# SINGULAR VALUE INEQUALITIES FOR MATRICES WITH NUMERICAL RANGES IN A SECTOR 

Stephen Drury and Minghua Lin

(Communicated by C.-K. Li)

Abstract. Let $A=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$, where $A_{22}$ is $q \times q$, be an $n \times n$ complex matrix such that the numerical range of $A$ is contained in $S_{\alpha}=\{z \in \mathbb{C}: \mathfrak{R} z>0,|\mathfrak{\Im} z| \leqslant(\Re z) \tan \alpha\}$ for some $\alpha \in$ $[0, \pi / 2)$. We obtain the following singular value inequality:

$$
\sigma_{j}\left(A / A_{11}\right) \leqslant \sec ^{2}(\alpha) \sigma_{j}\left(A_{22}\right), \quad j=1, \ldots, q
$$

where $A / A_{11}:=A_{22}-A_{21} A_{11}^{-1} A_{12}$ and $\sigma_{j}(\cdot)$ means the $j$-th largest singular value. This strengthens some recent results on determinantal inequalities. We also prove

$$
\sigma_{j}(A) \leqslant \sec ^{2}(\alpha) \lambda_{j}(\Re A), \quad j=1, \ldots, n
$$

where $\lambda_{j}(\cdot)$ denotes the $j$-th largest eigenvalue, complementing a result of Fan and Hoffman.

## 1. Introduction

We start by fixing some notation. The set of $n \times n$ complex matrices is denoted by $\mathbb{M}_{n}$. The identity matrix of $\mathbb{M}_{n}$ is $I_{n}$. Let $M \in \mathbb{M}_{n}$. If the eigenvalues of $M$ are all real, then we denote its $j$-th largest eigenvalue by $\lambda_{j}(M)$. The $j$-th largest singular value of $M$ is denoted by $\sigma_{j}(M)$. Note that $\sigma_{j}(M)=\sqrt{\lambda_{j}\left(M^{*} M\right)}$, where $M^{*}$ means the conjugate transpose of $M$. For two Hermitian matrices $M, N \in \mathbb{M}_{n}$, we write $N \leqslant M$ to mean $M-N$ is positive semidefinite, so $M \geqslant 0$ means $M$ is positive semidefinite. We also denote $\mathfrak{R} M=\frac{1}{2}\left(M+M^{*}\right)$ and $\mathfrak{J} M=\frac{1}{2 i}\left(M-M^{*}\right)$.

The numerical range of an $n \times n$ matrix $M$ is defined by

$$
W(M)=\left\{x^{*} M x: x \in \mathbb{C}^{n}, x^{*} x=1\right\} .
$$

Also, we define a sector on the complex plane

$$
S_{\alpha}=\{z \in \mathbb{C}: \Re z>0,|\Im z| \leqslant(\Re z) \tan \alpha\}, \quad \alpha \in[0, \pi / 2)
$$

Consider $A \in \mathbb{M}_{n}$ partitioned as

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12}  \tag{1.1}\\
A_{21} & A_{22}
\end{array}\right], \text { where } A_{22} \in \mathbb{M}_{q}, q \leqslant\lfloor n / 2\rfloor .
$$

Keywords and phrases: Singular value inequality, numerical range, accretive-dissipative matrix.

Here the floor function notation $\lfloor n / 2\rfloor$ means the integer part of $n / 2$. When $W(A)$ is contained in the first quadrant of the complex plane (in this case, $A$ is called accretivedissipative), it was conjectured in [8] that

$$
\begin{equation*}
|\operatorname{det} A| \leqslant 2^{q}\left|\operatorname{det} A_{11}\right| \cdot\left|\operatorname{det} A_{22}\right| \tag{1.2}
\end{equation*}
$$

More generally, suppose $W(A) \subset S_{\alpha}$, it was conjectured in [3] that

$$
\begin{equation*}
|\operatorname{det} A| \leqslant(\sec \alpha)^{2 q}\left|\operatorname{det} A_{11}\right| \cdot\left|\operatorname{det} A_{22}\right| \tag{1.3}
\end{equation*}
$$

The coefficient $(\sec \alpha)^{2 q}$ in (1.3) is known to be optimal in the sense that for some $A$ with $W(A) \subset S_{\alpha}, \frac{|\operatorname{det} A|}{\left|\operatorname{det} A_{11}\right| \cdot\left|\operatorname{det} A_{22}\right|}=(\sec \alpha)^{2 q}$. Very recently, the conjectured inequalities (1.2) and (1.3) were proved by Li and Sze in [6] via obtaining the optimal containment region for a certain generalized eigenvalue problem.

Suppose $W(A) \subset S_{\alpha}$, it is clear that $W\left(A_{11}\right) \subset S_{\alpha}$, thus $A_{11}$ is invertible. The Schur complement of $A_{11}$ in $A$ is defined by $A / A_{11}:=A_{22}-A_{21} A_{11}^{-1} A_{12}$.

Note that (1.3) is equivalent to

$$
\left|\operatorname{det} A / A_{11}\right| \leqslant(\sec \alpha)^{2 q}\left|\operatorname{det} A_{22}\right|
$$

i.e.,

$$
\begin{equation*}
\prod_{j=1}^{q} \sigma_{j}\left(A / A_{11}\right) \leqslant(\sec \alpha)^{2 q} \prod_{j=1}^{q} \sigma_{j}\left(A_{22}\right) \tag{1.4}
\end{equation*}
$$

In this paper, we show a strengthening of (1.4). One of our main results is the following.

Theorem 1.1. Let $A \in \mathbb{M}_{n}$ be partitioned as in (1.1) and $W(A) \subset S_{\alpha}$. Then

$$
\begin{equation*}
\sigma_{j}\left(A / A_{11}\right) \leqslant \sec ^{2}(\alpha) \sigma_{j}\left(A_{22}\right), \quad j=1, \ldots, q \tag{1.5}
\end{equation*}
$$

The proof of this theorem is given in Section 2.

## 2. Proof of Theorem 1.1

We start with some lemmas. The first one is due to Fan and Hoffman and can be found in [1, p. 73].

Lemma 2.1. For every $A \in \mathbb{M}_{n}$,

$$
\begin{equation*}
\lambda_{j}(\Re A) \leqslant \sigma_{j}(A), \quad j=1, \ldots, n . \tag{2.1}
\end{equation*}
$$

The second lemma makes use of an explicit expression for the inverse of a $2 \times 2$ partitioned matrix; see [5, p. 18].

Lemma 2.2. Let $A \in \mathbb{M}_{n}$ be invertible and partitioned as in (1.1). Also, we partition $A^{-1}$ conformally as $A$ and assume $A_{11}$ is invertible. Then the $(2,2)$ block of $A^{-1}$, denoted by $\left(A^{-1}\right)_{22}$, is equal to $\left(A / A_{11}\right)^{-1}$.

The third lemma is a technical one.
Lemma 2.3. Let $X=\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right], Y=\left[\begin{array}{l}Y_{1} \\ Y_{2}\end{array}\right] \in \mathbb{M}_{n}$, where $X_{2}, Y_{2}$ are $q \times n$, such that $Y X^{*}=I_{n}$. Then

$$
\begin{equation*}
\lambda_{j}\left(X_{2} X_{2}^{*}\right) \lambda_{q+1-j}\left(Y_{2} Y_{2}^{*}\right) \geqslant 1, \quad j=1, \ldots, q . \tag{2.2}
\end{equation*}
$$

Proof. As $Y X^{*}=I_{n}$, we have $Y_{2} X_{2}^{*}=I_{q}$.
Note that $\lambda_{q+1-j}\left(Y_{2} Y_{2}^{*}\right)=\frac{1}{\lambda_{j}\left(\left(Y_{2} Y_{2}^{*}\right)^{-1}\right)}$, so (2.2) is the same as

$$
\begin{equation*}
\lambda_{j}\left(X_{2} X_{2}^{*}\right) \geqslant \lambda_{j}\left(\left(Y_{2} Y_{2}^{*}\right)^{-1}\right), \quad j=1, \ldots, q . \tag{2.3}
\end{equation*}
$$

We shall prove something stronger

$$
\begin{equation*}
X_{2} X_{2}^{*} \geqslant\left(Y_{2} Y_{2}^{*}\right)^{-1} . \tag{2.4}
\end{equation*}
$$

As

$$
0 \leqslant\left[\begin{array}{l}
Y_{2} \\
X_{2}
\end{array}\right]\left[\begin{array}{l}
Y_{2} \\
X_{2}
\end{array}\right]^{*}=\left[\begin{array}{l}
Y_{2} Y_{2}^{*} \\
X_{2} X_{2}^{*} \\
X_{2} Y_{2}^{*} X_{2} X_{2}^{*}
\end{array}\right]=\left[\begin{array}{cc}
Y_{2} Y_{2}^{*} & I_{q} \\
I_{q} & X_{2} X_{2}^{*}
\end{array}\right],
$$

using a well known characterization of positivity in terms of the Schur complement (see [5, p. 472]), (2.4) follows.

Now we are in a position to prove our main result.
Proof of Theorem 1.1. By [3, Lemma 1.1], we can write $A$ in the following form

$$
\begin{equation*}
A=X Z X^{*} \tag{2.5}
\end{equation*}
$$

for some invertible $X \in \mathbb{M}_{n}$ and $Z=\operatorname{diag}\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{n}}\right)$ with $\left|\theta_{j}\right| \leqslant \alpha$ for all $j$. Let $Y=\left(X^{*}\right)^{-1}$ and partition $X, Y$ as in Lemma 2.3. Then from (2.5), we have $A_{22}=$ $X_{2} Z X_{2}^{*}$.

By Lemma 2.1,

$$
\sigma_{j}\left(X_{2} Z X_{2}^{*}\right) \geqslant \lambda_{j}\left(X_{2}(\Re Z) X_{2}^{*}\right) \geqslant \lambda_{j}\left(X_{2} X_{2}^{*}\right) \cos (\alpha), \quad j=1, \ldots, q .
$$

Similarly, we have

$$
\sigma_{j}\left(Y_{2} Z^{*} Y_{2}^{*}\right) \geqslant \lambda_{j}\left(Y_{2} Y_{2}^{*}\right) \cos (\alpha), \quad j=1, \ldots, q .
$$

Combining these two inequalities and by Lemma 2.3, we get

$$
\sigma_{j}\left(X_{2} Z X_{2}^{*}\right) \sigma_{q+1-j}\left(Y_{2} Z^{*} Y_{2}^{*}\right) \geqslant \cos (\alpha)^{2}
$$

i.e.,

$$
\sigma_{j}\left(X_{2} Z X_{2}^{*}\right) \sec (\alpha)^{2} \geqslant \frac{1}{\sigma_{q+1-j}\left(Y_{2} Z^{*} Y_{2}^{*}\right)}=\sigma_{j}\left(\left(Y_{2} Z^{*} Y_{2}^{*}\right)^{-1}\right)
$$

But by Lemma 2.2, $\left(Y_{2} Z^{*} Y_{2}^{*}\right)^{-1}=A / A_{11}$, and the desired result follows.

## 3. A reversed inequality

In this section, we prove the following reversed inequality to (2.1).
THEOREM 3.1. Let $A \in \mathbb{M}_{n}$ be such that $W(A) \subset S_{\alpha}$. Then

$$
\begin{equation*}
\sigma_{j}(A) \leqslant \sec ^{2}(\alpha) \lambda_{j}(\Re A), \quad j=1, \ldots, n \tag{3.1}
\end{equation*}
$$

Proof. Since $W\left(A^{-1}\right) \subset S_{\alpha}$, it follows that $\mathfrak{R}\left(A^{-1}\right)$ is positive definite. Hence, we may apply Lemma 2.1 to $A^{-1}$, yielding

$$
\begin{aligned}
\frac{1}{\lambda_{n+1-j}\left(\left(\Re\left(A^{-1}\right)\right)^{-1}\right)} & =\lambda_{j}\left(\Re\left(A^{-1}\right)\right) \\
& \leqslant \sigma_{j}\left(A^{-1}\right)=\frac{1}{\sigma_{n+1-j}(A)}, \quad \text { for } j=1, \ldots, n
\end{aligned}
$$

or equivalently

$$
\sigma_{j}(A) \leqslant \lambda_{j}\left(\left(\Re\left(A^{-1}\right)\right)^{-1}\right), \quad \text { for } j=1, \ldots, n,
$$

after replacing $j$ with $n+1-j$. It remains to show that

$$
\lambda_{j}\left(\left(\Re\left(A^{-1}\right)\right)^{-1}\right) \leqslant \lambda_{j}(\Re A) \sec (\alpha)^{2} .
$$

To decode this, let $A=P+i Q$ with $P$ positive definite and $Q$ Hermitian. Then by [8, Lemma 4],

$$
\mathfrak{R}\left(A^{-1}\right)=\left(P+Q P^{-1} Q\right)^{-1}
$$

and therefore $\left(\Re\left(A^{-1}\right)\right)^{-1}=P+Q P^{-1} Q$. Again applying (2.5), we can write $P=$ $X \operatorname{diag}\left(\cos \left(\theta_{1}\right), \ldots, \cos \left(\theta_{n}\right)\right) X^{*}$ and $Q=X \operatorname{diag}\left(\sin \left(\theta_{1}\right), \ldots, \sin \left(\theta_{n}\right)\right) X^{*}$ for some invertible $X$. But then

$$
\begin{aligned}
\left(\Re\left(A^{-1}\right)\right)^{-1} & =X \operatorname{diag}\left(\sec \left(\theta_{1}\right), \ldots, \sec \left(\theta_{n}\right)\right) X^{*} \\
& \leqslant \sec (\alpha)^{2} X \operatorname{diag}\left(\cos \left(\theta_{1}\right), \ldots, \cos \left(\theta_{n}\right)\right) X^{*} \\
& =\sec (\alpha)^{2} \Re A .
\end{aligned}
$$

and the result follows.
We have the following corollary.
Corollary 3.2. Let $X, Y \in \mathbb{M}_{n}$ be positive semidefinite. Then

$$
\sigma_{j}(X+i Y) \leqslant \sqrt{2} \lambda_{j}(X+Y), \quad j=1, \ldots, n
$$

Proof. By a continuity argument, we can assume without loss of generality that $X$ and $Y$ are positive definite. Then $(1-i)(X+i Y)=(X+Y)+i(Y-X)$ has its numerical range in $S_{\frac{\pi}{4}}$. It follows that

$$
\sqrt{2} \sigma_{j}(X+i Y)=\sigma_{j}((X+Y)+i(Y-X)) \leqslant 2 \lambda_{j}(X+Y)
$$

as required.
We borrow the following simple example from [2] to show that in general $\sigma_{j}(X+$ $i Y) \leqslant \lambda_{j}(X+Y)$ fails for $X, Y \geqslant 0$.

EXAmple 3.3. Take

$$
X=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad Y=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

A calculation shows $\sigma_{2}(X+i Y) \approx 0.4569>\lambda_{2}(X+Y) \approx 0.3820$.
The following follows immediately from Corollary 3.2.
Corollary 3.4. Let $X, Y, Z \in \mathbb{M}_{n}$ such that $0 \leqslant X \leqslant Z, 0 \leqslant Y \leqslant Z$. Then

$$
\begin{equation*}
\sigma_{j}(X+i Y) \leqslant 2 \sqrt{2} \lambda_{j}(Z), \quad j=1, \ldots, n \tag{3.2}
\end{equation*}
$$

We present an example showing that the coefficient $2 \sqrt{2}$ on the right hand side of (3.2) is optimal.

Example 3.5. Take

$$
X=\left[\begin{array}{cc}
1-\varepsilon & \sqrt{(1-\varepsilon) t} \\
\sqrt{(1-\varepsilon) t} & t
\end{array}\right], \quad Y=\left[\begin{array}{cc}
1-\varepsilon & -\sqrt{(1-\varepsilon) t} \\
-\sqrt{(1-\varepsilon) t} & t
\end{array}\right]
$$

and

$$
Z=\left[\begin{array}{cc}
1 & 0 \\
0 & t / \varepsilon
\end{array}\right]
$$

where $0<\varepsilon<1, t>0$. It is easy to verify that $0 \leqslant X \leqslant Z, 0 \leqslant Y \leqslant Z$. We find

$$
\sigma_{2}(X+i Y)=\sqrt{(t+1)^{2}-\sqrt{1+6 t+t^{2}}(t-1)}, \quad \text { as } \varepsilon \rightarrow 0
$$

Now by letting $t \rightarrow \infty$, we have $\sigma_{2}(X+i Y)=2 \sqrt{2}=2 \sqrt{2} \lambda_{2}(Z)$.

## 4. Comments

1. Recall that a norm $\|\cdot\|$ on the algebra of $\mathbb{M}_{n}$ is unitarily invariant if $\|X\|=\|U X V\|$ for all unitaries $U$ and $V$ and all $X \in \mathbb{M}_{n}$. The inequality (1.5) is strong enough to imply the following norm inequality.

Theorem 4.1. Let $A \in \mathbb{M}_{n}$ be as in (1.1) and $W(A) \subset S_{\alpha}$. Then

$$
\left\|A / A_{11}\right\| \leqslant \sec ^{2}(\alpha)\left\|A_{22}\right\|,
$$

for any unitarily invariant norm $\|\cdot\|$. In particular, when $A$ is accretive-dissipative, we have

$$
\left\|A / A_{11}\right\| \leqslant 2\left\|A_{22}\right\| .
$$

Various norm inequalities for accretive-dissipative matrices (operators) have been recently considered in [9].
2. Reversed inequalities to that of (1.2) have been given in [7] and further improved in [4]. Similarly, one may consider reversed analogue of (1.5). Without doubt, it requires further information like the condition number of $A$. We decide to leave it as a research problem for interested readers.

Acknowledgements.
The authors thank the referee for helpful comments.

## REFERENCES

[1] R. Bhatia, Matrix Analysis, GTM 169, Springer-Verlag, New York, 1997.
[2] R. Bhatia, F. Kittaneh, The singular values of $A+B$ and $A+i B$, Linear Algebra Appl. 431 (2009) 1502-1508.
[3] S. W. Drury, Fischer determinantal inequalities and Higham's Conjecture, Linear Algebra Appl. 439 (2013) 3129-3133.
[4] S. W. Drury, M. Lin, Reversed Fischer determinantal inequalities, Linear Multilinear Algebra (2013). DOI: 10.1080/03081087.2013.804919
[5] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, 1990.
[6] C.-K. Li, N. Sze, Determinantal and eigenvalue inequalities for matrices with numerical ranges in a sector, J. Math. Anal. Appl. 410 (2014) 487-491.
[7] M. Lin, Reversed determinantal inequalities for accretive-dissipative matrices, Math. Inequal. Appl. 12 (2012) 955-958.
[8] M. Lin, Fischer type determinantal inequalities for accretive-dissipative matrices, Linear Algebra Appl. 438 (2013) 2808-2812.
[9] M. Lin, D. ZHOU, Norm inequalities for accretive-dissipative operator matrices, J. Math. Anal. Appl. 407 (2013) 436-442.

> and

Department of Mathematics and Statistics
University of Victoria BC, Canada V8W 3R4
e-mail: mlin87@ymail.com

