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ON THE INVERSE–CLOSEDNESS OF MATRIX SUBALGEBRAS

NAHUM KRUPNIK

(Communicated by I. M. Spitkovsky)

Abstract. In this short article we construct a counterexample, which gives a negative answer to
an old question, formulated in several publications, on inverse-closedness of matrix subalgebras.
We also present and prove several related results.

1. Introduction

Given an unital algebra A we denote by Mn(A ) the algebra of all n×n matrices
with entries from A ; by G(A ) all elements a ∈ A invertible in A ; by F(A ) all
elements a ∈ A at least one-side invertible in A . Recall the following

DEFINITION 1.1. A subalgebra A (⊂ B) is inverse-closed in B if

x ∈ A ∩G(B) =⇒ x−1 ∈ A . (1.1)

In this paper A denote an unital Banach subalgebra of an unital Banach algebra B
over the field C and spec(x,A ) denote the spectrum of an element x in algebra A .
We assume that algebras B and A have same norm and same unit element e,
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2. The open question and some illustrative examples

The question we are concerned about is the following one.

QUESTION 2.1. Let A be an inverse-closed subalgebra of B, and let n ∈ N. Is
Mn(A ) inverse-closed in Mn(B)?

This question was formulated in several publications. See, for example, [5 (1988),
Remark 1], [1 (2003)], [8 (2011), before Lemma 1.2.34].

The next several statements, obtained in [5], illustrate some examples, for which
the answer to Question 2.1 is positive.
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THEOREM 2.2. Let A be a commutative algebra inverse-closed in B. Then
Mn(A ) is inverse-closed in Mn(B) for all n ∈ N.

THEOREM 2.3. Let F(A ) be dense in A . Then Mn(A ) is inverse-closed in
Mn(B) for any Banach algebra B containing A and for any n ∈ N.

Some comments to Theorems 2.2–2.3 are given in Section 4.

COROLLARY 2.4. Let G(A ) be dense in A . Then Mn(A ) is inverse-closed in
Mn(B) for all n ∈ N.

COROLLARY 2.5. Let ∀x∈A the spectrum spec(x,A ) does not contain interior
points. Then Mn(A ) is inverse-closed in Mn(B) for all n ∈ N.

Indeed, in this case the set G(A ) is dense in A .

3. Construction of a counterexample. Answer to Question 2.1.

We start with some preparatory statements.

LEMMA 3.1. Let B be an arbitrary unital Banach algebra and T0 the Banach
algebra of all upper (or lower) triangular n×n matrices (aik)n

i,k=1, such that aik ∈B

and am,m = cme, where cm ∈ C. Then T0 is inverse-closed in Mn(B).

Proof. Let T ∈ T0 ∩G(Mn(B)). It can be easily checked (by induction), that
ci �= 0, i = 1, ...,n. Denote by D the diagonal matrix D := diag(c1,c2, ...,cn) ∈G(T0),
by S the operator S := D−1T ∈ T0 and by E the unit matrix in Mn(C). Then (S−
E)n = 0, and hence S−1 = P(S), where P(S) ∈ T0 is a polynomial. Thus T−1 =
S−1D−1 ∈ T0. �

Recall the following two properties of invertible lower triangular matrices (See,
for example, [3, Theorem 1.5, page 5]).

PROPOSITION 3.2. Let (aik)n
i,k=1 ∈ T ∩G(Mn(B)). Then

(i) The element a11 is right invertible and ann is left invertible in B ;
(ii) If a11, ...,app and aqq, ...,ann (1 < p < q < n) are invertible, then ap+1,p+1 is

right invertible and aq−1,q−1 is left invertible in B.

THEOREM 3.3. Let B be an arbitrary unital Banach algebra and T the Banach
algebra of all upper (or lower) triangular n× n matrices with entries from B. The
algebra T is inverse-closed in Mn(B) if and only if F(B) = G(B).

Proof. For definiteness we assume that T is the algebra of all lower triangular
matrices.
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1. Suppose that F(B) = G(B) and let T := (aik)n
i,k=1 ∈ T ∩G(Mn(B)). It fol-

lows from the statement (i) in Proposition 3.2, that a11 and ann are one side invert-
ible. Since F(B) = G(B), it follows that a11 and ann are invertible. Using (step
by step) the property (ii), we obtain, that akk ∈ G(B) for all k, and hence the di-
agonal matrix D := diag(a11, ...,ann) ∈ G(T ). Let R := D−1T, then (by Lemma 3.1)
R∈G(T0)⊂G(T ), and hence T = DR∈G(T ). This proves that T is inverse-closed
in Mn(B).

2. Suppose that F(B) �= G(B). Let a,b ∈ B, ab = e and ba �= e. Then

E =

⎡
⎣ a 0 0

0 E0 0
e−ba 0 b

⎤
⎦

⎡
⎣b 0 e−ba

0 E0 0
0 0 a

⎤
⎦ := TT−1, (3.1)

where E and E0 are unit matrices respectively in Mn(B) and Mn−2(B).
Here T ∈T ∩G(Mn(B)), but T−1 /∈T , because T is the algebra of lower triangular
matrices. This proves that algebra T is not inverse-closed. �

Theorem 3.3 has a following useful application:

THEOREM 3.4. Suppose that a unital Banach algebra Ω possesses the following
properties:

F(Ω) = G(Ω), but F(M2(Ω)) �= G(M2(Ω)). (3.2)

Let B denote the Banach algebra M2(Ω), and A (⊂ B) the subalgebra of all lower
triangular 2×2 matrices with entries from Ω. Then

(i) Algebra A is inverse-closed in B, but
(ii) Algebra M2(A ) is not inverse-closed in M2(B).

Proof. Statement (i) follows directly from Theorem 3.3. The statement (ii) fol-
lows from Theorem 3.3, too! Indeed, it is not difficult to check, that algebra M2(A )
is isomorphic to the algebra of 2×2 lower triangular block matrices with entries from
M2(Ω). Since F(M2(Ω)) �= G(M2(Ω)), it follows from Theorem 3.3, that M2(A ) is
not inverse-closed in M2(B). �

Let us show that there exist Banach algebras which satisfy both relations in (3.2).
Consider the following example.

EXAMPLE 3.5. Let Ω denote the C∗−algebra generated by all two-dimensional
singular integral operators with continuous symbols and all compact operators1, acting
on Hilbert space H := L2(R2), where R2 is the two dimensional Euclidean space. See,
for example, [7, Ch. XI, Section 2] .

PROPOSITION 3.6. Algebra Ω from Example 3.5 satisfies both relations in (3.2)

1Note that compact operators in some publications (for example, in the book [7]) are caled completely
continuous operators.
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Proof.
1. It is well known (see, for example, [7, Ch.XI, Section 10]), that the operator

U1U2−U2U1 is a compact operator for each U1,U2 ∈ Ω. Assume that U is left invert-
ible in Ω, then there exists an operator S ∈ Ω such that SU = I. Then US = I +T,
where T is a compact operator. Thus, (see [2, Ch. 4, Theorem 7.1]) U is a Fredholm
operator. It is also well known (see, for example, [7, Ch. XII, Theorem 3.1]), that
indU = 0 for each Fredholm operator U ∈ Ω. The left invertible Fredholm operator
U with indU = 0 is invertible in H and we showed above that U−1 = S (∈ Ω). We
proved that

F(D) = G(D) (3.3)

2. Let R denote the C∗−algebra M2(Ω). Algebra R contains Fredholm opera-
tors with non-zero index. This was first obtained in the (classical) papers [9], [10] (see
also [6] and [7, page 378]). It follows from here (see, for example, [2, Theorem IV.6.2])
that algebra R contains a Fredholm operator W left (and only left!) invertible in
M2(L(H)). In particular, dimkerW = 0. Let us show, that the operator W is left invert-
ible in R. Operator C :=W ∗W is Fredholm operator with indC = 0, and dimkerC = 0.
The last equality follows from the relation Cx = 0 =⇒ 0 = (W ∗Wx,x) = ‖Wx‖2 =⇒
x = 0. Thus C is invertible in M2(L(H)). It is well known, that any C∗− Banach
subalgebra of the Banach algebra M2(L(H)) is inverse-closed in M2(L(H)) (see, for
example, [8, Theorem 1.2.38]). In particular, R is inverse closed in M2(L(H)). There-
fore C ∈ G(R) and W ∈ F(R) = F(M2(Ω)). But W /∈ G(R) = G(M2(Ω)), and we
proved the relation

F(M2(Ω)) �= G(M2(Ω)). � (3.4)

Now we a ready to prove the following (main)

THEOREM 3.7. For any number n > 1 (n∈ N) there exists a unital Banach alge-
bra B and its Banach subalgebra A such that A is inverse-closed in B, but Mn(A )
is not inverse-closed in Mn(B).

Proof. For n = 2 this theorem follows from Theorem 3.4 and Proposition 3.6. To
pass from the case n = 2 to n > 2 it is enough to use the following evident statement.
Let Mn(A ) be inverse-closed in Mn(B), then Mk(A ) is inverse-closed in Mk(B) for
all 1 � k � n. �

We conclude this section with the following

REMARK 3.8. It would be interesting to construct a more elementary example of
a Banach algebra Ω, which satisfies both conditions in (3.2) . The counterexample will
benefit from this.
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4. Some comments

PROPOSITION 4.1. Theorem 2.2 holds for unital algebras without any topology.

This statement can be easily deduced from the following theorem.

THEOREM 4.2. Let K be an associative and, generally speaking, non-commu-
tative ring with identity e. Assume that amk ∈ K (m,k � n) for some n ∈ N, and
amkapq = apqamk ∀m,k, p,q = 1, ...,n. Then the matrix T := [amk]nm,k=1 is invertible in
Mn(K ) if and only if the element Δ := detT is invertible in K .

This result was obtained in [4]. It proved to be useful for many classes of equa-
tions and has been used in many publications. For the proof of the Theorem 4.2 in
this original formulation see [3, Theorem 1.1]. The deduction of Proposition 4.1 from
Theorem 4.2 uses same arguments as the proof of Theorem 1 in [5, page 94] (see also
[8, Proposition 1.2.35]).

In this paper we discus the inverse-closedness of Banach subalgebras A of Ba-
nach algebras B. But sometimes it is useful to consider first the inverse-closedness of
a dense subalgebra, or even of a dense subset X , with the standard definition of the
inverse-closedness. This gives the following benefit:

PROPOSITION 4.3. Let X be a dense subset of the Banach algebra A . If X is
inverse-closed in B, then A is inverse-closed in B.

Proof. Let a ∈ A ∩G(B) . There exists a sequence {xk} ∈ X ∩G(B) such that
limxk = a. Since X is inverse-closed in B it follows that x−1

k ∈ X , and hence, a−1 =
limx−1

k ∈ closX = A . �

REMARK 4.4. Theorem 2.3 is proved in [5, Theorem 2, Section 1]. Here we
propose a shorter proof of this theorem.

Proof of Theorem 2.3. It is given that the set X = F(A ) is dense in A and we
have to prove that Mn (A ) is inverse-closed in Mn (B) for any n ∈ N and any Banach
algebra B, such that A ⊂ B. By Proposition 4.3 it is enough to show that the set
Mn(X) is inverse-closed in Mn (B) .

So we prove Theorem 2.3 by induction. Let n = 1 and x ∈ X ∩G(B) . Assume
(for definiteness) that x is left invertible. Then there exists w ∈ B and z ∈ X such tat
wx = xw = e and zx = e. It follows from here that w = z ∈ X . This proves the theorem
for n = 1. Let A := [aik]ni,k=1 ∈ Mn(X)∩G(Mn(B)) and let (for definiteness) the entry
a := a11 is left invertible, i.e. there exists y ∈ X , such that ya = e. We represent
the matrix A as a 2× 2 block matrix (with different sizes of the blocks), and use the
following its factorization:

A =
[
a b
c D

]
=

[
e 0
cy E

][
e 0
0 D− cyb

][
a b
0 E

]
, (4.1)
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where E is the unit matrix in Mn−1(B). It follows from representation (4.1) that the
matrix D− cyb∈ Mn−1(X)∩G(Mn−1(B)), and by induction A ∈ G(Mn(X)). �
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