A GENERALIZATION OF THE BROWN-PEARCY THEOREM

P. W. NG
(Communicated by V. V. Peller)

Abstract. Let \mathscr{A} be a unital separable simple exact C*-algebra. Suppose that either

1. \mathscr{A} is purely infinite, or
2. $\mathscr{A} \otimes \mathscr{K}$ has strict comparison of positive elements and stable rank one, and \mathscr{A} has unique tracial state.
Then for all $X \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K}), X$ is a commutator if and only if X does not have the form $\alpha 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}+x$, for some $\alpha \in \mathbb{C}-\{0\}$ and for some x belonging to a proper ideal of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$.

1. Introduction

A commutator in a C^{*}-algebra \mathscr{C} is an element of the form $[x, y]=_{d f} x y-y x$ for some $x, y \in \mathscr{C}$. The study of commutators in the context of operator theory has a long history, starting with Quantum Mechanics where the Heisenberg Uncertainty Principle is implied by a commutator relation. This is one of the original motivations for the development of "noncommutative mathematics" (operator algebras, "noncommutative topology", "noncommutative measure theory" etc.) which is a part of today's functional analysis.

Another early result is Shoda's 1940 result that for a field \mathbb{F} with characteristic zero and $n \geqslant 1$, an element $\left[x_{j, k}\right] \in \mathbb{M}_{n}(\mathbb{F})$ is a commutator if and only if $\operatorname{Tr}\left(\left[x_{j, k}\right]\right)=d_{f}$ $\sum_{j=1}^{n} x_{j, j}=0$ ([31]).

The questions of when an element of a C^{*}-algebra (or more general ring) is a sum or limit (of sums) of commutators have been studied by many authors (e.g., [2], [3], [4], [5], [6], [7], [8], [9], [14], [22], [23], [25], [27], [28], [31], [32] etc.) with farreaching connections and implications (e.g., equivalence relations on C^{*}-algebras ([5]), noncommutative dimension theory in C^{*}-algebras ([28]), operator decomposition questions ([22], [14]), and determinant theory and the uniqueness theorems of classification theory ([11], [32], [18]) etc.).

Perhaps one of the most definitive early results is the theorem of Brown and Pearcy, which showed that for a separable infinite dimensional Hilbert space \mathscr{H} and for an operator $T \in \mathbb{B}(\mathscr{H}), T$ is a commutator if and only if T is either a compact or nonthin operator, i.e., does not have the form $\alpha 1+S$ where $\alpha \in \mathbb{C}-\{0\}$ and $S \in \mathscr{K}(\mathscr{H})$ (the compact operators on \mathscr{H}). (See [3].)

Keywords and phrases: C^{*}-algebra, commutator, multiplier algebra.

Since then, there have been many attempts to generalize the Brown-Pearcy Theorem to C^{*}-algebras (or even Banach algebras) other than $\mathbb{B}(\mathscr{H})$. Among the most definitive generalizations are those for type $I I I$ and type $I I_{\infty}$ factors, where the (corresponding) compact or nonthin operators are exactly the single commutators. (See [4] and [10]. See also [6].) There are also interesting generalizations where the analogous operators can be expressed as a sum of at least two commutators. (Examples include UHF-algebras and type $I I_{1}$ factors ([22]). In fact, the following is an open question of Fack and de la Harpe (Marcoux): If \mathscr{C} is a type $I I_{1}$ factor (resp. UHF-algebra) with tracial state τ, then is it true that for all $x \in \mathscr{C}, x$ is a single commutator if and only if $\tau(x)=0$? The best result is two commutators, which follows from Marcoux's Commutator Reduction Argument ([22]). For similar results, see [8], [9], [14], [22], [23], [27], [28], [32] and the references therein.)

In this paper, we generalize the Brown-Pearcy Theorem to the context of multiplier algebras. Recall that for a C^{*}-algebra \mathscr{B}, the multiplier algebra $\mathscr{M}(\mathscr{B})$, of \mathscr{B}, is the largest unital C^{*}-algebra containing \mathscr{B} as an essential ideal. For $\mathscr{K}=\mathscr{K}(\mathscr{H})$ the compact operators on a Hilbert space $\mathscr{H}, \mathscr{M}(\mathscr{K})=\mathbb{B}(\mathscr{H})$. Moreover, for a C*algebra $\mathscr{B}, \mathscr{M}(\mathscr{B})$ encodes the extension theory of \mathscr{B}, and multiplier algebras give the context for attempts to generalize BDF-Theory. (In fact, an essentially normal operator $T \in \mathbb{B}(\mathscr{H})$ is one where the self-commutator $\left[T, T^{*}\right]$ is compact.) Hence, multiplier algebras are natural objects to which to generalize the Brown-Pearcy Theorem.

In this paper, we prove the following result:
THEOREM 1.1. Let \mathscr{A} be a unital separable simple C^{*}-algebra such that either

1. \mathscr{A} is purely infinite, or

2. $\mathscr{A} \otimes \mathscr{K}$ has strict comparison of positive elements, \mathscr{A} has stable rank one and unique tracial state, and every quasitrace on \mathscr{A} is a trace.

Let $X \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$.
Then X is a single commutator if and only if X does not have the form $\left.\alpha 1_{\mathscr{M}(\mathscr{A}} \otimes \mathscr{K}\right)$ $+x$, where $\alpha \in \mathbb{C}-\{0\}$ and x is an element of a proper ideal of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$.

We note that, by [27], every element of the multiplier algebras in Theorem 1.1 is a sum of two commutators.

We also note that by Theorem 1.1 and [21] Theorem 5.3 (see also the remarks after [22] Theorem 5.2), if \mathscr{A} is a unital separable simple C^{*}-algebra satisfying the hypotheses of Theorem 1.1 then for all $X \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ such that X does not have the form $\alpha 1+x$ for some $\alpha \in \mathbb{C}-\{0\}$ and x in a proper ideal of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K}), X$ is a sum of 14 nilpotents of order two, and X is a linear combination of 56 projections.

Finally, we note that for the multiplier algebras in Theorem 1.1, the presence of a unital embedding of the Cuntz algebra O_{2} seems to be a key ingredient of the proofs of Theorem 1.1. Hence, the next question seems natural:

Question 1. Consider the Cuntz algebra O_{2}. Is it true that for all $x \in O_{2}, x$ is a single commutator if and only if x does not have the form $\alpha 1_{O_{2}}$ for some $\alpha \in \mathbb{C}-\{0\}$?

Again, it is also known, by [27], that every element of O_{2} is a sum of two commutators.

In fact, we do not know the answers to the following questions:

Question 2.

1. Does there exist a unital separable simple nonelementary C^{*}-algebra \mathscr{A} such that for all $x \in \mathscr{A}, x$ is a single commutator if and only if $\tau(x)=0$ for all tracial states τ on \mathscr{A} ?
2. Does there exist a unital separable simple C^{*}-algebra \mathscr{A} such that for all $x \in \mathscr{A}$, x is a single commutator if and only if x does not have the form $\alpha 1_{\mathscr{A}}$ for some $\alpha \in \mathbb{C}-\{0\}$?

2. Elements in the canonical ideal

For most of this paper, for a C^{*}-algebra \mathscr{B}, we let lower case letters denote elements of \mathscr{B}. If \mathscr{B} is nonunital, we let capital letters denote general elements (especially full elements) of $\mathscr{M}(\mathscr{B})$ and lower case letters for elements that we know are in a proper ideal of $\mathscr{M}(\mathscr{B})$ (e.g., \mathscr{B}). We occasionally vary from these conventions.

Also, for most of this paper, we use extensively the ideas developed in [2], [3], [4], and [25].

Finally, a good reference for multiplier algebras and the strict topology is the book [33].

The first lemma is a straightforward computation.

LEMMA 2.1. Let \mathscr{C} be a Banach space and let $\left\{x_{m, n}\right\}_{m, n \geqslant 1}$ be a biinfinite sequence in \mathscr{C} such that

$$
\sum_{m, n \geqslant 1}\left\|x_{m, n}\right\|<\infty
$$

Then $\sum_{m, n \geqslant 1} x_{m, n}$ converges in norm to an element of \mathscr{C}.
LEMMA 2.2. Let \mathscr{B} be a separable C^{*}-algebra, and suppose that $\left\{P_{n}\right\}_{n=1}^{\infty}$ is a sequence of pairwise orthogonal projections in $\mathscr{M}(\mathscr{B})$ and $\left\{T_{m, n}\right\}_{m, n \geqslant 1}$ is a biinfinite sequence in $\mathscr{M}(\mathscr{B})$ such that
(a) $P_{m} \sim P_{n}$ in $\mathscr{M}(\mathscr{B})$ for all m, n,
(b) the sum $\sum_{n=1}^{\infty} P_{n}$ converges in the strict topology on $\mathscr{M}(\mathscr{B})$,
(c) $P_{m} T_{m, n}=T_{m, n} P_{n}=T_{m, n}$ for all m, n, and
(d) $\sum_{m, n \geqslant 1}\left\|T_{m, n}\right\|<\infty$.

Then $\sum_{m, n \geqslant 1} T_{m, n}$ is a commutator in $\mathscr{M}(\mathscr{B})$.

Proof. Firstly, by Lemma 2.1, $T=\sum_{m, n \geqslant 1} T_{m, n}$ converges in norm to an element in $\mathscr{M}(\mathscr{B})$.

Let $P={ }_{d f} \sum_{n=1}^{\infty} P_{n} \in \mathscr{M}(\mathscr{B})$. Replacing \mathscr{B} with $P \mathscr{B} P$ if necessary, we may assume that $P=1_{\mathscr{M}(\mathscr{B})}$.

We may assume that \mathscr{B} acts faithfully and nondegenerately on a separable infinite dimensional Hilbert space \mathscr{H}. We may then identify $\mathscr{M}(\mathscr{B})$ with the idealizer of \mathscr{B} in $\mathbb{B}(\mathscr{H})$; i.e.,

$$
\mathscr{M}(\mathscr{B})=\{S \in \mathbb{B}(\mathscr{H}): S \mathscr{B}, \mathscr{B} S \subseteq \mathscr{B}\}
$$

Let $\left\{E_{m, n}\right\}_{1 \leqslant m, n<\infty}$ be a system of matrix units for a copy of \mathscr{K} (the C^{*}-algebra of compact operators) in $\mathscr{M}(\mathscr{B})$ such that for all $n \geqslant 1, E_{n, n}=P_{n}$.

By [2] Theorem 4, T is a commutator in $\mathbb{B}(\mathscr{H})$. More precisely, by inspection of the proof of [2] Theorem 4, we see that

$$
T=[R, W]=R W-W R
$$

where $R, W \in \mathbb{B}(\mathscr{H})$ are given by the following:
i.

$$
R={ }_{d f} \sum_{n=1}^{\infty} E_{n, n+1}
$$

ii. For all $m, n \geqslant 1$, let $W_{m, n}={ }_{d f} P_{m} W P_{n}$. Then

$$
W_{m, n}= \begin{cases}0 & m=1 \\ \sum_{k=0}^{m-2} E_{m, m-k-1} T_{m-k-1, n-k} E_{n-k, n} & 2 \leqslant m \leqslant n \\ \sum_{k=0}^{n-1} E_{m, n-k-1} T_{m-k-1, n-k} E_{n-k, n} & m>n\end{cases}
$$

Clearly, the sum for R converges strictly in $\mathscr{M}(\mathscr{B})$; i.e., $R \in \mathscr{M}(\mathscr{B})$.
To complete the proof, it suffice to show that $W=\sum_{m, n \geqslant 1} W_{m, n}$ converges strictly in $\mathscr{M}(\mathscr{B})$ (and hence, $W \in \mathscr{M}(\mathscr{B})$).

Firstly, note that since $W \in \mathbb{B}(\mathscr{H}),\|W\|<\infty$.
For each $N \geqslant 1$, let $Q_{N}={ }_{d f} \sum_{n=1}^{N} P_{n}$.
Claim: For all $M_{1} \geqslant 1, Q_{M_{1}} W\left(1-Q_{N}\right) \rightarrow 0$ as $N \rightarrow \infty$. Proof of Claim: We have that $Q_{M_{1}} W=\sum_{1 \leqslant m \leqslant M_{1}, 1 \leqslant n<\infty} W_{m, n}$.

Let $\gamma>0$ be given. Since $\sum_{m, n \geqslant 1}\left\|T_{m, n}\right\|<\infty$, choose $N_{1} \geqslant 1$ so that

$$
\sum_{1 \leqslant m<\infty, n \geqslant N_{1}}\left\|T_{m, n}\right\|<\gamma /\left(M_{1}+10\right)!.
$$

Choose $N_{2} \geqslant 1$ so that

$$
N_{2}-M_{1}-10>N_{1}
$$

It follows, from the definition of W, that

$$
\sum_{1 \leqslant m \leqslant M_{1}, n \geqslant N_{2}}\left\|W_{m, n}\right\|<\gamma
$$

Hence, for all $N \geqslant N_{2}$,

$$
\left\|Q_{M_{1}} W\left(1-Q_{N}\right)\right\|<\gamma .
$$

Since γ was arbitrary, we have proven the claim.
End of the proof of the Claim.
We now show that $W \in \mathscr{M}(\mathscr{B})$ and thus complete the proof.
Let $b \in \mathscr{B}$ be given. We want to prove that $b W \in \mathscr{B}$. We may assume that $\|b\| \leqslant 1$.

Since $\sum_{n=1}^{\infty} P_{n}$ converges strictly in $\mathscr{M}(\mathscr{B})$, choose $M_{2} \geqslant 1$ so that $\left\|b Q_{M_{2}}-b\right\|<$ $\varepsilon /(10(\|W\|+1))$ Hence, $\left\|b Q_{M_{2}} W-b W\right\|<\varepsilon / 10$. By the Claim, we can find $N_{3} \geqslant 1$ so that $\left\|b Q_{M_{2}} W Q_{N_{3}}-b Q_{M_{2}} W\right\|<\varepsilon / 10$. Hence, $\left\|b W-b Q_{M_{2}} W Q_{N_{3}}\right\|<\varepsilon$. Since $b Q_{M_{2}} W Q_{N_{3}} \in \mathscr{B}, b W$ is within ε of an element of \mathscr{B}. Since ε was arbitrary, $b W \in \mathscr{B}$ as we wish.

By a similar argument, $W b \in \mathscr{B}$.
Since $b \in \mathscr{B}$ was arbitrary, $W \in \mathscr{M}(\mathscr{B})$, and this completes the proof.

Corollary 2.3. Let \mathscr{B} be a separable stable C^{*}-algebra.
Then every element of \mathscr{B} is a commutator in $\mathscr{M}(\mathscr{B})$.

Proof. Since $\mathscr{B} \cong \mathscr{B} \otimes \mathscr{K}$, we may work with $\mathscr{B} \otimes \mathscr{K}$ (and $\mathscr{M}(\mathscr{B} \otimes \mathscr{K})$).
Note that $\mathscr{M}(\mathscr{B}) \otimes \mathbb{B}(\mathscr{H}) \cong \mathscr{M}(\mathscr{B}) \otimes \mathscr{M}(\mathscr{K})$ can be (naturally) realized as a unital *-subalgebra of $\mathscr{M}(\mathscr{B} \otimes \mathscr{K})$.

Let $\left\{e_{j, k}\right\}_{1 \leqslant j, k<\infty}$ be a system of matrix units for \mathscr{K}. Note that $\left\{\sum_{j=1}^{n} 1_{\mathscr{M}(\mathscr{B})} \otimes\right.$ $\left.e_{j, j}\right\}_{n=1}^{\infty}$ is an approximate identity for $\mathscr{M}(\mathscr{B}) \otimes \mathscr{K}$, consisting of an increasing sequence of projections.

Let $x \in \mathscr{B} \otimes \mathscr{K}$ be arbitrary. We want to show that x is a commutator of $\mathscr{M}(\mathscr{B} \otimes$ $\mathscr{K})$. We may assume that $\|x\| \leqslant 1$.

Let $\left\{\varepsilon_{n}\right\}_{n=1}^{\infty}$ be a decreasing sequence in $(0,1)$ such that $\sum_{n=1}^{\infty} \varepsilon_{n}<\infty$.
For each subset $\mathscr{F} \subseteq \mathbb{Z}_{+}\left(\mathbb{Z}_{+}\right.$is the set of positive integers $)$, let $P_{\mathscr{F}}=$ $d_{f f} \sum_{j \in \mathscr{F}} 1_{\mathscr{M}(\mathscr{B})} \otimes e_{j, j}$. Note that the sum converges strictly in $\mathscr{M}(\mathscr{B} \otimes \mathscr{K})$ and $P_{\mathscr{F}}$ is a projection in $\mathscr{M}(\mathscr{B} \otimes \mathscr{K})$. Moreover, if \mathscr{F} is infinite then $P_{\mathscr{F}} \sim 1_{\mathscr{M}(\mathscr{B} \otimes \mathscr{K})}$ in $\mathscr{M}(\mathscr{B} \otimes \mathscr{K})$.

We construct a sequence $\left\{\mathscr{E}_{n}\right\}_{n=1}^{\infty}$ of subsets of \mathbb{Z}_{+}and an increasing sequence of positive integers $\left\{N_{n}\right\}_{n=1}^{\infty}$ such that
i. $\mathscr{E}_{n} \subset \mathscr{E}_{n+1}$ for all $n \geqslant 1$,
ii. $\left\{1,2,3, \ldots, N_{n}\right\} \subseteq \mathscr{E}_{n}$ for all $n \geqslant 1$,
iii. $\mathscr{F}_{n}={ }_{d f} \mathscr{E}_{n}-\mathscr{E}_{n-1}$ is an infinite set for all $n \geqslant 1$ (here we take $\mathscr{E}_{0}={ }_{d f} \emptyset$),
iv. $\left\|\left(1-\sum_{j=1}^{N_{n}} 1_{\mathscr{M}(\mathscr{B})} \otimes e_{j, j}\right) x\right\|,\left\|x\left(1-\sum_{j=1}^{N_{n}} 1_{\mathscr{M}(\mathscr{B})} \otimes e_{j, j}\right)\right\|<\varepsilon_{n+1} /(2(n+1))$ for all $n \geqslant 1$,
v. $\left\|P_{\mathscr{F}_{m}} x P_{\mathscr{F}_{n}}\right\|,\left\|P_{\mathscr{F}_{n}} x P_{\mathscr{F}_{m}}\right\|<\varepsilon_{n} /(2 n)$ for all $2 \leqslant m \leqslant n$,
vi. $\bigcup_{n=1}^{\infty} \mathscr{E}_{n}=\mathbb{Z}_{+}$, and hence, $\sum_{n=1}^{\infty} P_{\mathscr{F}_{n}}=1_{\mathscr{M}(\mathscr{B} \otimes \mathscr{K})}$ where the sum converges in the strict topology on $\mathscr{M}(\mathscr{B} \otimes \mathscr{K})$.
(Note that (v.) follows from (ii.) and (iv.).)
We denote the above statements by " $(*)$ ".
The construction is by induction on n.
Basis step $n=1$. Since $\left\{\sum_{j=1}^{m} 1_{\mathscr{M}(\mathscr{B})} \otimes e_{j, j}\right\}_{m=1}^{\infty}$ is an approximate identity for $\mathscr{M}(\mathscr{B}) \otimes \mathscr{K}$, choose $N_{1} \geqslant 1$ so that $\left\|\left(1-\sum_{j=1}^{N_{1}} 1_{\mathscr{M}(\mathscr{B})} \otimes e_{j, j}\right) x\right\|, \| x\left(1-\sum_{j=1}^{N_{1}} 1_{\mathscr{M}(\mathscr{B})} \otimes\right.$ $\left.e_{j, j}\right) \|<\varepsilon_{2} / 4$.

Let $\mathscr{E}_{1} \subset \mathbb{Z}_{+}$be such that
(a) $\left\{1,2, \ldots, N_{1}+1\right\} \subset \mathscr{E}_{1}$, and
(b) \mathscr{E}_{1} and $\mathbb{Z}_{+}-\mathscr{E}_{1}$ are both infinite sets.

Induction step. Suppose that \mathscr{E}_{n} has been constructed. We now construct \mathscr{E}_{n+1}.
Since $\left\{\sum_{j=1}^{m} 1_{\mathscr{M}(\mathscr{B})} \otimes e_{j, j}\right\}_{m=1}^{\infty}$ is an approximate identity for $\mathscr{M}(\mathscr{B}) \otimes \mathscr{K}$, choose $N_{n+1} \geqslant N_{n}+10$ so that $\left\|\left(1-\sum_{j=1}^{N_{n+1}} 1_{\mathscr{M}(\mathscr{B})} \otimes e_{j, j}\right) x\right\|,\left\|x\left(1-\sum_{j=1}^{N_{n+1}} 1_{\mathscr{M}(\mathscr{B})} \otimes e_{j, j}\right)\right\|<$ $\varepsilon_{n+2} /(2(n+2))$.

Let $\mathscr{E}_{n+1} \subseteq \mathbb{Z}_{+}$be such that $\mathscr{E}_{n} \cup\left\{1,2, \ldots, N_{n+1}\right\} \subseteq \mathscr{E}_{n+1}, \mathscr{E}_{n+1}-\mathscr{E}_{n}$ is an infinite set, and $\mathbb{Z}_{+}-\mathscr{E}_{n+1}$ is an infinite set.

This completes the inductive construction.
From $(*)$, we have that $\left\{P_{\mathscr{F}_{n}}\right\}_{n=1}^{\infty}$ (as defined in $\left.(*)\right)$ is a sequence of pairwise orthogonal projections in $\mathscr{M}(\mathscr{B})$ such that $P_{\mathscr{F}_{n}} \sim 1_{\mathscr{M}(\mathscr{B} \otimes \mathscr{K})}$ for all $n, \sum_{n=1}^{\infty} P_{\mathscr{F}_{n}}=$ $1_{\mathscr{M}(\mathscr{B} \otimes \mathscr{K})}$ where the sum converges strictly in $\mathscr{M}(\mathscr{B} \otimes \mathscr{K})$, and $\sum_{m, n \geqslant 1}\left\|P_{\mathscr{F}_{m}} x P_{\mathscr{F}_{n}}\right\| \leqslant$ $\left\|P_{\mathscr{F}_{1}} x P_{\mathscr{F}_{1}}\right\|+\sum_{n=2}^{\infty} \varepsilon_{n}<\infty$.

Hence, by Lemma 2.2, x is a commutator in $\mathscr{M}(\mathscr{B})$.

3. Some technical lemmas

Here and in the rest of the paper, we will say that a unital separable simple C^{*} algebra \mathscr{A} is in the class \mathfrak{R} if either (i.) \mathscr{A} is purely infinite or (ii.) \mathscr{A} is stably finite and all quasitraces extend to traces, and $\mathscr{A} \otimes \mathscr{K}$ has strict comparison of positive elements.

Firstly, multiplier elements with "large null space" are multiplier commutators.
Lemma 3.1. Let \mathscr{B} be a separable stable C^{*}-algebra, and let $X \in \mathscr{M}(\mathscr{B})$. Suppose that $P \in \mathscr{M}(\mathscr{B})$ is a projection such that $P \sim 1_{\mathscr{M}(\mathscr{B})}$ and $X P=0$.

Then X is a commutator of $\mathscr{M}(\mathscr{B})$.
Sketch of proof. This is essentially the argument of [25].
We sketch the short argument for the convenience of the reader.
Since $P \sim 1_{\mathscr{M}(\mathscr{B})}$, there exist a sequence $\left\{P_{n}\right\}_{n=1}^{\infty}$ of pairwise orthogonal projections in $\mathscr{M}(\mathscr{B})$ such that
(a) $P=\sum_{n=1}^{\infty} P_{n}$ where the sum converges strictly in $\mathscr{M}(\mathscr{B})$, and
(b) $P_{n} \sim 1_{\mathscr{M}(\mathscr{B})}$ for all $n \geqslant 1$.

Replacing $1-P$ with $(1-P)+P_{1}$ if necessary, we may assume that $1-P \sim$ $1_{\mathscr{M}(\mathscr{B})}$.

To simplify notation, denote $P_{0}={ }_{d f} 1-P$. Let $\left\{E_{m, n}\right\}_{0 \leqslant m, n<\infty}$ be a system of matrix units for a copy of \mathscr{K} in $\mathscr{M}(\mathscr{B})$ so that $E_{m, m}=P_{m}$ for all $m \geqslant 0$.

Let $S={ }_{d f}\left(-\sum_{n=0}^{\infty} E_{n, n+1} X\right)+\left(\sum_{n=0}^{\infty} E_{n, 0} X E_{0, n+1}\right)$, and let $R={ }_{d f} \sum_{n=0}^{\infty} E_{n+1, n}$.
It is clear that the above sums converge strictly, and hence, $S, R \in \mathscr{M}(\mathscr{B})$.
Moreover, $X=[S, R]$. (See the proof of [25] Theorem 2.)

LEMMA 3.2. Let \mathscr{C} be a unital C^{*}-algebra, and suppose that $c \in \mathscr{C}$ is a commutator of \mathscr{C}.

Then for any $x \in \mathbb{M}_{2}(\mathscr{C})$, if x has the form

$$
x=\left[\begin{array}{ll}
c & * \\
* & 0
\end{array}\right]
$$

then x is a commutator of $\mathbb{M}_{2}(\mathscr{C})$.

Proof. This follows immediately from [22] Lemma 2.4. An elementary proof can be found in [3] Lemma 4.1.

Following Brown and Pearcy, given a unital C^{*}-algebra \mathscr{C}, and $x, y \in \mathscr{C}$, a generalized sum of x and y is an element (of \mathscr{C}) which has the form $s^{-1} x s+t^{-1} y t$ where s, t are invertible elements of \mathscr{C}.

Lemma 3.3. Let \mathscr{C} be a unital C^{*}-algebra. Suppose that $y, z, x_{0} \in \mathscr{C}$ is such that some generalized sum of y and z is a commutator of \mathscr{C}, and x_{0} is invertible in \mathscr{C}.

Then for any $x \in \mathbb{M}_{2}(\mathscr{C})$, if x has the form

$$
x=\left[\begin{array}{ll}
y & x_{0} \\
* & z
\end{array}\right]
$$

then x is a commutator in $\mathbb{M}_{2}(\mathscr{C})$.

Proof. The argument is exactly the same as that of [3] Lemma 4.2. One notes that [12] Corollary 3.2 works in general Banach algebras. (See also [20] Theorem 10.)

Lemma 3.4. Let \mathscr{C} be a unital C^{*}-algebra, and suppose that there exists an open subset $\mathfrak{O} \subseteq \mathscr{C}$ such that
i. for all $z_{1}, z_{2} \in \mathfrak{O}$, some generalized sum of z_{1} and z_{2} is a commutator of \mathscr{C}, and
ii. \mathfrak{O} is closed under multiplication by nonzero scalars.

Suppose that $y_{1}, y_{2}, y_{3}, y_{4} \in \mathscr{C}$ and z is an invertible operator in \mathfrak{O}.
Then for sufficiently large $\lambda>0$, the element $x \in \mathbb{M}_{2}(\mathscr{C})$, which is given by

$$
x=\left[\begin{array}{cc}
y_{1} & y_{2}+\lambda z \\
y_{3} & y_{4}
\end{array}\right]
$$

is a commutator of $\mathbb{M}_{2}(\mathscr{C})$.

Proof. The proof is exactly the same as that of [4] Lemma 4.5, except that [4] Corollary 4.4 is replaced with (this paper) Lemma 3.3.

Lemma 3.5. Let \mathscr{C} be a unital C^{*}-algebra such that there exists a unital $*_{-}$ embedding of O_{2} into \mathscr{C}. Suppose that there exists an open subset $\mathfrak{O} \subseteq \mathscr{C}$ such that
i. for all $z_{1}, z_{2} \in \mathfrak{O}$, some generalized sum of z_{1} and z_{2} is a commutator of \mathscr{C},
ii. \mathfrak{O} is closed under multiplication by nonzero scalars, and
iii. \mathfrak{O} contains all elements of the form $p+2 q$, where $p, q \in \mathscr{C}$ are projections such that $p+q=1, p \perp q$ and $p \sim q \sim 1$.

Then for all $a \in \mathscr{C}$ and all $v \in \mathscr{C}$ such that v is an isometry and $1-v v^{*} \sim 1$, there exists an $x \in \mathscr{C}$ such that $x v=0$ and $a+v x$ is a commutator in \mathscr{C}.

Proof. Let $e={ }_{d f} v v^{*}$. So $e \sim 1-e \sim 1$. There exists a *-isomorphism $\Phi: \mathscr{C} \rightarrow$ $\mathbb{M}_{2}(\mathscr{C})$ such that $\Phi(e)=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, and $\Phi(1-e)=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. The rest of the argument is exactly the same as that of [4] Lemma 4.6, except that we replace [4] Lemma 4.5 with (this paper) Lemma 3.4.

Definition 3.6. Let \mathscr{C} be a unital C^{*}-algebra such that there exists a unital ${ }^{*}$ embedding of O_{2} into \mathscr{C}. Let $x \in \mathscr{C}$.

Then we say that x has property $\left(\pi_{0}\right)$ if there exists a ${ }^{*}$-isomorphism $\Phi: \mathscr{C} \rightarrow$ $\mathbb{M}_{2}(\mathscr{C})$ such that

1. every minimal projection in $\mathbb{M}_{2} \otimes 1_{\mathscr{C}}$ is Murray-von Neumann equivalent to $1_{\mathbb{M}_{2}(\mathscr{C})}$ in $\mathbb{M}_{2}(\mathscr{C})$, and
2. $\Phi(x)$ has the form

$$
\Phi(x)=\left[\begin{array}{ll}
* & v \\
* & 0
\end{array}\right]
$$

where $v \in \mathscr{C}$ is an isometry such that $1_{\mathscr{C}}-v v^{*} \sim 1_{\mathscr{C}}$.
Proposition 3.7. Let \mathscr{C} be a unital C^{*}-algebra such that there exists a unital *-embedding of O_{2} into \mathscr{C}. Suppose that there exists an open subset $\mathfrak{O} \subseteq \mathscr{C}$ such that
i. for all $z_{1}, z_{2} \in \mathfrak{O}$, some generalized sum of z_{1} and z_{2} is a commutator of \mathscr{C},
ii. \mathfrak{O} is closed under multiplication by nonzero scalars, and
iii. \mathfrak{O} contains all elements of the form $p+2 q$, where $p, q \in \mathscr{C}$ are projections such that $p+q=1, p \perp q$ and $p \sim q \sim 1$.

If $x \in \mathscr{C}$ has property $\left(\pi_{0}\right)$ then x is a commutator in \mathscr{C}.

Proof. The proof is exactly the same as that of [4] Theorem 1, except that [4] Lemmas 4.6 and 4.2 are replaced with (this paper) Lemmas 3.5, and 3.2 respectively.

DEFINITION 3.8. Let \mathscr{C} be a unital C^{*}-algebra, and let $x \in \mathscr{C}$.
Then we say that x has property (π) if there exists a $*$-isomorphism $\Phi: \mathscr{C} \rightarrow$ $\mathbb{M}_{3}(\mathscr{C})$ such that $\Phi(x)$ has the form

$$
\Phi(x)=\left[\begin{array}{l}
0 * * \\
1 * * \\
0 * *
\end{array}\right]
$$

Lemma 3.9. Let \mathscr{A} be a unital separable simple C^{*}-algebra in the class \mathfrak{R}.
If $A \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ has property (π) then A has property $\left(\pi_{0}\right)$.

Proof. Since $\mathscr{A} \otimes \mathscr{K}$ is stable, there is a unital *-embedding of O_{2} into $\mathscr{M}(\mathscr{A} \otimes$ $\mathscr{K})$.

Since A has property (π), let $\Phi_{1}: \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) \rightarrow \mathbb{M}_{3} \otimes \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ be a ${ }^{*}$ isomorphism such that $\Phi_{1}(A)$ has the form

$$
\Phi_{1}(A)=\left[\begin{array}{l}
* * 0 \\
* * 1 \\
* * 0
\end{array}\right]
$$

Let $f_{1}, f_{2} \in \mathbb{M}_{3} \otimes \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ be given by $f_{1}=\operatorname{df} \operatorname{diag}\left(1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}, 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}, 0\right)$ and $f_{2}={ }_{d f} \operatorname{diag}\left(0,0,1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}\right)$.

If \mathscr{A} is purely infinite then $f_{1} \sim f_{2}$ (since both are full projections in $\mathbb{M}_{3} \otimes$ $\mathscr{M}(\mathscr{A} \otimes \mathscr{K}) \sim \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ and since $\mathscr{A} \otimes \mathscr{K}$ has the corona factorization property ([15] Theorem 5.3; also [24] Proposition 2.5)).

If \mathscr{A} is not purely infinite then (since \mathscr{A} is in class \mathfrak{R}), $\tau\left(f_{1}\right)=\tau\left(f_{2}\right)=\infty$ for all $\tau \in T(\mathscr{A})$; and hence, $f_{1} \sim f_{2}$ in $\mathbb{M}_{3} \otimes \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) \cong \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ (again since both are full projections and since $\mathscr{A} \otimes \mathscr{K}$ has the corona factorization property ([24] Proposition 2.5)).

With respect to the decomposition $f_{1}+f_{2}=1, A$ will have the form

$$
A=\left[\begin{array}{ll}
* & V^{\prime} \\
* & 0
\end{array}\right]
$$

where V^{\prime} is an element of $f_{1}\left(\mathbb{M}_{3} \otimes \mathscr{M}(\mathscr{A} \otimes \mathscr{K})\right) f_{2}$ such that $V^{\prime *} V^{\prime}=f_{2,2}$ and $f_{1}-$ $V^{\prime} V^{\prime *} \sim f_{1}$.

Let $W_{1,2} \in \mathbb{M}_{3} \otimes \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ be a partial isometry with initial projection f_{2} and range projection f_{1}.

Let $\left\{e_{j, k}\right\}_{1 \leqslant j, k \leqslant 2}$ be system of matrix units for \mathbb{M}_{2}.
Let $\Phi_{2}: \mathbb{M}_{3} \otimes \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) \rightarrow \mathbb{M}_{2} \otimes f_{1,1}\left(\mathbb{M}_{3} \otimes \mathscr{M}(\mathscr{A} \otimes \mathscr{K})\right) f_{1,1}$ be the ${ }^{*}$-isomorphism given by $\Phi_{2}(X)={ }_{d f}\left(e_{1,1} \otimes f_{1} X f_{1}\right)+\left(e_{1,2} \otimes f_{1} X W_{1,2}^{*}\right)+\left(e_{2,1} \otimes W_{1,2} X f_{1}\right)+$ $\left(e_{2,2} \otimes W_{1,2} X W_{1,2}^{*}\right)$, for all $X \in \mathbb{M}_{3} \otimes \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$.

Noting that $f_{1,1}\left(\mathbb{M}_{3} \otimes \mathscr{M}(\mathscr{A} \otimes \mathscr{K})\right) f_{1,1} \cong \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$, we can take $\Phi={ }_{d f}$ $\Phi_{2} \circ \Phi_{1}$, and Φ is the map that witnesses that A has property $\left(\pi_{0}\right)$.

Lemma 3.10. Let \mathscr{A} be a unital separable simple C^{*}-algebra in the class \mathfrak{R}.
If $A, B \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ both have property (π) then some generalized sum of A and B is a commutator.

Proof. There are two ${ }^{*}$-isomorphism $\Phi, \Psi: \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) \rightarrow \mathbb{M}_{3} \otimes \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ such that $\Phi(A)$ and $\Phi(B)$ have the forms stated in Definition 3.8.

Let $\left\{e_{j, k}\right\}_{1 \leqslant j, k \leqslant 3}$ be a system of matrix units for \mathbb{M}_{3}.
If \mathscr{A} is purely infinite, then for all $j, e_{j, j} \otimes 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}$ is Murray-von Neumann equivalent to $1_{\mathbb{M}_{3}} \otimes 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}$ in $\mathbb{M}_{3} \otimes \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ ([15] Theorem 5.3).

Suppose that \mathscr{A} is not purely infinite (but still in \mathfrak{R}). Then for all j, k, and for all $\tau \in T(\mathscr{A}), \tau\left(e_{j, j} \otimes 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}\right)=\infty$.

Hence, $e_{j, j} \otimes 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})} \sim 1_{\mathbb{M}_{3}} \otimes 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}$ in $\mathbb{M}_{3} \otimes \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ for all j ([24] Proposition 2.5).

The rest of the argument is exactly the same as that of [4] Lemma 4.1, except that [25] Theorem 4 is replaced with (this paper) Lemma 3.1.

4. The purely infinite case

For the rest of this paper, for a C^{*}-algebra \mathscr{B}, let $\Gamma: \mathscr{M}(\mathscr{B}) \rightarrow \mathscr{M}(\mathscr{B}) / \mathscr{B}$ be the natural quotient map.

Lemma 4.1. Let \mathscr{A} be a unital separable simple purely infinite C^{*}-algebra. Suppose that $X \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ is such that $\Gamma(X)$ is not a scalar multiple of the identity.

Then there exists an $\alpha>0$ with $\alpha<\|X\|^{2}$, where for every $\varepsilon>0$, for every finite subset $\mathscr{F} \subset \mathscr{A} \otimes \mathscr{K}$, there exist projections $p, q \in \mathscr{A} \otimes \mathscr{K}$ such that

1. $p \perp q$,
2. pa, ap, qa and ap are all within ε of 0 , for all $a \in \mathscr{F}$, and
3. if $x={ }_{d f} q X p$ then there exists $\beta \geqslant \alpha$ with $\beta \leqslant\|X\|^{2}$ and $\left\|x^{*} x-\beta p\right\|, \| x x^{*}-$ $\beta q \|<\varepsilon$.

Proof. Let $\varepsilon>0$ and a finite subset $\mathscr{F} \subset \mathscr{A} \otimes \mathscr{K}$ be given. Contracting ε if necessary, we may assume that all the elements of \mathscr{F} have norm less than or equal to one.

Since \mathscr{A} is unital, there exists a projection $e \in \mathscr{A} \otimes \mathscr{K}$ such that $e a$, ae and eae are all within $\varepsilon / 100$ of a for all $a \in \mathscr{F}$.

Since \mathscr{A} is simple purely infinite, $\mathscr{M}(\mathscr{A} \otimes \mathscr{K}) /(\mathscr{A} \otimes \mathscr{K})$ is simple purely infinite and hence has real rank zero ([16]; see also [35] Theorem 3.3 and [29]). Hence, since $\Gamma(X)$ is not a scalar multiple of the identity, there exist nonzero orthogonal projections $R, S \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) /(\mathscr{A} \otimes \mathscr{K})$ such that $R \Gamma(X) S \neq 0$.

Let $\alpha={ }_{d f}(1 / 2)\|R \Gamma(X) S\|^{2}>0$.
Lift R, S to orthogonal positive elements $A, B \in(1-e) \mathscr{M}(\mathscr{A} \otimes \mathscr{K})(1-e)$ with norm one (i.e., $e \perp A \perp B \perp e, \Gamma(A)=R, \Gamma(B)=S$ and $\|A\|=\|B\|=1$).

Choose a number $\delta_{1}>0$ so that for all $Z \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ and for every projection $R \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$, if $Z Z^{*}$ is within δ_{1} of R then $Z^{*} R Z$ is within $\varepsilon /(100(2 \alpha+1))$ of $Z^{*} Z$. Contracting $\delta_{1}>0$ if necessary, we may assume that $\delta_{1}<\varepsilon / 100$.

Choose $\delta_{2}>0$ so that for all $Z \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$, if $Z^{*} Z$ within δ_{2} of a projection then $Z Z^{*}$ is within $\delta_{1} /(100(2 \alpha+1))$ of a projection in $\operatorname{Her}\left(Z Z^{*}\right)$. Contracting $\delta_{2}>0$ if necessary, we may assume that $\delta_{2}<\varepsilon / 100$.

Since $\mathscr{A} \otimes \mathscr{K}$ has real rank zero ([34]), we can choose projections $q^{\prime} \in \overline{A(\mathscr{A} \otimes \mathscr{K}) A}$ and $p^{\prime} \in \overline{B(\mathscr{A} \otimes \mathscr{K}) B}$ so that $\beta={ }_{d f}\left\|q^{\prime} X p^{\prime}\right\|^{2} \geqslant(100 / 51) \alpha>0$.

Note that $p^{\prime} \perp q^{\prime}$.
Let $h_{1}:[0, \beta] \rightarrow[0,1]$ be the unique continuous function satisfying:

$$
h_{1}(s) \begin{cases}=1 & s \in\left[\beta-\frac{\delta_{2} \beta}{1000(\beta+1)(\|X\|+1)}, \beta+1\right] \\ =0 & s \in\left[0, \beta-\frac{\delta_{2} \beta}{100(\beta+1)(\|X\|+1)}\right] \\ \text { linear } & \text { on }\left[\beta-\frac{\delta_{2} \beta}{100(\beta+1)(\|X\|+1)}, \beta-\frac{\delta_{2} \beta}{1000(\beta+1)(\|X\|+1)}\right]\end{cases}
$$

Hence, $h_{1}\left(p^{\prime} X^{*} q^{\prime} X p^{\prime}\right) \neq 0$ (indeed, $\left\|h_{1}\left(p^{\prime} X^{*} q^{\prime} X p^{\prime}\right)\right\|=1$).
Since $\mathscr{A} \otimes \mathscr{K}$ has real rank zero, let $p \in \operatorname{Her}\left(h_{1}\left(p^{\prime} X^{*} q^{\prime} X p^{\prime}\right)\right)$ be a nonzero projection.

Hence, $p \leqslant p^{\prime}$ and $p X^{*} q^{\prime} X p=p p^{\prime} X^{*} q^{\prime} X p^{\prime} p$ is within $\frac{\delta_{2} \beta}{100(\beta+1)}$ of βp. Hence, $\beta^{-1} p X^{*} q^{\prime} X p$ is within $\frac{\delta_{2}}{100(\beta+1)}$ of the projection p.

Hence, by our choice of $\delta_{2}, \beta^{-1} q^{\prime} X p X^{*} q^{\prime}$ is within $\delta_{1} /(100(2 \alpha+1))$ of a projection, say $q \in \operatorname{Her}\left(q^{\prime}\right)$. Hence, $\beta^{-1} q X p X^{*} q$ is within $\delta_{1} /(100(2 \alpha+1))$ of q. Hence, we have that $q X p X^{*} q$ is within $\varepsilon / 100$ of βq.

Also, by our choice of $\delta_{1}, \beta^{-1} p X^{*} q X p$ is within $\varepsilon /(100(2 \alpha+1))$ of $\beta^{-1} p X^{*} q^{\prime} X p$. Hence, $\beta^{-1} p X^{*} q X p$ is within $\frac{\varepsilon}{50(\beta+1)}$ of p. Hence, $p X^{*} q X p$ is wthin ε of β.

Lemma 4.2. Let \mathscr{C} be a C^{*}-algebra, and let $x \in \mathscr{C}$. Suppose that there exist projections $p, q \in \mathscr{C}-\{0\}$ such that
i. $p \perp q$,
ii. $p x^{*} q x p$ is invertible in $p \mathscr{C} p$, and
iii. $q x p x^{*} q$ is invertible in $q \mathscr{C} q$.

Then

(a) either $x p x^{*}$ is invertible or 0 is an isolated point of the spectrum of $x p x^{*}$ (and hence the support projection of $x p x^{*}$ is in \mathscr{C}),
(b) if $r \in \mathscr{C}$ is the support projection of $x p x^{*}$ then $\|p r\|<1$, and
(c) if $q^{\prime} \in \mathscr{C}$ is a projection with $q^{\prime} \perp p$ and $r \sim q^{\prime}$, and $v \in \mathscr{C}$ is a partial isometry with $v^{*} v=q^{\prime}$ and $v v^{*}=r$, then $(p+v)^{*}(p+v)$ is an invertible element of $(p+$ $\left.q^{\prime}\right) \mathscr{C}\left(p+q^{\prime}\right)$.

Proof. Since $p x^{*} q x p$ is invertible in $p \mathscr{C} p$ and $0 \leqslant p x^{*} q x p \leqslant p x^{*} x p, p x^{*} x p$ is invertible in $p \mathscr{C} p$.

Hence, (in \mathscr{C}) 0 is an isolated point in the spectrum of $p x^{*} x p$. Hence, either $x p x^{*}$ is invertible or 0 is an isolated point in the spectrum of $x p x^{*}$.

Hence, let $r \in \mathscr{C}$ be the support projection of $x p x^{*}$.
Suppose that \mathscr{C} acts faithfully and nondegenerately on a Hilbert space \mathscr{H}. Hence, $\left.x p\right|_{p \mathscr{H}}$ is a (continuous) bijective linear map in $\mathbb{B}(p \mathscr{H}, r \mathscr{H})$. Hence, by the Open Mapping Theorem, there exists $T \in \mathbb{B}(r \mathscr{H}, p \mathscr{H})$ such that $T \circ(x p)=p$. Hence, there exists $\alpha>0$ such that $\|x p(h)\| \geqslant \alpha\|h\|$ for all $h \in \mathscr{H}$.

Also, $\left.q x p\right|_{p \mathscr{H}}$ is an invertible bijective linear map in $\mathbb{B}(p \mathscr{H}, q \mathscr{H})$.
Hence, let $\beta>0$ be such that $\|q x p(h)\| \geqslant \beta\|h\|$ for all $h \in p \mathscr{H}$.
Choose $\delta>0$ so that $\delta<\min \{1 / 100, \alpha / 100, \beta / 100\}$.
Suppose, to the contrary, that $\|p r\|=1$.
Since r is the range projection of $x p$ (and $x p$ is surjective onto $r \mathscr{H}$) and since we have assumed that $\|p r\|=1$, choose $h \in p \mathscr{H}$ with $\|h\|=1$ so that if $k={ }_{d f} x h=x p h$ then $\|p k\|^{2} \geqslant\|k\|^{2}-\delta^{2}$. (Note that since $\|h\|=1,\|k\|=\|x p h\| \geqslant \alpha\|h\|=\alpha>\delta$. Hence, $\|k\|^{2}-\delta^{2} \geqslant 0$.)

Hence, $\|k\|^{2}=\|p k\|^{2}+\|(1-p) k\|^{2} \geqslant\|k\|^{2}-\delta^{2}+\|(1-p) k\|^{2}$.
Hence, $\|(1-p) k\|^{2} \leqslant \delta^{2}$. I.e., $\|(1-p) k\| \leqslant \delta \leqslant \beta / 100$.
But $\|(1-p) k\| \geqslant\|q k\|=\|q x p h\| \geqslant \beta\|h\|=\beta$. This is a contradiction.
Hence, we must have that $\|p r\|<1$.
Hence, by [4] Lemma 2.1, p $\mathscr{H} \cap r \mathscr{H}=\{0\}$ and $p \mathscr{H}+r \mathscr{H}$ is a closed linear subspace of \mathscr{H}.

Suppose that $q^{\prime} \in \mathscr{C}$ is a projection with $q^{\prime} \perp p$ and $r \sim q^{\prime}$, and suppose that $v \in \mathscr{C}$ is a partial isometry with $v^{*} v=q^{\prime}$ and $v v^{*}=r$. Then $\left.(p+v)\right|_{p \mathscr{H}+q^{\prime} \mathscr{H}}$ is a bijective linear map in $\mathbb{B}\left(p \mathscr{H}+q^{\prime} \mathscr{H}, p \mathscr{H}+r \mathscr{H}\right)$. Hence, by the Open Mapping Theorem, there exists $S \in \mathbb{B}\left(p \mathscr{H}+r \mathscr{H}, p \mathscr{H}+q^{\prime} \mathscr{H}\right)$ such that $S \circ(p+v)=p+q^{\prime}$. Hence, $(p+v)^{*}(p+v)$ is an invertible element of $\left(p+q^{\prime}\right) \mathscr{C}\left(p+q^{\prime}\right)$.

Lemma 4.3. Let \mathscr{A} be a unital separable simple purely infinite C^{*}-algebra. Suppose that $X \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ is such that $\Gamma(X)$ is not a scalar multiple of the identity.

Then for every $\varepsilon>0$, there exist projections $P, Q, R, S \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ such that

1. $P \sim Q \sim S \sim 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}$,
2. $S \perp P \perp Q \perp S$,
3. $P X^{*} Q X P$ is invertible in $P \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) P$
4. $Q X P X^{*} Q$ is invertible in $Q \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) Q$,
5. 0 is an isolated point of the spectrum of $X P X^{*}$,
6. R is the left support projection of $X P$,
7. $\|P R\|<1$,
8. $\|S R\|<\varepsilon$, and
9. $\Gamma(S) \Gamma(R)=0$.
10. if $Q^{\prime} \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ is a projection such that $Q^{\prime} \sim 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}$ and $Q^{\prime} \perp P$, and if $V \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ is a partial isometry such that $V^{*} V=Q^{\prime}$ and $V V^{*}=R$ then $(P+V)^{*}(P+V)$ is an invertible element of $\left(P+Q^{\prime}\right) \mathscr{M}(\mathscr{A} \otimes \mathscr{K})\left(P+Q^{\prime}\right)$.

Proof. Apply Lemma 4.1 to X to get a number $\|X\|^{2}>\alpha>0$.
Since $\mathscr{A} \otimes \mathscr{K}$ is separable, let $b \in(\mathscr{A} \otimes \mathscr{K})_{+}$be a strictly postive element with $\|b\|=1$.

Let $\left\{\varepsilon_{n}\right\}_{n=1}^{\infty}$ be a strictly decreasing sequence in $(0,1 / 100)$ such that $\sum_{n=1}^{\infty} \varepsilon_{n}<$ 1/100.

We now construct two sequences $\left\{p_{n}\right\}_{n=1}^{\infty}$ and $\left\{q_{n}\right\}_{n=1}^{\infty}$ of projections in $\mathscr{A} \otimes \mathscr{K}$ and a sequence $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ of numbers in $(0, \infty)$ such that the following statements hold:

1. $p_{m} \perp p_{n}$ and $q_{m} \perp q_{n}$ for all $m \neq n$.
2. $p_{m} \perp q_{n}$ for all m, n.
3. $\sum_{n=1}^{\infty} p_{n}$ and $\sum_{n=1}^{\infty} q_{n}$ both converge in the strict topology on $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$. In particular, for all $n \geqslant 2, p_{n} b$ and $q_{n} b$ are both within ε_{n} of 0 .
4. $\|X\|^{2} \geqslant \alpha_{n} \geqslant \alpha / 2$ for all n.
5. $\left\|p_{n} X^{*} q_{n} X p_{n}-\alpha_{n} p_{n}\right\|<\varepsilon_{n}$ for all n.
6. $\left\|q_{n} X p_{n} X^{*} q_{n}-\alpha_{n} q_{n}\right\|<\varepsilon_{n}$ for all n.
7. $\left\|q_{m} X p_{n}\right\|<1 / 1000^{m+n}$ for all $m \neq n$.

The construction is by induction on n.
Basis step $n=1$. Apply Lemma 4.1 to get projections $p_{1}, q_{1} \in \mathscr{A} \otimes \mathscr{K}$ and $\alpha_{1} \geqslant \alpha$ so that
(a) $p_{1} \perp p_{2}$, and
(b) $\left\|p_{1} X^{*} q_{1} X p_{1}-\alpha_{1} p_{1}\right\|,\left\|q_{1} X p_{1} X^{*} q_{1}-\alpha_{1} q_{1}\right\|<\varepsilon_{1}$.

We denote the above statements by " $(*)$ ".
Induction step. Suppose that $p_{1}, p_{2}, \ldots, p_{n}, q_{1}, q_{2}, \ldots, q_{n}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ have been constructed. We now construct $p_{n+1}, q_{n+1}, \alpha_{n+1}$.

Choose $\delta_{1}>0$ so that for any C^{*}-algebra \mathscr{C}, if $r_{1}, r_{2}, r_{3} \in \mathscr{C}$ are projections such that $r_{1} \perp r_{2}$ and $\left\|r_{1} r_{3}\right\|,\left\|r_{2} r_{3}\right\|<\delta_{1}$, then there exist projections $r_{1}^{\prime}, r_{2}^{\prime} \in \mathscr{C}$ such that $r_{j}^{\prime} \sim r_{j}(j=1,2), r_{3} \perp r_{1}^{\prime} \perp r_{2}^{\prime} \perp r_{3}$, and

$$
\left\|r_{j}^{\prime}-r_{j}\right\|<\min \left\{\frac{\varepsilon_{n+1}}{1000\left(\|X\|+\|X\|^{2}+1\right)}, \frac{1}{1000^{2 n+3}(\|X\|+1)}\right\} \quad(j=1,2)
$$

Contracting δ_{1} if necessary, we may assume that $\delta_{1}<\varepsilon_{n+1} / 1000$.
By Lemma 4.1, let $p_{n+1}^{\prime}, q_{n+1}^{\prime} \in \mathscr{A} \otimes \mathscr{K}$ be orthogonal projections and $\alpha_{n+1} \geqslant \alpha$ such that the following statements are true:
i. $p_{n+1}^{\prime} \perp q_{n+1}^{\prime}$.
ii. $\left\|p_{n+1}^{\prime} X^{*} q_{n+1}^{\prime} X p_{n+1}^{\prime}-\alpha_{n+1} p_{n+1}^{\prime}\right\|,\left\|p_{n+1}^{\prime} X^{*} q_{n+1}^{\prime} X p_{n+1}^{\prime}-\alpha_{n+1} p_{n+1}^{\prime}\right\|<\varepsilon_{n+1} / 1000$.
iv. $p_{n+1}^{\prime}\left(\sum_{m=1}^{n}\left(p_{m}+q_{m}\right)\right), q_{n+1}^{\prime}\left(\sum_{m=1}^{n}\left(p_{m}+q_{m}\right)\right), p_{n+1}^{\prime} b$ and $q_{n+1}^{\prime} b$ are all within δ_{1} of 0 .
iv. $\left\|q_{m} X p_{n+1}^{\prime}\right\|,\left\|q_{n+1}^{\prime} X p_{m}\right\|<1 / 1000^{2 n+3}$ for all $m \leqslant n$.

We denote the above statements by " $(*)$ ".
By our choice of δ_{1} and by statements $(*)$, we have that there exists projections $p_{n+1}, q_{n+1} \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ such that $p_{n+1} \sim p_{n+1}^{\prime}, q_{n+1} \sim q_{n+1}^{\prime}, q_{n+1} \perp\left(\sum_{m=1}^{n}\left(p_{m}+\right.\right.$ $\left.\left.q_{m}\right)\right) \perp p_{n+1} \perp q_{n+1}$, and
$\left\|p_{n+1}-p_{n+1}^{\prime}\right\|,\left\|q_{n+1}-q_{n+1}^{\prime}\right\|<\min \left\{\frac{\varepsilon_{n+1}}{1000\left(\|X\|+\|X\|^{2}+1\right)}, \frac{1}{1000^{2 n+3}(\|X\|+1)}\right\}$.
From this and statements $(*)$, we have that

1. $\left\|p_{n+1} X^{*} q_{n+1} X p_{n+1}-\alpha_{n+1} p_{n+1}\right\|,\left\|q_{n+1} X p_{n+1} X^{*} q_{n+1}-\alpha_{n+1} q_{n+1}\right\|<\varepsilon_{n+1}$,
2. $p_{n+1} b$ and $q_{n+1} b$ are within ε_{n+1} of 0 , and
3. $\left\|q_{m} X p_{n+1}\right\|,\left\|q_{n+1} X p_{m}\right\|<1 / 1000^{m+n+1}$ for all $m \leqslant n$.

This completes the inductive construction.
Choose $\delta>0$ so that if $A, E, E^{\prime} \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ where (a) A is positive, (b) $\|A\| \leqslant$ $\|X\|^{2}$, (c) E and E^{\prime} are projections, (d) $E A E=A$,(e) $A \geqslant(\alpha / 10) E$, and (f) $\left\|E^{\prime} A\right\|<$ δ, then $\left\|E^{\prime} E\right\|<\varepsilon$.

Choose $N \geqslant 1$ so that for all $n \geqslant N, \varepsilon_{n}<\alpha / 100$.
Let $\{n(1, k)\}_{k=1}^{\infty}$ and $\{n(2, k)\}_{k=1}^{\infty}$ be two disjoint subsequences of the positive integers greater than or equal to $N,\{N, N+1, \ldots\}$ (so, as sets, $\{n(1, k)\}_{k=1}^{\infty} \cup\{n(2, k)\}_{k=1}^{\infty}$ $\subseteq\{N, N+1, N+2, \ldots\}$ and $\left.\{n(1, k)\}_{k=1}^{\infty} \cap\{n(2, k)\}_{k=1}^{\infty}=\emptyset\right)$, such that

$$
\begin{equation*}
\sum_{k \neq l}\left\|q_{n(1, k)} X p_{n(1, l)}\right\|<\frac{\min \{\sqrt{(\alpha / 100)}, \alpha / 100\}}{(100(\|X\|+1))} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{1 \leqslant k, l<\infty}\left\|q_{n(2, k)} X p_{n(1, l)}\right\|<\delta /(100(1+\|X\|)) . \tag{4.2}
\end{equation*}
$$

Let $P, Q, S \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ be projections given by $P={ }_{d f} \sum_{k=1}^{\infty} p_{n(1, k)}, Q={ }_{d f}$ $\sum_{k=1}^{\infty} q_{n(1, k)}$, and $S={ }_{d f} \sum_{k=1}^{\infty} q_{n(2, k)}$ where the sums converge strictly on $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$.

From statements $(*)$ and the definitions of P, Q, S, it follows immediately that $Q \perp P \perp S \perp Q, P \sim Q \sim S \sim 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}, P X^{*} Q X P$ is invertible in $P \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) P$, and $Q X P X^{*} Q$ is invertible in $Q \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) Q$.

Hence, by Lemma 4.2, (i.) either $X P X^{*}$ is invertible (in $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$) or 0 is an isolated point in the spectrum of $X P X^{*}$, (ii.) the support projection of $X P X^{*}$, say R, is an element of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$, (iii.) $\|P R\|<1$, and (iv.) if $Q^{\prime} \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ is a projection with $Q^{\prime} \sim 1$ and $Q^{\prime} \perp P$, and if $V \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ is a partial isometry with initial projection Q^{\prime} and range projection R, then $(P+V)^{*}(P+V)$ is an invertible element of $\left(P+Q^{\prime}\right) \mathscr{M}(\mathscr{A} \otimes \mathscr{K})\left(P+Q^{\prime}\right)$.

Moreover, by the definitions of P, Q and by equation (4.1), $P X^{*} Q X P \geqslant(\alpha / 10) P$. Hence, since $P X^{*} X P \geqslant P X^{*} Q X P$, we have that $P X^{*} X P \geqslant(\alpha / 10) P$. Hence, it follows that $X P X^{*} \geqslant(\alpha / 10) R$. (Recall that $R \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ is the support projection of $X P X^{*}$.) But also, by equation (4.2) and by the definitions of P and $S,\left\|S X P X^{*}\right\|<\delta$. Hence, by the definition of δ, we must have that $\|S R\|<\varepsilon$. And this implies that $R \neq 1$; so 0 is an isolated point in the spectrum of $X P X^{*}$.

Finally, since $\sum_{k \geqslant K, 1 \leqslant l<\infty)}\left\|q_{n(2, k)} X p_{n(1, l)} X^{*}\right\| \rightarrow 0$ as $K \rightarrow \infty$ (and since $X P X^{*}$ is invertible in $R \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) R)$, it follows that $\Gamma(S) \Gamma(R)=0$.

Lemma 4.4. Let \mathscr{B} be a separable stable C^{*}-algebra, and let $\Gamma: \mathscr{M}(\mathscr{B}) \rightarrow$ $\mathscr{M}(\mathscr{B}) / \mathscr{B}$ be the natural quotient map.

Let $X \in \mathscr{M}(\mathscr{B})$ be an operator. Suppose that $P, Q, R, S \in \mathscr{M}(\mathscr{B})$ are projections such that

1. $P \sim Q \sim S \sim 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}$,
2. $S \perp P \perp Q \perp S$,
3. $P X^{*} Q X P$ is invertible in $P \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) P$
4. $Q X P X^{*} Q$ is invertible in $Q \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) Q$,
5. 0 is an isolated point of the spectrum of $X P X^{*}$,
6. R is the left support projection of $X P$,
7. $\|P R\|<1$,
8. $\|S R\|<1 / 10$,
9. $\Gamma(S) \Gamma(R)=0$, and
10. if $Q^{\prime} \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ is a projection such that $Q^{\prime} \sim 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}$ and $Q^{\prime} \perp P$, and if $V \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ is a partial isometry such that $V^{*} V=Q^{\prime}$ and $V V^{*}=R$ then $(P+V)^{*}(P+V)$ is an invertible element of $\left(P+Q^{\prime}\right) \mathscr{M}(\mathscr{A} \otimes \mathscr{K})\left(P+Q^{\prime}\right)$.

Then X is similar to an operator with property (π) in $\mathscr{M}(\mathscr{B})$.
Proof. Now since $P X^{*} Q X P$ is invertible in $P \mathscr{M}(\mathscr{B}) P$ and $0 \leqslant P X^{*} Q X P \leqslant P X^{*} X P$, $P X^{*} X P$ is invertible in $P \mathscr{M}(\mathscr{B}) P$. Hence, $R \sim P\left(\sim 1_{\mathscr{M}(\mathscr{B})}\right)$ in $\mathscr{M}(\mathscr{B})$.

Since $Q \sim 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}$, let $Q^{\prime}, Q^{\prime \prime} \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ be orthogonal projections such that $Q^{\prime} \sim Q^{\prime \prime} \sim 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}$ and $Q=Q^{\prime}+Q^{\prime \prime}$.

Let $V \in \mathscr{M}(\mathscr{B})$ be a partial isometry such that $V^{*} V=Q^{\prime}$ and $V V^{*}=R$. By hypothesis, $(P+V)^{*}(P+V)$ is an invertible element of $\left(P+Q^{\prime}\right) \mathscr{M}(\mathscr{B})\left(P+Q^{\prime}\right)$. Hence, either $(P+V)(P+V)^{*}$ is invertible or 0 is an isolated point in the spectrum of $(P+V)(P+V)^{*}$. Hence, let $T \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ be the support projection of $(P+V)(P+V)^{*}$. Hence, $(P+V)(P+V)^{*}$ is an invertible element of $T \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) T$.

Since $S \sim 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}, S \perp P$ and $\Gamma(S) \Gamma(R)=0, \Gamma(S) \sim 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K}) /(\mathscr{A} \otimes \mathscr{K}) \text { and } .}$
 $\mathscr{A} \otimes \mathscr{K}$ is stable, $1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}-T \sim 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}$. Also, since $\mathscr{A} \otimes \mathscr{K}$ is stable and since $Q^{\prime \prime} \leqslant 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}-\left(P+Q^{\prime}\right), Q^{\prime \prime \prime}={ }_{d f} 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}-\left(P+Q^{\prime}\right) \sim 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}$. Hence, let $W \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ be a partial isometry with $W^{*} W=Q^{\prime \prime \prime}$ and $W W^{*}=1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}-T$.

Let $Y \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ be the invertible element that is given by $Y={ }_{d f} P+V+W$.
Therefore, $Y^{-1} X Y P=Y^{-1} X P=Y^{-1} R X P=V^{*} R X P=Q^{\prime} V^{*} R X P$. Thus, with respect to the decomposition $P+Q^{\prime}+Q^{\prime \prime \prime}=1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}, Y^{-1} X Y$ has the form

$$
Y^{-1} X Y=\left[\begin{array}{c}
0 * * \\
Z * * \\
0 * *
\end{array}\right]
$$

where $Z={ }_{d f} Q^{\prime} V^{*} R X P$.
Moreover, $Z^{*} Z$ and $Z Z^{*}$ are invertible elements of $P \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) P$ and $Q^{\prime} \mathscr{M}(\mathscr{A} \otimes$ $\mathscr{K}) Q^{\prime}$ respectively. Let $Z=U|Z|$ be the Polar Decomposition of Z. Then $|Z|$ is an invertible element of $P \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) P$, and the partial isometry U is an element of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$. Hence, let $Z_{1} \in P \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) P$ be the inverse of $|Z|$ in $P \mathscr{M}(\mathscr{A} \otimes$ $\mathscr{K}) P$. Let $Y_{1} \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ be the invertible element given by $Y_{1}=Z_{1}+\left(1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}-\right.$ P).

Then, with respect to the decomposition $P+Q^{\prime}+Q^{\prime \prime \prime}=1, Y_{1}^{-1} Y^{-1} X Y Y_{1}$ has the form

$$
Y_{1}^{-1} Y^{-1} X Y Y_{1}=\left[\begin{array}{c}
0 * * \\
U * * \\
0 * *
\end{array}\right]
$$

Note that $U^{*} U=P$ and $U U^{*}=Q^{\prime}$.
From this and the fact that $\mathscr{M}(\mathscr{A} \otimes \mathscr{K}) \cong P \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) P$, we can construct a *-isomorphism $\Phi: \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) \rightarrow \mathbb{M}_{3} \otimes \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ which witnesses that $Y_{1}^{-1} Y^{-1} X Y Y_{1}$ is an operator with property (π). (E.g., see the argument in Lemma 3.9.)

THEOREM 4.5. Let \mathscr{A} be a unital separable simple purely infinite C^{*}-algebra. Let $X \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$. Then X is a commutator if and only if X is either compact or nonthin, i.e., X does not have the form $\alpha 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}+x$ where $\alpha \in \mathbb{C}-\{0\}$ and $x \in \mathscr{A} \otimes \mathscr{K}$.

Proof. Note that since \mathscr{A} is simple purely infinite, the only proper nontrivial ideal of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ is $\mathscr{A} \otimes \mathscr{K}$. (E.g., see [35] Theorem 3.3 or [29].)

The "only if" direction is straightforward. (If $\alpha \in \mathbb{C}-\{0\}$ and $x \in \mathscr{A} \otimes \mathscr{K}$ then $\Gamma\left(\alpha 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}+x\right)=\alpha 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K}) /(\mathscr{A} \otimes \mathscr{K})}$; and no nonzero scalar multiple of the unit, of a unital C^{*}-algebra, can be a commutator.)

We now prove the "if" direction.
If $X \in \mathscr{A} \otimes \mathscr{K}$, then, by Corollary 2.3, X is a commutator.
Hence, it suffices to prove that for all $X \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ such that $\Gamma(X)$ is not a scalar multiple of $1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K}) /(\mathscr{A} \otimes \mathscr{K})}, X$ is a commutator. Let \mathfrak{O} consist of all such elements X.
\mathfrak{O} is an (norm topology) open subset of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$. (Since the set of all $Y \in$ $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ with $\Gamma(Y)$ being a scalar multiple of the unit is closed.)

Clearly, \mathfrak{O} is closed under multiplication by nonzero scalars. It is also clear that for all projections $P, Q \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ such that $P \perp Q, P \sim Q \sim 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}$ and $P+Q=1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}, P+2 Q \in \mathfrak{O}$. Moreover, note that since $\mathscr{A} \otimes \mathscr{K}$ is stable, there exists a unital ${ }^{*}$-embedding of the Cuntz algebra O_{2} into $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$.

By Lemma 4.3, Lemma 4.4 and Lemma 3.9, every element of \mathfrak{O} is similar to an operator with both properties (π) and $\left(\pi_{0}\right)$. Hence, by Lemma 3.10, for all $X_{1}, X_{2} \in \mathfrak{O}$, some generalized sum of X_{1} and X_{2} is a commutator.

Hence, by Proposition 3.7, for every $X \in \mathfrak{O}, X$ is a commutator.

5. The stably finite case: Part I

At some point, in the sections to follow, we will use the notion of Cuntz subequivalence. For a C^{*}-algebra \mathscr{C} and positive elements $a, b \in \mathscr{C}_{+}$, we say that a is Cuntz subequivalent to b (" $a \preceq b$ ") if there exists a sequence $\left\{x_{n}\right\}$ in \mathscr{C} such that $x_{n} b x_{n}^{*} \rightarrow a$. If a and b are projections, then a is Cuntz subequivalent to b if and only if a is Murray-von Neumann subequivalent to b.

Proposition 5.1. Suppose that \mathscr{A} is a unital separable simple C^{*}-algebra with stable rank one and in class \Re.

Suppose that $P, Q \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})-\mathscr{A} \otimes \mathscr{K}$ are two projections such that $\tau(P)=$ $\tau(Q)$ for all $\tau \in T(A)$.

Then $P \sim Q$ in $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$.

Proof. This is [19] Proposition 4.2. We note that the proof works even without the finiteness assumption.

Proposition 5.2. Suppose that \mathscr{A} is a unital separable simple stably finite C^{*} algebra in class \mathfrak{R}. Suppose, in addition, that for every bounded strictly positive affine lower semicontinuous function $f: T(\mathscr{A}) \rightarrow(0, \infty)$, there exists a nonzero $a \in(\mathscr{A} \otimes$ $\mathscr{K})_{+}$which is not Cuntz equivalent to a projection such that $d_{\tau}(a)=f(\tau)$ for all $\tau \in T(\mathscr{A})$.
(E.g., \mathscr{A} can be unital simple exact finite and \mathscr{Z}-stable.)

Then for every strictly positive, affine, lower semicontinuous function $f: T(A) \rightarrow$ $(0, \infty]$, there exists a projection $P \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})-(\mathscr{A} \otimes \mathscr{K})$ such that

$$
\tau(P)=f(\tau)
$$

for all $\tau \in T(\mathscr{A})$

Proof. This is [19] Corollary 4.6.
DEFINITION 5.3. Let \mathscr{B} be a separable, nonunital, nonelementary simple C^{*} algebra, and let $\left\{e_{n}\right\}_{n=1}^{\infty}$ be an approximate unit for \mathscr{B}.

Let $\mathscr{I}_{\text {min }}$ be the closure of the set

$$
\left\{X \in \mathscr{M}(\mathscr{B}): \forall a \in \mathscr{B}_{+}-\{0\}, \exists n_{0} \text { s.t. }\left(e_{m}-e_{n}\right) X^{*} X\left(e_{m}-e_{n}\right) \preceq a, \forall m>n \geqslant n_{0}\right\} .
$$

By [17], $\mathscr{I}_{\min }$ is independent of choice of approximate unit $\left\{e_{n}\right\}_{n=1}^{\infty}$, and also $\mathscr{I}_{\text {min }}$ is the unique smallest C^{*}-ideal in $\mathscr{M}(\mathscr{B})$ which properly contains \mathscr{B} (see [17] Lemma 2.1, Remark 2.2, Lemma 2.4 and Remark 2.9).

Lemma 5.4. Let \mathscr{A} be a unital simple separable stably finite C^{*}-algebra in class \mathfrak{R}. Let $\mathscr{I}_{\min } \subseteq \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ be the C^{*}-ideal defined in Definition in 5.3.

Let $a, b \in\left(\mathscr{I}_{\min }\right)_{+}-(A \otimes \mathscr{K})$ such that $\|b\| \leqslant 1$ and b induces a continuous function on $T(A)$. Suppose that

$$
\inf \left\{\tau(b)-d_{\tau}(a): \tau \in T(A)\right\}>0
$$

Then $a \preceq b$.

Proof. This is [19] Lemma 4.1.
DEFINITION 5.5. Let \mathscr{C} be a C^{*}-algebra. \mathscr{C} is said to have the HjelmborgRordam Property if for every $a \in \mathscr{C}_{+}$, and for every $\varepsilon>0$, there exists $b \in \mathscr{C}_{+}$with $\left\|(a-\varepsilon)_{+} b\right\|<\varepsilon$ and $(a-\varepsilon)_{+} \preceq b$.

If \mathscr{C} is a separable C^{*}-algebra, then \mathscr{C} has the Hjelmborg-Rordam Property if and only if \mathscr{C} is stable (see [13] and [30]).

Lemma 5.6. Let \mathscr{A} be a unital separable simple C^{*}-algebra with stable rank one and in class \mathfrak{R}.

Let $A \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})_{+}$be a full positive element, and let $\mathscr{I}_{\min } \subseteq \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ be the C^{*}-ideal defined in Definition 5.3.

Then $\overline{A \mathscr{I}_{\min } A}$ has the Hjelmborg-Rordam Property.
Proof. We may assume that $\|A\|=1$.
Let $a \in\left(\overline{A \mathscr{I}_{\text {min }} A}\right)_{+}-(\mathscr{A} \otimes \mathscr{K})$ and let $\varepsilon>0$ be given. Contracting ε if necessary, we may assume that $\varepsilon<1 / 10$ and $\|a\| \leqslant 1$.

Since $a \in \mathscr{I}_{\text {min }}, L={ }_{d f} \sup _{\tau \in T(\mathscr{A})} d_{\tau}\left((a-\varepsilon / 100)_{+}\right)<\infty$.
Choose $N \geqslant 1$ and $\delta>0$ so that $(A-\delta)_{+}^{1 / N}(a-\varepsilon / 100)_{+},(a-\varepsilon / 100)_{+}(A-$ $\delta)_{+}^{1 / N}$ and $(A-\delta)_{+}^{1 / N}(a-\varepsilon / 100)_{+}(A-\delta)_{+}^{1 / N}$ are all within $\varepsilon / 100$ of $(a-\varepsilon / 100)_{+}$. Contracting $\delta>0$ if necessary, we may assume that $\delta<\min \{\varepsilon / 100,1 / 100\}$.

Further contracting $\delta>0$ if necessary, we may assume that $(A-\delta)_{+}$is a full element of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$.

Let $h_{1}:[0,1] \rightarrow[0,1]$ be the unique continuous function which is given by

$$
h_{1}(s) \begin{cases}=1 & s \in[\varepsilon / 100,1] \\ =0 & {[0, \varepsilon / 1000]} \\ \text { linear } & \text { on }[\varepsilon / 1000, \varepsilon / 100]\end{cases}
$$

Let $a^{\prime}={ }_{d f} h_{1}\left((A-\delta)_{+}^{1 / N}(a-\varepsilon / 100)_{+}(A-\delta)_{+}^{1 / N}\right) \in \mathscr{I}_{\text {min }}$.
Hence, $a^{\prime}(A-\delta)_{+}^{1 / N}(a-\varepsilon / 100)_{+}(A-\delta)_{+}^{1 / N}$ and $(A-\delta)_{+}^{1 / N}(a-\varepsilon / 100)_{+}(A-$ $\delta)_{+}^{1 / N} a^{\prime}$ are both within $\varepsilon / 100$ of $(A-\delta)_{+}^{1 / N}(a-\varepsilon / 100)_{+}(A-\delta)_{+}^{1 / N}$. Hence, $a^{\prime}(a-$ $\varepsilon / 100)_{+}$and $(a-\varepsilon / 100)_{+} a^{\prime}$ are both within $3 \varepsilon / 100$ of $(a-\varepsilon / 100)_{+}$.

Let $h_{2}:[0,1] \rightarrow[0,1]$ be the unique continuous function such that

$$
h_{2}(s) \begin{cases}=1 & s \in[\delta / 10,1] \\ =0 & s=0 \\ \text { linear } & \text { on }[0, \delta / 10]\end{cases}
$$

Then $h_{2}(A) a^{\prime}=a^{\prime}$.
Moreover, $h_{2}(A)$ is a full positive element of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$, and $\overline{h_{2}(A) \mathscr{I}_{\min } h_{2}(A)}=$ $\overline{A \mathscr{I}_{\text {min }} A}$.

Since any ideal of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$, that properly contains $\mathscr{A} \otimes \mathscr{K}$, must contain $\mathscr{I}_{\min }, h_{2}(A)-a^{\prime}$ is a full positive element of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ ([17] Remark 2.9). Hence, since $\mathscr{A} \otimes \mathscr{K}$ has the corona factorization property ([24] Proposition 2.5), there exists $X \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ such that $X\left(h_{2}(A)-a^{\prime}\right) X^{*}=1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}$. From this and Proposition 5.2, there exists a projection $p \in \mathscr{I}_{\min }-(\mathscr{A} \otimes \mathscr{K})$ such that $p \in \operatorname{Her}\left(h_{2}(A)-a^{\prime}\right)$ and $\tau(p) \geqslant L+1$ for all $\tau \in T(\mathscr{A})$.

Note that since $p \in \mathscr{I}_{\text {min }}$ and since p is a projection, p induces a continuous function on $T(\mathscr{A})$.

Hence, by Lemma 5.4, $(a-\varepsilon)_{+} \preceq p$. Finally, since $p a^{\prime}=0,\left\|p(a-\varepsilon)_{+}\right\|<\varepsilon$.
Since a was arbitrary, $\overline{A \mathscr{I}_{\text {min }} A}$ has the Hjelmborg-Rordam Property.
Note that though $\mathscr{I}_{\min }$ (as above) has the Hjelmborg-Rordam Property, it need not be stable, since $\mathscr{I}_{\text {min }}$ is not separable.

LEMMA 5.7. Let \mathscr{B} be a separable stable C^{*}-algebra and let $\tilde{\mathscr{B}}$ be the unitization of \mathscr{B}.

Then $\mathscr{B} \subseteq \overline{G L(\tilde{\mathscr{B}})}$, where the closure is in the norm topology.
Proof. This is [1] Lemma 4.3.2.

Lemma 5.8. Let \mathscr{A} be a unital separable simple C^{*}-algebra with stable rank one and in class \mathfrak{R}. Let $A \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})_{+}$be a full positive element.

For every $\varepsilon>0$, for every $\alpha>0$ and for every finite subset $\mathscr{F} \subset \overline{A \mathscr{I}_{\min } A}$, there exists a projection $p \in \overline{A \mathscr{I}_{\text {min }} A}-(\mathscr{A} \otimes \mathscr{K})$ such that $\tau(p) \geqslant \alpha$ for all $\tau \in T(\mathscr{A})$, and $\|p x-x\|,\|x p-x\|<\varepsilon$ for all $x \in \mathscr{F}$.

In particular, $\overline{A \mathscr{I}_{\min } A}$ has an (netwise) approximate unit consisting of projections.

Proof. We may assume that \mathscr{F} contains a nonzero element.
Let $a \in\left(\overline{A \mathscr{I}_{\text {min }} A}\right)_{+}$be given by $a={ }_{d f} \sum_{x \in \mathscr{F}}\left(x^{*} x+x x^{*}\right) /\left\|\sum_{x \in \mathscr{F}}\left(x^{*} x+x x^{*}\right)\right\|$.
Find $\delta>0$ so that if $R \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ is a projection with $\| R(a-\delta)_{+}-(a-$ $\delta)_{+} \|<\delta$ then $\|R x-x\|,\|x R-x\|<\varepsilon$ for all $x \in \mathscr{F}$.

Contracting δ if necessary, we may assume that $\delta<\min \{1 / 100, \varepsilon / 100\}$.
Since $a \in \mathscr{I}_{\text {min }}, L={ }_{d f} \sup _{\tau \in T(\mathscr{A})} d_{\tau}\left((a-\delta / 100)_{+}\right)<\infty$.
Since A is a full positive element of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ and since $\mathscr{A} \otimes \mathscr{K}$ has the corona factorization property ([24] Proposition 2.5), there exists $X \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ such that $X A X^{*}=1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}$. From this and Proposition 5.2, let $q \in \overline{A \mathscr{I}_{\min } A}-(\mathscr{A} \otimes \mathscr{K})$ be a projection such that $\tau(q)>\max \{L+10, \alpha+10\}$ for all $\tau \in T(\mathscr{A})$.

Hence, by Lemma 5.4, $(a-\delta / 100)_{+} \preceq q$.
Hence, there exists $y \in \overline{A \mathscr{I}_{\min } A}$ such that $(a-\delta / 10)_{+}=y^{*} y$ and $y y^{*} \leqslant q$.
Let $y=v|y|$ be the Polar Decomposition of y. Hence, $(a-\delta / 10)_{+}=|y|^{2}$ and $v|y|^{2} v^{*} \leqslant q$.

Since $\overline{A \mathscr{I}_{\min } A}$ has the Hjelmborg-Rordam Property, there exists a separable C*subalgebra $\mathscr{D} \subset \overline{A \mathscr{I}_{\text {min }} A}$ such that $\left\{(a-\delta / 10)_{+}, y, q\right\} \subset \mathscr{D}$ and \mathscr{D} has the HjelmborgRordam Property. Hence, since \mathscr{D} is separable, \mathscr{D} is a stable C^{*}-algebra.

Hence, by Lemma 5.7, $y \in \overline{G L(\tilde{D})}$, where $\tilde{\mathscr{D}}$ is the unitization of \mathscr{D}. Hence, by [26] Theorem 5, let $u \in \tilde{\mathscr{D}}(\subset \mathscr{M}(\mathscr{A} \otimes \mathscr{K}))$ be a unitary such that $u\left(|y|^{2}-\delta / 10\right)_{+} u^{*}=$ $v\left(|y|^{2}-\delta / 10\right)_{+} v^{*} \leqslant q$.

Hence, $(a-\delta / 5)_{+}=\left(|y|^{2}-\delta / 10\right)_{+} \leqslant u^{*} q u$, and $p={ }_{d f} u^{*} q u$ is a projection in $\overline{A \mathscr{I}_{\text {min }} A}$ such that $\tau(p) \geqslant \alpha$ for all $\tau \in T(\mathscr{A})$. In particular, $p(a-\delta / 5)_{+}=(a-$ $\delta / 5)_{+}$. So $p(a-\delta)_{+}=(a-\delta)_{+}$. Hence, by our choice of $\delta,\|p x-x\|,\|x p-x\|<\varepsilon$ for all $x \in \mathscr{F}$.

Lemma 5.9. Let \mathscr{A} be a unital separable simple C^{*}-algebra with stable rank one and in class \mathfrak{R}.

Let $x \in \mathscr{I}_{\text {min }}$ be given.
Then there exists a sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ of pairwise orthogonal projections in $\mathscr{I}_{\min }-$ $(\mathscr{A} \otimes \mathscr{K})$ such that

1. $\tau\left(p_{n}\right) \geqslant 10$ for all $n \geqslant 1$,
2. the sum $\sum_{n=1}^{\infty} p_{n}$ converges in the strict topology on $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$, and
3. $\left\|\left(\sum_{n=1}^{N} p_{n}\right) x-x\right\|,\left\|x\left(\sum_{n=1}^{N} p_{n}\right)-x\right\|,\left\|\left(\sum_{n=1}^{N} p_{n}\right) x\left(\sum_{n=1}^{N} p_{n}\right)-x\right\| \rightarrow 0$ as $N \rightarrow \infty$.

Sketch of proof. The proof is an easy induction argument, repeatedly using Lemma 5.8. (In particular, we will use Lemma 5.8 (many times) to find an appropriate increasing sequence $\left\{r_{n}\right\}$ of projections and then take $p_{n}={ }_{d f} r_{n+1}-r_{n}$ for all n. To ensure strict convergence of $\sum p_{n}$, we will need the finite sets \mathscr{F} (notation as in Lemma 5.8) to contain a fixed strictly positive element of $\mathscr{A} \otimes \mathscr{K}$. Also, at some point, we need to use the following perturbation result: For every $\varepsilon>0$, there exists a $\delta>0$ such that if e, e^{\prime} are projections with $\left\|e e^{\prime}-e^{\prime}\right\|<\delta$ then there exists a projection $e^{\prime \prime} \leqslant e$ with $\left\|e^{\prime}-e^{\prime \prime}\right\|<\varepsilon$.)

THEOREM 5.10. Let \mathscr{A} be a unital separable simple C^{*}-algebra with stable rank one and in class \mathfrak{R}.

If $x \in \mathscr{I}_{\text {min }}$ then x is a commutator in $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$.
Sketch of proof. By Lemma 5.9, let $\left\{r_{n}\right\}_{n=1}^{\infty}$ be a sequence of pairwise orthogonal projections in $\mathscr{I}_{\min }-(\mathscr{A} \otimes \mathscr{K})$ such that

1. $\tau\left(r_{n}\right) \geqslant 10$ for all $n \geqslant 1$,
2. the sum $\sum_{n=1}^{\infty} r_{n}$ converges in the strict topology on $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$, and
3. $\left\|\left(\sum_{n=1}^{N} r_{n}\right) x-x\right\|,\left\|x\left(\sum_{n=1}^{N} r_{n}\right)-x\right\|,\left\|\left(\sum_{n=1}^{N} r_{n}\right) x\left(\sum_{n=1}^{N} r_{n}\right)-x\right\| \rightarrow \infty$ as $N \rightarrow \infty$.

Claim: There exists a sequence $\left\{Q_{n}\right\}_{n=1}^{\infty}$ of pairwise orthogonal projections in $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ such that
(a) $Q_{n} \sim 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}$ for all n,
(b) $\sum_{n=1}^{\infty} Q_{n}$ converges in the strict topology on $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$,
(c) $\left(\sum_{n=1}^{\infty} Q_{n}\right) x=x\left(\sum_{n=1}^{\infty} Q_{n}\right)=x$, and
(d) $\sum_{1 \leqslant m, n<\infty}\left\|Q_{m} x Q_{n}\right\|<\infty$.

Sketch of proof of Claim The proof is exactly the same as that of Corollary 2.3, except that for all $j \geqslant 1$, the projection $1_{\mathscr{M}(\mathscr{B})} \otimes e_{j, j}$ (notation as in the proof of Corollary 2.3) is replaced with r_{j} (notation as in this proof). Moreover, for all $n \geqslant 1, P_{\mathscr{F}_{n}}$ (notation as in the proof of Corollary 2.3) will be replaced with Q_{m} (notation as in this proof) for some $m \geqslant 1$. Note that this means that each Q_{m} will be a strict sum of infinitely many $r_{j} \mathrm{~s}$.
End of proof of the Claim.
From the Claim and from Lemma 2.2, it follows that x is a commutator of $\mathscr{M}(\mathscr{A} \otimes$ $\mathscr{K})$.

6. The stably finite case: Part II

In this section, we will assume that \mathscr{A} is a unital separable simple C^{*}-algebra with stable rank one, unique tracial state, and in class \mathfrak{R}. As a consequence, $\mathscr{I}_{\min }$ (defined in the previous section) is the unique C^{*}-ideal of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ that sits properly between $\mathscr{A} \otimes \mathscr{K}$ and $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$; i.e., $\mathscr{I}_{\min }$ is the unique C^{*}-ideal for which the inclusions $\mathscr{A} \otimes \mathscr{K} \subset \mathscr{I}_{\min } \subset \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ are proper. Moreover, if τ is the unique tracial state of \mathscr{A} then $\mathscr{I}_{\min }=\overline{\left\{X \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K}): \tau\left(X^{*} X\right)<\infty\right\}}$. (E.g., see [29]; see also [36] Proposition 2.9 or [35] Proposition 3.6.)

For the rest of the paper, we let $\Gamma_{\mathscr{I}_{\text {min }}}: \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) \rightarrow \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) / \mathscr{I}_{\text {min }}$ be the natural quotient map.

Lemma 6.1. Let \mathscr{A} be a unital separable simple C^{*}-algebra with stable rank one, unique tracial state τ, and in class \mathfrak{R}. Suppose that $X \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ is such that $\Gamma_{\text {min }}(X)$ is not a scalar multiple of the identity.

Then there exists an $\alpha>0$ with $\alpha<\|X\|^{2}$, where for every $\varepsilon>0$, for every finite subset $\mathscr{F} \subset \mathscr{I}_{\min }$, there exist projections $p, q \in \mathscr{I}_{\min }-(\mathscr{A} \otimes \mathscr{K})$ such that

1. $\tau(p), \tau(q) \geqslant 10$,
2. $p \perp q$,
3. pa, ap, qa and ap are all within ε of 0 , for all $a \in \mathscr{F}$, and
4. if $x={ }_{d f} q X p$ then there exists $\beta \geqslant \alpha$ with $\beta \leqslant\|X\|^{2}$ and $\left\|x^{*} x-\beta p\right\|, \| x x^{*}-$ $\beta q \|<\varepsilon$.

Proof. The proof is similar to but more complicated than that of Lemma 4.1.
Note that $\mathscr{M}(\mathscr{A} \otimes \mathscr{K}) / \mathscr{I}_{\text {min }}$ is simple purely infinite and hence has real rank zero (see, for example, [16]). Hence, since $\Gamma_{\min }(X)$ is not a scalar multiple of the identity, there exist nonzero orthogonal projections $R, S \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) / \mathscr{I}_{\text {min }}$ such that $R \Gamma_{\text {min }}(X) S \neq 0$.

Lift R, S to orthogonal positive elements $A, B \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ with norm one (i.e., $A \perp B, \Gamma_{\text {min }}(A)=R, \Gamma_{\text {min }}(B)=S$ and $\left.\|A\|=\|B\|=1\right)$.

Let $\gamma={ }_{d f}\left\|R \Gamma_{\text {min }}(X) S\right\|^{2}>0$.
Let $\delta_{1}={ }_{d f} \min \{1 / 100, \gamma / 100\}$.
Let $h_{0}:\left[0,2\|X\|^{2}+10\right] \rightarrow[0,1]$ be the unique continuous function that is given by

$$
h_{0}(s) \begin{cases}=1 & s=\gamma \\ =0 & s \in\left[0, \gamma-\delta_{1}\right] \cup\left[\gamma+\delta_{1}, 2\|X\|^{2}+10\right] \\ \text { is linear } & \text { on }\left[\gamma-\delta_{1}, \gamma\right] \\ \text { is linear } & \text { on }\left[\gamma, \gamma+\delta_{1}\right]\end{cases}
$$

Note that from the definitions of γ and $h_{0}, h_{0}\left(A X B^{2} X^{*} A\right)$ is a full positive element of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$. Hence, since $\mathscr{A} \otimes \mathscr{K}$ has the corona factorization property,
$1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})} \preceq h_{0}\left(A X B^{2} X^{*} A\right)$ (e.g., see [24] Proposition 2.5). Hence, there exists a projection $Q \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ such that $Q \sim 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}$ and $Q \in \operatorname{Her}\left(h_{0}\left(A X B^{2} X^{*} A\right)\right)$. It follows, from the definition of h_{0}, that $Q A X B^{2} X^{*} A Q$ is within a distance $\min \{1 / 100$, $\gamma / 100\}$ of γQ. Hence, $Q A X B^{2} X^{*} A Q$ is a full positive element of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$.

But since $Q \in \operatorname{Her}(A)$ and $\Gamma_{\text {min }}(A)=R$ is a projection, $\Gamma_{\text {min }}(Q) \leqslant R=\Gamma_{\text {min }}(A)$. Hence, $\Gamma_{\min }\left(Q X B^{2} X^{*} Q\right)=\Gamma_{\text {min }}\left(Q A X B^{2} X^{*} A Q\right)$. Hence, $Q X B^{2} X^{*} Q$ is a full positive element of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$. Hence, $B X^{*} Q X B$ is a full positive element of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$.

Let $\gamma^{\prime}={ }_{d f}\left\|\Gamma_{m i n}\left(B X^{*} Q X B\right)\right\|>0$. Let $\delta_{2}={ }_{d f} \min \left\{1 / 100, \gamma^{\prime} / 100\right\}$. Let h_{1} : $\left[0,2\|X\|^{2}+10\right] \rightarrow[0,1]$ be the unique continuous function such that

$$
h_{1}(s) \begin{cases}=1 & s=\gamma^{\prime} \\ =0 & s \in\left[0, \gamma^{\prime}-\delta_{2}\right] \cup\left[\gamma+\delta_{2}, 2\|X\|^{2}+10\right] \\ \text { is linear } & \text { on }\left[\gamma-\delta_{2}, \gamma\right] \\ \text { is linear } & \text { on }\left[\gamma, \gamma+\delta_{2}\right] .\end{cases}
$$

By the definitions of γ^{\prime} and $h_{1}, h_{1}\left(B X^{*} Q X B\right)$ is a full positive element of $\mathscr{M}(\mathscr{A} \otimes$ $\mathscr{K})$. Hence, since $\mathscr{A} \otimes \mathscr{K}$ has the corona factorization property, $1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K}) \preceq}$ $h_{1}\left(B X^{*} Q X B\right)$. Hence, there exists a projection $P \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ such that $P \sim$ $1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}$ and $P \in \operatorname{Her}\left(h_{1}\left(B X^{*} Q X B\right)\right)$. It follows, from the definition of h_{1}, that $P B X^{*} Q X B P$ is within a distance $\min \left\{1 / 100, \gamma^{\prime} / 100\right\}$ of $\gamma^{\prime} P$. Hence, $P B X^{*} Q X B P$ is a full positive element of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$. Since $P \in \operatorname{Her}(B)$ and $\Gamma_{\text {min }}(B)=S$ is a projection, $\Gamma_{\text {min }}(P) \leqslant S=\Gamma_{\text {min }}(B)$. Hence, $\Gamma_{\text {min }}\left(P X^{*} Q X P\right)=\Gamma_{\text {min }}\left(P B X^{*} Q X B P\right)$. Hence, $P X^{*} Q X P$ is a full positive element of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$.

Hence, $P, Q \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ are full projections (each MvN equivalent to the unit) with $P \perp Q$ such that $Q X P$ is a full element of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$.

Let $\alpha=_{d f}(1 / 2)\left\|\Gamma_{\text {min }}(Q X P)\right\|^{2}>0$.
Let $\varepsilon>0$ and a finite subset $\mathscr{F} \subset \mathscr{I}_{\text {min }}$ be given. Contracting ε if necessary, we may assume that all elements of \mathscr{F} have norm less than or equal to one.

By Lemma 5.8, there exists projections $e \in P \mathscr{I}_{\text {min }} P-(\mathscr{A} \otimes \mathscr{K})$ and $f \in Q \mathscr{I}_{\text {min }} Q-$ $(\mathscr{A} \otimes \mathscr{K})$ such that ea, ae, eae, fa, af, faf are within $\varepsilon / 100$ of Pa, aP, PaP, Qa, $a Q, Q a Q$ respectively, for all $a \in \mathscr{F}$.

Let $Q^{\prime} \in Q \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) Q$ and $P^{\prime} \in P \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) P$ be projections that are given by $Q^{\prime}={ }_{d f} Q-f$ and $P^{\prime}={ }_{d f} P-e$. Note that Q^{\prime}, P^{\prime} are both full projections in $\mathscr{M}(\mathscr{A} \otimes$ $\mathscr{K})$ and $Q^{\prime} X P^{\prime}$ is a full element of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ with $\left\|\Gamma_{\text {min }}\left(Q^{\prime} X P^{\prime}\right)\right\|^{2}=2 \alpha>0$. Also, $Q^{\prime} \perp P^{\prime}$.

Choose a number $\delta_{3}>0$ so that for any C^{*}-algebra \mathscr{C}, for all $z \in \mathscr{C}$ and for every projection $r \in \mathscr{C}$, if $z z^{*}$ is within δ_{1} of r then $z^{*} r z$ is within $\varepsilon /(100(2 \alpha+1))$ of $z^{*} z$. Contracting $\delta_{3}>0$ if necessary, we may assume that $\delta_{3}<\varepsilon / 100$.

Choose $\delta_{4}>0$ so that for any C^{*}-algebra \mathscr{C}, for all $z \in \mathscr{C}$, if $z^{*} z$ is within δ_{4} of a projection then $z z^{*}$ is within $\delta_{3} /(100(2 \alpha+1))$ of a projection in $\operatorname{Her}\left(z z^{*}\right)$. Contracting $\delta_{4}>0$ if necessary, we may assume that $\delta_{4}<\varepsilon / 100$.

Let $h_{2}:\left[0,\|X\|^{2}+10\right] \rightarrow[0,1]$ be the unique continuous function satisfying:
$h_{2}(s) \begin{cases}=1 & s \in\left[2 \alpha-\frac{\delta_{4} \alpha}{1000(\alpha+1)\left(\|X\|^{2}+1\right)}, 2 \alpha+\frac{\delta_{4} \alpha}{1000(\alpha+1)\left(\|X\|^{2}+1\right)}\right] \\ =0 & s \in\left[0,2 \alpha-\frac{\delta_{4} \alpha}{100(\alpha+1)\left(\|X\|^{2}+1\right)}\right] \cup\left[2 \alpha+\frac{\delta_{4} \alpha}{100(\alpha+1)\left(\|X\|^{2}+1\right)},\|X\|^{2}+10\right] \\ \text { linear } & \text { on }\left[2 \alpha-\frac{\delta_{4} \alpha}{100(\alpha+1)\left(\|X\|^{2}+1\right)}, 2 \alpha-\frac{\delta_{4} \alpha}{1000(\alpha+1)\left(\|X\|^{2}+1\right)}\right] \\ \text { linear } & \text { on }\left[2 \alpha+\frac{\delta_{4} \alpha}{1000(\alpha+1)\left(\|X\|^{2}+1\right)}, 2 \alpha+\frac{\delta_{4} \alpha}{100(\alpha+1)\left(\|X\|^{2}+1\right)}\right] .\end{cases}$
Hence, by the definitions of h_{2} and $\alpha,\left\|\Gamma_{\min }\left(h_{2}\left(P^{\prime} X^{*} Q^{\prime} X P^{\prime}\right)\right)\right\|=1$. Hence, by Lemma 5.8, let $p \in \operatorname{Her}_{\mathscr{I}_{\text {min }}}\left(h_{2}\left(P^{\prime} X^{*} Q^{\prime} X P^{\prime}\right)\right)$ be a nonzero projection such that $\tau(p) \geqslant 15$ and $\tau\left(p X^{*} Q^{\prime} X p\right)=\tau\left(p P^{\prime} X^{*} Q^{\prime} X P^{\prime} p\right) \geqslant 15$.

Hence, $p \leqslant P^{\prime}$ and $p X^{*} Q^{\prime} X p$ is within $\frac{\delta_{4} \alpha}{100(\alpha+1)}$ of $2 \alpha p$.
Hence, $(1 /(2 \alpha)) p X^{*} Q^{\prime} X p$ is within $\frac{\delta_{4}}{200(\alpha+1)}$ of the projection p.
Hence, by our choice of $\delta_{4},(1 /(2 \alpha)) Q^{\prime} X p X^{*} Q^{\prime}$ is within $\frac{\delta_{3}}{100(2 \alpha+1)}$ of a projection, say $q \in \operatorname{Her}_{\mathscr{I}_{\text {min }}}\left(Q^{\prime}\right)={ }_{d f} Q^{\prime} \mathscr{I}_{\text {min }} Q^{\prime}$. So $q X p X^{*} q$ is within $\varepsilon / 100$ of $2 \alpha q$.

Also, by our choice of $\delta_{3},(1 /(2 \alpha)) p X^{*} q X p$ is wthin $\varepsilon /(100(2 \alpha+1))$ of $(1 /(2 \alpha)) p X^{*} Q^{\prime} X p$. Hence, $p X^{*} q X p$ is within ε of $2 \alpha p$.

Taking $\beta={ }_{d f} 2 \alpha$, we are done.
LEMMA 6.2. Let \mathscr{A} be a unital separable simple C^{*}-algebra with stable rank one, unique tracial state, and in class \mathfrak{R}.

Suppose that $X \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ is such that $\Gamma_{\min }(X)$ is not a scalar multiple of the identity.

Then for every $\varepsilon>0$, there exist projections $P, Q, R, S \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ such that

1. $P \sim Q \sim S \sim 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}$,
2. $S \perp P \perp Q \perp S$,
3. $P X^{*} Q X P$ is invertible in $P \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) P$
4. $Q X P X^{*} Q$ is invertible in $Q \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) Q$,
5. 0 is an isolated point of the spectrum of $X P X^{*}$,
6. R is the left support projection of $X P$,
7. $\|P R\|<1$,
8. $\|S R\|<\varepsilon$, and
9. $\Gamma(S) \Gamma(R)=0$.
10. if $Q^{\prime} \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ is a projection such that $Q^{\prime} \sim 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}$ and $Q^{\prime} \perp P$, and if $V \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ is a partial isometry such that $V^{*} V=Q^{\prime}$ and $V V^{*}=R$ then $(P+V)^{*}(P+V)$ is an invertible element of $\left(P+Q^{\prime}\right) \mathscr{M}(\mathscr{A} \otimes \mathscr{K})\left(P+Q^{\prime}\right)$.

Proof. The proof is exactly the same as that of Lemma 4.3, except that we use Lemma 6.1 in place of Lemma 4.1.

THEOREM 6.3. Let \mathscr{A} be a unital separable simple C^{*}-algebra with stable rank one and unique tracial state, such that every quasitrace is a trace, and $\mathscr{A} \otimes \mathscr{K}$ has strict comparison of positive elements.

Let $X \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$.
Then X is a commutator if and only if X does not have the form $\alpha_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}+x$ where $\alpha \in \mathbb{C}-\{0\}$ and $x \in \mathscr{I}_{\text {min }}$.

Proof. The proof is exactly the same as that of Theorem 4.5, except that Lemma 4.3 and Corollary 2.3 is replaced with Lemma 6.2 and Theorem 5.10 respectively. Also, the map Γ is replaced with $\Gamma_{\text {min }}$.

REFERENCES

[1] B. Blackadar, L. Robert, A. Tikuisis, A. S. Toms and W. Winter, An algebraic approach to the radius of comparison, Trans. Amer. Math. Soc. 364, 7 (2012), 3657-3674.
[2] A. Brown, P. R. Halmos and C. Pearcy, Commutators of operators on a Hilbert space, Canad. J. Math. 17 (1965), 695-708.
[3] A. Brown and C. Pearcy, Structure of commutators of operators, Annals of Math. Second Series, 82, 1 (1965), 112-127.
[4] A. Brown and C. Pearcy, Commutators in factors of type III, Canad. J. Math. 18 (1965), 11521160.
[5] J. Cuntz and G. K. Pedersen, Equivalence and traces on C^{*}-algebras, J. Funct. Anal. 33, 2 (1979), 135-164.
[6] D. Dosev, W. B. Johnson and G. Schechtman, Commutators on $L_{p}, 1 \leqslant p<\infty$, J. Amer. Math. Soc. 26, 1 (2013), 101-127.
[7] K. Dykema and A. Skripka, On single commutators in $I I_{1}$ factors, Proc. Amer. Math. Soc. 140, 3 (2012), 931-940.
[8] T. FACK, Finite sums of commutators in C^{*}-algebras, Annales de l'Institut Fourier 32, 1 (1982), 129137.
[9] T. Fack and P. De La Harpe, Sommes de commutateurs dans les algebres de von Neumann finies continues, Ann. Inst. Fourier (Grenoble) 30 (1980) 49-73.
[10] H. Halpern, Commutators in properly infinite von Neumann algebras, Trans. Amer. Math. Soc. 139 (1969), 55-73.
[11] P. De la Harpe and G. Skandalis, Produits finis de commutateurs dans les C^{*}-algebres, Ann. Inst. Fourier (Grenoble) 34, 4 (1984), 169-202.
[12] D. A. Herrero, Approximation of Hilbert space operators I., volume 224 of Pitman Research Notes in Math., Longman Scientific and Technical, Harlow, New York, second edition, 1989.
[13] J. Hjelmborg and M. Rordam, On stability of C^{*}-algebras, J. Funct. Anal. 155, 1 (1998), 153171.
[14] V. Kaftal, P. W. NG and S. Zhang, Commutators and linear spans of projections in certain finite C^{*}-algebras, J. Funct. Anal. 266, 4 (2014), 1883-1912.
[15] D. KUCEROVSKY AND P. W. NG, The corona factorization property and approximate unitary equivalence, Houston J. Math. 32, 2 (2006), 531-550.
[16] D. Kucerovsky, P. W. NG and F. Perera, Purely infinite corona algebras of simple C^{*}-algebras, Math. Ann. 346, 1 (2010), 23-40.
[17] H. Lin, Simple C^{*}-algebras with continuous scales and simple corona algebras, Proceedings of the American Mathematical Society, 112, 3 (1991), 871-880.
[18] H. Lin, Asymptotic unitary equivalence and classification of simple amenable C^{*}-algebras, Invent. Math. 183, 2 (2011), 385-450. A copy is available at http://arxiv.org/pdf/0806.0636.
[19] H. Lin And P. W. NG, The corona algebra of stabilized Jiang-Su algebra, Preprint. A copy can be found at http://arxiv.org/pdf/1302.4135.
[20] G. Lumer and M. Rosenblum, Linear operator equations, Proc. Amer. Math. Soc. 10 (1959), 32-41.
[21] L. W. Marcoux, Linear spans of projections in certain C^{*}-algebras, Indiana Univ. Math. J. 51 (2002), 753-771.
[22] L. W. Marcoux, Sums of small numbers of commutators, J. Operator Theory 56, 1 (2006), 111-142.
[23] P. W. NG, Commutators in $C_{r}^{*}\left(\mathbb{F}_{\infty}\right)$, Houston J. Math, 40, 2 (2014), 421-446.
[24] P. W. Ng and W. Winter, Nuclear dimension and the corona factorization property, Int. Math. Res. Not. IMRN (2010), no. 2, 261-278.
[25] C. Pearcy, On commutators of operators on Hilbert space, Proc. Amer. Math. Soc. 10 (1965), 53-59.
[26] G. K. Pedersen, Unitary extensions and polar decompositions in a C^{*}-algebra, J. Operator Theory 17 (1987), 357-364.
[27] C. Pop, Finite sums of commutators, Proc. Amer. Math. Soc., 130, 10 (2002), 3039-3041.
[28] L. Robert, Nuclear dimension and sums of commutators. Indiana Univ. Math. J. (to appear).
[29] M. Rordam, Ideals in the multiplier algebra of a stable C*-algebra, J. Operator Theory 25, 2 (1991), 283-298.
[30] M. Rordam, Stable C^{*}-algebras, Advanced Studies in Pure Mathematics 38 "Operator Algebras and Applications". Edited by Hideki Kosaki. (2004), 177-199.
[31] K. Shoda, Einige Satze uber Matrizen, Japanese J. Math. 13 (1936), 361-365.
[32] K. Thomsen, Finite sums and products of commutators in inductive limit C^{*}-algebras, Ann. Inst. Fourier, Grenoble, 43, 1 (1993), 225-249.
[33] N. E. Wegge-Olsen, K-theory and C^{*}-algebras. A friendly approach, Oxford University Press, New York, 1993.
[34] S. Zhang, A property of purely infinite simple C*-algebras, Proc. Amer. Math. Soc. 109, 3 (1990), 717-720.
[35] S. Zhang, A riesz decomposition property and ideal structure of multiplier algebras, J. Operator Theory 24, 2 (1990), 209-225.
[36] S. Zhang, Certain C^{*}-algebras with real rank zero and their corona a multiplier algebrs. Part I, Pacific Journal of Mathematics 155, 1 (1992), 169-197.
(Received March 7, 2014)
P. W. Ng

Department of Mathematics
University of Louisiana at Lafayette
217 Maxim Doucet Hall
P. O. Box 41010

Lafayette, Louisiana
70504-1010
USA

