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SPECTRAL PROPERTIES OF NORMAL OPERATORS

HAVING SYMMETRIES ARISING FROM CONJUGATIONS

GEOFFREY R. GOODSON

(Communicated by D. R. Farenick)

Abstract. We study the consequences of equations such as AB = BA and AB = BA∗ on the
spectrum of B when A is a normal operator that is real or complex skew-symmetric. Our main
result is a spectral pairing theorem for such operators which generalizes results about normal
matrices obtained in [11]. Important tools used are the properties of conjugations and complex
symmetric operators. This paper continues the study initiated in [14].

0. Introduction

Let A : H → H be a bounded normal operator defined on a separable Hilbert
space H , i.e., it has the property AA∗ = A∗A where A∗ is the adjoint of A (see [3] for
more details).

A conjugation J : H → H is an anti-linear involution, i.e., J satisfies:
(i) J(α f + βg) = αJ( f )+ βJ(g) , for all f ,g ∈ H and α,β ∈ C .
(ii) 〈J f ,Jg〉 = 〈g, f 〉 for all f ,g ∈ H , where 〈 f ,g〉 is the inner product on H .
(iii) J2 = E (where E is the identity operator).

DEFINITION. Let J : H → H be a conjugation and A : H → H a bounded
linear operator.

(i) The operator A is said to be J -real if JAJ = A .
(ii) A is J -symmetric if JA∗J = A .
(iii) A is J -imaginary if JAJ = −A .
(iv) A is J -skew-symmetric if JA∗J = −A .
We say that A is complex symmetric (respectively complex skew-symmetric), if

there is a conjugation J for which A is J -symmetric (respectively. J -skew-symmetric).
Complex symmetric operators have recently been studied in considerable detail: see
[4], [5], [6] and [17]. Of particular interest has been the question of what operators
are complex symmetric. Our concern in this paper is rather to use the property of an
operator being complex symmetric. Unfortunately, most of our results concern normal
operators. These are known to be complex symmetric, but we believe that it may be
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possible to prove more general theorems requiring only complex symmetry, rather than
normality.

Other symmetries of operators can be defined in a similar way, for example the
notion of A being J -complex orthogonal.

Given an n -by-n matrix A , it is real if A = A , symmetric if AT = A and skew-
symmetric if AT = −A . Since AT = A

∗
, the above definitions are the natural general-

izations to operators of these concepts.

In Section 1 we recall some properties of normal operators and conjugations. In
Section 2 we consider equations such as AB = BA and AB = BA∗ , and we obtain a
conclusion about the doubling of the spectrum of B .

This type of study has been done in the matrix situation by a number of au-
thors. Goodson, Merino and Horn [11] considered the implications of the equations
AB = BAT , AB = BA amongst others, for various types of matrices (see also [8] and
[9]). In an earlier paper [13] it was shown that if both A and B are bounded real normal
operators with AB = B∗A (B invertible), then on the subspace H0 = ker(B−B∗)⊥ , the
spectral multiplicity function of A takes only even values (so for example, the eigen-
values have to have even multiplicity). This was used to give a generalization of the
notions of Hamiltonian and skew-Hamiltonian matrices to the infinite dimensional situ-
ation. Waterhouse [16] had shown the spectral doubling property of such matrices, and
we were able to give infinite dimensional version of his results. In the current paper,
using quite different methods we study spectral doubling type results for equations such
as AB = BA and AB = BA∗ . It should be possible, but we have not yet achieved it, to
use methods similar to those of this paper, to prove our earlier results.

The following is a brief history of these results: Given an invertible measure pre-
serving transformation (i.m.p.t.) T : X → X defined on a non-atomic, separable prob-
ability space (X ,B,μ) , there is a unitary operator UT : L2(X ,B,μ) → L2(X ,B,μ)
defined by UT f (x) = f (Tx) . It was shown by Halmos and von Neumann that when
T is an ergodic transformation having discrete spectrum, then T is conjugate to T−1

(there is an i.m.p.t. S with ST = T−1S and all such S have the property that S2 = I , the
identity map). This result was generalized in [7] to show that for any i.m.p.t. T having
simple spectrum (the unitary operator UT has multiplicity one) which is conjugate to
its inverse via S has the property that S2 = I . The question arose as to what happens
when their exists a conjugation S between T and T−1 with S2 �= I . It was shown in [8]
that in this case the spectrum of UT has an even multiplicity function on the orthogonal
complement of the subspace { f ∈ L2(X ,B,μ) : S2 f = f} . Results about the multi-
plicity function of S2 were given in [10]. Looking at the finite dimensional situation
led to some very general results (see [9], [11]) concerning square matrices with prop-
erties such as AB = BA , ABT = BA , AB∗ = BA when A is normal and real (or some
similar property). The proofs were now matrix theoretic, very different to the original
proofs. The question now arose as to what extent these results could be generalized to
the infinite dimensional situation, and [13] and [14] are attempts in this direction. The
operator UT has the property that it preserves real valued functions, so that if J is the
natural conjugation J( f ) = f , it commutes with J so is J -real. It is therefore natural
to try to generalize these results to the case of an operator A that is real with respect to
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some conjugation J . If A is also normal, it is useful to know that A is also complex
symmetric with respect to some other conjugation K . With these generalizations in
hand it may be possible to return to ergodic theory and apply the results to the theory
of joinings. A joining of two measure preserving transformations S and T is an S×T
invariant measure which projects to μ on each coordinate. However, these can be rep-
resented as positive operators which intertwine with the induced unitary operators US

and UT . Self-joings have shown to be particularly interesting and useful.

1. Basic properties of normal operators and conjugations

The first part of the following lemma is the operator version of Sylvester’s Theo-
rem (see Bhatia [1]). We will make use of the second part which generalizes the first
part in a particular aspect (due to Conway).

LEMMA 1. (a) If F and G are bounded operators having disjoint spectra, then
the equation

FX −XG = C,

has a unique bounded solution X . When C = 0 , this solution is X = 0 .
(b) (Conway [2]) If F and G are bounded normal operators having mutually

singular scalar spectral measures with FX = XG for some bounded operator X , then
X = 0 .

The following is also well known and is used later.

LEMMA 2. (The Fuglede-Putnam Theorem) Let A,B : H → H be bounded op-
erators with A normal. Then

(a) BA = AB if and only if BA∗ = A∗B.
(b) BA = A∗B if and only if BA∗ = AB.

We also need the following results, discussed in [4], [5]. In particular they show
the ubiquitousness of being complex symmetric.

PROPOSITION 1. If C and J are conjugations on H , then U = CJ is a unitary
operator which is both J -symmetric and C-symmetric.

PROPOSITION 2. If A is a normal operator on H , then there is a conjugation J
on H for which A is J -symmetric, i.e., any normal operator is complex symmetric.

The converse of Proposition 1 is also known to hold (see [5]), and was proved by
Godic and Lučenko.

The following are also needed and may not be well known (see [13] for the proof
of Proposition 3(a)):
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PROPOSITION 3. Let A : H →H be a bounded normal operator, and J : H →
H a conjugation.

(a) If A is J -real, then σ(A) , the spectrum of A is symmetric about the real axis.
In addition, A is unitarily equivalent to A∗ .

(b) If A is J -imaginary, then σ(A) is symmetric with respect to the imaginary
axis.

Proof. (b) Let λ ∈ ρ(A) , the resolvent of A , then A−λ I is invertible. Now

J(A−λ I)J = −A−λI = −(A+ λI),

so that −λ ∈ ρ(A) . �

PROPOSITION 4. (a) If Q is normal, Q = Q1⊕Q2 , Qi : Hi → Hi , i = 1,2 where
Qi and −Q∗

i have scalar spectral measures which are mutually singular, with JQ =
−QJ for some conjugation J , then J(H1) = H2 , J(H2) = H1 .

In this case we can write J

(
f
g

)
=

(
J1g
J2 f

)
, where J1 : H2 →H1 and J2 : H1 →H2

are conjugate linear (not conjugations, but J1J2 is the identity on H1 , and J2J1 is the
identity on H2 ). In addition

J1Q2 = −Q1J1 and J2Q1 = −Q2J2.

(b) If instead Qi and −Qi have mutually singular scalar spectral measures, where
JQ = −Q∗J , we get the same conclusion except that

J1Q2 = −Q∗
1J1 and J2Q1 = −Q∗

2J2.

Proof. (a) Q1 and Q2 are normal, so from Proposition 2 they are both com-
plex symmetric. Suppose that C1 and C2 are conjugations with C1Q∗

1C1 = Q1 and

C2Q∗
2C2 = Q2 . Set C

(
f
g

)
=

(
C1( f )
C2(g)

)
, then we see that CQ∗C = Q .

We are given that JQ = −QJ , so

CJQ = −CQJ = −Q∗CJ or UQ = −Q∗U,

where U = CJ is unitary.

Decompose U conformally with Q as U =
(

U11 U12

U21 U22

)
, then the equation UQ =

−Q∗U give

U11Q1 = −Q∗
1U11, U21Q1 = −Q∗

2U21 and U12Q2 = −Q∗
1U12, U22Q2 = −Q∗

2U22.

The mutual singularity of the scalar spectral measures of Qi and −Q∗
i implies that

U11 = 0 and U22 = 0, so that

J

(
f
g

)
= CU

(
f
g

)
= C

(
U12g
U21 f

)
=

(
C1U12g
C2U21 f

)
=

(
J1g
J2 f

)
,
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where J1 = C1U12 and J2 = C2U21 . In addition

JQ

(
f
g

)
= −QJ

(
f
g

)
⇒

(
J1Q2g
J2Q1 f

)
= −

(
Q1J1g
Q2J2 f

)
,

and (a) follows.
(b) JQ = −Q∗J ⇒ CJQ = −CQ∗J = −QCJ , or UQ = −QU , and proceed as in

(a). �

LEMMA 3. Let J : H1 ⊕H2 → H1 ⊕H2 be a conjugation of the form J

(
f
g

)
=(

J1g
J2 f

)
, where J1 : H2 → H1 and J2 : H1 → H2 are anti-linear operators.

If B = B1⊕B2 where Bi : Hi → Hi , i = 1,2 then
(a) JB = BJ implies J1B2 = B1J1 and J2B1 = B2J2 ,
(b) JB∗ = BJ implies J1B∗

2 = B1J1 and J2B∗
1 = B2J2 ,

(c) JB = −BJ implies J1B2 = −B1J1 and J2B1 = −B2J2 ,
(d) JB∗ = −BJ implies J1B∗

2 = −B1J1 and J2B∗
1 = −B2J2 ,

Proof. (a) We have JB

(
f
g

)
= BJ

(
f
g

)
⇒ J

(
B1 f
B2g

)
= B

(
J1g
J2 f

)
⇒

(
J1B2g
J2B1 f

)
=(

B1J1g
B2J2 f

)
and (a) follows. The other statements are proved in a similar way. �

LEMMA 4. Let J : H1 ⊕H2 → H1 ⊕H2 be a conjugation of the form J

(
f
g

)
=(

J1g
J2 f

)
, where J1 : H2 → H1 and J2 : H1 → H2 are anti-linear operators.

If B =
(

0 B1

B2 0

)
where B1 : H2 → H1 , B2 : H1 → H2 , then

(a) JB = BJ implies J1B2 = B1J2 and J2B1 = B2J1 ,
(b) JB∗ = BJ implies J1B∗

1 = B1J2 and J2B∗
2 = B2J1 ,

(c) JB = −BJ implies J1B2 = −B1J2 and J2B1 = −B2J1 ,
(d) JB∗ = −BJ implies J1B∗

1 = −B1J2 and J2B∗
2 = −B2J1 .

Proof. The proofs follow the same method as Lemma 3. �

2. The spectrum pairing theorems

Our main theorems list different possibilities which arise for the spectrum of an
operator B which commutes or “skew-commutes” with a normal operator A which is
real or complex skew-symmetric. These theorems give detailed information about the
structure of the operator B when B is real, complex symmetric or satisfies some similar
condition.
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THEOREM 1. Let A,B : H → H be bounded normal operators on a complex
Hilbert space and J : H → H a conjugation.

If either (1) AB = BA or (2) AB = −BA∗ , then the subspace

H0 = ker(A−A∗)⊥ = ran(A−A∗),

is both A and B reducing. Set B0 = B|H0 , the restriction of B to H0 .
Suppose (i) A is J -real, or (ii) A is J -skew-symmetric, then
(a) if B is J -symmetric, B0

∼= B1⊕B1 for some operator B1 ,
(b) if B is J -real, B0

∼= B1⊕B∗
1 , for some operator B1 ,

(c) if B is J -skew-symmetric, B0
∼= B1⊕−B1 for some operator B1 ,

(d) if B is J -imaginary, B0
∼= B1⊕−B∗

1 for some operator B1 .

EXAMPLES. 1. Suppose that A : L2(X ,μ)→ L2(X ,μ) preserves real valued func-
tions, then A( f ) = A( f ) , so that A commutes with the complex conjugation map
J( f ) = f , and A is J -real. Such operators A arise from measure preserving trans-
formations T : X → X defined by A f (x) = f (Tx) , and are unitary when T is invert-
ible. Although normal operators are always complex symmetric with respect to some
conjugation, it seems to be very natural to study the conjugation of complex conjuga-
tion arising from such operators as this is most closely related to the finite dimensional
situation where the natural conjugation is ordinary complex conjugation of a matrix.
The above theorem gives information about the spectrum of a normal operator B that
commutes with A when it preserves real functions or has some other type of symmetry
property.

2. Let A and B be n -by-n real normal matrices with AB = BA or AB = −BA∗ .
If B = BT , then the eigenvalues of B occur with even multiplicity on the orthogonal
complement of the subspace {x ∈ Cn : Ax = AT x} .

REMARKS. 1. The normality of A in the above theorem is required so that we can
use the Fuglede-Putnam Theorem to show A∗B = BA∗ , and could be replaced by this
condition. The normality of B is used to show that if B = B1⊕B2 , then each of B1 and
B2 is normal and hence complex symmetric, so there exist conjugations Ji : H → H
such that JiB∗

i Ji = Bi , i = 1,2. It is possible that the condition of normality of B could
be replaced by B being complex symmetric.

2. It follows from the above theorem that if AB = BA or AB = −BA∗ , where A
is J -real and normal, and B is normal, J -symmetric and having multiplicity one, then
A = A∗ .

3. If A and B are real normal matrices, Theorem 1 tells us that there is a doubling
of the eigenvalues of B (all of the eigenvalues occur with even multiplicity) on the
subspace H0 . This generalizes results from [11] in that they apply to any conjugation.
However, although the results of [11] only apply to the usual complex conjugation, they
are more general in other respects. For example, it is not required that B be a normal
matrix (and in fact the Jordan form of B is doubled).

In order to prove Theorem 1, we need the following lemma:
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LEMMA 5. Let A,B : H → H be bounded and normal, and J : H → H a
conjugation.

If either (1) AB = BA or (2) AB = −BA∗ , then H0 = ker(A−A∗)⊥ is both A and
B reducing.

Suppose also that (i) A is J -real, or (ii) A is J -skew-symmetric, then there is a
decomposition H0 = H1 ⊕H2 with operators B1 : H1 → H1 and B2 : H2 → H2 , B0

∼=
B1⊕B2 , (B0 = B|H0 ), where J(H1) = H2 , J(H2) = H1 .

Proof of Lemma 5. We first note that H0 is A reducing since it is both A and A∗ -
invariant. Suppose that f ∈H⊥

0 , then (A−A∗)B f = (AB−A∗B) f = (BA−BA∗) f = 0,
so B(H⊥

0 ) ⊆ H⊥
0 (using Fuglede-Putnam). Similarly B∗(H⊥

0 ) ⊆ H⊥
0 .

We split the rest of the proof into different cases:
Case 1. Suppose that AJ = JA and AB = BA . Write A = P+ iQ where

P =
A+A∗

2
, Q =

A−A∗

2i
,

then P = P∗ and Q = Q∗ , so the spectra σ(P),σ(Q) are contained in the real axis. We
can check that P is J -real, and

JQ =
JA− JA∗

−2i
= −AJ−A∗J

2i
= −A−A∗

2i
J = −QJ,

so that Q is J -imaginary. It follows from Proposition 3 that the spectrum of Q , σ(Q) ,
is symmetric about the origin and contained in R .

Without loss of generality, we may assume that

H⊥
0 = ker(A−A∗) = ker(Q) = {0},

so the range of Q is dense (since ran(Q) = ker(Q)⊥ ) and the singleton {0} has spectral
measure zero.

It follows that we can assume Q = Q1⊕Q2 , where σ(Q1) ⊆ (0,∞) and σ(Q2) ⊆
(−∞,0) .

Since J(Q1 ⊕Q2) = −(Q1 ⊕Q2)J , J maps the space associated with Q1 onto
the space associated with Q2 , so we must have (using Proposition 4 and Lemma 3),

J

(
f
g

)
=

(
J1g
J2 f

)
, so that

J1Q2 = −Q1J1, J2Q1 = −Q2J2.

Now AB = BA implies that PB = BP and QB = BQ (using Fuglede-Putnam).

Decompose B conformally with Q , say B =
(

B11 B12

B21 B22

)
, then

(
Q1 0
0 Q2

)(
B11 B12

B21 B22

)
=

(
B11 B12

B21 B22

)(
Q1 0
0 Q2

)
.

This gives

Q1B11 = B11Q1, Q1B12 = B12Q2, Q2B21 = B21Q1, Q2B22 = B22Q2,
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Since Q1 and Q2 have mutually singular spectral measures, we must have B12 = 0,
B21 = 0 (from Conway’s Lemma), so B0

∼= B1 ⊕B2 say, where B1 = B11 : H1 → H1

and B2 = B22 : H2 → H2 . This completes the proof in Case 1.
Case 2. Assume that AB = BA and JA∗J = −A . As before H0 is both A and B

reducing and we write A = P+ iQ where P = P∗ , Q = Q∗ . Also

JQ =
JA− JA∗

−2i
= −−A∗J +AJ

2i
= −A−A∗

2i
J = −QJ,

and QB = BQ , so the rest of the proof continues as before.
Case 3. In this case we assume AB = −BA∗ and AJ = JA . Again H0 is both A

and B reducing and if we set A = P+ iQ , then again JQ = −QJ .
In this case AB = −BA∗ implies that

QB =
(A−A∗)B

2i
=

AB−A∗B
2i

=
−BA∗+AB

2i
= BQ,

so the same reasoning as previously applies.
Case 4. If AB = −BA∗ and JA∗J = −A , then we again have QB = BQ and JQ =

−QJ as above. This completes the proof of the lemma. �

Proof of Theorem 1. (a) We have shown that B0
∼= B1 ⊕B2 where Bi : Hi → Hi ,

i = 1,2. Assume B is J -symmetric: JB∗J = B , then from Proposition 4(b) we have

J1B
∗
2 = B1J1 and J2B

∗
1 = B2J2,

If B is also normal, then B0 is normal and each of B1 and B2 are normal and so they
are complex-symmetric. From Proposition 2 there exists conjugations J0 and J′0 with

J0B1 = B∗
1J0 and J′0B2 = B∗

2J
′
0.

Combining these facts gives

J0J1B
∗
2 = J0B1J1 = B∗

1J0J1,

where J0J1 : H2 → H1 is unitary, B∗
1
∼= B∗

2 so in particular B0
∼= B1⊕B1 .

(b) B is J -real, so JB = BJ . Proposition 4(i)(a) then gives

J1B2 = B1J1 and J2B1 = B2J2.

We also have
J0B1 = B∗

1J0 and J′0B2 = B∗
2J

′
0,

so combining these gives J0J1B2 = J0B1J1 = B∗
1J0J1 , or B1

∼= B∗
2 and B0

∼= B1⊕B∗
1 .

(c) JB∗ = −BJ , so by Proposition 4(i)(d) we have

J1B
∗
2 = −B1J1 and J2B

∗
1 = −B2J2,
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so that J′0J2B∗
1 = −J′0B2J2 = B∗

2J
′
0J2 , giving B∗

1
∼= −B∗

2 and B1
∼= −B2 , so B0

∼= B1 ⊕
−B1 .

(d) JB = −BJ , so Proposition 4(i)(c) gives

J1B2 = −B1J1 and J1B1 = −B2J2,

and in this case we obtain J0J1B2 = −J0B1J1 = −B∗
1J0J1 , so that B2

∼= −B∗
1 or B0

∼=
B1⊕−B∗

1 . �

THEOREM 2. Let A,B : H → H be bounded normal operators on a complex
Hilbert space and J : H → H a conjugation.

Suppose that (1) AB = −BA or (2) AB = BA∗ , then

H0 = ker(A−A∗)⊥ = ran(A−A∗),

is both an A and B reducing subspace of H . Set B0 = B|H0 , the restriction of B to
H0 .

Suppose
(i) A is J -real or (ii) A is J -skew-symmetric then

(a) if B is J -real, then B0
∼=

(
0 B1

J1B1J2 0

)
, where H0 = H1⊕H2 , B1 : H2 →H1 ,

(b) with no conditions on B, B0 =
(

0 B1

B2 0

)
, B2

0
∼=

(
B1B2 0

0 B2B1

)
= F ⊕G,

on H1 ⊕H2 , where σ(F) \ {0} = σ(G) \ {0} , and if B is invertible, J -symmetric or
J -skew-symmetric, then B2

0
∼= F ⊕F ,

(c) if B is Hermitian, B0
∼=

(
0 B1

B∗
1 0

)
, for some operator B1 ,

(d) if B is J -imaginary, then B0
∼=

(
0 B1

−J1B1J2 0

)
, for some operator B1 .

To prove Theorem 2 we need the following lemma:

LEMMA 6. Suppose that A,B : H → H are bounded normal operators, and
J : H → H is a conjugation. If either (i) AB = −BA or (ii) AB = BA∗ , then the
subspace H0 = ker(A−A∗)⊥ is both A and B reducing. Set B0 = B|H0 .

(a) If in addition A is J -real, or (b) A is J -skew-symmetric, then there is a de-
composition H0 = H1 ⊕H2 with bounded operators B1 : H2 → H1 and B2 : H1 → H2 ,

B0
∼=

(
0 B1

B2 0

)
.

Proof. As before, H0 is A and B reducing. Set A = P+ iQ where

P =
A+A∗

2
, Q =

A−A∗

2i
,

so that P = P∗ , Q = Q∗ and JQ = −QJ , and σ(Q) is real and is symmetrical about
the origin and Q = Q1⊕Q2 where σ(Q1)⊆ (0,∞) , σ(Q2)⊆ (−∞,0) (where we again
may assume that ker(Q) = ker(A−A∗) = {0} .
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Case 1. JA = AJ and AB =−BA implies that PB =−BP and QB =−BQ , so we
proceed as before, decomposing B conformally with Q = Q1⊕Q2 , but this time (using
Qi and −Qi , i = 1,2 having mutually singular scalar spectral measures), the equation

QB = −BQ gives B0 of the form B0 =
(

0 B1

B2 0

)
.

Case 2. JA = AJ and AB = BA∗ gives JQ = −QJ and QB = −BQ and we pro-
ceed as in Case 1.

Case 3. JA∗J = −A and AB = −BA , then again we get JQ = −QJ and AB =
−BA . Similarly in the last case where JA∗J = −A and AB = BA∗ . �

Proof of Theorem 2. From Lemma 6 we have B0 =
(

0 B1

B2 0

)
.

(a) If JB = BJ , then Lemma 4 gives

J1B2 = B1J2 and J2B1 = B2J1.

In particular B2 = J1B1J2 , so that B0 =
(

0 B1

J1B1J2 0

)
.

(b) B2
0 =

(
0 B1

B2 0

)2

=
(

B1B2 0
0 B2B1

)
=

(
F 0
0 G

)
= F ⊕G say. Now B is nor-

mal, so B2
0 is normal and in particular F = B1B2 and G = B2B1 are normal. It is

well known that σ(F) \ {0} = σ(G) \ {0} . If B is invertible, FB1 = (B1B2)B1 =
B1(B2B1) = B1G and B1 invertible and B1B2 , B2B1 normal implies F ∼= G , so B2

0
∼=

F ⊕F .
In the case that B is J -symmetric, JB∗ = BJ and B∗J = JB , then we see that

J1B
∗
1 = B1J2, J2B

∗
2 = B2J1 and B∗

2J2 = J1B2, B∗
1J1 = J2B1.

It follows that they are complex symmetric, so there are conjugations C1 and C2 :

C1(B1B2)∗ = (B1B2)C1, and C2(B2B1)∗ = (B2B1)C2.

Then

J2C1(B1B2)∗ = J2(B1B2)C1 = B∗
1J1B2C1 = B∗

1B
∗
2J2C1 = (B2B1)∗J2C1.

This shows that B1B2 and B2B1 are unitarily equivalent via U = J2C1 , and the result
follows. The case where B is J -skew-symmetric is similar.

(c) If B = B∗ , then clearly B1 = B∗
2 and B2 = B∗

1 and the result follows.
(d) This is similar to (a). �

REMARKS. In the finite dimensional case of the previous theorem, for (a) and
(d) it can be shown that B0 is similar to a matrix of the form −R⊕R where R is a
real. For (c), B0 is similar to Σ⊕−Σ for some matrix Σ arising from a singular value
decomposition (see [11]). We conjecture that there are infinite dimensional versions of
these results.
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