# DERIVABLE MAPS AND GENERALIZED DERIVATIONS 

Zhidong Pan<br>(Communicated by M. Omladič)


#### Abstract

Let $\mathscr{A}$ be a unital algebra, $\mathscr{M}$ be an $\mathscr{A}$-bimodule, $L(\mathscr{A}, \mathscr{M})$ be the set of all linear maps from $\mathscr{A}$ to $\mathscr{M}$, and $\mathscr{R}_{\mathscr{A}}$ be a relation on $\mathscr{A}$. A map $\delta \in L(\mathscr{A}, \mathscr{M})$ is called derivable on $\mathscr{R}_{\mathscr{A}}$ if $\delta(A B)=\delta(A) B+A \delta(B)$ for all $(A, B) \in \mathscr{R}_{\mathscr{A}}$. One purpose of this paper is to propose the study of derivable maps on a new, but natural, relation $\mathscr{R}_{\mathscr{A}}$. Moreover, we give a characterization of generalized derivations on $\mathscr{M}_{n}(\mathbb{C})$, the $n \times n$ matrix algebra over the complex numbers; specifically, a linear map $\delta$ on $\mathscr{M}_{n}(\mathbb{C})$ is a generalized derivation iff there exists an $M \in \mathscr{M}_{n}(\mathbb{C})$ such that $\delta(A B)=\delta(A) B+A \delta(B)$, for all $A, B \in \mathscr{M}_{n}(\mathbb{C})$ satisfying $A M B=0$; in this case $\delta(I)=c M$, for some $c \in \mathbb{C}$.


## 1. Introduction

Let $\mathscr{A}$ be a unital algebra, $\mathscr{M}$ be an $\mathscr{A}$-bimodule, and $L(\mathscr{A}, \mathscr{M})$ be the set of all linear maps from $\mathscr{A}$ to $\mathscr{M}$. A map $\delta \in L(\mathscr{A}, \mathscr{M})$ is called a derivation if for all $A, B \in \mathscr{A}, \delta(A B)=\delta(A) B+A \delta(B)$. Let $\mathscr{R}_{\mathscr{A}}$ be a relation on $\mathscr{A}$, i.e. $\mathscr{R}_{\mathscr{A}}$ is a nonempty subset of $\mathscr{A} \times \mathscr{A}$. We say $\delta \in L(\mathscr{A}, \mathscr{M})$ is derivable on $\mathscr{R}_{\mathscr{A}}$ if $\delta(A B)=\delta(A) B+A \delta(B)$ for all $(A, B) \in \mathscr{R}_{\mathscr{A}}$; for convenience, such a $\delta$ will be called a partial derivation. There have been many papers studying when a partial derivation is a derivation. Jordan derivations have been extensively studied (see, e.g. [2], [4], [6], [10], and [12]), these are partial derivations that are derivable on $\mathscr{R}_{\mathscr{A}}=\{(A, B) \in$ $\mathscr{A} \times \mathscr{A}: A=B\}$. Recently, many have considered partial derivations that are derivable on $\mathscr{R}_{\mathscr{A}}=\{(A, B) \in \mathscr{A} \times \mathscr{A}: A B=C\}$, for some fixed $C \in \mathscr{A}$ (see, e.g. [1], [3], [5], [7-11], and 13-15]).

In general, partial derivations are not necessarily derivations. Examples of such partial derivations include generalized derivations. Recall that a map $\delta \in L(\mathscr{A}, \mathscr{M})$ is called a generalized derivation if for all $A, B \in \mathscr{A}, \delta(A B)=\delta(A) B+A \delta(B)-A \delta(I) B$, where $I$ is the unit of $\mathscr{A}$. For any $M \in \mathscr{M}$, we define a right multiplier $M_{r}$ from $\mathscr{A}$ to $\mathscr{M}$ by $M_{r}(A)=A M, \forall A \in \mathscr{A}$ and a left multiplier $M_{l}$ from $\mathscr{A}$ to $\mathscr{M}$ by $M_{l}(A)=M A, \forall A \in \mathscr{A}$. If $\delta \in L(\mathscr{A}, \mathscr{M})$ and $M=\delta(I)$, then one can easily check that $\delta$ is a generalized derivation iff $\delta-M_{r}$ is a derivation iff $\delta-M_{l}$ is a derivation. That is, generalized derivations can be viewed as a sum of a derivation and a right (or left) multiplier. If $\delta \in L(\mathscr{A}, \mathscr{M})$ is a generalized derivation, let $M=\delta(I)$ and $\mathscr{R}_{\mathscr{A}}(M, 0)=\{(A, B) \in \mathscr{A} \times \mathscr{A}: A M B=0\}$. Clearly, $\delta$ is derivable on $\mathscr{R}_{\mathscr{A}}(M, 0)$.

[^0]Keywords and phrases: Derivable map, derivation.

Naturally, this raises the following question: For any $M \in \mathscr{M}$, if $\delta \in L(\mathscr{A}, \mathscr{M})$ is derivable on $\mathscr{R}_{\mathscr{A}}(M, 0)$, is $\delta$ a generalized derivation? In this paper, we show this is the case when $\mathscr{A}=\mathscr{M}=\mathscr{M}_{n}(\mathbb{C})$, the $n \times n$ matrix algebra over the complex numbers. In this case, for simplicity, we will use $\mathscr{M}_{n}$ for $\mathscr{M}_{n}(\mathbb{C})$ and for any $M \in \mathscr{M}_{n}$ let $\mathscr{R}(M, 0)=\left\{(A, B) \in \mathscr{M}_{n} \times \mathscr{M}_{n}: A M B=0\right\}$.

## 2. Characterization of generalized derivations on $\mathscr{M}_{n}$

The following is our main result.
THEOREM 2.1. If $\delta \in L\left(\mathscr{M}_{n}, \mathscr{M}_{n}\right)$, then $\delta$ is a generalized derivation iff there exists an $M \in \mathscr{M}_{n}$ such that $\delta$ is derivable on $\mathscr{R}(M, 0)$; in this case $\delta(I)=c M$, for some $c \in \mathbb{C}$.

We begin with two simple reduction lemmas.
Lemma 2.2. Suppose $\mathscr{A}$ is a unital algebra and $\mathscr{M}$ is an $\mathscr{A}$-bimodule. Let $\Delta \in$ $L(\mathscr{A}, \mathscr{M}), M \in \mathscr{M}, T \in \mathscr{A}$ be invertible in $\mathscr{A}$, and $\delta(A)=T^{-1} \Delta\left(T A T^{-1}\right) T, \forall A \in$ $\mathscr{A}$. Then $\delta(I)=T^{-1} \Delta(I) T$, and
(i) $\Delta$ is derivable on $\mathscr{R}_{\mathscr{A}}(M, 0)$ iff $\delta$ is derivable on $\mathscr{R}_{\mathscr{A}}\left(T^{-1} M T, 0\right)$.
(ii) $\Delta$ is a generalized derivation iff $\delta$ is a generalized derivation.

Proof. For any $A, B \in \mathscr{A}$, let $A_{1}=T^{-1} A T$ and $B_{1}=T^{-1} B T$. A routine calculation shows $(A, B) \in \mathscr{R}_{\mathscr{A}}(M, 0)$ iff $\left(A_{1}, B_{1}\right) \in \mathscr{R}_{\mathscr{A}}\left(T^{-1} M T, 0\right)$ and

$$
\delta\left(A_{1} B_{1}\right)-\delta\left(A_{1}\right) B_{1}-A_{1} \delta\left(B_{1}\right)=T^{-1}[\Delta(A B)-\Delta(A) B-A \Delta(B)] T
$$

Thus (i) follows.
Similarly, (ii) follows from

$$
\delta\left(A_{1} B_{1}\right)-\delta\left(A_{1}\right) B_{1}-A_{1} \delta\left(B_{1}\right)+A_{1} \delta(I) B_{1}=T^{-1}[\Delta(A B)-\Delta(A) B-A \Delta(B)+A \Delta(I) B] T
$$

Lemma 2.3. If $\Delta \in L\left(\mathscr{M}_{n}, \mathscr{M}_{n}\right), n \geqslant 2$ and $E_{i j}$ are the matrix units of $\mathscr{M}_{n}$, then there exists a $\delta \in L\left(\mathscr{M}_{n}, \mathscr{M}_{n}\right)$ such that $\delta-\Delta$ is an inner derivation and $E_{i i} \delta\left(E_{j j}\right) E_{j j}=$ 0 , for all $i \neq j$.

Proof. Take $K=\sum_{i=1}^{n} \Delta\left(E_{i i}\right) E_{i i}$ and define $\delta_{K} \in L\left(\mathscr{M}_{n}, \mathscr{M}_{n}\right)$ by $\delta_{K}(A)=K A-$ $A K, \forall A \in \mathscr{M}_{n}$. Let $\delta=\Delta-\delta_{K}$, then $\forall j$,

$$
\delta\left(E_{j j}\right)=\Delta\left(E_{j j}\right)-\left(K E_{j j}-E_{j j} K\right)=\Delta\left(E_{j j}\right)-\Delta\left(E_{j j}\right) E_{j j}+E_{j j} \sum_{i=1}^{n} \Delta\left(E_{i i}\right) E_{i i}
$$

It follows that for any $i \neq j$,

$$
\begin{equation*}
E_{i i} \delta\left(E_{j j}\right) E_{j j}=0 \tag{2.0}
\end{equation*}
$$

Lemma 2.4. If $\delta \in L\left(\mathscr{M}_{n}, \mathscr{M}_{n}\right), n \geqslant 2$ satisfies Equation (2.0), $J \in \mathscr{M}_{n}$ is a Jordan matrix, and $\delta$ is derivable on $\mathscr{R}(J, 0)$, then $\delta\left(E_{k l}\right)=E_{k k} \delta\left(E_{k l}\right)\left(E_{l l}+E_{l+1 l+1}\right), \forall l<$ $n$ and $\delta\left(E_{k n}\right)=E_{k k} \delta\left(E_{k n}\right) E_{n n}$.

Proof. For any $k<j$ or $k \geqslant j+2$, then $E_{i j} J E_{k l}=0$. Since $\delta$ is derivable on $\mathscr{R}(J, 0)$,

$$
\begin{equation*}
0=\delta\left(E_{i j} E_{k l}\right)=\delta\left(E_{i j}\right) E_{k l}+E_{i j} \delta\left(E_{k l}\right) \tag{2.1}
\end{equation*}
$$

In particular, $\delta\left(E_{i j}\right) E_{k k}+E_{i j} \delta\left(E_{k k}\right)=0$, thus $\delta\left(E_{i j}\right) E_{k k}+E_{i j} \delta\left(E_{k k}\right) E_{k k}=0$. Combining with (2.0), we see $\delta\left(E_{i j}\right) E_{k k}=0$, which implies

$$
\begin{equation*}
\delta\left(E_{i j}\right) E_{k l}=0 \tag{2.2}
\end{equation*}
$$

By (2.1) and (2.2),

$$
\begin{equation*}
E_{i j} \delta\left(E_{k l}\right)=0 \tag{2.3}
\end{equation*}
$$

We will first prove

$$
\begin{equation*}
\delta\left(E_{k l}\right)=E_{k k} \delta\left(E_{k l}\right) \tag{*}
\end{equation*}
$$

The conclusion of the lemma follows directly from (2.2) and $(*)$. We will prove $(*)$ by induction on $k$.

If $k=1$ then by (2.3),

$$
\delta\left(E_{1 l}\right)=I \delta\left(E_{1 l}\right)=\left(\sum_{i=1}^{n} E_{i i}\right) \delta\left(E_{1 l}\right)=E_{11} \delta\left(E_{1 l}\right)
$$

Suppose $k \geqslant 2$ and

$$
\begin{equation*}
\delta\left(E_{k-1 l}\right)=E_{k-1 k-1} \delta\left(E_{k-1 l}\right) \tag{2.4}
\end{equation*}
$$

By (2.3),

$$
\begin{equation*}
\delta\left(E_{k l}\right)=\left(E_{k-1 k-1}+E_{k k}\right) \delta\left(E_{k l}\right) \tag{2.5}
\end{equation*}
$$

Let $J=\left(a_{i j}\right)$, there are two possible cases.
Case 1. $a_{k-1 k}=0$
In this case, $E_{k-1 k-1} J E_{k l}=0$. Since $\delta$ is derivable on $\mathscr{R}(J, 0)$,

$$
\begin{equation*}
0=\delta\left(E_{k-1 k-1} E_{k l}\right)=\delta\left(E_{k-1 k-1}\right) E_{k l}+E_{k-1 k-1} \delta\left(E_{k l}\right) \tag{2.6}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
0=\delta\left(E_{k-1 k-1}\right) E_{k k}+E_{k-1 k-1} \delta\left(E_{k k}\right) \tag{2.7}
\end{equation*}
$$

Multiplying $E_{k k}$ from the right of (2.7) and applying (2.0) gives $0=\delta\left(E_{k-1 k-1}\right) E_{k k}$, which implies $\delta\left(E_{k-1 k-1}\right) E_{k l}=\delta\left(E_{k-1 k-1}\right) E_{k k} E_{k l}=0$. Plugging this in (2.6), we get $E_{k-1 k-1} \delta\left(E_{k l}\right)=0$. Putting this in (2.5) gives (*).

Case 2. $a_{k-1 k}=1$
If $a_{k k}=0$ then $E_{k k} J E_{k l}=0$. Since $\delta$ is derivable on $\mathscr{R}(J, 0)$,

$$
\delta\left(E_{k k} E_{k l}\right)=\delta\left(E_{k k}\right) E_{k l}+E_{k k} \delta\left(E_{k l}\right)
$$

Multiplying $E_{k-1 k-1}$ from the left and applying (2.0) gives

$$
E_{k-1 k-1} \delta\left(E_{k k} E_{k l}\right)=E_{k-1 k-1} \delta\left(E_{k k}\right) E_{k l}=E_{k-1 k-1} \delta\left(E_{k k}\right) E_{k k} E_{k l}=0
$$

and putting this in (2.5) gives $(*)$.
If $a_{k k} \neq 0$, then $a_{k-1 k-1}=a_{k k} \neq 0$. Let $a=a_{k-1 k-1}$ then $E_{k-1 k-1} J\left(a E_{k l}-\right.$ $\left.E_{k-1 l}\right)=0$. Since $\delta$ is derivable on $\mathscr{R}(J, 0)$,

$$
\delta\left[E_{k-1 k-1}\left(a E_{k l}-E_{k-1 l}\right)\right]=\delta\left(E_{k-1 k-1}\right)\left(a E_{k l}-E_{k-1 l}\right)+E_{k-1 k-1} \delta\left(a E_{k l}-E_{k-1 l}\right)
$$

Combining with (2.4), we get

$$
\begin{equation*}
0=\delta\left(E_{k-1 k-1}\right)\left(a E_{k l}-E_{k-1 l}\right)+a E_{k-1 k-1} \delta\left(E_{k l}\right) \tag{2.8}
\end{equation*}
$$

In particular,

$$
0=\delta\left(E_{k-1 k-1}\right)\left(a E_{k k}-E_{k-1 k}\right)+a E_{k-1 k-1} \delta\left(E_{k k}\right)
$$

Multiplying $E_{k k}$ from the right and applying (2.0) gives $0=\delta\left(E_{k-1 k-1}\right)\left(a E_{k k}-E_{k-1 k}\right)$. Thus $\delta\left(E_{k-1 k-1}\right)\left(a E_{k l}-E_{k-1 l}\right)=\delta\left(E_{k-1 k-1}\right)\left(a E_{k k}-E_{k-1 k}\right) E_{k l}=0$. This, together with (2.8), gives $E_{k-1 k-1} \delta\left(E_{k l}\right)=0$. Now, (*) follows from (2.5).

Lemma 2.5. If $\delta \in L\left(\mathscr{M}_{n}, \mathscr{M}_{n}\right), n \geqslant 2$ satisfies (2.0), $J \in \mathscr{M}_{n}$ is a Jordan matrix, and $\delta$ is derivable on $\mathscr{R}(J, 0)$, then $\delta\left(E_{i j}\right) E_{j+1 j+1}=E_{i j} \delta\left(E_{j j}\right) E_{j+1 j+1}, \forall j<n$.

Proof. Let $J=\left(a_{i j}\right)$ and fix a $j<n$.
If $a_{j j+1}=0$ then $E_{i j} J E_{j+1 j+1}=0$. Since $\delta$ is derivable on $\mathscr{R}(J, 0)$,

$$
0=\delta\left(E_{i j} E_{j+1 j+1}\right)=\delta\left(E_{i j}\right) E_{j+1 j+1}+E_{i j} \delta\left(E_{j+1 j+1}\right)
$$

Applying Lemma 2.4, we get $\delta\left(E_{i j}\right) E_{j+1 j+1}=0$, in particular, $\delta\left(E_{j j}\right) E_{j+1 j+1}=0=$ $\delta\left(E_{i j}\right) E_{j+1 j+1}$.

If $a_{j j+1}=1$ then $E_{i j} J\left(a_{j j} E_{j+1 j}-E_{j j}\right)=0$. Since $\delta$ is derivable on $\mathscr{R}(J, 0)$, we have $\delta\left[E_{i j}\left(a_{j j} E_{j+1 j}-E_{j j}\right)\right]=\delta\left(E_{i j}\right)\left(a_{j j} E_{j+1 j}-E_{j j}\right)+E_{i j} \delta\left(a_{j j} E_{j+1 j}-E_{j j}\right)$. Applying Lemma 2.4, we get $-\delta\left(E_{i j}\right)=\delta\left(E_{i j}\right)\left(a_{j j} E_{j+1 j}-E_{j j}\right)-E_{i j} \delta\left(E_{j j}\right)$. Multiplying $E_{j+1 j+1}$ from the right yields the conclusion.

Lemma 2.6. If $\delta \in L\left(\mathscr{M}_{n}, \mathscr{M}_{n}\right), n \geqslant 2$ satisfies (2.0), $J \in \mathscr{M}_{n}$ is a Jordan matrix, and $\delta$ is derivable on $\mathscr{R}(J, 0)$, then for each $i$, $\delta\left(E_{i i}\right)=c_{i} E_{i i} J$, for some $c_{i} \in \mathbb{C}$.

Proof. Any matrix $T=\left(t_{i j}\right)$ can be viewed as a linear operator on $\mathbb{C}^{n}$ with standard column vectors $\left\{e_{1}, \cdots, e_{n}\right\}$ as basis, that is, for any column vector $x \in \mathbb{C}^{n}$, we can define $T x=\left(t_{i j}\right) x$. The range and kernel of $T$ will be denoted by $\operatorname{ran}(T)$ and $\operatorname{ker}(T)$, respectively. Fix any $i$, then $\operatorname{ran}\left(E_{i i} J\right) \subseteq \mathbb{C} e_{i}$. By Lemma $2.4, \delta\left(E_{i i}\right)=E_{i i} \delta\left(E_{i i}\right)$, so $\operatorname{ran}\left(\delta\left(E_{i i}\right)\right) \subseteq \mathbb{C} e_{i}$. Thus, $E_{i i} J$ and $\delta\left(E_{i i}\right)$ are operators of rank at most one, with range contained in the same one-dimensional vector space.

If $E_{i i} J=0$, then $E_{i i} J E_{k 1}=0$, for all $k=1, \cdots, n$. Since $\delta$ is derivable on $\mathscr{R}(J, 0)$,

$$
\delta\left(E_{i i} E_{k 1}\right)=\delta\left(E_{i i}\right) E_{k 1}+E_{i i} \delta\left(E_{k 1}\right)=\delta\left(E_{i i}\right) E_{k 1}+E_{i i} E_{k k} \delta\left(E_{k 1}\right)
$$

Thus $0=\delta\left(E_{i i}\right) E_{k 1}$ and $\delta\left(E_{i i}\right)=0$. In this case, $\delta\left(E_{i i}\right)=c E_{i i} J$, for any $c \in \mathbb{C}$.
To complete the proof, we only need to show $\operatorname{ker}\left(E_{i i} J\right) \subseteq \operatorname{ker}\left(\delta\left(E_{i i}\right)\right)$, when $E_{i i} J \neq 0$.

Suppose $J=\left(a_{i j}\right)$ and $E_{i i} J \neq 0$.
If $i=n$, then $E_{n n} J=a_{n n} E_{n n} \neq 0$ implies $\operatorname{ker}\left(E_{n n} J\right)=\operatorname{span}\left\{e_{1}, e_{2}, \cdots, e_{n-1}\right\}$. By Lemma 2.4, $\delta\left(E_{n n}\right)=\delta\left(E_{n n}\right) E_{n n}$. Thus $\operatorname{ker}\left(E_{n n} J\right) \subseteq \operatorname{ker}\left(\delta\left(E_{n n}\right)\right)$

If $i<n$, then $E_{i i} J=a_{i i} E_{i i}+a_{i i+1} E_{i i+1}$. It follows that $e_{k} \in \operatorname{ker}\left(E_{i i} J\right), \forall k<i$ or $k \geqslant i+2$ and $a_{i i+1} e_{i}-a_{i i} e_{i+1} \in \operatorname{ker}\left(E_{i i} J\right)$.

Since $E_{i i} J \neq 0, \operatorname{ker}\left(E_{i i} J\right)=\operatorname{span}\left\{e_{1}, \cdots, e_{i-1}, a_{i i+1} e_{i}-a_{i i} e_{i+1}, e_{i+2}, \cdots, e_{n}\right\}$. Note that $E_{i i} J\left(a_{i i+1} E_{i 1}-a_{i i} E_{i+11}\right)=0$, and $\delta$ is derivable on $\mathscr{R}(J, 0)$,

$$
\delta\left[E_{i i}\left(a_{i i+1} E_{i 1}-a_{i i} E_{i+11}\right)\right]=\delta\left(E_{i i}\right)\left(a_{i i+1} E_{i 1}-a_{i i} E_{i+11}\right)+E_{i i} \delta\left(a_{i i+1} E_{i 1}-a_{i i} E_{i+11}\right)
$$

Combining the above equation with Lemma 2.4, we get $0=\delta\left(E_{i i}\right)\left(a_{i i+1} E_{i 1}-a_{i i} E_{i+11}\right)$. Thus $\delta\left(E_{i i}\right)\left(a_{i i+1} e_{i}-a_{i i} e_{i+1}\right)=\delta\left(E_{i i}\right)\left(a_{i i+1} E_{i 1}-a_{i i} E_{i+11}\right) e_{1}=0$, i.e. $a_{i i+1} e_{i}-a_{i i} e_{i+1} \in$ $\operatorname{ker}\left(\delta\left(E_{i i}\right)\right)$. By Lemma 2.4, $\delta\left(E_{i i}\right)=\delta\left(E_{i i}\right)\left(E_{i i}+E_{i+1 i+1}\right)$, thus $e_{k} \in \operatorname{ker}\left(\delta\left(E_{i i}\right)\right)$, $\forall k<i$ or $k \geqslant i+2$, and $\operatorname{ker}\left(E_{i i} J\right) \subseteq \operatorname{ker}\left(\delta\left(E_{i i}\right)\right)$.

Lemma 2.7. If $\delta \in L\left(\mathscr{M}_{n}, \mathscr{M}_{n}\right), n \geqslant 2$ satisfies (2.0), $J \in \mathscr{M}_{n}$ is a Jordan matrix, and $\delta$ is derivable on $\mathscr{R}(J, 0)$, then there exists a $c \in \mathbb{C}$ such that $\delta\left(E_{i i}\right)=c E_{i i} J$, for all $i=1, \cdots, n$; as a consequence $\delta(I)=c J$.

Proof. For any $i \neq k$, by Lemma 2.6, there exist $c_{i}, c_{k} \in \mathbb{C}$ such that $\delta\left(E_{i i}\right)=$ $c_{i} E_{i i} J$ and $\delta\left(E_{k k}\right)=c_{k} E_{k k} J$. If $E_{i i} J=0$ we can choose $c_{i}$ to be any number, in particular, take $c_{i}=c_{k}$. Similarly, if $E_{k k} J=0$, we can take $c_{k}=c_{i}$. Let $J=\left(a_{i j}\right)$. Fix any $i$ and $k$, without loss of generality, we assume $i<k, E_{i i} J \neq 0$ and $E_{k k} J \neq 0$. Thus $a_{i i}$ and $a_{i i+1}$ are not both zero, and $a_{k k}$ and $a_{k k+1}$ are not both zero. For any $j$ with $E_{j j} J \neq 0$, define $j^{*}=j$ if $a_{j j} \neq 0$; otherwise $j^{*}=j+1$. Thus $a_{j j^{*}} \neq 0$, in particular, $a_{i i^{*}} \neq 0$. and $a_{k k^{*}} \neq 0$; moreover, if $k=n$ then $E_{n n} J=a_{n n} E_{n n} \neq 0$ implies $n^{*}=n$.

Claim: $a_{k i^{*}}=0$; indeed, since $i<k$, it follows $i^{*} \leqslant k$. If $i^{*}<k$ then $a_{k i^{*}}=0$ since $J$ is a Jordan matrix. By the definition of $i^{*}, i^{*}=k$ precisely when $a_{i i}=0$ and $i^{*}=i+1=k$. In this case, since $E_{i i} J \neq 0$ and $J$ is a Jordan matrix, $a_{i i+1}=1$ and $a_{k i^{*}}=a_{i+1 i+1}=a_{i i}=0$.

By the claim,

$$
\begin{equation*}
E_{i k} J E_{i^{*} k^{*}}=a_{k i^{*}} E_{i k^{*}}=0 \tag{2.9}
\end{equation*}
$$

We will proceed by considering two separate cases: $a_{i k^{*}}=0$ and $a_{i k^{*}} \neq 0$
Case 1. $a_{i k^{*}}=0$.
In this case,

$$
\begin{equation*}
E_{i i} J E_{k^{*} k^{*}}=a_{i k^{*}} E_{i k^{*}}=0 \tag{2.10}
\end{equation*}
$$

It follows from Eqs. (2.9) and (2.10),

$$
\begin{equation*}
\left(a_{k k^{*}} E_{i i}+a_{i i^{*}} E_{i k}\right) J\left(E_{i^{*} k^{*}}-E_{k^{*} k^{*}}\right)=a_{k k^{*}} E_{i i} J E_{i^{*} k^{*}}-a_{i i^{*}} E_{i k} J E_{k^{*} k^{*}}=0 \tag{2.11}
\end{equation*}
$$

Since $\delta$ is derivable on $\mathscr{R}(J, 0)$, by (2.9), (2.10), and (2.11) we have

$$
\boldsymbol{\delta}\left(E_{i k} E_{i^{*} k^{*}}\right)=\boldsymbol{\delta}\left(E_{i k}\right) E_{i^{*} k^{*}}+E_{i k} \delta\left(E_{i^{*} k^{*}}\right)
$$

$$
\delta\left(E_{i i} E_{k^{*} k^{*}}\right)=\delta\left(E_{i i}\right) E_{k^{*} k^{*}}+E_{i i} \delta\left(E_{k^{*} k^{*}}\right),
$$

and

$$
\begin{aligned}
\delta\left[\left(a_{k k^{*}} E_{i i}+a_{i^{*}} E_{i k}\right)\left(E_{i^{*} k^{*}}-E_{k^{*} k^{*}}\right)\right]= & \delta\left(a_{k k^{*}} E_{i i}+a_{i i^{*}} E_{i k}\right)\left(E_{i^{*} k^{*}}-E_{k^{*} k^{*}}\right) \\
& +\left(a_{k k^{*}} E_{i i}+a_{i i^{*}} E_{i k}\right) \delta\left(E_{i^{*} k^{*}}-E_{k^{*} k^{*}}\right) .
\end{aligned}
$$

The last three equations give us

$$
\begin{aligned}
a_{k k^{*}} \delta\left(E_{i i} E_{i^{*} k^{*}}\right)-a_{i i^{*}} \delta\left(E_{i k} E_{k^{*} k^{*}}\right)= & a_{k k^{*}} \delta\left(E_{i i}\right) E_{i^{*} k^{*}}-a_{i i^{*}} \delta\left(E_{i k}\right) E_{k^{*} k^{*}} \\
& +a_{k k^{*}} E_{i i} \delta\left(E_{i^{*} k^{*}}\right)-a_{i i^{*}} E_{i k} \delta\left(E_{k^{*} k^{*}}\right) .
\end{aligned}
$$

By Lemma 2.4, $\delta\left(E_{i i} E_{i^{*} k^{*}}\right)=E_{i i} \delta\left(E_{i^{*} k^{*}}\right)$. Thus

$$
\begin{equation*}
-a_{i i^{*}} \delta\left(E_{i k} E_{k^{*} k^{*}}\right)=a_{k k^{*}} \delta\left(E_{i i}\right) E_{i^{*} k^{*}}-a_{i i^{*}} \delta\left(E_{i k}\right) E_{k^{*} k^{*}}-a_{i i^{*}} E_{i k} \delta\left(E_{k^{*} k^{*}}\right) \tag{2.12}
\end{equation*}
$$

If $k^{*}=k$, by Eq. (2.12),

$$
-a_{i i^{*}} \boldsymbol{\delta}\left(E_{i k}\right)=a_{k k} \boldsymbol{\delta}\left(E_{i i}\right) E_{i^{*} k}-a_{i i^{*}} \boldsymbol{\delta}\left(E_{i k}\right) E_{k k}-a_{i i^{*}} E_{i k} \boldsymbol{\delta}\left(E_{k k}\right)
$$

Multiplying $E_{k k}$ from the right of this equation gives

$$
0=a_{k k} \delta\left(E_{i i}\right) E_{i^{*} k}-a_{i l^{*}} E_{i k} \delta\left(E_{k k}\right) E_{k k}
$$

By Lemma 2.6,

$$
\begin{aligned}
0 & =a_{k k} \delta\left(E_{i i}\right) E_{i^{*} k}-a_{i i^{*}} E_{i k} \delta\left(E_{k k}\right) E_{k k}=a_{k k} c_{i} E_{i i} J E_{i^{*} k}-a_{i i^{*}} E_{i k} c_{k} E_{k k} J E_{k k} \\
& =a_{k k} c_{i} a_{i i^{*}} E_{i k}-a_{i i^{*}} c_{k} a_{k k} E_{i k}
\end{aligned}
$$

Since $a_{i i^{*}} \neq 0$ and $a_{k k}=a_{k k^{*}} \neq 0$, we get $c_{i}=c_{k}$.
If $k^{*}=k+1$, by Lemma 2.4 and Eq. (2.12),

$$
0=a_{k k+1} \delta\left(E_{i i}\right) E_{i^{*} k+1}-a_{i i^{*}} \delta\left(E_{i k}\right) E_{k+1 k+1} .
$$

Combining this with Lemmas 2.5 and 2.6, we have

$$
\begin{aligned}
0 & =a_{k k+1} \delta\left(E_{i i}\right) E_{i^{*} k+1}-a_{i i^{*}} \delta\left(E_{i k}\right) E_{k+1 k+1}=a_{k k+1} \delta\left(E_{i i}\right) E_{i^{*} k+1}-a_{i i^{*}} E_{i k} \delta\left(E_{k k}\right) E_{k+1 k+1} \\
& =a_{k k+1} c_{i} E_{i i} J E_{i^{*} k+1}-a_{i i^{*}} E_{i k} c_{k} E_{k k} J E_{k+1 k+1}=a_{k k+1} c_{i} a_{i i^{*}} E_{i k+1}-a_{i i^{*}} c_{k} a_{k k+1} E_{i k+1}
\end{aligned}
$$

Since $a_{i i^{*}} \neq 0$ and $a_{k k+1}=a_{k k^{*}} \neq 0$, we have $c_{i}=c_{k}$.
Case 2. $a_{i k^{*}} \neq 0$.
This case can only happen when $k^{*}=k=i+1$, thus $a_{k k} \neq 0$ and $a_{i i+1}=a_{i k}=1$.
It follows that $\left(a_{k k} E_{i i}-E_{i k}\right) J E_{k k}=0$. Since $\delta$ is derivable on $\mathscr{R}(J, 0)$,

$$
\delta\left[\left(a_{k k} E_{i i}-E_{i k}\right) E_{k k}\right]=\delta\left(a_{k k} E_{i i}-E_{i k}\right) E_{k k}+\left(a_{k k} E_{i i}-E_{i k}\right) \delta\left(E_{k k}\right)
$$

By Lemma 2.4,

$$
\delta\left(-E_{i k}\right)=\delta\left(a_{k k} E_{i i}\right) E_{k k}-\delta\left(E_{i k}\right) E_{k k}-E_{i k} \delta\left(E_{k k}\right)
$$

Multiplying $E_{k k}$ from the right, we get $0=a_{k k} \delta\left(E_{i i}\right) E_{k k}-E_{i k} \delta\left(E_{k k}\right) E_{k k}$. By Lemma 2.6,

$$
\begin{aligned}
0 & =a_{k k} \delta\left(E_{i i}\right) E_{k k}-E_{i k} \delta\left(E_{k k}\right) E_{k k}=a_{k k} c_{i} E_{i i} J E_{k k}-E_{i k} c_{k} E_{k k} J E_{k k} \\
& =a_{k k} c_{i} a_{i k} E_{i k}-c_{k} a_{k k} E_{i k}=a_{k k} c_{i} E_{i k}-c_{k} a_{k k} E_{i k}
\end{aligned}
$$

Therefore, $c_{i}=c_{k}$.

Proof of Theorem 2.1. The statement is clearly true when $n=1$, so we assume $n \geqslant 2$. With one direction being clear, we only need to prove that if $\delta \in L\left(\mathscr{M}_{n}, \mathscr{M}_{n}\right)$ is derivable on $\mathscr{R}(M, 0)$, for some $M \in \mathscr{M}_{n}$, then $\delta$ is a generalized derivation with $\delta(I)=c M$, for some $c \in \mathbb{C}$. By Lemmas 2.2 and 2.3, we can assume $\delta$ satisfies Eq. (2.0) and $\delta$ is derivable on $\mathscr{R}(J, 0)$, where $J$ is a Jordan matrix of $M$. Let $S=\delta(I)$ and define $S_{r} \in L\left(\mathscr{M}_{n}, \mathscr{M}_{n}\right)$ by $S_{r}(A)=A S, \forall A \in \mathscr{M}_{n}$. Let $\tau=\delta-S_{r}$. Then $\tau$ is derivable on $\mathscr{R}(J, 0)$ and, by Lemma 2.7, $\tau\left(E_{j j}\right)=0, \forall j=1,2, \ldots, n$; in particular, $\tau$ satisfies Eq. (2.0). For any $j<n$, by Lemma 2.5, $\tau\left(E_{i j}\right) E_{j+1 j+1}=E_{i j} \tau\left(E_{j j}\right) E_{j+1 j+1}=$ 0 . Thus, by Lemma 2.4, $\tau\left(E_{i j}\right)=\tau\left(E_{i j}\right)\left(E_{j j}+E_{j+1 j+1}\right)=\tau\left(E_{i j}\right) E_{j j}, \forall j<n$ and $\tau\left(E_{\text {in }}\right)=\tau\left(E_{\text {in }}\right) E_{n n}$. It follows that for any $i, j, l$,

$$
\begin{equation*}
\tau\left(E_{i j} E_{l l}\right)=\tau\left(E_{i j}\right) E_{l l} \tag{2.13}
\end{equation*}
$$

We will show $\tau$ is a derivation by showing for any $i, j, k, l$,

$$
\begin{equation*}
\tau\left(E_{i j} E_{k l}\right)=\tau\left(E_{i j}\right) E_{k l}+E_{i j} \tau\left(E_{k l}\right) \tag{2.14}
\end{equation*}
$$

Eq. (2.13) implies Eq. (2.14) holds for $k=l$.
If $j \neq k$ then by Lemma $2.4 E_{i j} \tau\left(E_{k l}\right)=0$. By Eq. (2.13), $\tau\left(E_{i j}\right) E_{k l}=$ $\tau\left(E_{i j}\right) E_{j j} E_{k l}=0$. Thus Eq. (2.14) holds for $j \neq k$. In particular, if $k \neq l$, then

$$
\begin{equation*}
\tau\left(E_{i l} E_{k l}\right)=\tau\left(E_{i l}\right) E_{k l}+E_{i l} \tau\left(E_{k l}\right) \tag{2.15}
\end{equation*}
$$

It remains to show Eq. (2.14) holds for $j=k$ and $k \neq l$. Let $J=\left(a_{i j}\right)$.
If $a_{k l} \neq 0$, then $E_{i k} J\left(a_{k l} E_{k l}-a_{k k} E_{l l}\right)=0$. Since $\tau$ is derivable on $\mathscr{R}(J, 0)$,

$$
\tau\left[E_{i k}\left(a_{k l} E_{k l}-a_{k k} E_{l l}\right)\right]=\tau\left(E_{i k}\right)\left(a_{k l} E_{k l}-a_{k k} E_{l l}\right)+E_{i k} \tau\left(a_{k l} E_{k l}-a_{k k} E_{l l}\right)
$$

Applying Eq. (2.13) to this equation, we have $\tau\left(E_{i k} E_{k l}\right)=\tau\left(E_{i k}\right) E_{k l}+E_{i k} \tau\left(E_{k l}\right)$.
Similarly, if $a_{l k} \neq 0$, then $\left(a_{l k} E_{i k}-a_{k k} E_{i l}\right) J E_{k l}=0$. Since $\tau$ is derivable on $\mathscr{R}(J, 0)$,

$$
\delta\left[\left(a_{l k} E_{i k}-a_{k k} E_{i l}\right) E_{k l}\right]=\delta\left(a_{l k} E_{i k}-a_{k k} E_{i l}\right) E_{k l}+\left(a_{l k} E_{i k}-a_{k k} E_{i l}\right) \delta\left(E_{k l}\right)
$$

Combining this with Eq. (2.15), we get $\tau\left(E_{i k} E_{k l}\right)=\tau\left(E_{i k}\right) E_{k l}+E_{i k} \tau\left(E_{k l}\right)$.
Suppose $a_{k l}=a_{l k}=0$. If $a_{l l} \neq 0$, then note $\left(a_{l l} E_{i k}-a_{k k} E_{i l}\right) J\left(E_{k l}+E_{l l}\right)=0$. Since $\tau$ is derivable on $\mathscr{R}(J, 0)$,
$\tau\left[\left(a_{l l} E_{i k}-a_{k k} E_{i l}\right)\left(E_{k l}+E_{l l}\right)\right]=\tau\left(a_{l l} E_{i k}-a_{k k} E_{i l}\right)\left(E_{k l}+E_{l l}\right)+\left(a_{l l} E_{i k}-a_{k k} E_{i l}\right) \tau\left(E_{k l}+E_{l l}\right)$.
Combining this with Eqs. (2.13) and (2.15) gives $\tau\left(E_{i k} E_{k l}\right)=\tau\left(E_{i k}\right) E_{k l}+E_{i k} \tau\left(E_{k l}\right)$.

Finally, if $a_{l l}=0$ then for any positive integers $s, t \leqslant n, E_{s l} J E_{l t}=0$. Since $\tau$ is derivable on $\mathscr{R}(J, 0)$,

$$
\begin{equation*}
\tau\left(E_{s l} E_{l t}\right)=\tau\left(E_{s l}\right) E_{l t}+E_{s l} \tau\left(E_{l t}\right) \tag{2.16}
\end{equation*}
$$

By Eqs. (2.13) and (2.16),

$$
\begin{aligned}
\tau\left(E_{i k} E_{k l}\right) & =\tau\left(E_{i l}\right) E_{l l}=\tau\left(E_{i l}\right) E_{l k} E_{k l}=\left[\tau\left(E_{i l} E_{l k}\right)-E_{i l} \tau\left(E_{l k}\right)\right] E_{k l} \\
& =\tau\left(E_{i k}\right) E_{k l}-E_{i l} \tau\left(E_{l k}\right) E_{k l}=\tau\left(E_{i k}\right) E_{k l}-E_{i k} E_{k l} \tau\left(E_{l k}\right) E_{k l} \\
& =\tau\left(E_{i k}\right) E_{k l}-E_{i k}\left[\tau\left(E_{k l} E_{l k}\right)-\tau\left(E_{k l}\right) E_{l k}\right] E_{k l}=\tau\left(E_{i k}\right) E_{k l}-E_{i k}\left[0-\tau\left(E_{k l}\right) E_{l l}\right] \\
& =\tau\left(E_{i k}\right) E_{k l}+E_{i k} \tau\left(E_{k l}\right) .
\end{aligned}
$$

The equation $\delta(I)=c J$ for some $c \in \mathbb{C}$ is proved in Lemma 2.7.
COROLLARY 2.8. A linear map $\delta \in L\left(\mathscr{M}_{n}, \mathscr{M}_{n}\right)$ is a generalized derivation iff $\delta(A B)=\delta(A) B+A \delta(B)$, for all $A, B \in \mathscr{M}_{n}$ satisfying $A \delta(I) B=0$.

### 2.1. Remarks

For an algebra $\mathscr{A}$ and an $\mathscr{A}$-bimodule $\mathscr{M}$, we call a relation $\mathscr{R}_{\mathscr{A}} \subseteq \mathscr{A} \times \mathscr{A}$ a derivational set of $L(\mathscr{A}, \mathscr{M})$ if whenever $\delta \in L(\mathscr{A}, \mathscr{M})$ is derivable on $\mathscr{R}_{\mathscr{A}}$ it implies $\delta$ is a derivation. For $\mathscr{A}=\mathscr{M}=\mathscr{M}_{n}$ and any $0 \neq M \in \mathscr{M}_{n}$, Theorem 2.1 implies $\mathscr{R}(M, 0)$ is a maximal non-derivational set of $L\left(\mathscr{M}_{n}, \mathscr{M}_{n}\right)$ as illustrated in the following corollary.

COROLLARY 2.9. Given any $0 \neq M \in \mathscr{M}_{n}$, every relation $\mathscr{R}$ on $\mathscr{M}_{n}$ such that $\mathscr{R}(M, 0) \subsetneq \mathscr{R}$ is a derivational set of $L\left(\mathscr{M}_{n}, \mathscr{M}_{n}\right)$.

Proof. If $\delta \in L\left(\mathscr{M}_{n}, \mathscr{M}_{n}\right)$ is derivable on $\mathscr{R}$ then it is derivable on $\mathscr{R}(M, 0)$. By Theorem $2.1, \delta$ is a generalized derivation such that $\delta(I)=c M$, for some $c \in \mathbb{C}$. Thus $\delta(A B)=\delta(A) B+A \delta(B)-c A M B$ for all $(A, B) \in \mathscr{M}_{n} \times \mathscr{M}_{n}$. In particular, $\delta\left(A_{1} B_{1}\right)=$ $\delta\left(A_{1}\right) B_{1}+A_{1} \delta\left(B_{1}\right)-c A_{1} M B_{1}$ for any $\left(A_{1}, B_{1}\right) \in \mathscr{R}$ and $\left(A_{1}, B_{1}\right) \notin \mathscr{R}(M, 0)$. On the other hand, since $\delta$ is derivable on $\mathscr{R}, \delta\left(A_{1} B_{1}\right)=\delta\left(A_{1}\right) B_{1}+A_{1} \delta\left(B_{1}\right)$. Thus $c A_{1} M B_{1}=0$. Since $\left(A_{1}, B_{1}\right) \notin \mathscr{R}(M, 0), c=0$.

For a Banach algebra $\mathscr{A}$ and $M \in \mathscr{A}$, let $\mathscr{R}_{\mathscr{A}}(M, 0)=\{(A, B) \in \mathscr{A} \times \mathscr{A}: A M B=$ $0\}$.

### 2.2. Question

For what Banach algebra $\mathscr{A}$ does it hold that $\delta \in L(\mathscr{A}, \mathscr{A})$ is a generalized derivation iff $\delta$ is derivable on $\mathscr{R}_{\mathscr{A}}(M, 0)$ for some $M \in \mathscr{A}$ ?

In particular, we do not know if the above holds when $\mathscr{A}$ is a $C^{*}$-algebra, a von Neumann algebra, a CSL-algebra, a nest algebra, even $B(H)$, the algebra of all bounded linear operators on a Hilbert space $H$.

Acknowledgement. The author would like to thank the referee for careful reading of the paper and corrections of several typos.

## REFERENCES

[1] J. Alaminos, M. Brešar, J. Extremera, and A. Villena, Characterizing homomorphisms and derivations on $C^{*}$-algebras, Proc. Roy. Soc. Edinburgh. Sect. A., Vol. 137 (2007), p. 1-7.
[2] M. Brešar, Jordan mappings of semiprime rings, J. Algebra, Vol. 127 (1989), p. 218-228.
[3] M. A. Chebotar, Wen-Fong Ke, and Pjek-Hwee Lee, Maps characterized by action on zero products, Pacific J. Math., Vol. 216 (2004), p. 217-228.
[4] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., Vol. 8 (1957), p. 1104 1110.
[5] W. Jing, S. Lu, And P. Li, Characterizations of derivations on some operator algebras, Bull. Austral. Math. Soc., Vol. 66 (2002), p. 227-232.
[6] B. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge Philos. Soc., Vol. 120 (1996), p. 455-473.
[7] J. Li, Z. PAN, Annihilator-preserving maps, multipliers, and derivations, Linear Algebra Appl., Vol. 432 (2010), p. 5-13.
[8] J. Li, Z. Pan, On derivable mappings, J. Math. Anal. Appl., Vol. 374 (2011), p. 311-322.
[9] J. Li, Z. PAN, AND H. XU, Characterizations of isomorphisms and derivations of some algebras, J. Math. Anal. Appl., Vol. 332 (2007), p. 1314-1322.
[10] F. Lu, Characterizations of derivations and Jordan derivations on Banach algebras, Linear Algebra Appl., Vol. 430 (2009), p. 2233-2239.
[11] Z. Pan, Derivable maps and derivational points, Linear Algebra Appl., Vol. 436 (2012), p. 42514260.
[12] A. Sinclair, Jordan homomorphisms and derivations on semisimple Banach algebras, Proc. Amer. Math. Soc., Vol. 24 (1970), p. 209-214.
[13] X. Qi and J. Hou, Characterizations of derivations of Banach space nest algebras: all-derivable points, Linear Algebra Appl., Vol. 432 (2010), p. 3183-3200.
[14] J. ZHOU, Linear mappings derivable at some nontrivial elements, Linear Algebra Appl., Vol. 435 (2011), p. 1972-1986.
[15] J. Zhu, C. Xiong, And L. Zhang, All-derivable points in matrix algebras, Linear Algebra Appl., Vol. 430 (2009), p. 2070-2079.


[^0]:    Mathematics subject classification (2010): 47B47.

