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SOME INEQUALITIES FOR UNITARILY INVARIANT NORMS

JUNLIANG WU AND JIANGUO ZHAO

(Communicated by C.-K. Li)

Abstract. In this note, we use the convexity of the function ϕ(v) to sharpen the matrix version
of the Heinz means, where ϕ(v) is defined as ϕ(v) = ‖AvXB1−v + A1−vXBv‖ on [0,1] for
A,B,X ∈ Mn such that A and B are positive semidefinite, and also give a refinement of the
inequality [Theorem 6, SIAM J. Matrix Anal. Appl. 20 (1998), 466–470] which is due to Zhan.

1. Introduction

Throughout, let Mn , B(H) , C∞ be the set of n× n complex matrices, the set of
all bounded linear operators on a complex separable Hilbert space H and the class of
compact operators, respectively. For a compact operator A ∈C∞ , let s1(A) � s2(A) �
· · · � 0 be the singular values of A , i.e., the eigenvalues of the positive operator |A| =
(A∗A)

1
2 , arranged in a decreasing order and repeated according to multiplicity. ‖ · ‖

denotes a unitarily invariant norm defined on a two-sided ideal K‖·‖ that is included
in C∞ , which has the basic property ‖UAV‖ = ‖A‖ for every A ∈ K‖·‖ and all unitary
operators U,V ∈ B(H) . Especially well known among unitarily invariant norms are

the Schatten p -norms defined as ‖A‖p = (
∞
∑
i=1

sp
i (A))

1
p , for p � 1. The Ky-Fan norms

defined as ‖A‖(k) =
k
∑
i=1

si(A) , k = 1,2, · · ·∞ , represent another interesting family of

unitarily invariant norms. Properties of such norms may be found in ([1], [7], [10],
[14], [15]).

As is well known, the Heinz means of two nonnegative real numbers a and b are
defined as

Hv(a,b) =
avb1−v +a1−vbv

2
,

for 0 � v � 1.
It is easy to see that the following inequalities hold:

√
ab � Hv(a,b) � a+b

2
, (1)

for 0 � v � 1.
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The matrix version of (1) due to Bhatia and Davis [2] is the following inequalities,

2‖A 1
2 XB

1
2 ‖ � ‖AvXB1−v +A1−vXBv‖ � ‖AX +XB‖, (2)

where 0 � v � 1, A , B , X ∈ Mn such that A and B are positive semidefinite. Usually,
‖AvXB1−v+A1−vXBv‖

2 are called the Heinz means of A and B .
For A , B , X ∈ Mn such that A and B are positive semidefinite, putting

ϕ(v) = ‖AvXB1−v +A1−vXBv‖,
then the function ϕ(v) is a continuous convex function on [0,1], attains its minimum
at v = 1

2 , and attains its maximum at v = 0 or v = 1. Thus it is decreasing on [0, 1
2 ]

and increasing on [ 1
2 ,1] . Moreover, ϕ(v) = ϕ(1− v) , for 0 � v � 1. One may find the

mentioned properties of the function ϕ(v) in ([2], [3], [8], [9]).
In [6], when ‖ · ‖ is operator norm, Corach-Porta-Recht proved the following,

so-called C-P-R inequality,

‖SXS−1 +S−1XS‖� 2‖X‖, (3)

for any invertible self-adjoint operator S and X ∈ K‖·‖ .
They proved this inequality by using the integral representation of a self-adjoint

operator with respect to a spectral measure.
An immediate consequence of the C-P-R inequality is the following,

‖SXT−1 +S−1XT‖ � 2‖X‖, (4)

for invertible self-adjoint operators S , T and X ∈ K‖·‖ . (3) and (4) also hold for other
unitarily invariant norms.

In [16], by introducing two parameters r and t , Zhan proved that the following
inequality

(2+ t)‖ArXB2−r +A2−rXBr‖ � 2‖A2X + tAXB+XB2‖ (5)

holds for any unitarily invariant norm ‖ · ‖ , where A , B , X ∈ Mn such that A and B
are positive semidefinite matrices and (t,r) ∈ (−2,2]× [ 1

2 ,
3
2 ] .

In this note, we use the convexity of the function ϕ(v) = ‖AvXB1−v +A1−vXBv‖
on [0, 1] to sharpen the inequalities (2), and then give a refinement of the inequality (5).

2. Main results

The following Lemma [13], plays an important role in our discussion.

LEMMA 1. Let g(x) be a real valued function which is convex on the interval
[a,b] . If p,q � 0 , and 0 < y � b−a

p+q min(p,q) , then

g(C) � 1
2y

∫ C+y

C−y
g(t)dt � 1

2
(g(C− y)+g(C+ y)) � pg(a)+qg(b)

p+q
, (6)

where C = pa+qb
p+q .
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It is worth to mention that the inequalities (6) is the Hermite-Hadamard’s inequal-
ities when p = q = 1, and y = b−a

2 .

THEOREM 1. Let A, B and X ∈ Mn such that A and B are positive semidefinite.
For every unitarily invariant norm ‖ · ‖ , then

(a)

‖AμXB1−μ + A1−μXBμ‖
� ‖AC

(1)
μ XB1−C

(1)
μ +A1−C

(1)
μ XBC

(1)
μ ‖

� 1
2y

∫ C
(1)
μ +y

C(1)
μ −y

(‖AvXB1−v +A1−vXBv‖)dv

� 1
2
(‖AC(1)

μ −yXB1−C(1)
μ +y +A1−C(1)

μ +yXBC(1)
μ −y‖

+‖AC
(1)
μ +yXB1−C

(1)
μ −y +A1−C

(1)
μ −yXBC

(1)
μ +y‖)

� p
p+q

‖AX +XB‖+
q

p+q
‖AμXB1−μ +A1−μXBμ‖

� ‖AX +XB‖ (7)

holds for 0 < μ � 1
2 , where p, q > 0 , C(1)

μ = qμ
p+q and 0 < y � μ

p+q min(p,q);
(b)

‖AμXB1−μ + A1−μXBμ‖
� ‖AC(2)

μ XB1−C(2)
μ +A1−C(2)

μ XBC(2)
μ ‖

� 1
2y

∫ C(2)
μ +y

C
(2)
μ −y

(‖AvXB1−v +A1−vXBv‖)dv

� 1
2
(‖AC

(2)
μ −yXB1−C

(2)
μ +y +A1−C

(2)
μ +yXBC

(2)
μ −y‖

+‖AC(2)
μ +yXB1−C(2)

μ −y +A1−C(2)
μ −yXBC(2)

μ +y‖)
� p

p+q
‖AμXB1−μ +A1−μXBμ‖+

q
p+q

‖AX +XB‖
� ‖AX +XB‖ (8)

holds for 1
2 < μ < 1 , where p, q > 0 , C(2)

μ = pμ+q
p+q and 0 < y � 1−μ

p+q min(p,q) .

Proof. We consider the case μ ∈ (0, 1
2 ] at first.

Applying Lemma 1 to the function ϕ(v) = ‖AvXB1−v +A1−vXBv‖ on the interval
[0,μ ] , we have

ϕ(C(1)
μ ) � 1

2y

∫ C(1)
μ +y

C
(1)
μ −y

ϕ(t)dt � 1
2
(ϕ(C(1)

μ − y)+ ϕ(C(1)
μ + y))

� pϕ(0)+qϕ(μ)
p+q

, (9)
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where C(1)
μ = qμ

p+q and 0 < y � μ
p+q min(p,q) .

Thus

‖AC(1)
μ XB1−C(1)

μ + A1−C(1)
μ XBC(1)

μ ‖

� 1
2y

∫ C
(1)
μ +y

C
(1)
μ −y

(‖AvXB1−v +A1−vXBv‖)dv

� 1
2
(‖AC(1)

μ −yXB1−C(1)
μ +y +A1−C(1)

μ +yXBC(1)
μ −y‖

+‖AC
(1)
μ +yXB1−C

(1)
μ −y +A1−C

(1)
μ −yXBC

(1)
μ +y‖)

� p
p+q

‖AX +XB‖+
q

p+q
‖AμXB1−μ +A1−μXBμ‖. (10)

Noting that the function ϕ(v) = ‖AvXB1−v + A1−vXBv‖ is decreasing on [0, 1
2 ]

and increasing on [ 1
2 ,1] , then by (10), we get the desired inequalities (7).

Likewise, if μ ∈ ( 1
2 ,1) , applying Lemma 1 to the function ϕ(v) = ‖AvXB1−v +

A1−vXBv‖ on the interval [μ ,1] , then we obtain the inequalities (8).
The proof is completed. �

REMARK 1. Putting p = q = 1, and y = μ
2 when 0 < μ � 1

2 , y = 1−μ
2 when

1
2 < μ < 1, it is easy to see that Theorem 1 is just the result of Corollary 2 in [11]. Thus
Corollary 2 in [11] is a special case of Theorem 1.

REMARK 2. Theorem 1 is a refinement of the sencond inequality in (2).

Similarly, applying Lemma 1 to the function ϕ(v) = ‖AvXB1−v + A1−vXBv‖ on
[μ ,1− μ ] when μ ∈ [0, 1

2 ) , and on [1− μ ,μ ] when μ ∈ ( 1
2 ,1] , respectively, we have

the refinement of the first inequality in (2).

THEOREM 2. Let A, B and X ∈ Mn such that A and B are positive semidefinite.
For every unitarily invariant norm ‖ · ‖ , then

2‖A 1
2 XB

1
2 ‖ � ‖AC(3)

μ XB1−C(3)
μ +A1−C(3)

μ XBC(3)
μ ‖

� 1
2y

∫ C(3)
μ +y

C
(3)
μ −y

(‖AvXB1−v +A1−vXBv‖)dv

� 1
2
(‖AC

(3)
μ −yXB1−C

(3)
μ +y +A1−C

(3)
μ +yXBC

(3)
μ −y‖

+‖AC(3)
μ +yXB1−C(3)

μ −y +A1−C(3)
μ −yXBC(3)

μ +y‖)
� ‖AμXB1−μ +A1−μXBμ‖ (11)

holds for μ ∈ [0,1] − { 1
2} , where p, q > 0 , C(3)

μ = pμ+q(1−μ)
p+q and 0 < y �

|1−2μ|
p+q min(p,q) .
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COROLLARY 1. Let A and B be positive semidefinite matrices. For every unitar-
ily invariant norm ‖ · ‖ , then

2‖AB‖ � ‖AC
(3)
μ + 1

2 B
3
2−C

(3)
μ +A

3
2−C

(3)
μ B

1
2 +C

(3)
μ ‖

� 1
2y

∫ C
(3)
μ +y

C
(3)
μ −y

(‖A 1
2 +vB

3
2−v +A

3
2−vB

1
2 +v‖)dv

� 1
2
(‖A 1

2 +C(3)
μ −yB

3
2−C(3)

μ +y +A
3
2−C(3)

μ +yB
1
2 +C(3)

μ −y‖

+‖A 1
2+C

(3)
μ +yB

3
2−C

(3)
μ −y +A

3
2−C

(3)
μ −yB

1
2 +C

(3)
μ +y‖)

� ‖A 1
2 +μB

3
2−μ +A

3
2−μB

1
2 +μ‖

� 1
2
‖(A+B)2‖ (12)

holds for μ ∈ [0,1] − { 1
2} , where p, q > 0 , C(3)

μ = pμ+q(1−μ)
p+q and 0 < y �

|1−2μ|
p+q min(p,q) .

Proof. Taking X = A
1
2 B

1
2 in (11), combining (2) with the following inequality

‖A 1
2 (A+B)B

1
2 ‖ � 1

2
‖(A+B)2‖,

then, we can obtain the inequalities (12).
The proof is completed. �

REMARK 3. Obviously, (12) is a refinement of the following inequality

‖AB‖ � 1
4
‖(A+B)2‖,

which is due to Bhatia and Kittaneh [4], where A , B ∈ Mn are positive semidefinite
matrices.

Next, we give the refinement of the inequality (5).

THEOREM 3. Let A, B and X ∈ Mn such that A and B are positive matrices
and (t,r) ∈ (−2,2]× ( 1

2 , 3
2) . For every unitarily invariant norm ‖ · ‖ , the following

inequalities hold,
(a) for r ∈ ( 1

2 ,1]

2‖A2X + XB2 + tAXB‖
� 2(‖A2X +XB2 +2AXB‖)− (4−2t)‖AXB‖
� 4p

p+q
‖A 3

2 XB
1
2 +A

1
2 XB

3
2 ‖+

4q
p+q

‖ArXB2−r +A2−rXBr‖− (4−2t)‖AXB‖

� 2(‖AC(1)
μ −y+ 1

2 XB
3
2−C(1)

μ +y +A
3
2−C(1)

μ +yXBC(1)
μ −y+ 1

2 ‖
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+‖AC(1)
μ +y+ 1

2 XB
3
2−C(1)

μ −y +A
3
2−C(1)

μ −yXBC(1)
μ +y+ 1

2 ‖)− (4−2t)‖AXB‖

� 2
y

∫ C
(1)
μ +y

C
(1)
μ −y

(‖Av+ 1
2 XB

3
2−v +A

3
2−vXBv+ 1

2 ‖)dv− (4−2t)‖AXB‖

� 4‖AC
(1)
μ + 1

2 XB
3
2−C

(1)
μ +A

3
2−C

(1)
μ XBC

(1)
μ + 1

2 ‖− (4−2t)‖AXB‖
� 4‖ArXB2−r +A2−rXBr‖− (4−2t)‖AXB‖
� (t +2)‖ArXB2−r +A2−rXBr‖, (13)

where μ = r− 1
2 , p , q > 0 , C(1)

μ = qμ
p+q and 0 < y � μ

p+q min(p,q);

(b) for r ∈ [1, 3
2 )

2‖A2X + XB2 + tAXB‖
� 2(‖A2X +XB2 +2AXB‖)− (4−2t)‖AXB‖
� 4q

p+q
‖A 3

2 XB
1
2 +A

1
2 XB

3
2 ‖+

4p
p+q

‖ArXB2−r +A2−rXBr‖− (4−2t)‖AXB‖

� 2(‖AC
(2)
μ −y+ 1

2 XB
3
2−C

(2)
μ +y +A

3
2−C

(2)
μ +yXBC

(2)
μ −y+ 1

2 ‖
+‖AC

(2)
μ +y+ 1

2 XB
3
2−C

(2)
μ −y +A

3
2−C

(2)
μ −yXBC

(2)
μ +y+ 1

2 ‖)− (4−2t)‖AXB‖

� 2
y

∫ C
(2)
μ +y

C(2)
μ −y

(‖Av+ 1
2 XB

3
2−v +A

3
2−vXBv+ 1

2 ‖)dv− (4−2t)‖AXB‖

� 4‖AC
(2)
μ + 1

2 XB
3
2−C

(2)
μ +A

3
2−C

(2)
μ XBC

(2)
μ + 1

2 ‖− (4−2t)‖AXB‖
� 4‖ArXB2−r +A2−rXBr‖− (4−2t)‖AXB‖
� (t +2)‖ArXB2−r +A2−rXBr‖, (14)

where μ = r− 1
2 , p , q > 0 , C(2)

μ = pμ+q
p+q and 0 < y � 1−μ

p+q min(p,q) .

Proof. Putting μ = r− 1
2 , then μ ∈ (0,1) . We consider the case μ ∈ (0, 1

2 ] at
first. Using the refinements of the Heinz means (7), we have

‖A 1
2 XB− 1

2 + A− 1
2 XB

1
2 ‖

� p
p+q

‖A 1
2 XB− 1

2 +A− 1
2 XB

1
2 ‖+

q
p+q

‖Aμ− 1
2 XB

1
2−μ +A

1
2−μXBμ− 1

2 ‖

� 1
2
(‖AC

(1)
μ −y− 1

2 XB
1
2−C

(1)
μ +y +A

1
2−C

(1)
μ +yXBC

(1)
μ −y− 1

2 ‖

+‖AC(1)
μ +y− 1

2 XB
1
2−C(1)

μ −y +A
1
2−C(1)

μ −yXBC(1)
μ +y− 1

2 ‖)

� 1
2y

∫ C
(1)
μ +y

C
(1)
μ −y

(‖Av− 1
2 XB

1
2−v +A

1
2−vXBv− 1

2 ‖)dv

� ‖AC
(1)
μ − 1

2 XB
1
2−C

(1)
μ +A

1
2−C

(1)
μ XBC

(1)
μ − 1

2 ‖
� ‖Aμ− 1

2 XB
1
2−μ +A

1
2−μXBμ− 1

2 ‖. (15)
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Since the following equality holds

AXB−1+A−1XB+2X = A
1
2 (A

1
2 XB− 1

2 +A− 1
2 XB

1
2 )B− 1

2 +A− 1
2 (A

1
2 XB− 1

2 +A− 1
2 XB

1
2 )B

1
2 ,

utilizing the generalized version of C-P-R inequality (4) for unitarily invariant norms,
we obtain

‖AXB−1 +A−1XB+2X‖� 2‖A 1
2 XB− 1

2 +A− 1
2 XB

1
2 ‖. (16)

On the other hand, due to

AXB−1 +A−1XB+2X = AXB−1 +A−1XB+ tX +(2− t)X ,

we have

‖AXB−1 +A−1XB+2X‖� ‖AXB−1 +A−1XB+ tX‖+(2− t)‖X‖. (17)

Again, from the generalized version of C-P-R inequality (4) for unitarily invariant
norms, it is easy to see that if s ∈ R ,

‖AsXB−s +A−sXBs‖ � 2‖X‖.

Noting that t−2 � 0, thus

(t−2)‖AsXB−s +A−sXBs‖ � 2(t−2)‖X‖,

which is equivalent to

4‖AsXB−s +A−sXBs‖−4‖X‖+2t‖X‖� (t +2)‖AsXB−s +A−sXBs‖. (18)

Combining (15), (16), (17) with (18), we can deduce

2‖AXB−1 + A−1XB+ tX‖
� 2‖AXB−1 +A−1XB+2X‖− (4−2t)‖X‖
� 4‖A 1

2 XB− 1
2 +A− 1

2 XB
1
2 ‖− (4−2t)‖X‖

� 4p
p+q

‖A 1
2 XB− 1

2 +A− 1
2 XB

1
2 ‖

+
4q

p+q
‖Aμ− 1

2 XB
1
2−μ +A

1
2−μXBμ− 1

2 ‖− (4−2t)‖X‖

� 2(‖AC
(1)
μ −y− 1

2 XB
1
2−C

(1)
μ +y +A

1
2−C

(1)
μ +yXBC

(1)
μ −y− 1

2 ‖
+‖AC(1)

μ +y− 1
2 XB

1
2−C(1)

μ −y +A
1
2−C(1)

μ −yXBC(1)
μ +y− 1

2 ‖)− (4−2t)‖X‖

� 2
y

∫ C(1)
μ +y

C
(1)
μ −y

(‖Av− 1
2 XB

1
2−v +A

1
2−vXBv− 1

2 ‖)dv− (4−2t)‖X‖

� 4‖AC(1)
μ − 1

2 XB
1
2−C(1)

μ +A
1
2−C(1)

μ XBC(1)
μ − 1

2 ‖− (4−2t)‖X‖
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� 4‖Aμ− 1
2 XB

1
2−μ +A

1
2−μXBμ− 1

2 ‖− (4−2t)‖X‖
� (t +2)‖Aμ− 1

2 XB
1
2−μ +A

1
2−μXBμ− 1

2 ‖. (19)

Replacing X by AXB and μ by r− 1
2 in (19), respectively, we have (13). Finally, (14)

is obtained analogously.
The proof is completed. �

REMARK 4. By continuity, the condition positive in Theorem 3 can be replaced
by positive semidefinite.

Taking r = 1 in (13), we can get the following corollary.

COROLLARY 2. Let A, B and X ∈ Mn such that A and B are positive semidefi-
nite. For every unitarily invariant norm ‖ · ‖ , the following inequalities hold,

2‖A2X + XB2 + tAXB‖
� 2(‖A2X +XB2 +2AXB‖)− (4−2t)‖AXB‖
� 4p

p+q
‖A 3

2 XB
1
2 +A

1
2 XB

3
2 ‖+

8q
p+q

‖AXB‖− (4−2t)‖AXB‖

� 2(‖AC(4)−y+ 1
2 XB

3
2−C(4)+y +A

3
2−C(4)+yXBC(4)−y+ 1

2 ‖
+‖AC(4)+y+ 1

2 XB
3
2−C(4)−y +A

3
2−C(4)−yXBC(4)+y+ 1

2 ‖)− (4−2t)‖AXB‖

� 2
y

∫ C(4)+y

C(4)−y
(‖Av+ 1

2 XB
3
2−v +A

3
2−vXBv+ 1

2 ‖)dv− (4−2t)‖AXB‖

� 4‖AC(4)+ 1
2 XB

3
2−C(4)

+A
3
2−C(4)

XBC(4)+ 1
2 ‖− (4−2t)‖AXB‖

� 2(t +2)‖AXB‖, (20)

where −2 < t � 2 , p , q > 0 , C(4) = q
2(p+q) and 0 < y � 1

2(p+q) min(p,q) .

REMARK 5. Taking t = 0 in (20), it is just a refinement of the famous Arithmetic-
Geometric mean inequality

2‖AXB‖� ‖A2X +XB2‖,
for A , B , X ∈ Mn such that A and B are positive semidefinite.

It is worth to point out that techniques from [5] are used to sharpen the inequality
(5).

REMARK 6. Putting p = q = 1, and y = μ
2 when 0 < μ � 1

2 , y = 1−μ
2 when

1
2 < μ < 1, respectively, then Theorem 3 is just the result of Theorem 2.1 in [5]. Thus
Theorem 2.1 in [5] is a special case of Theorem 3.

In [8], Hiai and Kosaki (Corollary 2.3) proved

‖A 1
2 XB

1
2 ‖ � ‖

∫ 1

0
AtXB1−tdt‖ �

∥∥∥AX +XB
2

∥∥∥ (21)
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for A , B , X ∈Mn such that A , B are positive semidefinite matrices and every unitarily
invariant norm ‖ · ‖ .

In [2], the following inequality (p. 164, Exercise 5.4.8)

1
2
‖AvXB1−v +A1−vXBv‖ � ‖

∫ 1

0
AtXB1−tdt‖, (22)

holds for 1
4 � v � 3

4 and every unitarily invariant norm ‖ ·‖ , where A , B , X ∈Mn such
that A , B are positive semidefinite matrices.

It follows from (2), (21), and (22)

‖A 1
2 XB

1
2 ‖ � 1

2
‖AvXB1−v +A1−vXBv‖ � ‖

∫ 1

0
AtXB1−tdt‖ �

∥∥∥AX +XB
2

∥∥∥, (23)

where 1
4 � v � 3

4 .

THEOREM 4. Let A and B be positive semidefinite matrices. Then for every uni-
tarily invariant norm ‖ · ‖ , the following inequalities

‖AB‖ � 1
2
‖A 1

2 +vB
3
2−v +A

3
2−vB

1
2 +v‖ � ‖

∫ 1

0
A

1
2 +tB

3
2−t dt‖ �

∥∥∥
(A+B

2

)2∥∥∥
� 1

4
‖A2 +B2 +2AB‖, (24)

holds for 1
4 � v � 3

4 .

Proof. Putting X = A
1
2 B

1
2 in (23), we have

‖AB‖ � 1
2
‖A 1

2 +vB
3
2−v +A

3
2−vB

1
2 +v‖ � ‖

∫ 1

0
A

1
2 +tB

3
2−t dt‖. (25)

In [17], Zou and He got (Theorem 2.1, its equivalent form)

‖
∫ 1

0
A

1
2 +tB

3
2−t dt‖ �

∥∥∥
(A+B

2

)2∥∥∥ (26)

for every unitarily invariant norm ‖ · ‖ and positive semidefinite matrices A and B .
On the other hand, in [12], for every unitarily invariant norm ‖ · ‖ , Matharu and

Aujla obtained

‖(A+B)(A+B)∗‖ � ‖AA∗ +BB∗+2AB∗‖, (27)

where A , B ∈ Mn .
Thus, the desired inequalities (24) follows from (25), (26) and (27).
The proof is completed. �

REMARK 7. (24) is a refinement of the following inequality

4‖AB‖� ‖A2 +B2 +2AB‖,
which is due to (5) when X = I (the identity matrix), r = 1, and t = 2.
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