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Abstract. Let A =
[
A11 A12
A21 A22

]
, where A22 is q× q , be an n× n complex matrix such that the

numerical range of A is contained in Sα = {z ∈ C : ℜz > 0, |ℑz| � (ℜz) tanα} for some α ∈
[0,π/2) . We obtain the following singular value inequality:

σ j(A/A11) � sec2(α)σ j(A22), j = 1, . . . ,q,

where A/A11 := A22−A21A
−1
11 A12 and σ j(·) means the j -th largest singular value. This strength-

ens some recent results on determinantal inequalities. We also prove

σ j(A) � sec2(α)λ j(ℜA), j = 1, . . . ,n,

where λ j(·) denotes the j -th largest eigenvalue, complementing a result of Fan and Hoffman.

1. Introduction

We start by fixing some notation. The set of n×n complex matrices is denoted by
Mn . The identity matrix of Mn is In . Let M ∈Mn . If the eigenvalues of M are all real,
then we denote its j -th largest eigenvalue by λ j(M) . The j -th largest singular value
of M is denoted by σ j(M) . Note that σ j(M) =

√
λ j(M∗M) , where M∗ means the

conjugate transpose of M . For two Hermitian matrices M,N ∈ Mn , we write N � M
to mean M−N is positive semidefinite, so M � 0 means M is positive semidefinite.
We also denote ℜM = 1

2 (M +M∗) and ℑM = 1
2i (M−M∗) .

The numerical range of an n×n matrix M is defined by

W (M) = {x∗Mx : x ∈ C
n,x∗x = 1}.

Also, we define a sector on the complex plane

Sα = {z ∈ C : ℜz > 0, |ℑz| � (ℜz) tanα}, α ∈ [0,π/2).

Consider A ∈ Mn partitioned as

A =
[
A11 A12

A21 A22

]
,where A22 ∈ Mq,q � �n/2�. (1.1)
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Here the floor function notation �n/2� means the integer part of n/2. When W (A) is
contained in the first quadrant of the complex plane (in this case, A is called accretive-
dissipative), it was conjectured in [8] that

|detA| � 2q|detA11| · |detA22|. (1.2)

More generally, suppose W (A) ⊂ Sα , it was conjectured in [3] that

|detA| � (secα)2q|detA11| · |detA22|. (1.3)

The coefficient (secα)2q in (1.3) is known to be optimal in the sense that for some

A with W (A) ⊂ Sα ,
|detA|

|detA11| · |detA22| = (secα)2q . Very recently, the conjectured

inequalities (1.2) and (1.3) were proved by Li and Sze in [6] via obtaining the optimal
containment region for a certain generalized eigenvalue problem.

Suppose W (A) ⊂ Sα , it is clear that W (A11) ⊂ Sα , thus A11 is invertible. The
Schur complement of A11 in A is defined by A/A11 := A22−A21A

−1
11 A12 .

Note that (1.3) is equivalent to

|detA/A11| � (secα)2q|detA22|.
i.e.,

q

∏
j=1

σ j(A/A11) � (secα)2q
q

∏
j=1

σ j(A22). (1.4)

In this paper, we show a strengthening of (1.4). One of our main results is the
following.

THEOREM 1.1. Let A ∈ Mn be partitioned as in (1.1) and W (A) ⊂ Sα . Then

σ j(A/A11) � sec2(α)σ j(A22), j = 1, . . . ,q. (1.5)

The proof of this theorem is given in Section 2.

2. Proof of Theorem 1.1

We start with some lemmas. The first one is due to Fan and Hoffman and can be
found in [1, p. 73].

LEMMA 2.1. For every A ∈ Mn ,

λ j(ℜA) � σ j(A), j = 1, . . . ,n. (2.1)

The second lemma makes use of an explicit expression for the inverse of a 2× 2
partitioned matrix; see [5, p. 18].

LEMMA 2.2. Let A ∈ Mn be invertible and partitioned as in (1.1). Also, we par-
tition A−1 conformally as A and assume A11 is invertible. Then the (2,2) block of
A−1 , denoted by (A−1)22 , is equal to (A/A11)−1 .
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The third lemma is a technical one.

LEMMA 2.3. Let X =
[
X1

X2

]
,Y =

[
Y1

Y2

]
∈ Mn , where X2,Y2 are q× n, such that

YX∗ = In . Then

λ j(X2X
∗
2 )λq+1− j(Y2Y

∗
2 ) � 1, j = 1, . . . ,q. (2.2)

Proof. As YX∗ = In , we have Y2X∗
2 = Iq .

Note that λq+1− j(Y2Y
∗
2 ) =

1

λ j

(
(Y2Y ∗

2 )−1
) , so (2.2) is the same as

λ j(X2X
∗
2 ) � λ j

(
(Y2Y

∗
2 )−1

)
, j = 1, . . . ,q. (2.3)

We shall prove something stronger

X2X
∗
2 � (Y2Y

∗
2 )−1. (2.4)

As

0 �
[
Y2

X2

][
Y2

X2

]∗
=

[
Y2Y ∗

2 Y2X∗
2

X2Y ∗
2 X2X∗

2

]
=

[
Y2Y ∗

2 Iq
Iq X2X∗

2

]
,

using a well known characterization of positivity in terms of the Schur complement (see
[5, p. 472]), (2.4) follows. �

Now we are in a position to prove our main result.

Proof of Theorem 1.1. By [3, Lemma 1.1], we can write A in the following form

A = XZX∗ (2.5)

for some invertible X ∈ Mn and Z = diag(eiθ1 , . . . ,eiθn) with |θ j| � α for all j . Let
Y = (X∗)−1 and partition X ,Y as in Lemma 2.3. Then from (2.5), we have A22 =
X2ZX∗

2 .
By Lemma 2.1,

σ j(X2ZX∗
2 ) � λ j(X2(ℜZ)X∗

2 ) � λ j(X2X
∗
2 )cos(α), j = 1, . . . ,q.

Similarly, we have

σ j(Y2Z
∗Y ∗

2 ) � λ j(Y2Y
∗
2 )cos(α), j = 1, . . . ,q.

Combining these two inequalities and by Lemma 2.3, we get

σ j(X2ZX∗
2 )σq+1− j(Y2Z

∗Y ∗
2 ) � cos(α)2,

i.e.,

σ j(X2ZX∗
2 )sec(α)2 � 1

σq+1− j(Y2Z∗Y ∗
2 )

= σ j

(
(Y2Z

∗Y ∗
2 )−1

)
.

But by Lemma 2.2, (Y2Z∗Y ∗
2 )−1 = A/A11 , and the desired result follows.
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3. A reversed inequality

In this section, we prove the following reversed inequality to (2.1).

THEOREM 3.1. Let A ∈ Mn be such that W (A) ⊂ Sα . Then

σ j(A) � sec2(α)λ j(ℜA), j = 1, . . . ,n. (3.1)

Proof. Since W (A−1) ⊂ Sα , it follows that ℜ(A−1) is positive definite. Hence,
we may apply Lemma 2.1 to A−1 , yielding

1
λn+1− j((ℜ(A−1))−1)

= λ j(ℜ(A−1))

� σ j(A−1) =
1

σn+1− j(A)
, for j = 1, . . . ,n,

or equivalently

σ j(A) � λ j((ℜ(A−1))−1), for j = 1, . . . ,n,

after replacing j with n+1− j . It remains to show that

λ j((ℜ(A−1))−1) � λ j(ℜA)sec(α)2.

To decode this, let A = P+ iQ with P positive definite and Q Hermitian. Then by [8,
Lemma 4],

ℜ(A−1) = (P+QP−1Q)−1

and therefore
(

ℜ(A−1)
)−1

= P + QP−1Q . Again applying (2.5), we can write P =
Xdiag(cos(θ1), . . . ,cos(θn))X∗ and Q = Xdiag(sin(θ1), . . . ,sin(θn))X∗ for some in-
vertible X . But then

(
ℜ(A−1)

)−1
= Xdiag(sec(θ1), . . . ,sec(θn))X∗

� sec(α)2Xdiag(cos(θ1), . . . ,cos(θn))X∗

= sec(α)2ℜA.

and the result follows. �

We have the following corollary.

COROLLARY 3.2. Let X ,Y ∈ Mn be positive semidefinite. Then

σ j(X + iY) �
√

2λ j(X +Y ), j = 1, . . . ,n.
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Proof. By a continuity argument, we can assume without loss of generality that X
and Y are positive definite. Then (1− i)(X + iY ) = (X +Y )+ i(Y−X) has its numerical
range in S π

4
. It follows that

√
2σ j(X + iY) = σ j((X +Y)+ i(Y −X)) � 2λ j(X +Y ),

as required. �

We borrow the following simple example from [2] to show that in general σ j(X +
iY ) � λ j(X +Y ) fails for X ,Y � 0.

EXAMPLE 3.3. Take

X =
[
1 0
0 0

]
, Y =

[
1 1
1 1

]
.

A calculation shows σ2(X + iY ) ≈ 0.4569 > λ2(X +Y ) ≈ 0.3820.

The following follows immediately from Corollary 3.2.

COROLLARY 3.4. Let X ,Y,Z ∈ Mn such that 0 � X � Z , 0 � Y � Z . Then

σ j(X + iY ) � 2
√

2λ j(Z), j = 1, . . . ,n. (3.2)

We present an example showing that the coefficient 2
√

2 on the right hand side of
(3.2) is optimal.

EXAMPLE 3.5. Take

X =
[

1− ε
√

(1− ε)t√
(1− ε)t t

]
, Y =

[
1− ε −√

(1− ε)t
−√

(1− ε)t t

]

and

Z =
[
1 0
0 t/ε

]
,

where 0 < ε < 1, t > 0. It is easy to verify that 0 � X � Z , 0 � Y � Z . We find

σ2(X + iY ) =
√

(t +1)2−
√

1+6t + t2(t−1), as ε → 0.

Now by letting t → ∞ , we have σ2(X + iY ) = 2
√

2 = 2
√

2λ2(Z) .

4. Comments

1. Recall that a norm ‖ ·‖ on the algebra of Mn is unitarily invariant if ‖X‖ = ‖UXV‖
for all unitaries U and V and all X ∈ Mn . The inequality (1.5) is strong enough to
imply the following norm inequality.
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THEOREM 4.1. Let A ∈ Mn be as in (1.1) and W (A) ⊂ Sα . Then

‖A/A11‖ � sec2(α)‖A22‖,
for any unitarily invariant norm ‖ · ‖ . In particular, when A is accretive-dissipative,
we have

‖A/A11‖ � 2‖A22‖.
Various norm inequalities for accretive-dissipative matrices (operators) have been

recently considered in [9].

2. Reversed inequalities to that of (1.2) have been given in [7] and further improved in
[4]. Similarly, one may consider reversed analogue of (1.5). Without doubt, it requires
further information like the condition number of A . We decide to leave it as a research
problem for interested readers.
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