ON THE INVERSE-CLOSEDNESS OF MATRIX SUBALGEBRAS

NaHUM Krupnik
(Communicated by I. M. Spitkovsky)

Abstract

In this short article we construct a counterexample, which gives a negative answer to an old question, formulated in several publications, on inverse-closedness of matrix subalgebras. We also present and prove several related results.

1. Introduction

Given an unital algebra \mathscr{A} we denote by $M_{n}(\mathscr{A})$ the algebra of all $n \times n$ matrices with entries from \mathscr{A}; by $G(\mathscr{A})$ all elements $a \in \mathscr{A}$ invertible in \mathscr{A}; by $F(\mathscr{A})$ all elements $a \in \mathscr{A}$ at least one-side invertible in \mathscr{A}. Recall the following

DEfinition 1.1. A subalgebra $\mathscr{A}(\subset \mathscr{B})$ is inverse-closed in \mathscr{B} if

$$
\begin{equation*}
x \in \mathscr{A} \cap G(\mathscr{B}) \Longrightarrow x^{-1} \in \mathscr{A} . \tag{1.1}
\end{equation*}
$$

In this paper \mathscr{A} denote an unital Banach subalgebra of an unital Banach algebra \mathscr{B} over the field \mathbb{C} and $\operatorname{spec}(x, \mathscr{A})$ denote the spectrum of an element x in algebra \mathscr{A}. We assume that algebras \mathscr{B} and \mathscr{A} have same norm and same unit element e,

It is my pleasure to thank my friends Alexander Markus and Israel Feldman for useful remarks and comments.

2. The open question and some illustrative examples

The question we are concerned about is the following one.
Question 2.1. Let \mathscr{A} be an inverse-closed subalgebra of \mathscr{B}, and let $n \in \mathbb{N}$. Is $M_{n}(\mathscr{A})$ inverse-closed in $M_{n}(\mathscr{B})$?

This question was formulated in several publications. See, for example, [5 (1988), Remark 1], [1 (2003)], [8 (2011), before Lemma 1.2.34].

The next several statements, obtained in [5], illustrate some examples, for which the answer to Question 2.1 is positive.

[^0]THEOREM 2.2. Let \mathscr{A} be a commutative algebra inverse-closed in \mathscr{B}. Then $M_{n}(\mathscr{A})$ is inverse-closed in $M_{n}(\mathscr{B})$ for all $n \in N$.

THEOREM 2.3. Let $F(\mathscr{A})$ be dense in \mathscr{A}. Then $M_{n}(\mathscr{A})$ is inverse-closed in $M_{n}(\mathscr{B})$ for any Banach algebra \mathscr{B} containing \mathscr{A} and for any $n \in \mathbb{N}$.

Some comments to Theorems 2.2-2.3 are given in Section 4.

Corollary 2.4. Let $G(\mathscr{A})$ be dense in \mathscr{A}. Then $M_{n}(\mathscr{A})$ is inverse-closed in $M_{n}(\mathscr{B})$ for all $n \in \mathbb{N}$.

COROLLARY 2.5. Let $\forall x \in \mathscr{A}$ the $\operatorname{spectrum} \operatorname{spec}(x, \mathscr{A})$ does not contain interior points. Then $M_{n}(\mathscr{A})$ is inverse-closed in $M_{n}(\mathscr{B})$ for all $n \in \mathbb{N}$.

Indeed, in this case the set $G(\mathscr{A})$ is dense in \mathscr{A}.

3. Construction of a counterexample. Answer to Question 2.1.

We start with some preparatory statements.
Lemma 3.1. Let \mathscr{B} be an arbitrary unital Banach algebra and \mathscr{T}_{0} the Banach algebra of all upper (or lower) triangular $n \times n$ matrices $\left(a_{i k}\right)_{i, k=1}^{n}$, such that $a_{i k} \in \mathscr{B}$ and $a_{m, m}=c_{m} e$, where $c_{m} \in \mathbb{C}$. Then \mathscr{T}_{0} is inverse-closed in $M_{n}(\mathscr{B})$.

Proof. Let $T \in \mathscr{T}_{0} \cap G\left(M_{n}(\mathscr{B})\right)$. It can be easily checked (by induction), that $c_{i} \neq 0, i=1, \ldots, n$. Denote by D the diagonal matrix $D:=\operatorname{diag}\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in G\left(\mathscr{T}_{0}\right)$, by S the operator $S:=D^{-1} T \in \mathscr{T}_{0}$ and by E the unit matrix in $M_{n}(\mathbb{C})$. Then $(S-$ $E)^{n}=0$, and hence $S^{-1}=P(S)$, where $P(S) \in \mathscr{T}_{0}$ is a polynomial. Thus $T^{-1}=$ $S^{-1} D^{-1} \in \mathscr{T}_{0}$.

Recall the following two properties of invertible lower triangular matrices (See, for example, [3, Theorem 1.5, page 5]).

Proposition 3.2. Let $\left(a_{i k}\right)_{i, k=1}^{n} \in \mathscr{T} \cap G\left(M_{n}(\mathscr{B})\right)$. Then
(i) The element a_{11} is right invertible and $a_{n n}$ is left invertible in \mathscr{B};
(ii) If $a_{11}, \ldots, a_{p p}$ and $a_{q q}, \ldots, a_{n n}(1<p<q<n)$ are invertible, then $a_{p+1, p+1}$ is right invertible and $a_{q-1, q-1}$ is left invertible in \mathscr{B}.

THEOREM 3.3. Let \mathscr{B} be an arbitrary unital Banach algebra and \mathscr{T} the Banach algebra of all upper (or lower) triangular $n \times n$ matrices with entries from \mathscr{B}. The algebra \mathscr{T} is inverse-closed in $M_{n}(\mathscr{B})$ if and only if $F(\mathscr{B})=G(\mathscr{B})$.

Proof. For definiteness we assume that \mathscr{T} is the algebra of all lower triangular matrices.

1. Suppose that $F(\mathscr{B})=G(\mathscr{B})$ and let $T:=\left(a_{i k}\right)_{i, k=1}^{n} \in \mathscr{T} \cap G\left(M_{n}(\mathscr{B})\right)$. It follows from the statement (i) in Proposition 3.2, that a_{11} and $a_{n n}$ are one side invertible. Since $F(\mathscr{B})=G(\mathscr{B})$, it follows that a_{11} and $a_{n n}$ are invertible. Using (step by step) the property (ii), we obtain, that $a_{k k} \in G(\mathscr{B})$ for all k, and hence the diagonal matrix $D:=\operatorname{diag}\left(a_{11}, \ldots, a_{n n}\right) \in G(\mathscr{T})$. Let $R:=D^{-1} T$, then (by Lemma 3.1) $R \in G\left(\mathscr{T}_{0}\right) \subset G(\mathscr{T})$, and hence $T=D R \in G(\mathscr{T})$. This proves that \mathscr{T} is inverse-closed in $M_{n}(\mathscr{B})$.
2. Suppose that $F(\mathscr{B}) \neq G(\mathscr{B})$. Let $a, b \in \mathscr{B}, a b=e$ and $b a \neq e$. Then

$$
E=\left[\begin{array}{ccc}
a & 0 & 0 \tag{3.1}\\
0 & E_{0} & 0 \\
e-b a & 0 & b
\end{array}\right]\left[\begin{array}{ccc}
b & 0 & e-b a \\
0 & E_{0} & 0 \\
0 & 0 & a
\end{array}\right]:=T T^{-1}
$$

where E and E_{0} are unit matrices respectively in $M_{n}(\mathscr{B})$ and $M_{n-2}(\mathscr{B})$.
Here $T \in \mathscr{T} \cap G\left(M_{n}(\mathscr{B})\right)$, but $T^{-1} \notin \mathscr{T}$, because \mathscr{T} is the algebra of lower triangular matrices. This proves that algebra \mathscr{T} is not inverse-closed.

Theorem 3.3 has a following useful application:

THEOREM 3.4. Suppose that a unital Banach algebra Ω possesses the following properties:

$$
\begin{equation*}
F(\Omega)=G(\Omega), \quad \text { but } \quad F\left(M_{2}(\Omega)\right) \neq G\left(M_{2}(\Omega)\right) \tag{3.2}
\end{equation*}
$$

Let \mathscr{B} denote the Banach algebra $M_{2}(\Omega)$, and $\mathscr{A}(\subset \mathscr{B})$ the subalgebra of all lower triangular 2×2 matrices with entries from Ω. Then
(i) Algebra \mathscr{A} is inverse-closed in \mathscr{B}, but
(ii) Algebra $M_{2}(\mathscr{A})$ is not inverse-closed in $M_{2}(\mathscr{B})$.

Proof. Statement (i) follows directly from Theorem 3.3. The statement (ii) follows from Theorem 3.3, too! Indeed, it is not difficult to check, that algebra $M_{2}(\mathscr{A})$ is isomorphic to the algebra of 2×2 lower triangular block matrices with entries from $M_{2}(\Omega)$. Since $F\left(M_{2}(\Omega)\right) \neq G\left(M_{2}(\Omega)\right)$, it follows from Theorem 3.3, that $M_{2}(\mathscr{A})$ is not inverse-closed in $M_{2}(\mathscr{B})$.

Let us show that there exist Banach algebras which satisfy both relations in (3.2). Consider the following example.

Example 3.5. Let Ω denote the C^{*} - algebra generated by all two-dimensional singular integral operators with continuous symbols and all compact operators ${ }^{1}$, acting on Hilbert space $H:=L_{2}\left(\mathbb{R}^{2}\right)$, where \mathbb{R}^{2} is the two dimensional Euclidean space. See, for example, [7, Ch. XI, Section 2] .

Proposition 3.6. Algebra Ω from Example 3.5 satisfies both relations in (3.2)

[^1]
Proof.

1. It is well known (see, for example, [7, Ch.XI, Section 10]), that the operator $U_{1} U_{2}-U_{2} U_{1}$ is a compact operator for each $U_{1}, U_{2} \in \Omega$. Assume that U is left invertible in Ω, then there exists an operator $S \in \Omega$ such that $S U=I$. Then $U S=I+T$, where T is a compact operator. Thus, (see [2, Ch. 4, Theorem 7.1]) U is a Fredholm operator. It is also well known (see, for example, [7, Ch. XII, Theorem 3.1]), that ind $U=0$ for each Fredholm operator $U \in \Omega$. The left invertible Fredholm operator U with ind $U=0$ is invertible in H and we showed above that $U^{-1}=S(\in \Omega)$. We proved that

$$
\begin{equation*}
F(\mathscr{D})=G(\mathscr{D}) \tag{3.3}
\end{equation*}
$$

2. Let \mathscr{R} denote the $C^{*}-\operatorname{algebra} M_{2}(\Omega)$. Algebra \mathscr{R} contains Fredholm operators with non-zero index. This was first obtained in the (classical) papers [9], [10] (see also [6] and [7, page 378]). It follows from here (see, for example, [2, Theorem IV.6.2]) that algebra \mathscr{R} contains a Fredholm operator W left (and only left!) invertible in $M_{2}(L(H))$. In particular, $\operatorname{dim} k e r W=0$. Let us show, that the operator W is left invertible in \mathscr{R}. Operator $C:=W^{*} W$ is Fredholm operator with ind $C=0$, and $\operatorname{dimker} C=0$. The last equality follows from the relation $C x=0 \Longrightarrow 0=\left(W^{*} W x, x\right)=\|W x\|^{2} \Longrightarrow$ $x=0$. Thus C is invertible in $M_{2}(L(H))$. It is well known, that any $C^{*}-$ Banach subalgebra of the Banach algebra $\mathscr{M}_{2}(L(H))$ is inverse-closed in $\mathscr{M}_{2}(L(H))$ (see, for example, [8, Theorem 1.2.38]). In particular, \mathscr{R} is inverse closed in $M_{2}(L(H))$. Therefore $C \in G(\mathscr{R})$ and $W \in F(\mathscr{R})=F\left(M_{2}(\Omega)\right)$. But $W \notin G(\mathscr{R})=G\left(M_{2}(\Omega)\right)$, and we proved the relation

$$
\begin{equation*}
F\left(M_{2}(\Omega)\right) \neq G\left(M_{2}(\Omega)\right) \tag{3.4}
\end{equation*}
$$

Now we a ready to prove the following (main)

THEOREM 3.7. For any number $n>1(n \in \mathbb{N})$ there exists a unital Banach algebra \mathscr{B} and its Banach subalgebra \mathscr{A} such that \mathscr{A} is inverse-closed in \mathscr{B}, but $M_{n}(\mathscr{A})$ is not inverse-closed in $M_{n}(\mathscr{B})$.

Proof. For $n=2$ this theorem follows from Theorem 3.4 and Proposition 3.6. To pass from the case $n=2$ to $n>2$ it is enough to use the following evident statement. Let $M_{n}(\mathscr{A})$ be inverse-closed in $M_{n}(\mathscr{B})$, then $M_{k}(\mathscr{A})$ is inverse-closed in $M_{k}(\mathscr{B})$ for all $1 \leqslant k \leqslant n$.

We conclude this section with the following

REMARK 3.8. It would be interesting to construct a more elementary example of a Banach algebra Ω, which satisfies both conditions in (3.2). The counterexample will benefit from this.

4. Some comments

Proposition 4.1. Theorem 2.2 holds for unital algebras without any topology.
This statement can be easily deduced from the following theorem.
THEOREM 4.2. Let \mathscr{K} be an associative and, generally speaking, non-commutative ring with identity e. Assume that $a_{m k} \in \mathscr{K}(m, k \leqslant n)$ for some $n \in \mathbb{N}$, and $a_{m k} a_{p q}=a_{p q} a_{m k} \forall m, k, p, q=1, \ldots, n$. Then the matrix $T:=\left[a_{m k}\right]_{m, k=1}^{n}$ is invertible in $M_{n}(\mathscr{K})$ if and only if the element $\Delta:=\operatorname{det} T$ is invertible in \mathscr{K}.

This result was obtained in [4]. It proved to be useful for many classes of equations and has been used in many publications. For the proof of the Theorem 4.2 in this original formulation see [3, Theorem 1.1]. The deduction of Proposition 4.1 from Theorem 4.2 uses same arguments as the proof of Theorem 1 in [5, page 94] (see also [8, Proposition 1.2.35]).

In this paper we discus the inverse-closedness of Banach subalgebras \mathscr{A} of Banach algebras \mathscr{B}. But sometimes it is useful to consider first the inverse-closedness of a dense subalgebra, or even of a dense subset X, with the standard definition of the inverse-closedness. This gives the following benefit:

Proposition 4.3. Let X be a dense subset of the Banach algebra \mathscr{A}. If X is inverse-closed in \mathscr{B}, then \mathscr{A} is inverse-closed in \mathscr{B}.

Proof. Let $a \in \mathscr{A} \cap G(\mathscr{B})$. There exists a sequence $\left\{x_{k}\right\} \in X \cap G(\mathscr{B})$ such that $\lim x_{k}=a$. Since X is inverse-closed in \mathscr{B} it follows that $x_{k}^{-1} \in X$, and hence, $a^{-1}=$ $\lim x_{k}^{-1} \in \operatorname{clos} X=\mathscr{A}$.

Remark 4.4. Theorem 2.3 is proved in [5, Theorem 2, Section 1]. Here we propose a shorter proof of this theorem.

Proof of Theorem 2.3. It is given that the set $X=F(\mathscr{A})$ is dense in \mathscr{A} and we have to prove that $M_{n}(\mathscr{A})$ is inverse-closed in $M_{n}(\mathscr{B})$ for any $n \in \mathbb{N}$ and any Banach algebra \mathscr{B}, such that $\mathscr{A} \subset \mathscr{B}$. By Proposition 4.3 it is enough to show that the set $M_{n}(X)$ is inverse-closed in $M_{n}(\mathscr{B})$.

So we prove Theorem 2.3 by induction. Let $n=1$ and $x \in X \cap G(\mathscr{B})$. Assume (for definiteness) that x is left invertible. Then there exists $w \in \mathscr{B}$ and $z \in X$ such tat $w x=x w=e$ and $z x=e$. It follows from here that $w=z \in X$. This proves the theorem for $n=1$. Let $A:=\left[a_{i k}\right]_{i, k=1}^{n} \in M_{n}(X) \cap G\left(M_{n}(\mathscr{B})\right)$ and let (for definiteness) the entry $a:=a_{11}$ is left invertible, i.e. there exists $y \in X$, such that $y a=e$. We represent the matrix A as a 2×2 block matrix (with different sizes of the blocks), and use the following its factorization:

$$
A=\left[\begin{array}{ll}
a & b \tag{4.1}\\
c & D
\end{array}\right]=\left[\begin{array}{cc}
e & 0 \\
c y & E
\end{array}\right]\left[\begin{array}{cc}
e & 0 \\
0 & D-c y b
\end{array}\right]\left[\begin{array}{ll}
a & b \\
0 & E
\end{array}\right]
$$

where E is the unit matrix in $M_{n-1}(\mathscr{B})$. It follows from representation (4.1) that the matrix $D-c y b \in M_{n-1}(X) \cap G\left(M_{n-1}(\mathscr{B})\right)$, and by induction $A \in G\left(M_{n}(X)\right)$.

REFERENCES

[1] Bruce A. Barnes, Questions concerning matrix algebras and invariance of spectrum, Proc. Indian Acad. Sc. (Math. Sci) February 2003. pp. 71-76.
[2] I. Gohberg and N. Krupnik, One-Dimensional Linear Singular Integral Equations, Vol I, OT 53, Birkhäuser Verlag (1992).
[3] N. Krupnik, Banach Algebras with Symbols and Singular Integral Operators, OT 26, Birkhäuser Verlag (1987).
[4] N. Krupnik, On multidimensional singular integral operators in local convex spaces, Ph. D. thesis, Leningrad University (1965), (Russian).
[5] N. Krupnik and Marina Markus, On the inverse-closedness of some Banach subalgebras, Issledovanoia po dif. uravnenijam i mat. analizu. Kishinev, Stiinca, 1988, (93-99), (Russian).
[6] S. G. Mihlin, On the index of a system of singular equations, Soviet Math. Dokl., 3 (1963), 13681371.
[7] S. G. Mikhlin, S. PrëSSdorf, Singular Integral operators, Springer-Verlag, Berlin, 1986.
[8] S. Roch, A. P. Santos, B. Silbermann, Non-commutative Gelfand Theories, Springer, (2011).
[9] A. I. Vol'pert, The index of boundary value problems for systems of harmonic functions in three independent variables, Soviet Math. Dokl., 1 (1960), 791-793.
[10] A. I. Volpert, The index of systems of two-dimensional singular integral equations, Soviet Math Dokl. 3 (1962), 154, 776-777.

[^0]: Mathematics subject classification (2010): Primary 47A11, Secondary 45E10.
 Keywords and phrases: Banach algebras, inverse-closed subalgebras of Banach algebras.
 The research was partially supported by Retalon Inc., Toronto, ON, Canada.

[^1]: ${ }^{1}$ Note that compact operators in some publications (for example, in the book [7]) are caled completely continuous operators.

