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A RADON-NIKODYM TYPE THEOREM FOR
a—COMPLETELY POSITIVE MAPS ON GROUPS
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(Communicated by N.-C. Wong)

Abstract. We show that an operator valued o -completely positive map on a group G is given by
a unitary representation of G on a Krein space which satisfies certain conditions. Moreover, two
such of unitary representations, which are unitarily equivalent, define the same o -completely
positive map. Also we introduce a pre-order relation on the collection of o -completely pos-
itive maps on a group and we characterize this relation in terms of the unitary representation
associated to each map.

1. Introduction

The study of completely positive maps is motivated by their applications in the the-
ory of quantum measurements, operational approach to quantum mechanics, quantum
information theory, where operator-valued completely positive maps on C*-algebras
are used as a mathematical model for quantum operations, and quantum probability
[8,7, 6]. On the other hand, the notion of locality in the Wightman formulation of gauge
quantum field theory conflicts with the notion of positivity. To avoid this, Jakobczyk
and Strocchi [6] introduced the concept of ¢ -positivity. Motivated by the notions of ¢ -
positivity and P-functional [5, 1], recently, Heo, Hong and Ji [4] introduced the notion
of o-completely positive map between C*-algebras, and they provided a Kasparov-
Stinespring-Gelfand-Naimark-Segal type construction for o -completely positive maps.

In [2], Heo introduced the notion of ¢ -completely positive map from a group G to
a C*-algebra A. By analogy with the KSGNS construction for o -completely positive
maps on C*-algebras [4], he associated to an o -completely positive map ¢ from a
group G to the C*-algebra L(X) of all adjointable operators on a Hilbert C*-module X
a quadruple (7y,Xy,Jp,V,) consisting of a Krein C*-module (Xy,Jy), a Jo-unitary
representation 7, of G on X, and a bounded linear operator V,, such that the linear
space generated by {7y (g)Vpx;g € G,x € X} is dense in Xy, Vomy (g)" 7y (8') Vo =
Vamtp (0 (g7') &)V, forall g,¢' € G and ¢ (g) = Vymy (g)V, forall g € G. But, in
general, a such of quadruple does not define an ¢ -completely positive map (Remark
2.6). In this paper, we consider o -completely positive maps from a group G to L(.57),
the C*-algebra of all bounded linear operators on a Hilbert space .7, and we show

Mathematics subject classification (2010): Primary 43A35, 46C50, 46L.05.
Keywords and phrases: o -completely positive map on groups, Radon-Nikodym theorem, unitary rep-
resentation on Krein spaces.

© depay, Zagreb 1163
Paper OaM-08-66


http://dx.doi.org/10.7153/oam-08-66

1164 MARIA JOITA

that under some conditions, a quadruple (7,.7#, #,V) consisting of a Krein space
(4, 7),a ¢ -unitary representation 7 of G on ¢ and a bounded linear operator V
defines an o -completely positive map and we associate to each ¢ -completely positive
map a such of quadruple, that is unique up to unitary equivalence. In Section 3, we
prove a Radon-Nikodym theorem type for o -completely positive maps on groups.

2. Stinespring type theorem for o -completely positive maps

Let G be a (topological) group with an involution ¢ (thatis, a (continuous) map
o : G — G such that o =idg,0t(e) = e and o (g7') = ot (g) ' forall g € G) and
¢ a Hilbert space.

DEFINITION 2.1. [2, Definition 2.11 A map ¢ : G — L(5¢) is oc-completely pos-
itive if:

L. g(a(g)o(g))=¢(x(g182)) = ¢ (g182) forall g1,¢2 € G;

n

2. forall gi,...,g, € G, the matrix {(p ((x (g,-)_lgjﬂ is positive in L(57);

i,j=1
3. there is K > 0, such that

n

(o (gi)" @(81’)]?7;:1 <K {(p (a(g")ilgjﬂ ij=1

for all gy,...,g, € G;
4. forall g € G, there is M(g) > 0 such that

<M(g) o (e g)]

n n

[(P (a (gg1) " ggj)} i -

forall gy,....,, €G.

REMARK 2.2. Let ¢ : G — L(.%7) be an o -completely positive map. Then:

L ¢(a(g) =g foral g€ G;
2. ¢(a(s™!))=9¢(g) forallge G;
3. (P(gil) =@ (g)" forall geG.

Let ¢ be a Hilbert space and _# a bounded linear operator on % such that
¥ = g*= ¢! Then we can define an indefinite inner product by [x,y] = (_#x,y).
The pair (7, 7 ) is called a Krein space. A representation of G on the Krein space
(o, 7) is amorphism w: G — L(J). A _Z -unitary representation of G on the
Krein space (#, ) is a representation 7 such that 7 (g~') = #n(g)" # for all
g€ G and m(e) =id y. If & is a representation of G on %, [ (G) .#] denotes the
closed linear subspace of 77 generated by {7 (g)&;g € G, & € 7#}.
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THEOREM 2.3. [2, Theorem2.2] Let ¢ : G — L(.9¢) be an o -completely positive
map. Then there are a Krein space (%7 /q,), a gy -unitary representation Tty of G
on (%7 /q,) and a bounded linear operator Vi : 7 — 5, such that

1. ¢(g) =Vyme(g)Vy forall g € G;
2. [my H)| =Hy
3. V*n:(p( )" T (g’)Vq,—V n(p( (g’l)g’) Vo forall g,.g' € G.

The quadruple (7y,. %5, Z¢,V,) is called the minimal Naimark -KSGNS dilation
of ¢ [2].

REMARK 2.4. If (77:(,,,,}%,7 /(,,7V(p) is the minimal Naimark -KSGNS dilation of
¢ in the sense of Heo, then (7y,.%,, 7, W), where W = 7, V,, is a minimal
Naimark -KSGNS dilation of ¢ too. Indeed, we have:

Loo(@)=0(") =Veme(g") Vo) = (Vo Zom0(8) FoVe)
= (W*mp(g)' W) =W'my (g)W forall g € G.
2. Since Vg (8) 7y (&) Vo = Vamp (ot (g7') &') Vi forall g,¢' € G, and
[7tp (G) V| = H,, we have
VoTtp (8)" =V (a (7))
for all g € G, and then
Ty (8) Vo = FoTp ((8)) oV
for all g € G. Then

(T (GYWH) = Zo [ IoTp (0(G)) Vo] = Fp [Ty (G) Ve ]
= /(p% =Hp.

3. Let g,¢' € G. Then
W tto (8) T (8 )W = Vi Zomo (8) T (8') Ve
= Voo (871) o7 (&) FoVe
— Vimy (&) (0 (¢)) Vo
Vi (70 (¢)) Vo — 0 (6 (¢)) = (e (s7) )
= (s a(9) = (Voo (¢ (8)) Vp)
(V Somo(0(s7') g ) fw%)
= (Wi (o (a7) ) W) =W (o (s7) &) W.
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REMARK 2.5. We remark that ¢, (8) Vi =y (0t (g)) Vi forall g € G, if and
only if, Vty (8) 7y (8) Vo = Vg (at (g7 1) &) Vi forall g, ¢ € G and Vi = V.
Indeed, if /(,,nq, (8)Vp =mp (0t(g)) Ve forall g € G, then #,V, =V, and

Vot (8) 7o (&) Vo = Vg FoTo (87') FoTe (8) Ve
= Voo (87") Mo (a(8)) Vo = Vome (87 et (8')) Ve
= (s la(g)) =0 (a(s)d)
= Voo (0t (87')8") Vo

forall g,g’ € G.
Conversely, if V7, (8)" Ty (8') Vo = Vomp (et (¢71) &) Vi forall g,¢" € G, then

T (8)Vp = FoTip (0(8)) FoVy (Remark 2.4 (2)

for all g € G, and taking into account that jq,Vq, =V, we have

LT (8) Vo =7p (1 (8)) FoVe = 7o (e (g)) Vo

forall g € G.

REMARK 2.6. If G is a group with an involution &, 7 is a _# -unitary repre-
sentation of G on (%, #) and V a bounded linear operator from a Hilbert space
A 1o A suchthat [m(G)VA)=¢ and V*r(g) n(¢)V=V*rm(a(g')g)V for
all g,g’ € G, then the map ¢ : G — L(J) defined by ¢(g) = V*m(g)V is not in
general an ¢ -completely positive map.

EXAMPLE. Let Z be the additive group of integers and ¢ (n) = —n an involution
of Z. Themap _# : C> — C? definedby _# (x,y) = (y,x) is a bounded linear operator
suchthat # = ¢*= ¢! themap n:Z —L(C?) defined 7 (n) (x,y) = (e"x,e"y)
isa _Z -unitary representation of Z on ((C2, 7 ) ,and the map V : C? — C? defined by
V (x,y) = (x—y,y) is a bounded linear operator. It is easy to verify that [ (Z)VC?] =
C? and V¥ (n) " m(m)V =V*n(n+m)V =V*x(a(—n)+m)V forall n,m € Z, but
¢ : Z.—L(C?) defined by ¢ (n) = V*m(n)V is not a-completely positive, because
@ (n) # @ (—n) =@ (o(n)).

PROPOSITION 2.7. Let G be a group with an involution o, © a 7 -unitary rep-

resentation of G on (K, #) and V a bounded linear operator from a Hilbert space
S suchthat [t (G)VH) = and Jn(g)V =mn(c(g))V forall g € G. Then the
map ¢ : G — L(3) defined by ¢ (g) =V*n(g)V is an oc-completely positive map.

Proof. 1t is similar to the proof of Proposition 3.1. [J

THEOREM 2.8. Let ¢ : G — L(3) be an o -completely positive map.

1. There are a Krein space (%, j(p) , a _Jy-unitary representation my of G on
(%, j(p) and a bounded linear operator V, : 7€ — 4, such that
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(a) ¢(g) =Vyomyp(g)Vy forall g € G;
(b) [me (G) Vo] =
(¢) Zome(8) Ve =1y ((g))Vy forall g €G.

2. If wis a ¥ -unitary representation of G on a Krein space (%', ) and V :
FH — K is a bounded linear operator such that

(a) ©(g)=V*r(g)V forall g € G;
(b) [m(G)VH =X,
(c) Zn(g)V=m(o(g))V forall g€ G,
then there is a unitary operator U : Ay — &~ such that
i U gy= JU;
ii. UVy=V;
iti. Uny(g)=m(g)U forall g€ G.

Proof. (1). We will give a sketch of proof (see [2, Theorem 2.2] and Remark 2.5
for the detailed proof). Let .% (G,.7) be the vector space of all functions from G to
2 with finite support. The map (-,-) : #(G,.#) x F (G, ) — C defined by

(fi.f2) =2 (fi(g).0(x(g7") &) f2(g))

¥4

is a positive semi-definite sesquilinear form and 7, is the Hilbert space obtained by
the completion of the pre-Hilbert space .7 (G, %) | 4, , where Ny ={f € F (G, )/

The linear map 7, : .7 (G, ) — % (G, ) givenby 7, (f) = foo extends
to a bounded linear operator #, : 7, — Hp. Moreover, Jo = Fg= 4o ! and
(%, Fo) is aKrein space. For each g € G, the map 7y (g) : F (G, ) — F (G, )
given by 7, (g) (f) (¢') = f (¢ '¢’) extends to a bounded linear operator from 7, to
Ay, and the map g — 7y (g) isa _#p-unitary representation 7y of G on (5, 7).
The linear map Vi, : # — .7 (G, ) givenby V& =&E6,, where 6,: G— C, 8. (g) =
0if g#e and &, (e) = L.

(2). We consider the linear map U :span{rmy(g)Vy&:g € G, € '} —
span{rm(g)VE; g€ G,& € s} defined by

U (mp(8) Vo&) = m(g) VE.
Since
(U (270 (80 Vo) U (S (5)) Vol ))
=3 T () VE () VEs)
=z s (v (g) = (e)vE).¢)
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s (a5

537 (el )0)3:5)
=X 2 1<V ”qo( <8}_1>8i>V<p§i»Cj>

= (Siam (80) Vol 1 7o (&) Vo)

for all gi,....8n.8),--.&, € G and for all &;,....&,.1,....,5n € A, U extends to a
unitary operator U from 7, to .# . Moreover, Uny(g) = m(g)U forall g € G and
UVy =V. Since

U 7o (1o (8)Vol) = U (mp (0 (8)) V&) = m(x(g)) V&
= J(n(g)Ve)=JU ( Vwé)
for all g € G and for all §& € #, and since [y (G) V| = H;, we have U 7, =

JU. O

If G is a topological group and ¢ is bounded, then the _Z, -unitary representation
Tty is strictly continuous.

The triple (7, (#, #),Ve) is called the minimal Stinespring construction as-
sociated to ¢.

3. Radon-Nikodym type theorem for o -completely positive maps

Let G be a group with an involution ¢, .7 a Hilbert space and e —CP(G,5¢) =
{9 :G — L(J);¢ is o.-completely positive } .

Let ¢ € o —CP(G, ) and let (7, (#5, #y),Vp) be the minimal Stinespring
construction associated to ¢.

PROPOSITION 3.1. Let T € n(p(G)/ C L(%) such that T >0 and T 7y =
IoT, where oy (G)' is the commutant of my (G)' in L(). Then the map ¢r : G —
L(p) defined by ¢r (g) = VT 1y (g)Vy is a-completely positive.

Proof. From

or(o(g1)o(g2)) = VoTmg (0t (g1)) 7w (0 (82)) Vo
= VoTme(0t(g1)) oTe (82) Ve
=V ZoTo (00(81)) FoT Ty (82) Ve
= Voo (0 (g1")) Tg (82) Ve
= Votg (81")" 0Ty (82) Ve
= Vo ZoTo (81) TTe (82) Ve
= VyTmy(8182) Vo = @1 (8182)
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and
or(0(g182)) = VT g (00(8182)) Vo = Vo T o (8182) Ve
= Vo LTy (8182) Vo =V Ty (8182) Ve = 91 (8182)

for all g1,g2 € G, we deduce that @7 (o (g1) 0t (g2)) = or (0 (g1£2)) = @r(g1g2) for
all £1,82 € G.
Let g1,...,gn € G and &, ...,&, € 5. Then

(Tor (o (s7) 871y (B (B0t )
S (or (e(s;)8) &.8)

i,j=1

I
M=

1<V$T”¢ (o (g") g)) Voln&i)

1<T”¢(81)V<p5/v”¢( (&) Vw§t>
(Tg (8))Vols, Fomo (e (81) FoVoli)

i,J

I
M=

i,J

Il
M=

i,j=1

|
M=

(Try (g)) VoS, Fomo (0 (81) Voli)

i.j=

<T il o (87)VeS;, ,il Ty (gi)V¢§i> >0
= i=

and

<[<PT gi) or (g,)]” 1(51«)1( 1 ()= 1>

1;1<V Tmy (87) V&), VoTme (8i) Voli)

- <T VoV 3 o (51) VoS 3. <gz>v¢;>
<[V HTHi,,Z:lW‘;f"’”“’ (&7") 0T (8)) VoS &)
= [Voll"I71 £ (VT (a7 7ot (51)) Vo)

= [Voll 171 £ (VT (a7 x(51) Vo &)

= Vol 1711 & Cor (5" (2) &6

= [Vell"I71 £ (or (s 2:) &6

= Vol ITI ([or (e (s ) 8)]7 1oy (G- (B )
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From these relations, we deduce that ¢r verifies the conditions (2) and (3) from
Definition 2.1.

Let g € G. From

([or (wtsen )], (Gt (@)

S (VaTry (o (g8 ™) 7o (g8)) Volo &)

i,j=1

= 3 (T (88) Vol Sy (e(88) FpVole)

i,j=1

n

l_szl (T ()T (8)) Vol T (88i) Voli)

- <n¢ (6) 7o (8) 3, 1717 (5:) Vo, 3,717 (gi>v¢f;->

<o (7 3 7o 055§ s 0055
= 1o () [* ([or (e (57) 8)]7 1y (GVies (GO )

forall gy,....,g» € G and &;,...,&, € 7, we deduce that @7 verifies the condition (4)
from Definition 2.1. O

Let ¢,y be two o -completely positive maps. We say that v < ¢ if ¢ —y
is an o -completely positive map, and y is uniformly dominated by ¢, denoted by
v <, @, if there is A > 0 such that v < A¢@. The o -completely positive maps ¢, y
are uniformly equivalent, Y =, @, if v <, ¢ and ¢ <, .

PROPOSITION 3.2. Let @,y be two o -completely positive maps from G to L(5€).

If w <, @, thenthereis T € (G)/ - L(%) ,T>20and T fy= ZoT suchthat
W = @r. Moreover, T is unique.

Proof. Let (mty, (#y, #y).Vs) be the minimal Stinespring construction associ-
ated to y. From

(S my (80) Vi, Siy 7oy (81) V&)
=1 <V$”w (g7)" my (81) Vy&i,&j)

)y
X <V;;;:W (oc (gjl) gi) Vwéi»§j>

= ([(a()e)], @)
H([o(a(e )] @@
A

<Zl'-':1 Ty (i) Vi, Xy T (8i) V¢§i>
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we deduce that there is a bounded linear operator S : 7%, — 7%, such that § (nq, (¢) Vq,é)
= 1y (g) Vy&. Clearly, Smy () = my (g)S forall g € G, and SV, = Vy,. Moreover,

S 7o = FyS, since
S (”(P V(pg) —S(ﬂw( (8)Vo&) = my (e (g)) V&
= Jymty () VyE = FyS (mp (8) Vo)
forall g € G and forall £ € 7.

Let T =S*S. Then T 7y = ZoT and Try(g) = my (g) T forall g € G. More-
over,

or(8) =VoT T (8) Ve = VoS Ty (8) Ve = Vymy (8)Vy = ¥ (g)
forall g€ G.
Suppose that there is another Ty € 71, (G) CL(H#;,), T >0 and Ty 7y = ZoT
such that v = ¢r, . Then

(T =T1) (my (8) V&) ;7o (&) Von)
<V /w”q)( )/(p(T Tl)( ()ng)ﬂw
= (Vo (T =) Zomp (§7) (mo (e () Vo&) 1)
= (Vo (T =Ti)mp (0 (8" )8)V¢57’7>
= (or(a(g™")g)&—on (x(g")g)E.n) =0

for all g,g' € G, and for all £,n € J, and since [7y (G) V'] = H,, we have
T=T. O

From the proof of Proposition 3.1, we obtain the following corollary.

COROLLARY 3.3. If @,y are two a.-completely positive maps from G to L(.7)
and ¢ < @, then there is a unique positive operator T in Ty (G)cL (%) such that

Tgid%, Tf(p=f¢T and Yy = ¢r.

Let @,y be two o -completely positive maps from G to L(#°) such that y <, @.
A positive operator T € 7y (G)' C L () with T Zp = #,T and such that y = ¢r,
denoted by Ay, (W), is called the Radon-Nikodym derivative of W with respect to .

REMARK 3.4. If v <, ¢, then the minimal Stinespring construction associated
to ¥ can be recovered by the minimal Stinespring construction associated to ¢.
Let Peera,(y) and Py ciera,(y) be the orthogonal projections on kerA, (), re-

spectively 7, ©kerAy (). Since Ay (y) € 1y (G) € L(;) and Ay (y) Zo =
f(PA(P (V/) ) PkerA(p(l[/)a P.%@kerAq,(u/) €Ty (G)/ CL (%) ’PkerA(p(u/) /(P = /(PpkerAq,(l[/)
and Py, cera, (v) Ho= priﬁpekemq;(w) - Then (% SkerAg (W), o |x)ﬁp9kerA¢(w)>
is a Krein space and it is easy to check that

1
(”qn | ket () (% OkerAg (y), /fpbﬁ,,ekemq,(u/)) s Prtyckerng(w)Do (V)2 Vq))

is unitarily equivalent to the minimal Stinespring construction associated to .
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PROPOSITION 3.5. Let ¢, w € aa—CP(G, ). If ¢ =, y, then the Stinespring
construction associated to @ is unitarily equivalent to the Stinespring construction
associated to @.

Proof. If ¢ =, v, then v <, ¢ and ¢ <, v, and by Proposition 3.2, there are
two bounded linear operators Sy : .7, — £, such that S} (7y (g) Vp&) = my (g) V&
and S, : S, — Ay such that S; (7y (8) Vy&) = e (8) Vp&. From $,281 (7 (g) V&)
= 7o (8)Vo&, 5152 (my (8)Vy&) = my(g)Vy&. and taking into account that
(7o (G) V| = Ay and 1y (G)Vy | = #;,, we deduce that S| is invertible.
Then Ay (y) = S} is invertible, and so there is a unitary operator U : 7, — Sty
such that S| = UA(p(l//)%. It is easy to check that U _#, = #,U,UV, =V, and
Urny(g) =my(g)U forall ge G. O

THEOREM 3.6. Let @ be an o -completely positive map from G to L(). Then
the map W — Ay (y) is an affine bijective map from {y € a —CP(G,7);y <,
@} onto {T € my (G)' C L(Hp);T 9= FoT,T >0} which preserves the pre-order
relation.

Proof. By Propositions 3.1 and 3.2, the map y — Ay (y) is well defined and
bijective, its inverse is given by T — ¢@r. Let € [0,1],y; <, ¢ and y» <, ¢. Then
1ty + (1 —1)yr <, @ and so

Pap(ryn+(1-1)ye) (8) = 1W1(8) + (1 =) W2 (8) = 10n,(yy) (8) + (1 = 1) Pa,(y) (8)
= V;; (’Azp (y1)+(1 _f)Aw(‘lfz)) o (8) Ve

forall g € G, whence we deduce that Ay (1y1 + (1 —1)yn) =1Ag (W1)+ (1 —1)Ayp (y2).
Therefore, the map y — A, (y) is affine.

Let v <, ¥» <, @. Then there is A > 0 such that Ay, — y; is o -completely
positive. From

0 [y (o) s)]! @@L )
) 1<(PA<,,(1;12) ( l g/) 5]7€l> §41<(PA¢ (y1) (OC (gi)_lgj> 5,/,(§i>
(ots

Il
>
™

ij= i,j=

Ve AAw v2) — Ay ( l/’1 e (0 (gi) g,i>V<p€,/'a§i>

—

=z %
<M(p v2) = A (V1)) T (87) Vol T (a(gi)_1>*v¢§">
>

(AAw V) — Ay (llfl)) Ty (8) Vol Fomp (0 (gi)) /¢V¢§i>

—

<(AA(p (y2) — Ay (llfl)) Ty (gj) V(pgj: T (gi)Vq)gi>

—

TME TME ﬁMx TME -

<(/1Aq> (y2) = Ay (y1)) él 7o (8)) quéj»él Ty (i) qu§i>
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forall gi,...,g, € G, forall &,...,&, € 7, and taking into account that 7, (G) V|
= Hy, we conclude that LAy (y2) — Ay (y1) > 0. Therefore the map y — Ay (W)
preserves the pre-order relation. [

COROLLARY 3.7. The map W — Ay (y) is an affine bijective map from {y €
o —CP(G,. )y < ¢} onto {T € 1y (G)' C L(H):T Fo = FoT,0<T <id y,}
which preserves the order relation.

Let G be a discrete group. If 7 is a bounded _# -unitary representation of G on
(S, 7 ), then the map 7 : .7 (G) — L() given by

ﬁ(i Aid ,-) = i Aire (gi)
i=1 i=1

extends to a bounded ¢ - representation of C*(G). Moreover, the map 7 +— 7 is a
bijective correspondence between the collection of bounded unitary representations on
Krein spaces and the collection of bounded representations of C*(G) on Krein spaces.

Let G be a discrete group and ¢ € oo — CP(G,#¢). Then o extends to a linear
hermitian involution & on C*(G), & (f) = foa forall f €.% (G). If ¢ is bounded,

then the map @ : .% (G) — L(.¢) given by ® ( i 7Lk5gk) = i M@ (gr) extends to
k=1 k=1

a linear hermitian bounded & -completely positive_(ﬁ :C*(G) — L(7) (see [2, Theo-
rem 2.5]). We denote by oo — bCP(G, ) the collection of all bounded o -completely
positive maps from G to L(7¢).

REMARK 3.8. Let ¢ € o —bCP(G, 7). If (my,(y, Zp),Ve) is the minimal
Stinespring construction associated to @, then it is easy to check that (7, (745, Z¢),Ve)
is unitarily equivalent to the minimal Stinespring construction associated to ¢ ([4, The-
orems 4.4 and 4.6]).

THEOREM 3.9. Let G be a discrete group. Then the map @ — @ is an affine
bijective map from oo —bCP(G, ) to o« —bCP(C*(G), ) which preserves the order
(pre-order) relation. Moreover, if W <, @ then Ay (W) = Ag (V).

Proof. tis clear that the map ¢ — ¢ from ot —bCP(G, ) to oo —bCP(C*(G), )
is well defined and injective. Let ¢ € oo — bCP(C*(G), 7). Then the map ¢ : G —
L(s¢) given ¢ (g) = ¢ (J,) is a bounded o -completely positive. Moreover, ¢ = ¢,
and so the map @ — @ is surjective.

Clearly, qolf—\i—_az =@+ @ and Ao = A for all 1,02, € o0 —bCP(G, %)
and for all positive numbers A. Let ¢,y € a — bCP(G,s#) with v < ¢ and
(7, (A%, Z9) V) the minimal Stinespring construction associated to ¢ . Then ¥ (f)
= VyAy (W) 7y (f) Vy forall f € C*(G). Since the minimal Stinespring construction
associated to @ is unitarily equivalent to (7, (75, Z¢),V,), and taking into account
that Ay (y) € Ty (G)' C L(H), Ap (W) Fp = oAy (W) and 0 < Ay () <id s, ,
we conclude that < @ and Ay (y) =Ag (y). O
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