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FACTORIZATION OF SOME TRIANGULAR MATRIX

FUNCTIONS AND ITS APPLICATIONS

YU. I. KARLOVICH, J. LORETO-HERNÁNDEZ AND I. M. SPITKOVSKY

(Communicated by L. Rodman)

Abstract. We consider defined on the real line R matrix functions with monomial terms of the
form ceiλx on the main diagonal and one row, and with zero entries elsewhere. The factorability
of such matrices is established and, moreover, the algorithm for their factorization is provided. In
particular, formulas for the partial indices are derived, and conditions for them to all equal zero
(that is, for the factorization to be canonical) are stated. These results are then used to obtain
Fredholmness criteria for some convolution type equations on unions of intervals.

1. Introduction

For any algebra A , we denote by G A the group of its invertible elements, and by
AN×N the algebra of all N×N matrices with the entries in A .

Let APP be the algebra of almost periodic polynomials, that is, the set of all finite
linear combinations of elements eλ (λ ∈ R) , with eλ defined by

eλ (x) = eiλ x, x ∈ R. (1.1)

The closure of APP with respect to the uniform norm is the C∗ -algebra AP of almost
periodic functions, and the closure of APP with respect to the stronger norm,

‖∑λ cλ eλ‖W = ∑λ |cλ | , cλ ∈ C,

is the Banach algebra APW .
The basic information about AP functions can be found in several monographs,

including [3, 7] and [16]. For our purposes, the following will suffice.
For any f ∈ AP there exists the Bohr mean value

M( f ) = lim
T→+∞

1
2T

∫ T

−T
f (x)dx.
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The functions f ∈ AP are defined uniquely by the Bohr-Fourier series

∑
λ∈Ω( f )

f̂ (λ )eλ

where Ω( f ) :=
{

λ ∈ R : f̂ (λ ) �= 0
}

is the Bohr-Fourier spectrum of f and the num-

bers f̂ (λ ) = M( f e−λ ) are referred to as the Bohr-Fourier coefficients of f .
Let

AP± :=
{

f ∈ AP : Ω( f ) ⊂ R±
}
, APW± := AP±∩APW,

APW±
0 :=

{
f ∈ APW± : f̂ (0) = 0

}
, APP± := AP±∩APP,

where, as usual, R± = {x ∈ R : ± x � 0} .
A function f ∈ AP is invertible in AP if and only if it is invertible in L∞(R) , that

is, if and only if infx∈R | f (x)| > 0. For every f ∈ G AP , the following limits exist, are
finite, equal and independent of the choice of a continuous branch of the argument of
f :

κ( f ) := lim
T→+∞

1
2T

{
arg f (x)

}T

−T
= lim

T→±∞

1
T

{
arg f (x)

}T

0
.

Their common value is called the mean motion (or the AP index) of f .
We say that G ∈ APN×N admits a canonical left AP factorization if

G = G+G− (1.2)

with G± ∈ G (AP±
N×N) . If in fact G± ∈ G (APW±

N×N) , (1.2) is said to be a canonical
left APW factorization of G . More generally, a left AP or APW factorization (not
necessarily canonical) of G is a representation

G = G+DG− (1.3)

with G± as above and an extra middle factor D = diag[eκ1 , . . . ,eκN ] . The parameters
κ j ∈R are defined by G uniquely up to a permutation whenever the factorization exists,
and are called the (left) partial AP indices of G . Of course, condition G ∈ G (APN×N)
(resp., G ∈ G (APWN×N)) is necessary in order for G to admit a left AP (resp., APW )
factorization, and

κ1 + · · ·+ κN = κ(detG) := κ . (1.4)

A left APP factorization of G is introduced along the same lines, as a representation
(1.3) with G± ∈ G (APP±

N×N) . The latter condition implies that detG± is constant, and
so G can possibly admit an APP factorization only if

G ∈ APPN×N and detG = ceκ with some non-zero c ∈ C. (1.5)

Conversely, under conditions (1.5) an AP factorization of G is in fact its APP factor-
ization whenever at least one of four matrix functions G±,G−1

± belongs to APPN×N .
An important invariant of the canonical factorization (1.2), if it exists, is the prod-

uct d(G) := M(G+)M(G−) , with the Bohr means of matrices understood entry-wise.
Since for N = 1

d(G) = expM(logG),
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d(G) is called the geometric mean of G , even when N > 1.
A canonical AP factorization of G ∈ APWN×N is automatically its (naturally, also

canonical) APW factorization. For N = 1, any G ∈ G APW admits an APW factoriza-
tion, and thus AP (and even APW ) factorable functions form a dense subset of AP . As
was discovered recently [6], this is not the case any more if N > 1.

AP factorization arises in a number of applications. In particular, consideration of
convolution type equations on systems of intervals yields the factorization problem for
matrix functions of the form

G =

⎡⎢⎢⎢⎢⎢⎣
eλ1

eλ2
. . .

eλn−1

g1 g2 . . . gn−1 eλn

⎤⎥⎥⎥⎥⎥⎦ , (1.6)

where λ1, . . . ,λn−1 are the lengths of intervals in question,

λn = −(λ1 + · · ·λn−1), (1.7)

and g j are in a certain way associated with the Fourier transforms of the equations’
kernels. One such application is considered in the final Section 9 of this paper, while
the preceding Section 8 contains the necessary function-theoretic background. The
constructive results are obtained in the case of monomial g j arising in matrices (1.6):

g j = a jeγ j , j = 1, . . . ,n−1. (1.8)

They are based on the fact that all matrices (1.6) satisfying (1.8) are APP factorable,
established in Section 2, and on the criterion of their canonical factorability derived in
Section 3. Note that, due to (1.4), condition (1.7) is necessary for the factorization of
G to be canonical, but will not be a priori imposed.

In the case when the APP factorization of G is not (necessarily) canonical, for-
mulas for its partial AP indices are provided in Section 4. These results, including
the factorization construction, are illustrated on matrices of low size in Section 5 (for
n = 3) and Section 6 (for n = 4). Finally, a short Section 7 concerns the extension of
the factorization results from Sections 2–6 to the setting of abstract ordered groups.

2. Factorization existence

The following notation will be used in this and the next section: Ei j is the matrix
with the only non-zero entry, equal one, in the (i, j) position.

THEOREM 2.1. Any matrix function (1.6) with the last row entries given by (1.8)
admits a left APP factorization.

Proof. The proof is by induction on the size of the matrix. The base is trivial: a
function eλ admits an obvious APP factorization (1.3) with G± = 1,D = eλ . Note that
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the case n = 2 is also elementary, and has been treated in passing a long time ago (see
[14, 15]). So, we may suppose that n � 3.

As the induction step, we will show how to obtain an APP factorization of n×
n matrix functions of the given pattern, provided that such a factorization exists for
similarly patterned matrices of a smaller size.

The reduction is obvious if a j = 0 for some j , because then G splits into the
direct sum of an 1×1 block eλ j

and an (n−1)× (n−1) matrix function of the same
type. So, without loss of generality a j �= 0 for all j . Multiplying the j th row of G
by a j while dividing its j th column by the same number for j = 1, . . . ,n−1, we may
even without loss of generality suppose that a1 = · · · = an−1 = 1, that is,

G =

⎡⎢⎢⎢⎢⎢⎣
eλ1

eλ2
. . .

eλn−1

eγ1 eγ2 . . . eγn−1 eλn

⎤⎥⎥⎥⎥⎥⎦ . (2.1)

If λi � γi for some i , then multiplication of G on the left by F = I − eγi−λi
Eni

cancels out the (n, i)-element eγi of G , leaving others unchanged. Since obviously
F ∈ G (APP+

n×n) , this has no effect on the APP factorability of G while reducing the
situation to already considered.

On the other hand, multiplication on the right by I−eγi−λnEni has a similar effect,
while this matrix function belongs to G (APP−

n×n) whenever γi � λn . So, without loss
of generality we may suppose that

λi > γi > λn, i = 1, . . . ,n−1. (2.2)

By a permutational similarity it can be arranged that, in addition,

γ1 � γ2 � · · · � γn−1. (2.3)

We now consider two complementary cases under the conditions (2.3).
Case 1. For some i ∈ {2, . . . ,n−1} , the inequalities

λi−λ1 � γi − γ1(� 0) (2.4)

hold. Due to (2.4), multiplication of G by I + eλi−γi−λ1+γ1
Ei1 on the left and I −

eγ1−γiEi1 on the right does not change its APP factorability properties. But upon this
multiplication G becomes a direct sum of eλ1

with the (n− 1)× (n− 1) matrix of
the same structure, which is obtained from (2.1) by deleting the first row and the first
column.

Case 2. It remains to consider the situation when λi − λ1 < γi − γ1 for all i =
2,3, . . . ,n−1 or, equivalently, when

(0 <) λi − γi < λ1− γ1, i = 2, . . . ,n−1. (2.5)
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Let us multiply G on the left by

(
I− eλ1−γ1

E1n
)n−1

∏
i=2

(
I + eλ1−γ1−λi+γi

E1i
)

and on the right by I− eλn−γ1
E1n . Conditions (2.2), (2.5) guarantee that there will be

no change in APP factorability. Finally (also without influencing APP factorability)
switch the first and the last columns of the resulting matrix. Simple computations show
that this sequence of operations results in the direct sum of −eλn+λ1−γ1

with⎡⎢⎢⎢⎢⎢⎣
eλ2

eλ3
. . .

eλn−1

eγ2 eγ3 . . . eγn−1 eγ1

⎤⎥⎥⎥⎥⎥⎦ . (2.6)

Since (2.6) has the same structure as (2.1) but its size is one less than that of the latter,
we are done. �

Note that arguments used in Case 2 of the proof of Theorem 2.1 are also valid if
the inequalities in (2.5) are non-strict.

3. Canonical factorization

The proof of Theorem 2.1 actually provides an algorithm allowing to construct
explicitly the factorization of matrices (1.6) satisfying (1.8). Examples illustrating this
point will be provided in Section 4. In the meanwhile, we would like to address the
question when the resulting factorization is canonical.

PROPOSITION 3.1. Let G be given by (1.6), with the off-diagonal entries g j sat-
isfying (1.8). Then for G to admit a canonical AP factorization it is necessary that
λ j = 0 whenever at least one of the conditions

a j = 0, γ j � λn,γ j � λ j, or λi −λ j � γi − γ j for some i �= j (3.1)

holds, and λ j � 0 for all other values of j = 1, . . . ,n−1 .

Proof. From the proof of Theorem 2.1 it immediately follows that, whenever one
of the conditions (3.1) holds (the latter — with j = 1) , the respective λ j is a partial
index of G . For j �= 1 the reasoning for the last case of (3.1) has to be modified slightly.
Namely, it suffices to observe that multiplication of G by I+eλi−γi−λ j+γ j

Ei j on the left
and I−eγ j−γiEi j on the right does not change its APP factorability properties. But upon
this multiplication G becomes a direct sum of eλ j

with an (n−1)× (n−1) matrix of
the same structure. This proves that indeed λ j must equal zero whenever one of the
conditions (3.1) holds in order for G to admit a canonical AP factorization.
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Moreover, for any j satisfying one of the conditions (3.1), the respective row
and column of G can be deleted, and the elements of the resulting matrix renumbered
accordingly. It remains therefore to consider matrix functions (2.1) for which (2.2)
and (2.5) hold. We may (and will) also without loss of generality impose the ordering
(2.3). But this puts us into the setting of Case 2 in the proof of Theorem 2.1. As was
established there, λn + λ1 − γ1 then emerges as one of the partial indices. So, in order
for the factorization to be canonical, we must have γ1 = λ1 +λn . When combined with
the second inequality in (2.2) for i = 1, this implies positivity of λ1 .

Furthermore, the matrix (2.6) should admit a canonical factorization along with the
given G . Then, by the part already proved, λ2 = 0 if γ2 = γ1 , and λ2 > 0 if γ2 > γ1 .
The mathematical induction principle thus completes the proof. �

Observe that the last diagonal exponent λn of the matrix (1.6) admitting a canoni-
cal factorization must of course be non-positive, due to (1.7).

Necessary and sufficient conditions for (1.6) to admit a canonical factorization in
principle can be stated in general, though for large n they get rather convoluted because
of the growing number of subcases to be considered. One particular situation, having
practical importance, can however be treated more easily. To simplify the statement,
and without loss of generality, we will suppose that (2.3) holds.

THEOREM 3.2. Let G be of the form (1.6), with the elements of the last row given
by (1.8) satisfying (2.3), and such that λ j �= 0 , j = 1, . . . ,n− 1 . Then its AP factor-
ization is canonical if and only if in fact λ j > 0 , a j �= 0 for j = 1, . . . ,n−1 , while λn

satisfies (1.7), and

γi = λ1 + · · ·+ λi + λn, i = 1, . . . ,n−1. (3.2)

Proof. Necessity. Positivity of λ j and condition a j �= 0 for j = 1, . . . ,n−1 follow
immediately from Proposition 3.1; the necessity of (1.7) was mentioned earlier as well.
We also see from the proof of Theorem 2.1 that Case 1 should not materialize, and
(3.2) holds for i = 1. Moreover, the matrix (2.6) should admit a canonical factorization
along with (1.6). Observe that γ2 > γ1 because otherwise λ2 �= 0 becomes a partial AP
index of the matrix (2.6), which contradicts its canonical AP factorability. A simple
recursive procedure, with an obvious notational adjustment, yields all other equalities
in (3.2). In particular, taking into account the equality γ1 = λ1 + λn , we deduce for the
matrix (2.6) that γ2 = λ2 + γ1 = λ1 + λ2 + λn , and so on.

Sufficiency. Conditions imposed on the signs of λ j and formulas (3.2) guarantee
that (2.2), (2.5) hold. Equivalently, we are in the Case 2 setting of the proof of The-
orem 2.1. Consequently, one of the partial indices of G is λn + λ1 − γ1 = 0, and the
others coincide with the partial indices of (2.6). But the latter matrix (once again, af-
ter an obvious notational adjustment) satisfies the alleged sufficiency conditions, along
with the given one. Since the n = 2 case is known, this completes the proof. �

Note that the sufficiency was also proved in [21], though in a slightly different
way. We provided the proof here for consistency and convenience of reference.

As a matter of fact, it is not hard to explicitly construct a canonical factorization
of G in the setting of Theorem 3.2.
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THEOREM 3.3. Let G be given by

G =

⎡⎢⎢⎢⎢⎢⎣
eλ1

eλ2
. . .

eλn−1

a1eγ1 a2eγ1 . . . an−1eγn−1 eλn

⎤⎥⎥⎥⎥⎥⎦ , (3.3)

where λ j > 0 and a j �= 0 for j = 1, . . . ,n−1 , λn satisfies (1.7), and (3.2) holds. Then
G admits a canonical left APP factorization G = G+G− with

G+ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a−1
1 −a−1

1 eλ1

a−1
2 −a−1

2 eλ2
. . .

. . .
a−1

n−2 −a−1
n−2eλn−2

a−1
n−1 a−1

n−1eλn−1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

G− =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a−1
1 e−λ1

−a−1
1

a−1
2 e−λ2

−a−1
2

. . .
. . .

a−1
n−2e−λn−2

−a−1
n−2

a−1
n−1e−λn−1

a−1
n−1

−1 0 . . . 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−1

Proof. A direct computation shows in view of (1.7) and (3.2) that GG−1
− = G+ ,

while G±,G−1
± ∈ APP±

n×n . �

4. Partial indices

We now discuss in more detail how to determine the partial AP indices of the
matrix function (2.1) under conditions (2.2) and (2.3). To this end, let us introduce
recursively a sequence of matrix functions Gk of the same structure as (2.1) but de-
creasing in size. Namely, let

Gk =

⎡⎢⎢⎢⎢⎢⎢⎣
eλ1,k

eλ2,k

. . .
eλn−k−1,k

eγ1,k eγ2,k . . . eγn−k−1,k eλn−k,k

⎤⎥⎥⎥⎥⎥⎥⎦ , k = 0, . . . ,n−1, (4.1)

where
λ j,k = λ j+k, γ j,k = γ j+k, ( j = 1, . . . ,n− k−1),
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while the right lower entry is defined recursively by the rule λn,0 = λn (so that G0

coincides with G given by (2.1)) and, for k = 1, . . . ,n−1,

λn−k,k =

⎧⎪⎨⎪⎩
λn−k+1,k−1 if λi,k−1−λ1,k−1 � γi,k−1 − γ1,k−1

for some i = 2, . . . ,n− k,

γk otherwise.

(4.2)

Notice that λ1,n−1 = γn−1 in view of (4.2).
Let us also introduce a binary string M = [m1, . . . ,mn−1] associated with the ma-

trix (2.1) in the following way: mj equals 1 or 2, depending on whether the first or
the second case of (4.2) takes place at the j th iteration. Clearly, mn−1 = 2 because
λ1,n−1 = γn−1 .

THEOREM 4.1. Let G be given by (2.1), with the associated string

M = [m1, . . . ,mn−1].

Then the partial AP indices μ1, . . . ,μn of G can be computed by the rule: for k =
1,2, . . . ,n−1 ,

μk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λk if mk = 1,

λn + λk − γk if mk is the first digit 2 in M ,

γ j + λk− γk if m j = mk = 2 for some j < k,

and there are no 2s between mj and mk,

(4.3)

and μn = γn−1 .

Proof. According to the procedure described in the proof of Theorem 2.1, for
every k = 1, . . . ,n− 1, the matrix function Gk−1 via multiplication on the left (right)
by an appropriate element of G (APP+

(n−k+1)×(n−k+1)) (resp. G (APP−
(n−k+1)×(n−k+1)))

can be reduced to the direct sum of Gk with a singleton eνk , where

νk =

{
λ1,k−1 if mk = 1,

λn−k+1,k−1 + λ1,k−1− γ1,k−1 if mk = 2.

From (4.2) it is easy to see that in fact νk = μk for k = 1, . . . ,n−1, with μk given by
(4.3). On the other hand, since Gn−1 = eλ1,n−1

= eγn−1 , we deduce that μn = γn−1 . So,
starting with G0 = G in n− 1 steps we will end up with μ1, . . . ,μn as the set of all
partial AP indices. �

For example, for the 5× 5 matrix function G we obtain the following possible
5-tuples of partial AP indices:

{λ1,λ2,λ3,λ5 + λ4− γ4,γ4} if M = [1,1,1,2],
{λ1,λ2,λ5 + λ3− γ3,γ3 + λ4− γ4,γ4} if M = [1,1,2,2],
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{λ1,λ5 + λ2− γ2,λ3,γ2 + λ4− γ4,γ4} if M = [1,2,1,2],
{λ1,λ5 + λ2− γ2,γ2 + λ3− γ3,γ3 + λ4− γ4,γ4} if M = [1,2,2,2],

{λ5 + λ1− γ1,λ2,λ3,γ1 + λ4− γ4,γ4} if M = [2,1,1,2],
{λ5 + λ1− γ1,λ2,γ1 + λ3− γ3,γ3 + λ4− γ4,γ4} if M = [2,1,2,2],
{λ5 + λ1− γ1,γ1 + λ2− γ2,λ3,γ2 + λ4− γ4,γ4} if M = [2,2,1,2],

{λ5 + λ1− γ1,γ1 + λ2− γ2,γ2 + λ3− γ3,γ3 + λ4− γ4,γ4} if M = [2,2,2,2].

5. Case n = 3

To illustrate the factorization approach described in the proof of Theorem 2.1, in
this section we construct an explicit left APP factorizations (1.3) of matrix functions
(1.6) satisfying (1.8) in the case when n = 3. That is, throughout this section

G =

⎡⎣ eλ1
0 0

0 eλ2
0

a1eγ1 a2eγ2 eλ3

⎤⎦ with a1a2 �= 0. (5.1)

Naturally, formulas for the factors depend on the relations between the exponents γ j,λ j .

i) Let us start with the situations in which the partial indices coincide with the
indices of the diagonal entries, that is,

D = diag[eλ1
,eλ2

,eλ3
].

a) If γ1 � λ1 and γ2 � λ2 , then

G+ =

⎡⎣ 1 0 0
0 1 0

a1eγ1−λ1
a2eγ2−λ2

1

⎤⎦ , G− =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ .

b) If γ1 � λ1 and γ2 � λ3 , then

G+ =

⎡⎣ 1 0 0
0 1 0

a1eγ1−λ1
0 1

⎤⎦ , G− =

⎡⎣1 0 0
0 1 0
0 a2eγ2−λ3

1

⎤⎦ .

c) If γ1 � λ3 and γ2 � λ2 , then

G+ =

⎡⎣1 0 0
0 1 0
0 a2eγ2−λ2

1

⎤⎦ , G− =

⎡⎣ 1 0 0
0 1 0

a1eγ1−λ3
0 1

⎤⎦ .

d) If γ1 � λ3 and γ2 � λ3 , then

G+ =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ , G− =

⎡⎣ 1 0 0
0 1 0

a1eγ1−λ3
a2eγ2−λ3

1

⎤⎦ .
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ii) Let now λ1 > γ1 > λ3 and either a) γ2 � λ2 , or b) γ2 � λ3 .

a) If γ2 � λ2 then, disposing of a2eγ2 as in subcase a) of case i) and applying the
factorization[

eλ1
0

a1eγ1 eλ3

]
=

[
a−1

1 a−1
1 eλ1−γ1

0 1

][
eλ1+λ3−γ1

0
0 eγ1

][
0 −1
a1 eλ3−γ1

]
, (5.2)

we obtain the following factors of a left APP factorization of G :

G+ =

⎡⎣a−1
1 0 a−1

1 eλ1−γ1

0 1 0
0 a2eγ2−λ2

1

⎤⎦ , D =

⎡⎣eλ1+λ3−γ1
0 0

0 eλ2
0

0 0 eγ1

⎤⎦ ,

G− =

⎡⎣ 0 0 −1
0 1 0
a1 0 eλ3−γ1

⎤⎦ .

b) If γ2 � λ3 then, disposing of a2eγ2 as in subcase b) of case i) and applying
factorization (5.2), we obtain

G+ =

⎡⎣a−1
1 0 a−1

1 eλ1−γ1

0 1 0
0 0 1

⎤⎦ , D =

⎡⎣eλ1+λ3−γ1
0 0

0 eλ2
0

0 0 eγ1

⎤⎦ ,

G− =

⎡⎣ 0 −a2eγ2−λ3
−1

0 1 0
a1 a2eγ2−γ1 eλ3−γ1

⎤⎦ .

iii) Let λ2 > γ2 > λ3 and either a) γ1 � λ1 , or b) γ1 � λ3 .

a) If γ1 � λ1 then, getting rid of a1eγ1 as in subcase a) of case i) and applying the
factorization[

eλ2
0

a2eγ2 eλ3

]
=

[
a−1

2 a−1
2 eλ2−γ2

0 1

][
eλ2+λ3−γ2

0
0 eγ2

][
0 −1
a2 eλ3−γ2

]
, (5.3)

we obtain the following factors of a left APP factorization of G :

G+ =

⎡⎣ 1 0 0
0 a−1

2 a−1
2 eλ2−γ2

a1eγ1−λ1
0 1

⎤⎦ , D =

⎡⎣eλ1
0 0

0 eλ2+λ3−γ2
0

0 0 eγ2

⎤⎦ ,

G− =

⎡⎣1 0 0
0 0 −1
0 a2 eλ3−γ2

⎤⎦ .

b) If γ1 � λ3 then, disposing of a1eγ1 as in subcase c) of case i) and applying the
factorization (5.3), we obtain

G+ =

⎡⎣1 0 0
0 a−1

2 a−1
2 eλ2−γ2

0 0 1

⎤⎦ , D =

⎡⎣eλ1
0 0

0 eλ2+λ3−γ2
0

0 0 eγ2

⎤⎦ ,
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G− =

⎡⎣ 1 0 0
−a1eγ1−λ3

0 −1
a1eγ1−γ2 a2 eλ3−γ2

⎤⎦ .

It remains to consider a more involved situation when λ1 > γ1 > λ4 and λ2 > γ2 >
λ3 . We summarize results for this case in the following theorem.

THEOREM 5.1. Let G be the matrix function given by (5.1) with

λ1 > γ1 > λ3, λ2 > γ2 > λ3.

Then G admits a left APP factorization G = G+DG− with factors given by:

G+ =

⎡⎣ a−1
1 0 0

−a−1
2 eλ2−λ1+γ1−γ2

a−1
2 a−1

2 eλ2−γ2

0 0 1

⎤⎦ , D =

⎡⎣eλ1
0 0

0 eλ2+λ3−γ2
0

0 0 eγ2

⎤⎦ ,

G− =

⎡⎣ a1 0 0
0 0 −1

a1eγ1−γ2 a2 eλ3−γ2

⎤⎦ (5.4)

if λ2−λ1 � γ2− γ1 and γ2 � γ1 ;

G+ =

⎡⎣a−1
1 −a−1

1 eγ2−γ1−λ2+λ1
0

0 a−1
2 a−1

2 eλ2−γ2

0 0 1

⎤⎦ ,

D =

⎡⎣eλ3+λ1−γ1
0 0

0 eγ1+λ2−γ2
0

0 0 eγ2

⎤⎦ , G− =

⎡⎣ 0 0 −1
−a1 0 −eλ3−γ1

a1eγ1−γ2 a2 eλ3−γ2

⎤⎦ (5.5)

if λ2−λ1 � γ2− γ1 and γ2 � γ1 ;

G+ =

⎡⎣a−1
1 −a−1

1 eγ2−γ1−λ2+λ1
a−1

1 eλ1−γ1

0 a−1
2 0

0 0 1

⎤⎦ , D =

⎡⎣eλ1+λ3−γ1
0 0

0 eλ2
0

0 0 eγ1

⎤⎦ ,

G− =

⎡⎣ 0 0 −1
0 a2 0
a1 a2eγ2−γ1 eλ3−γ1

⎤⎦ (5.6)

if λ2−λ1 � γ2− γ1 and γ2 � γ1 ;

G+ =

⎡⎣ a−1
1 0 a−1

1 eλ1−γ1

−a−1
2 eλ2−λ1−γ2+γ1

a−1
2 0

0 0 1

⎤⎦ ,

D =

⎡⎣eγ2+λ1−γ1
0 0

0 eλ3+λ2−γ2
0

0 0 eγ1

⎤⎦ , G− =

⎡⎣ 0 −a2 −eλ3−γ2

0 0 −1
a1 a2eγ2−γ1 eλ3−γ1

⎤⎦ (5.7)

if λ2−λ1 � γ2− γ1 and γ2 � γ1 .
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Proof. We will treat separately the following four cases a)–d).
a) If λ2−λ1 � γ2 − γ1 � 0, then in view of Theorem 2.1 we obtain

G = A−1

⎡⎣ 1 0 0
−eλ2−λ1+γ1−γ2

1 0
0 0 1

⎤⎦G̃

⎡⎣ 1 0 0
eγ1−γ2 1 0

0 0 1

⎤⎦A, (5.8)

where

A := diag{a1,a2,1}, G̃ :=

⎡⎣eλ1
0 0

0 eλ2
0

0 eγ2 eλ3

⎤⎦ . (5.9)

Applying (5.3), we obtain the left APP factorization

G̃ =

⎡⎣1 0 0
0 1 eλ2−γ2

0 0 1

⎤⎦⎡⎣eλ1
0 0

0 eλ2+λ3−γ2
0

0 0 eγ2

⎤⎦⎡⎣1 0 0
0 0 −1
0 1 eλ3−γ2

⎤⎦ ,

which together with (5.8) gives the left APP factorization G = G+DG− with factors
defined by (5.4).

b) If λ2−λ1 � γ2 − γ1 and γ2 � γ1 , then in view of Theorem 2.1 we get

G = A−1

⎡⎣1 −eγ2−γ1−λ2+λ1
eλ1−γ1

0 1 0
0 0 1

⎤⎦G̃

⎡⎣0 0 −1
0 1 0
1 0 0

⎤⎦⎡⎣1 0 eλ3−γ1

0 1 0
0 0 1

⎤⎦A, (5.10)

where A is given by (5.9) and

G̃ :=

⎡⎣eλ3+λ1−γ1
0 0

0 eλ2
0

0 eγ2 eγ1

⎤⎦ .

Further, by analogy with (5.3), we infer that

G̃ =

⎡⎣1 0 0
0 1 eλ2−γ2

0 0 1

⎤⎦⎡⎣eλ3+λ1−γ1
0 0

0 eγ1+λ2−γ2
0

0 0 eγ2

⎤⎦⎡⎣1 0 0
0 0 −1
0 1 eγ1−γ2

⎤⎦ ,

which together with (5.10) gives the left APP factorization G = G+DG− with factors
defined by (5.5).

The remaining two cases c) λ2−λ1 � γ2− γ1 and γ2 � γ1 , as well as d) λ2−λ1 �
γ2 − γ1 and γ2 � γ1 are reduced to cases a) and b) by the simultaneous transposition
of the the first and second columns and rows. This gives the factors of the left APP
factorization of G defined by (5.6) in case c) and by (5.7) in case d). �

Theorems 3.2 and 5.1 imply the following.

COROLLARY 5.2. If the matrix function G is given by (5.1) with a1a2 �= 0 and
λ1λ2 �= 0 , then G admits a canonical left AP factorization if and only if λ1,λ2 > 0 ,
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λ3 = −λ1 −λ2 , and either γ1 = −λ2 and γ2 = 0 , or γ1 = 0 and γ2 = −λ1 . In these
cases the geometric mean d(G) is given, respectively, by

d(G) =

⎡⎣ 0 0 −a−1
1

−a1a
−1
2 0 0

0 a2 0

⎤⎦ and d(G) =

⎡⎣ 0 −a−1
1 a2 0

0 0 −a−1
2

a1 0 0

⎤⎦ .

Proof. Since λ1λ2 �= 0, from the proof of Theorem 2.1 it follows that the canonical
left AP (equivalently, APP) factorization does not occur in the situations i)–iii) treated
earlier in this Section. Hence, Theorems 3.2 and 5.1 immediately imply all conditions
of the theorem on λi (i = 1,2,3) and γi (i = 1,2) , which yield zero partial AP indices.
The canonical left AP factorization can occur only with factors given by (5.5) or by
(5.7), which correspond to the cases a) γ1 = −λ2 and γ2 = 0, and b) γ1 = 0 and γ2 =
−λ1 , respectively. Applying these equalities, we infer from (5.5) and (5.7) that the
geometric mean d(G) = M(G+)M(G−) of G in case a) is determined by

d(G) =

⎡⎣a−1
1 0 0
0 a−1

2 0
0 0 1

⎤⎦⎡⎣ 0 0 −1
−a1 0 0
0 a2 0

⎤⎦ =

⎡⎣ 0 0 −a−1
1

−a1a
−1
2 0 0

0 a2 0

⎤⎦ ,

and in case b) is determined by

d(G) =

⎡⎣a−1
1 0 0
0 a−1

2 0
0 0 1

⎤⎦⎡⎣ 0 −a2 0
0 0 −1
a1 0 0

⎤⎦ =

⎡⎣ 0 −a−1
1 a2 0

0 0 −a−1
2

a1 0 0

⎤⎦ ,

which completes the proof. �

6. Case n = 4

In this section we consider the triangular 4×4 matrix function G given by

G =

⎡⎢⎢⎣
eλ1

0 0 0
0 eλ2

0 0
0 0 eλ3

0
a1eγ1 a2eγ2 a3eγ3 eλ4

⎤⎥⎥⎦ with a1a2a3 �= 0. (6.1)

We first dispose of the cases
1a) γ1 � λ1 or 1b) γ1 � λ4 ;
2a) γ2 � λ2 or 2b) γ2 � λ4 ;
3a) γ3 � λ1 or 3b) γ3 � λ4

in which the reduction to a smaller size is easy. In each of these cases we will produce
matrix functions G̃± ∈ G (APP±

4×4) such that G̃ = G̃+GG̃− splits into the direct sum of
a 1-by-1 block and the matrix

Ĝ =

⎡⎢⎣ eλ̃1
0 0

0 eλ̃2

ã1eγ̃1
ã2eγ̃2

eλ̃3

⎤⎥⎦ , (6.2)
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of the form considered in Section 5. More specifically:
Case 1).

G̃+ =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0

−ε+a1eγ1−λ1
0 0 1

⎤⎥⎥⎦ , G̃− =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0

−ε−a1eγ1−λ4
0 0 1

⎤⎥⎥⎦ , (6.3)

with ε+ = 1 and ε− = 0 in subcase 1a), ε+ = 0 and ε− = 1 in subcase 1b), while in
(6.2)

λ̃1 = λ2, λ̃2 = λ3, λ̃3 = λ4, γ̃1 = γ2, γ̃2 = γ3, ã1 = a2, ã2 = a3.

Case 2).

G̃+ =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 −ε+a2eγ2−λ2

0 1

⎤⎥⎥⎦ , G̃− =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 −ε−a2eγ2−λ4

0 1

⎤⎥⎥⎦ , (6.4)

with ε+ = 1 and ε− = 0 in subcase 2a), ε+ = 0 and ε− = 1 in subcase 2b), while in
(6.2)

λ̃1 = λ1, λ̃2 = λ3, λ̃3 = λ4. γ̃1 = γ1, γ̃2 = γ3, ã1 = a1, ã2 = a3.

Case 3).

G̃+ =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 −ε+a3eγ3−λ3

1

⎤⎥⎥⎦ , G̃− =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 −ε−a3eγ3−λ4

1

⎤⎥⎥⎦ , (6.5)

where ε+ = 1 and ε− = 0 in subcase 3a), ε+ = 0 and ε− = 1 in subcase 3b), and in
(6.2)

λ̃1 = λ1, λ̃2 = λ2, λ̃3 = λ4, γ̃1 = γ1, γ̃2 = γ2, ã1 = a1, ã2 = a2.

The factorization process can thus be completed by applying the results of Sec-
tion 5 to Ĝ given by (6.2).

Let us now pass to the remaining, more interesting, situation, when in (6.1) we
have

λi > γi > λ4, i = 1,2,3. (6.6)

Without loss of generality we will also suppose that

γ1 � γ2 � γ3. (6.7)

THEOREM 6.1. Let G be the matrix function given by (6.1) and satisfying (6.6),
(6.7). Then G admits a left APP factorization G = G+DG− with the factors given by:

G+ =

⎡⎢⎢⎣
a−1

1 0 0 0
−a−1

2 eλ2−λ1−γ2+γ1
a−1

2 0 0
0 −a−1

3 eλ3−λ2+γ2−γ3
a−1

3 a−1
3 eλ3−γ3

0 0 0 1

⎤⎥⎥⎦ ,
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D =

⎡⎢⎢⎣
eλ1

0 0 0
0 eλ2

0 0
0 0 eλ3+λ4−γ3

0
0 0 0 eγ3

⎤⎥⎥⎦ ,

G− =

⎡⎢⎢⎣
a1 0 0 0

a1eγ1−γ2 a2 0 0
0 0 0 −1

a1eγ1−γ3 a2eγ2−γ3 a3 eλ4−γ3

⎤⎥⎥⎦ (6.8)

if λ2−λ1 � γ2− γ1 and λ3−λ2 � γ3 − γ2 ;

G+ =

⎡⎢⎢⎣
a−1

1 0 0 0
−a−1

2 eλ2−λ1−γ2+γ1
a−1

2 −a−1
2 eγ3−γ2−λ3+λ2

0
0 0 a−1

3 a−1
3 eλ3−γ3

0 0 0 1

⎤⎥⎥⎦ ,

D =

⎡⎢⎢⎣
eλ1

0 0 0
0 eλ4+λ2−γ2

0 0
0 0 eγ2+λ3−γ3

0
0 0 0 eγ3

⎤⎥⎥⎦ ,

G− =

⎡⎢⎢⎣
a1 0 0 0
0 0 0 −1

−a1eγ1−γ2 −a2 0 −eλ4−γ2

a1eγ1−γ3 a2eγ2−γ3 a3 eλ4−γ3

⎤⎥⎥⎦ (6.9)

if λ2−λ1 � γ2− γ1 and λ3−λ2 � γ3 − γ2 ;

G+ =

⎡⎢⎢⎣
a−1

1 0 0 0
0 a−1

2 0 0
−a−1

3 eλ3−λ1−γ3+γ1
−a−1

3 eλ3−λ2+γ2−γ3
a−1

3 a−1
3 eλ3−γ3

0 0 0 1

⎤⎥⎥⎦ ,

D =

⎡⎢⎢⎣
eλ1

0 0 0
0 eλ2

0 0
0 0 eλ3+λ4−γ3

0
0 0 0 eγ3

⎤⎥⎥⎦ ,

G− =

⎡⎢⎢⎣
a1 0 0 0
0 a2 0 0
0 0 0 −1

a1eγ1−γ3 a2eγ2−γ3 a3 eλ4−γ3

⎤⎥⎥⎦ (6.10)

if λ3−λ1 � γ3− γ1 and λ3−λ2 � γ3 − γ2 ;
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G+ =

⎡⎢⎢⎣
a−1

1 0 0 0
0 a−1

2 −a−1
2 eγ3−γ2−λ3+λ2

0
−a−1

3 eλ3−λ1−γ3+γ1
0 a−1

3 a−1
3 eλ3−γ3

0 0 0 1

⎤⎥⎥⎦ ,

D =

⎡⎢⎢⎣
eλ1

0 0 0
0 eλ4+λ2−γ2

0 0
0 0 eγ2+λ3−γ3

0
0 0 0 eγ3

⎤⎥⎥⎦ ,

G− =

⎡⎢⎢⎣
a1 0 0 0
0 0 0 −1
0 −a2 0 −eλ4−γ2

a1eγ1−γ3 a2eγ2−γ3 a3 eλ4−γ3

⎤⎥⎥⎦ (6.11)

if λ3−λ1 � γ3− γ1 and λ3−λ2 � γ3 − γ2 ;

G+ =

⎡⎢⎢⎣
a−1

1 0 −a−1
1 eγ3−γ1−λ3+λ1

0
0 a−1

2 0 0
0 −a−1

3 eλ3−λ2+γ2−γ3
a−1

3 a−1
3 eλ3−γ3

0 0 0 1

⎤⎥⎥⎦ ,

D =

⎡⎢⎢⎣
eλ4+λ1−γ1

0 0 0
0 eλ2

0 0
0 0 eλ3+γ1−γ3

0
0 0 0 eγ3

⎤⎥⎥⎦ ,

G− =

⎡⎢⎢⎣
0 0 0 −1
0 a2 0 0

−a1 0 0 −eλ4−γ1

a1eγ1−γ3 a2eγ2−γ3 a3 eλ4−γ3

⎤⎥⎥⎦ (6.12)

if λ2−λ1 � γ2− γ1 , λ3−λ1 � γ3− γ1 and λ3−λ2 � γ3− γ2 ;

G+ =

⎡⎢⎢⎣
a−1

1 −a−1
1 eγ2−γ1−λ2+λ1

0 0
0 a−1

2 −a−1
2 eγ3−γ2−λ3+λ2

0
0 0 a−1

3 a−1
3 eλ3−γ3

0 0 0 1

⎤⎥⎥⎦ ,

D =

⎡⎢⎢⎣
eλ4+λ1−γ1

0 0 0
0 eγ1+λ2−γ2

0 0
0 0 eγ2+λ3−γ3

0
0 0 0 eγ3

⎤⎥⎥⎦ ,

G− =

⎡⎢⎢⎣
0 0 0 −1

−a1 0 0 −eλ4−γ1−a1eγ1−γ2 −a2 0 −eλ4−γ2

a1eγ1−γ3 a2eγ2−γ3 a3 eλ4−γ3

⎤⎥⎥⎦ (6.13)
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if
λ2−λ1 � γ2 − γ1, λ3−λ1 � γ3− γ1 and λ3−λ2 � γ3 − γ2. (6.14)

Proof. a) If λ2−λ1 � γ2− γ1, then in view of Theorem 2.1 we obtain

G = A−1

⎡⎢⎢⎣
1 0 0 0

−eλ2−λ1−γ2+γ1
1 0 0

0 0 1 0
0 0 0 1

⎤⎥⎥⎦ G̃

⎡⎢⎢⎣
1 0 0 0

eγ1−γ2 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦A (6.15)

where

A := diag{a1,a2,a3,1}, G̃ :=

⎡⎢⎢⎣
eλ1

0 0 0
0 eλ2

0 0
0 0 eλ3

0
0 eγ2 eγ3 eλ4

⎤⎥⎥⎦ . (6.16)

If λ3 − λ2 � γ3 − γ2, applying (5.4) with an obvious notational adjustment we
obtain the left APP factorization

G̃ =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 −eλ3−λ2−γ3+γ2

1 eλ3−γ3

0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

eλ1
0 0 0

0 eλ2
0 0

0 0 eλ3+λ4−γ3
0

0 0 0 eγ3

⎤⎥⎥⎦

×

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 −1
0 eγ2−γ3 1 eλ4−γ3

⎤⎥⎥⎦ , (6.17)

which together with (6.15) gives the left APP factorization G = G+DG− with factors
defined by (6.8).

If λ3 − λ2 � γ3 − γ2, applying (5.5) with an obvious notational adjustment we
obtain the left APP factorization

G̃ =

⎡⎢⎢⎣
1 0 0 0
0 1 −eγ3−γ2−λ3+λ2

0
0 0 1 eλ3−γ3

0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

eλ1
0 0 0

0 eλ4+λ2−γ2
0 0

0 0 eγ2+λ3−γ3
0

0 0 0 eγ3

⎤⎥⎥⎦

×

⎡⎢⎢⎣
1 0 0 0
0 0 0 −1
0 −1 0 −eλ4−γ2

0 eγ2−γ3 1 eλ4−γ3

⎤⎥⎥⎦ , (6.18)

which together with (6.15) gives the left APP factorization G = G+DG− with factors
defined by (6.9).

b) If λ3−λ1 � γ3 − γ1, then in view of Theorem 2.1 we obtain

G = A−1

⎡⎢⎢⎣
1 0 0 0
0 1 0 0

−eλ3−λ1−γ3+γ1
0 1 0

0 0 0 1

⎤⎥⎥⎦G̃

⎡⎢⎢⎣
1 0 0 0
0 1 0 0

eγ1−γ3 0 1 0
0 0 0 1

⎤⎥⎥⎦A, (6.19)
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where A and G̃ are given by (6.16).
If λ3−λ2 � γ3 − γ2, combining (6.19) with (6.17) we obtain the left APP factor-

ization G = G+DG− with factors defined by (6.10).
If λ3−λ2 � γ3 − γ2, combining (6.19) with (6.18) we obtain the left APP factor-

ization G = G+DG− with factors defined by (6.11).
c) If λ2 − λ1 � γ2 − γ1 and λ3 − λ1 � γ3 − γ1, then in view of Theorem 2.1 we

obtain

G = A−1

⎡⎢⎢⎣
1 −eγ2−γ1−λ2+λ1

−eγ3−γ1−λ3+λ1
eλ1−γ1

0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ G̃

×

⎡⎢⎢⎣
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 eλ4−γ1

⎤⎥⎥⎦A, (6.20)

where

A := diag{a1,a2,a3,1}, G̃ :=

⎡⎢⎢⎣
−eλ4+λ1−γ1

0 0 0
0 eλ2

0 0
0 0 eλ3

0
0 eγ2 eγ3 eγ1

⎤⎥⎥⎦ .

If λ3 − λ2 � γ3 − γ2, applying (5.4) with an obvious notational adjustment we
obtain the left APP factorization

G̃ =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 −eλ3−λ2+γ2−γ3

1 eλ3−γ3

0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
−eλ4+λ1−γ1

0 0 0
0 eλ2

0 0
0 0 eλ3+γ1−γ3

0
0 0 0 eγ3

⎤⎥⎥⎦

×

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 −1
0 eγ2−γ3 1 eγ1−γ3

⎤⎥⎥⎦ , (6.21)

which together with (6.20) gives the left APP factorization G = G+DG− with factors
defined by (6.12).

If λ3 − λ2 � γ3 − γ2, applying (5.5) with an obvious notational adjustment we
obtain the left APP factorization

G̃ =

⎡⎢⎢⎣
1 0 0 0
0 1 −eγ3−γ2−λ3+λ2

0
0 0 1 eλ3−γ3

0 0 0 1

⎤⎥⎥⎦

×

⎡⎢⎢⎣
−eλ4+λ1−γ1

0 0 0
0 eγ1+λ2−γ2

0 0
0 0 eγ2+λ3−γ3

0
0 0 0 eγ3

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 0 0 −1
0 −1 0 −eγ1−γ2

0 eγ2−γ3 1 eγ1−γ3

⎤⎥⎥⎦ , (6.22)
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which together with (6.20) gives the left APP factorization G = G+DG− with factors
defined by (6.13). �

Theorems 3.2 and 6.1 imply the following.

COROLLARY 6.2. If the matrix function G is given by (6.1) with λ1λ2λ3 �= 0 and
γ j satisfying (6.7), then G admits a canonical left AP factorization if and only if

λ1,λ2,λ3 > 0, λ4 = −λ1−λ2−λ3, and γ1 = −λ2−λ3, γ2 = −λ3, γ3 = 0. (6.23)

If this is the case, then

G :=

⎡⎢⎢⎣
eλ1

0 0 0
0 eλ2

0 0
0 0 eλ3

0
a1e−λ2−λ3

a2e−λ3
a3 e−λ1−λ2−λ3

⎤⎥⎥⎦

=

⎡⎢⎢⎣
a−1

1 −a−1
1 eλ1

0 0
0 a−1

2 −a−1
2 eλ2

0
0 0 a−1

3 a−1
3 eλ3

0 0 0 1,

⎤⎥⎥⎦

×

⎡⎢⎢⎣
0 0 0 −1

−a1 0 0 −e−λ1−a1e−λ2
−a2 0 −e−λ1−λ2

a1e−λ2−λ3
a2e−λ3

a3 e−λ1−λ2−λ3

⎤⎥⎥⎦ (6.24)

is a canonical left APP factorization of G, and the geometric mean d(G) is given by

d(G) =

⎡⎢⎢⎣
0 0 0 −a−1

1
−a1a

−1
2 0 0 0

0 −a2a
−1
3 0 0

0 0 a3 0

⎤⎥⎥⎦ .

Proof. The equivalence of (6.23) to the canonical factorability of G is immediate
from Theorem 3.2. Since (6.23) implies (6.6), Theorem 6.1 is applicable.

Moreover, conditions (6.23) imply

γ2 − γ1 = λ2 > λ2−λ1,γ3− γ1 = λ2 + λ3 > λ3−λ1,γ3 − γ2 = λ3 > λ3−λ2,

so that (6.14) holds. Consequently, a factorization of G can be obtained according
to formulas (6.13). The latter turn into (6.24) when simplified with the use of (6.23).
Consequently, the geometric mean of G is determined by

d(G) =

⎡⎢⎢⎣
a−1

1 0 0 0
0 a−1

2 0 0
0 0 a−1

3 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

0 0 0 −1
−a1 0 0 0
0 −a2 0 0
0 0 a3 0

⎤⎥⎥⎦
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=

⎡⎢⎢⎣
0 0 0 −a−1

1
−a1a

−1
2 0 0 0

0 −a2a
−1
3 0 0

0 0 a3 0

⎤⎥⎥⎦ ,

which completes the proof. �

7. Intermezzo

Before passing to the applications, we observe that the factorization formulas ob-
tained in this paper are purely algebraic, and make no use of the intrinsic nature of AP
functions. Therefore, the results can be reinterpreted for the following abstract setting.
Let Γ be a linearly ordered additively written abelian group, with the order denoted 	 ,
and let expΓ be its (multiplicatively written) isomorphic copy. Denote by eλ the ele-
ment of expΓ corresponding to λ ∈ Γ , so that eλ eμ = eλ+μ , and introduce the algebra
A generated by expΓ . The elements of A have the form

f = ∑c jeλ j
, where c j ∈ C,λ j ∈ Γ. (7.1)

Moreover, let A± consist of such f ∈ A for which in the representation (7.1) 0 	±λ j

for all j . Finally, we will say that (1.3) is a (left) A -factorization of G ∈ AN×N if
G± ∈ G (A±

N×N) . With these adjustments in mind, Theorem 2.1, for example, implies
that matrices (1.6) with g j as in (1.8) and λ j,γ j ∈ Γ are A -factorable. All other results
can be recast along the same lines.

Note that linearly ordered Γ arise naturally as character groups of connected com-
pact abelian groups; we refer an interested reader to e.g. [18, 17] for some other aspects
of the factorization theory in this setting.

8. Some function algebras and their maximal ideals

This section contains necessary background information on some functional classes
appearing in the forthcoming description of convolution type equations. The results are
not new, and are therefore stated with pertinent references but without proofs.

A measurable function w : R → [0,∞] is called a weight if w−1({0,∞}) has
Lebesgue measure zero. Given 1 < p < ∞ , we denote by Lp(R,w) the weighted
Lebesgue space with the norm

‖ f‖p,w :=
(∫

R

| f (x)|pwp(x)dx

)1/p

.

In what follows we assume that 1 < p < ∞ and w is a Muckenhoupt weight (notation:
w ∈ Ap(R)), that is (see [9] and also [8], [4]):

sup
I

(
1
|I|

∫
I
wp(x)dx

)1/p( 1
|I|

∫
I
w−q(x)dx

)1/q

< ∞,
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where 1/p+1/q = 1, I ranges over all bounded intervals I ⊂ R , and |I| is the length
of I .

Let F : L2(R) → L2(R) denote the Fourier transform,

(F f )(x) :=
∫

R

e−itx f (t)dt, x ∈ R. (8.1)

A function a ∈ L∞(R) is called a Fourier multiplier on Lp(R,w) if the convolution op-
erator W 0(a) := F−1aF maps L2(R)∩Lp(R,w) into itself and extends to a bounded
linear operator on Lp(R,w) . Let Mp,w stand for the Banach algebra of all Fourier
multipliers a on Lp(R,w) equipped with the norm

‖a‖Mp,w :=
∥∥W 0(a)

∥∥
B(Lp(R,w)),

where B(Lp(R,w) is the Banach algebra of all bounded linear operators acting on the
space Lp(R,w) . Denote by A0

p(R) the set of all weights w ∈ Ap(R) for which the
functions eλ ∈ Mp,w for all λ ∈ R . According to [10, Subsection 2.2], there exists a
weight ω ∈ A0

p(R)∩C(R) such that w/ω ,ω/w ∈ L∞(R) .
Clearly, APP ⊂ Mp,w for any w ∈ A0

p(R) . The closure APp,w of APP in Mp,w is
a Banach subalgebra of Mp,w .

Let Ṙ = R∪ {∞} and R = [−∞,+∞] . By Stechkin’s inequality (see, e.g., [5,
Theorem 17.1]), every function a ∈C(R) of finite total variation belongs to Mp,w . We
denote by Cp,w(R) the closure in Mp,w of the set of all functions a ∈C(R) with finite
total variation. Let SAP be the C∗ -subalgebra of L∞(R) generated by C(R) and AP ,
and let SAPp,w stand for the smallest closed subalgebra of Mp,w that contains Cp,w(R)
and APp,w. Then SAPp,w ⊂ SAP .

Let Cb(R) be the C∗ -algebra of all bounded continuous functions a : R → C .
Following [19] we denote by SO the C∗ -algebra of slowly oscillating at ∞ functions,

SO :=
{

f ∈Cb(R) : lim
x→+∞

sup
t,s∈[−2x,−x]∪[x,2x]

| f (t)− f (s)| = 0
}
. (8.2)

Consider the commutative Banach algebra

SO3 :=
{

a ∈ SO∩C3(R) : lim
|x|→∞

(Dγa)(x) = 0, γ = 1,2,3
}

equipped with the norm ‖a‖SO3 := max
γ=0,1,2,3

‖Dγa‖L∞(R) where (Da)(x) = xa′(x) for

x ∈ R . By [11, Corollary 2.10], SO3 ⊂ Mp,w. For 1 < p < ∞ and w ∈ Ap(R) , let
SOp,w denote the closure of SO3 in Mp,w . Clearly, SOp,w is a commutative Banach
subalgebra of Mp,w.

Finally, let [SOp,w, SAPp,w] be the Banach subalgebra of Mp,w generated by all
functions in SOp,w and SAPp,w . Clearly, [SOp,w, SAPp,w] is contained in the C∗ -algebra
[SO, SAP] generated by SO and SAP .

We identify the points t ∈ Ṙ with the evaluation functionals δt on Ṙ , δt( f ) =
f (t) . If A is a C∗ -subalgebra of L∞(R) that contains C(Ṙ) , then the fiber over ∞ of
the maximal ideal space M (A ) of A is defined by

M∞(A ) :=
{

ξ ∈ M (A ) : ξ |C(Ṙ) = δ∞
}
.
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Since C(Ṙ) ⊂ SO , we see that the maximal ideal space of SO can be represented as
M (SO) = R ∪ M∞(SO) . By [2, Proposition 5], M∞(SO) = (closSO∗ R) \R , where
closSO∗ R is the weak-star closure of R in SO∗ , the dual space of SO .

LEMMA 8.1. [11, Lemma 3.4] If 1 < p < ∞ and w ∈ Ap(R) , then the maximal
ideal spaces of SOp,w and SO coincide as sets, that is, M (SOp,w) = M (SO).

Analogously to Lemma 8.1, one can prove that

M ([SOp,w, SAPp,w]) = M ([SO, SAP]) = R ∪ M∞([SO, SAP]). (8.3)

Equalities (8.3) and the Gelfand theory immediately yield the following assertion.

COROLLARY 8.2. If 1 < p < ∞ and w∈A0
p(R) , then the Banach algebra [SOp,w,

SAPp,w] is inverse closed in the C∗ -algebras [SO,SAP] and L∞(R) , that is, if a ∈
[SOp,w, SAPp,w] is invertible in L∞(R) , then a−1 ∈ [SOp,w, SAPp,w] as well.

By [20], any function a ∈ SAP is uniquely represented in the form

a = a+u+ +a−u−+a0 (8.4)

where a± ∈ AP , a0 ∈ C(Ṙ) , a0(∞) = 0, u±(x) = (1± tanhx)/2, and the mappings
ν± : a �→ a± are C∗ -algebra homomorphisms of SAP onto AP .

According to [19, Section 3], the C∗ -algebras SO and SAP are asymptotically
independent in the following sense:

PROPOSITION 8.3. The fiber M∞([SO, SAP]) is naturally homeomorphic to the
set M∞(SO)×M∞(SAP) , that is, for every character μ ∈ M∞([SO, SAP]) there are
characters ξ ∈ M∞(SO) and ν ∈ M∞(SAP) such that μ |SO = ξ and μ |SAP = ν .

By Proposition 8.3, we can identify characters μ ∈ M∞([SO, SAP]) with pairs
(ξ ,ν) ∈ M∞(SO)×M∞(SAP) , and hence for every ξ ∈ M∞(SO) we obtain a homo-
morphism

βξ : [SO, SAP]→ SAP|M∞(SAP), (βξ ϕ)(ν) = (ξ ,ν)ϕ for ν ∈ M∞(SAP).

Thus, for every ϕ ∈ [SO, SAP] there exists a non-unique function ϕξ ∈ SAP with
uniquely determined almost periodic representatives ϕξ ,± at ±∞ such that βξ ϕ =
ϕξ

∣∣
M∞(SAP) . Since the fiber M∞(AP) is homeomorphic to M (AP) , identifying

M∞(SAP) and M∞(AP)×M∞(AP) , we conclude that the maps

γ± : ϕξ |M∞(SAP) �→ ϕξ ,±|M∞(AP) �→ ϕξ ,±

are C∗ -algebra homomorphisms of SAP|M∞(SAP) onto AP . Thus the maps

νξ ,± = γ± ◦ βξ : [SO, SAP]→ AP, νξ ,± ϕ = ϕξ ,± (8.5)

are well-defined C∗ -algebra homomorphisms for every ξ ∈ M∞(SO) .
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The C∗ -algebra [SO, SAP] consists of all functions of the form

c = lim
k→∞∑mk

i=1 bi,k ai,k (8.6)

where bi,k ∈ SO , ai,k ∈ SAP , and limit is taken in the norm ‖ · ‖L∞(R) . Therefore, for
every ξ ∈ M∞(SO) , the maps νξ ,± : [SO, SAP]→ AP act by the rule

νξ ,±c = lim
k→∞∑mk

i=1 ξ (bi,k)ν±(ai,k). (8.7)

On the other hand, by [2, Section 4], for every c ∈ [SO, SAP] and every ξ ∈ M∞(SO)
there exist sequences g± = {g±n }→±∞ such that for x ∈ R ,

lim
n→∞

bi,k(x+g±n ) = ξ (bi,k), lim
n→∞

ai,k(x+g±n ) = (ν±ai,k)(x),

where for all i,k the convergence is uniform on R for ai,k and is uniform on compact
subsets of R for bi,k . Consequently, for the function (8.6) we obtain

(νξ ,±c)(x) = lim
n→∞

c(x+g±n ), for x ∈ R. (8.8)

Applying (8.8), we see that

wW 0(νξ ,±c)w−1I = s-lim
n→∞

(
eg∓n wW 0(c)w−1 eg±n I

)
,

which implies that the maps νξ ,± : [SO, SAP] → AP restricted to the Banach algebra
[SOp,w, SAPp,w] are Banach algebra homomorphisms

νξ ,± : [SOp,w, SAPp,w] → APp,w for all ξ ∈ M∞(SO).

9. Fredholmness of convolution type operators

As usual, χγ will stand for the multiplication operator by the characteristic func-
tion of a set γ ⊂ R . Also, let J =

⋃n
m=1 Jm , where

Jm = [am−1,am] (m = 1,2, . . . ,n−1), 0 = a0 < a1 < a2 < .. . < an−1 < ∞. (9.1)

Applying the results of Sections 2 and 3, we establish here Fredholm criteria for the
convolution type operator

W := χJ

n−1

∑
m=1

F−1KmF χm : Lp(J,w) → Lp(J,w), (9.2)

where Km ∈ [SOp,w,SAPp,w] , χm = χJm , and functions in Lp(J,w) are extended by zero
to R\ J .

Following [5, p. 22], we say that two bounded linear operators A and B are
strongly Φ-equivalent if either both operators are not normally solvable or both A and
B are normally solvable and

dimKerA = dimKerB, dimCokerA = dimCokerB.
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Given a measurable set γ ⊂ R , let Lp
n(γ,w) be the Banach space of vector func-

tions f = [ fk]nk=1 with entries fk ∈ Lp(γ,w) and the norm

‖ f‖Lp
n (γ,w) =

(
n

∑
k=1

‖ fk‖p
Lp(γ,w)

)1/p

.

By analogy with [21], [1, Lemma 2.3] and [13, Lemma 2], we obtain the follow-
ing result for weighted Lebesgue spaces. The proof is provided in order to make the
exposition self-contained.

LEMMA 9.1. The convolution type operator W : Lp(J,w) → Lp(J,w) given by
(9.2) is strongly Φ-equivalent to the Wiener-Hopf operator

WG := χ+F−1GF : Lp
n(R+,w) → Lp

n(R+,w) (9.3)

where χ+ = χR+ ,

G =

⎡⎢⎢⎢⎢⎢⎣
eλ1

0 . . . 0 0
0 eλ2

. . . 0 0
...

...
. . .

...
...

0 0 . . . eλn−1
0

K1 K2eε1 . . . Kn−1eεn−2 eλn

⎤⎥⎥⎥⎥⎥⎦ ∈ [SOp,w,SAPp,w]n×n, (9.4)

λm = am −am−1, λn = εn−1, εm = −(λ1 + . . .+ λm) (m = 1,2, . . . ,n−1), (9.5)

and am are given by (9.1).

Proof. Setting for m = 1,2, . . . ,n−1,

Wm := χ+F−1KmF : Lp(R+,w) → Lp(R+,w),

V±1
m := χ+F−1e±λmF : Lp(R+,w) → Lp(R+,w),

where λm are given by (9.5) and the operators Vm are right invertible, with right inverses
V−1

m , we conclude that the operator W : Lp(J,w) → Lp(J,w) is strongly Φ-equivalent
to the operator

W0 :=
n−1

∑
m=1

Wmχm +

(
χ+−

n−1

∑
m=1

χm

)
: Lp(R+,w) → Lp(R+,w), (9.6)

where the projections χm can be represented in the form

χ1 = I−V−1
1 V1, with I = χ+,

χm = V−1
1 V−1

2 · · ·V−1
m−1(I−V−1

m Vm)Vm−1 · · ·V2V1 (m = 2,3, . . . ,n−1).
(9.7)
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Taking Ŵ = WG , where WG is given by (9.3), and applying the equalities

Ŵ :=

⎡⎢⎢⎢⎢⎢⎣
V1 0 . . . 0 0
0 V2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Vn−1 0
W1 W2V

−1
1 . . . Wn−1V

−1
1 V−1

2 · · ·V−1
n−2 V−1

1 V−1
2 · · ·V−1

n−1

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0
W1V

−1
1 W2V

−1
1 V−1

2 . . . Wn−1V
−1
1 V−1

2 · · ·V−1
n−1 W0

⎤⎥⎥⎥⎥⎥⎦Y,

where W0 is given by (9.6) and

Y =

⎡⎢⎢⎢⎢⎢⎣
V1 0 . . . 0 0
0 V2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Vn−1 0
χ1 χ2V

−1
1 . . . χn−1V

−1
1 V−1

2 · · ·V−1
n−2 V−1

1 V−1
2 · · ·V−1

n−1

⎤⎥⎥⎥⎥⎥⎦ ,

Y−1 =

⎡⎢⎢⎢⎢⎢⎣
V−1

1 0 . . . 0 χ1

0 V−1
2 . . . 0 V1χ2

...
...

. . .
...

...
0 0 . . . V−1

n−1 Vn−2 · · ·V2V1χn−1

0 0 . . . 0 Vn−1 · · ·V2V1

⎤⎥⎥⎥⎥⎥⎦ ,

we immediately infer the strong Φ-equivalence of the operators WG and W0 , which
completes the proof. �

Since APP ⊂ APp,w , [12, Theorem 7.2] immediately implies the following result.
Note that the switch from right (as in [12]) to left factorization is caused by the accepted
in this paper definition (8.1) of the Fourier transform.

THEOREM 9.2. Let 1 < p < ∞ , w ∈ A0
p(R) , and let a ∈ [SOp,w,SAPp,w]n×n . If

for every ξ ∈ M∞(SO) the matrix functions aξ ,± = νξ ,±a admit left APP factoriza-
tions, then the Wiener-Hopf operator W(a) = χ+F−1aF is Fredholm on the space
Lp

n(R+,w) if and only if the following three conditions are satisfied:

(i) deta(x) �= 0 for all x ∈ R;

(ii) for every ξ ∈ M∞(SO) , the left APP factorizations of the matrix functions aξ ,±
are canonical;
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(iii) for every ξ ∈M∞(SO) and all j = 1,2, . . . ,N, the eigenvalues ηξ , j of the matrix
d−1(aξ ,−)d(aξ ,+) satisfy the condition

1
p

+
1
2π

argηξ , j /∈ Z. (9.8)

From Lemma 9.1 and Theorem 9.2 we obtain

THEOREM 9.3. Let 1 < p < ∞ , w ∈ A0
p(R) , Km ∈ [SOp,w, SAPp,w(R)] , and let

G ∈ [SOp,w,SAPp,w]n×n be given by (9.4)–(9.5). If for every ξ ∈ M∞(SO) the matrix
functions Gξ ,± = νξ ,±G are in APPn×n and admit left APP factorizations, then the
convolution type operator (9.2) is Fredholm on the space Lp(J,w) if and only if the
following two conditions are satisfied:

(i) for every ξ ∈ M∞(SO) , the left APP factorizations of the matrix functions Gξ ,±
are canonical;

(ii) for every ξ ∈M∞(SO) and all j = 1,2, . . . ,n, the eigenvalues ηξ , j of the matrix
d−1(Gξ ,−)d(Gξ ,+) satisfy condition (9.8).

Assume now that for every m = 1,2, . . . ,n−1,

Km = bm,− u− +bm,+ u+ ∈ [SOp,w,Cp,w(R)] (9.9)

where bm,± ∈ SOp,w and the functions u± ∈Cp,w(R) are given by u±(x)= (1± tanhx)/2
for all x ∈ R . Then Theorems 9.3, 2.1, 3.2 and 3.3 imply the following Fredholm crite-
rion for the convolution type operator (9.2).

THEOREM 9.4. Let 1 < p < ∞ , w ∈ A0
p(R) , (9.1) hold, and let Km ∈ [SOp,w,

Cp,w(R)] and G ∈ [SOp,w,SAPp,w]n×n be given by (9.9) and (9.4)–(9.5), respectively.
Then the convolution type operator

W = χJ

n−1

∑
m=1

F−1KmF χJm : Lp(J,w) → Lp(J,w)

is Fredholm on the space Lp(J,w) if and only if

(i) bm,±(ξ ) �= 0 for every ξ ∈ M∞(SO) and every m = 1,2, . . . ,n−1 ;

(ii) for every ξ ∈ M∞(SO) and all j = 1,2, . . . ,n, the numbers ηξ , j , where

ηξ ,1 = b−1
1,−(ξ )b1,+(ξ ),

ηξ ,k = b−1
k,−(ξ )bk,+(ξ )bk−1,−(ξ )b−1

k−1,+(ξ ) (k = 2,3, . . . ,n−1), (9.10)

ηξ ,n = bn−1,−(ξ )b−1
n−1,+(ξ ),

satisfy condition (9.8).
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Proof. We deduce from (9.4) and (9.9) that

Gξ ,± =

⎡⎢⎢⎢⎢⎢⎣
eλ1

0 . . . 0 0
0 eλ2

. . . 0 0
...

...
. . .

...
...

0 0 . . . eλn−1
0

b1,±(ξ ) b2,±(ξ )eε1 . . . bn−1,±(ξ )eεn−2 eλn

⎤⎥⎥⎥⎥⎥⎦
where, in view of (9.1) and (9.5), λn = −(λ1 + . . .+ λn−1) < 0 and

λm = am −am−1 > 0, εm = −(λ1 + . . .+ λm) < 0 for all m = 1,2, . . . ,n−1.

By Theorem 2.1, for all ξ ∈ M∞(SO) the matrix functions Gξ ,± admit left APP
factorizations. Then according to Theorem 9.3 the operator W is Fredholm on the
space Lp(J,w) if and only if these APP factorizations of Gξ ,± are canonical, and
for every ξ ∈ M∞(SO) and all j = 1,2, . . . ,n, the eigenvalues ηξ , j of the matrix
d−1(Gξ ,−)d(Gξ ,+) satisfy (9.8). Changing the order of rows and columns of the matri-
ces Gξ ,± according to the permutation (n−1,n−2, . . . ,2,1)(n) we see that the matrix
functions

G̃ξ ,± =

⎡⎢⎢⎢⎢⎢⎣
eλn−1

eλn−2

. . .
eλ1

bn−1,±(ξ )eεn−2 bn−2,±(ξ )eεn−3 . . . b1,±(ξ ) eλn

⎤⎥⎥⎥⎥⎥⎦ , (9.11)

where

εn−k = −(λ1 + . . .+ λn−k) = (λn−1 + . . .+ λn−k+1)−λn (k = 2,3, . . . ,n),

satisfy the conditions of Theorem 3.2. In particular, by Theorem 3.2, the existence
of canonical left APP factorizations of Gξ ,± implies that bm,±(ξ ) �= 0 for all m =
1,2, . . . ,n−1 and all ξ ∈ M∞(SO) . By Theorem 3.3, the matrix functions G̃ξ ,± admit

left canonical APP factorizations G̃ξ ,± = G̃+
ξ ,±G̃−

ξ ,± with

G̃+
ξ ,± =

⎡⎢⎢⎢⎢⎢⎢⎣
b−1

n−1,±(ξ ) −b−1
n−1,±(ξ )eλn−1

. . .
. . .

b−1
2,±(ξ ) −b−1

2,±(ξ )eλ2

b−1
1,±(ξ ) b−1

1,±(ξ )eλ1

1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

G̃−
ξ ,± =

⎡⎢⎢⎢⎢⎢⎢⎣
b−1

n−1,±(ξ )e−λn−1
−b−1

n−1,±(ξ )
. . .

. . .
b−1

2,±(ξ )e−λ2
−b−1

2,±(ξ )
b−1

1,±(ξ )e−λ1
b−1

1,±(ξ )
−1 0

⎤⎥⎥⎥⎥⎥⎥⎦

−1

.
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Hence

d(G̃ξ ,+) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 −b−1

n−1,+(ξ )
−b−1

n−2,+(ξ )bn−1,+(ξ ) 0
. . .

. . .
−b−1

1,+(ξ )b2,+(ξ ) 0
b1,+(ξ ) 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

d−1(G̃ξ ,−) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 −bn−2,−(ξ )b−1

n−1,−(ξ )
. . .

. . .
−b1,−(ξ )b−1

2,−(ξ ) 0
0 b−1

1,−(ξ )
−bn−1,−(ξ ) 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

which implies that

d−1(G̃ξ ,−)d(G̃ξ ,+) = diag
[
ηξ ,n−1, . . . ,ηξ ,1,ηξ ,n

]
,

where ηξ , j for j = 1,2, . . . ,n are given by (9.10). It remains to invoke condition (ii) of
Theorem 9.3. �
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