2-summing. Further, we will use these
results in order to give the necessary and/or sufficient conditions for the Hardy and
Hilbert type operators from l2 (X ) into l2 (Y ) to be 2-summing.

Let X = (Xn)n∈N
, Y = (Yn)n∈N

be two sequences of Banach spaces.
Let V : l2 (X )→ l2 (Y ) be a bounded linear operator and if we define the bounded

linear operators Vnk : Xk → Yn by Vnk = pn ◦V ◦σk , then

V
(
(xn)n∈N

)
=

(
∞

∑
k=1

Vnk (xk)

)
n∈N

for (xn)n∈N
∈ l2 (X ) .

The matrix of operators V = (Vn)n,∈N
is called the operator representing matrix of V .

Indeed, let us define Ln = pn ◦V : l2 (X ) → Yn and then note that Ln are bounded

linear. Next V (x) = (Ln (x))n∈N
for x = (xn)n∈N

∈ l2 (X ) . We have x =
∞
∑

k=1
σk (xk)

from where, Ln (x) =
∞
∑

k=1
Ln (σk (xk)) =

∞
∑

k=1
(Ln ◦σk)(xk) =

∞
∑

k=1
Vnk (xk) .

COROLLARY 2. Let V : l2 (X )→ l2 (Y ) be a bounded linear operator and V =
(Vnk)n,k∈N

its operator representing matrix. If V is 2 -summing, then all operators Ck :

Xk → l2 (Y ) defined by Ck (x) = (Vnk (x))n∈N
are 2 -summing and

∞
∑

k=1
[π2 (Ck)]

2 < ∞ .

Moreover,
∞
∑

k=1
[π2 (Ck)]

2 � [π2 (V )]2 .
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Proof. Since V is 2-summing from Theorem 3, all V ◦ σk are 2-summing,
∞
∑

k=1
[π2 (V ◦σk)]

2 < ∞ and
∞
∑

k=1
[π2 (V ◦σk)]

2 � [π2 (V )]2 . For x ∈ Xk we have

(V ◦σk)(x) =

(
∞

∑
j=1

Vn j (p j (σk (x)))

)
n∈N

= (Vnk (x))n∈N
= Ck (x) .

Thus all Ck are 2-summing, π2 (V ◦σk) = π2 (Ck) and the conclusion follows. �
In the case of Hilbert spaces we can prove the following result, perhaps well

known, but for which we do not know any reference. Note that this result extend the
well known characterization of 2-summing operators from l2 into l2 .

THEOREM 4. Let H = (Hn)n∈N
, K =(Kn)n∈N

be two sequences of Hilbert
spaces, V : l2 (H ) → l2 (K ) a bounded linear operator and V = (Vnk)n,k∈N

its oper-
ator representing matrix. The following assertions are equivalent:

(i) V is 2 -summing.
(ii) all operators Ck : Xk → l2 (K ) defined by Ck (x)= (Vnk (x))n∈N

are 2 -summing

and
∞
∑

k=1
[π2 (Ck)]

2 < ∞ .

(iii) all operators Ln : l2 (H )→Kn defined by Ln (x)=
∞
∑

k=1
Vnk (xk) are 2 -summing

and
∞
∑

n=1
[π2 (Ln)]

2 < ∞ .

(iv) all Vnk : Hk → Kn are 2 -summing and
∞
∑

n,k=1
[π2 (Vnk)]

2 < ∞ .

Moreover, [π2 (V )]2 =
∞
∑

k=1
[π2 (Ck)]

2 =
∞
∑

n=1
[π2 (Ln)]2 =

∞
∑

n,k=1
[π2 (Vnk)]

2 .

Proof. (i)⇒(ii) is a particular case of Corollary 2.
(ii)⇔(iv). Since Hk and Kn are Hilbert spaces and since every 2-summing oper-

ator defined on Hilbert spaces coincides with the Hilbert-Schmidt one, from Lemma 1

in [1], Ck is 2-summing if and only if all Vnk are 2-summing,
∞
∑

n=1
[π2 (Vnk)]

2 < ∞ and

moreover, [π2 (Ck)]
2 =

∞
∑

n=1
[π2 (Vnk)]

2 . The equivalence (ii)⇔(iv) follows.

(iv)⇒(iii). Since
∞
∑

k=1
[π2 (Vnk)]

2 < ∞ from Lemma 2 (the implication (ii)⇒(i)), all

Ln are 2-summing and [π2 (Ln)]
2 =

∞
∑

k=1
[π2 (Vnk)]

2 . Also
∞
∑

n=1
[π2 (Ln)]

2 =
∞
∑

n,k=1
[π2 (Vnk)]

2

< ∞ and (iii) follows.

(iii)⇒(i). Since as we have already observed, V (x)= (Ln (x))n∈N
and

∞
∑

n=1
[π2 (Ln)]

2

< ∞ , by Nahoum’s Theorem2, we get that V is 2-summing and [π2 (V )]2 �
∞
∑

n=1
[π2 (Ln)]

2

i.e. (i). �
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In the rest of the paper, X = (Xn)n∈N
is a sequence of Banach spaces, Y a

Banach space, Vk : Xk → Y are bounded linear operators, (ank)n,k∈N
is a matrix of

scalars (real or complex numbers) such that the scalar matrix (|ank|‖Vk‖)n,k∈N
de-

fines a bounded linear operator from l2 into l2 . Note that this means that the oper-

ator U : l2 → l2 defined by U
(
(ξn)n∈N

)
=
(

∞
∑

k=1
|ank|‖Vk‖ξk

)
n∈N

is bounded linear.

Under these assumptions, the operator V : l2 (X ) → l2 (Y ) defined by V
(
(xn)n∈N

)
=(

∞
∑

k=1
ankVk (xk)

)
n∈N

is bounded linear. Indeed, let (xn)n∈N
∈ l2 (X ) . First let us note

that
∞
∑

k=1
‖ankVk (xk)‖�

∞
∑

k=1
|ank|‖Vk‖‖xk‖ for n ∈ N . Since U takes its values in l2 and

(‖xn‖)n∈N
∈ l2 , the series from the right member is convergent, hence

∞
∑

k=1
ankVk (xk) is

absolutely convergent, thus convergent and then we can write yn =
∞
∑

k=1
ankVk (xk) ∈ Y .

From ‖yn‖ �
∞
∑

k=1
‖ankVk (xk)‖ �

∞
∑

k=1
|ank| ‖Vk‖‖xk‖ for n ∈ N , the fact that U takes its

values in l2 and (‖xk‖)k∈N
∈ l2 we get (yn)n∈N

∈ l2 (Y ) .

COROLLARY 3. Let V : l2 (X )→ l2 (Y ) be the operator defined by V
(
(xn)n∈N

)
=(

∞
∑

k=1
ankVk (xk)

)
n∈N

. We consider the following assertions:

(i) V is 2 -summing.

(ii) all Vk are 2 -summing and
∞
∑

k=1
[π2 (Vk)]

2 c2
k < ∞ , where ck =

√
∞
∑

n=1
|ank|2 .

Then, always (i)⇒(ii). If moreover, X = (Xn)n∈N
is a sequence of Hilbert spaces

and Y is a Hilbert space then, (i)⇔(ii) and in this case [π2 (V )]2 =
∞
∑

k=1
[π2 (Vk)]

2 c2
k .

Proof. (i)⇒(ii). The operator matrix of the operator V is Vnk = ankVk . In this case
Ck : Xk → l2 (Y ) is defined by Ck (x) = (ankVk (x))n∈N

. We have ‖Ck (x)‖ = ck ‖Vk (x)‖ .

Since V is 2-summing, then by Corollary 2 all Ck are 2-summing,
∞
∑

k=1
[π2 (Ck)]

2 < ∞

and
∞
∑

k=1
[π2 (Ck)]

2 � [π2 (V )]2 . Thus all Vk are 2-summing,
∞
∑

k=1
[π2 (Vk)]

2 c2
k < ∞ and

∞
∑

k=1
[π2 (Vk)]

2 c2
k � [π2 (V )]2 i.e. (ii).

(ii)⇒(i). We have

∞

∑
n,k=1

[π2 (ankVk)]
2 =

∞

∑
k=1

(
∞

∑
n=1

[π2 (ankVk)]
2

)
=

∞

∑
k=1

[π2 (Vk)]
2 c2

k < ∞

by (ii). Then (i) follows from Theorem 4. �
In Corollaries 4, 5 and 6, V = (Vn)n∈N

is a sequence of bounded linear operators
Vn : Xn → Y such that sup

n∈N

‖Vn‖ < ∞ . In these cases, by the classical Hardy and Hilbert
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theorems, see [5], the operators are well defined.

COROLLARY 4. Let HV : l2 (X ) → l2 (Y ) be the Hardy operator defined by

HV

(
(xn)n∈N

)
=
(

V1(x1)+···+Vn(xn)
n

)
n∈N

. We consider the following assertions:

(i) HV is 2 -summing.

(ii) all Vk are 2 -summing and
∞
∑

k=1
[π2 (Vk)]

2 c2
k < ∞ , where ck =

√ ∞
∑

n=k

1
n2 .

(iii) all Vn are 2 -summing and
∞
∑

k=1

[π2(Vk)]
2

k < ∞ .

Then, always (i)⇒(ii)⇔(iii). If moreover, X = (Xn)n∈N
is a sequence of Hilbert

spaces and Y is a Hilbert space then, (i)⇔(ii) and in this case [π2 (HV )]2 =
∞
∑

k=1
[π2 (Vk)]

2 c2
k .

Proof. In view of Corollary 3 only the equivalence (ii)⇔(iii) needs a proof. Since
∞
∑

n=k

1
n2 � 1

k as k → ∞ we get ck � 1√
k

as k → ∞ . Thus
∞
∑

k=1
[π2 (Vk)]

2 c2
k < ∞ if and only

if
∞
∑

k=1

[π2(Vk)]
2

k < ∞ . �

The following result is a particular case of Corollary 3.

COROLLARY 5. Let HV : l2 (X ) → l2 (Y ) be the Hardy operator defined by

HV

(
(xn)n∈N

)
=
(

∞
∑

k=n

Vk(xk)
k

)
n∈N

. We consider the following assertions:

(i) HV is 2 -summing.

(ii) all Vk are 2 -summing and
∞
∑

k=1

[π2(Vk)]
2

k < ∞ .

Then, always (i)⇒(ii). If moreover, X = (Xn)n∈N
is a sequence of Hilbert spaces

and Y is a Hilbert space then, (i)⇔(ii) and in this case [π2 (HV )]2 =
∞
∑

k=1

[π2(Vk)]
2

k .

COROLLARY 6. Let HV : l2 (X ) → l2 (Y ) be the Hilbert operator defined by

HV

(
(xn)n∈N

)
=
(

∞
∑

k=1
’ Vk(xk)

n−k

)
n∈N

where the dash indicates that the sum ranges over

all k except k = n. We consider the following assertions:
(i) HV is 2 -summing.

(ii) all Vk are 2 -summing and
∞
∑

k=1
[π2 (Vk)]

2 < ∞ .

Then, always (i)⇒(ii). If moreover, X = (Xn)n∈N
is a sequence of Hilbert spaces

and Y is a Hilbert space then, (i)⇔(ii) and in this case [π2 (HV )]2 = [π2 (V1)]
2 π2

3 +
∞
∑

k=2
[π2 (Vk)]

2 c2
k , where c2

k = π2

6 +
k−1
∑

n=1

1
n2 for k � 2 .
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Proof. If we take in Corollary 3 ank = 1
n−k for n = k and ann = 0, then c2

1 =
∞
∑

n=1
’ 1

(n−1)2
=

∞
∑

n=1

1
n2 = π2

6 and c2
k =

∞
∑

n=1
’ 1

(n−k)2
=

k−1
∑

n=1

1
n2 +

∞
∑

n=1

1
n2 = π2

6 +
k−1
∑

n=1

1
n2 for k �

2. Since c2
k → π2

3 as k→ ∞ ,
∞
∑

k=1
[π2 (Vk)]

2 c2
k < ∞ if and only if

∞
∑

k=1
[π2 (Vk)]

2 < ∞ . �

REMARK 1. Unfortunatlely, we do not know if the implication (ii)⇒(i) in Corol-
laries 3, 4, 5 and 6, is true for each sequence X = (Xn)n∈N

of Banach spaces and Y a
Banach space.
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