A GENERALIZATION OF THE BROWN-PEARCY THEOREM ### P. W. NG (Communicated by V. V. Peller) Abstract. Let ∅ be a unital separable simple exact C*-algebra. Suppose that either - 1. A is purely infinite, or - 2. $\mathscr{A} \otimes \mathscr{K}$ has strict comparison of positive elements and stable rank one, and \mathscr{A} has unique tracial state Then for all $X \in \mathcal{M}(\mathscr{A} \otimes \mathscr{K})$, X is a commutator if and only if X does not have the form $\alpha 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})} + x$, for some $\alpha \in \mathbb{C} - \{0\}$ and for some x belonging to a proper ideal of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$. #### 1. Introduction A *commutator* in a C*-algebra $\mathscr C$ is an element of the form $[x,y]=_{df} xy-yx$ for some $x,y\in\mathscr C$. The study of commutators in the context of operator theory has a long history, starting with Quantum Mechanics where the Heisenberg Uncertainty Principle is implied by a commutator relation. This is one of the original motivations for the development of "noncommutative mathematics" (operator algebras, "noncommutative topology", "noncommutative measure theory" etc.) which is a part of today's functional analysis. Another early result is Shoda's 1940 result that for a field \mathbb{F} with characteristic zero and $n \ge 1$, an element $[x_{j,k}] \in \mathbb{M}_n(\mathbb{F})$ is a commutator if and only if $Tr([x_{j,k}]) =_{df} \sum_{j=1}^n x_{j,j} = 0$ ([31]). The questions of when an element of a C*-algebra (or more general ring) is a sum or limit (of sums) of commutators have been studied by many authors (e.g., [2], [3], [4], [5], [6], [7], [8], [9], [14], [22], [23], [25], [27], [28], [31], [32] etc.) with farreaching connections and implications (e.g., equivalence relations on C*-algebras ([5]), noncommutative dimension theory in C*-algebras ([28]), operator decomposition questions ([22], [14]), and determinant theory and the uniqueness theorems of classification theory ([11], [32], [18]) etc.). Perhaps one of the most definitive early results is the theorem of Brown and Pearcy, which showed that for a separable infinite dimensional Hilbert space \mathscr{H} and for an operator $T \in \mathbb{B}(\mathscr{H})$, T is a commutator if and only if T is either a compact or nonthin operator, i.e., does not have the form $\alpha 1 + S$ where $\alpha \in \mathbb{C} - \{0\}$ and $S \in \mathscr{K}(\mathscr{H})$ (the compact operators on \mathscr{H}). (See [3].) Mathematics subject classification (2010): 46L35. Keywords and phrases: C^* -algebra, commutator, multiplier algebra. Since then, there have been many attempts to generalize the Brown–Pearcy Theorem to C*-algebras (or even Banach algebras) other than $\mathbb{B}(\mathscr{H})$. Among the most definitive generalizations are those for type III and type II_{∞} factors, where the (corresponding) compact or nonthin operators are exactly the single commutators. (See [4] and [10]. See also [6].) There are also interesting generalizations where the analogous operators can be expressed as a sum of at least two commutators. (Examples include UHF-algebras and type II_1 factors ([22]). In fact, the following is an open question of Fack and de la Harpe (Marcoux): If $\mathscr C$ is a type II_1 factor (resp. UHF-algebra) with tracial state τ , then is it true that for all $x \in \mathscr C$, x is a single commutator if and only if $\tau(x) = 0$? The best result is two commutators, which follows from Marcoux's Commutator Reduction Argument ([22]). For similar results, see [8], [9], [14], [22], [23], [27], [28], [32] and the references therein.) In this paper, we generalize the Brown–Pearcy Theorem to the context of multiplier algebras. Recall that for a C*-algebra \mathcal{B} , the multiplier algebra $\mathcal{M}(\mathcal{B})$, of \mathcal{B} , is the largest unital C*-algebra containing \mathcal{B} as an essential ideal. For $\mathcal{K}=\mathcal{K}(\mathcal{H})$ the compact operators on a Hilbert space \mathcal{H} , $\mathcal{M}(\mathcal{K})=\mathbb{B}(\mathcal{H})$. Moreover, for a C*-algebra \mathcal{B} , $\mathcal{M}(\mathcal{B})$ encodes the extension theory of \mathcal{B} , and multiplier algebras give the context for attempts to generalize BDF–Theory. (In fact, an essentially normal operator $T\in\mathbb{B}(\mathcal{H})$ is one where the self-commutator $[T,T^*]$ is compact.) Hence, multiplier algebras are natural objects to which to generalize the Brown–Pearcy Theorem. In this paper, we prove the following result: THEOREM 1.1. Let \mathscr{A} be a unital separable simple C^* -algebra such that either - 1. \mathscr{A} is purely infinite, or - 2. $\mathscr{A} \otimes \mathscr{K}$ has strict comparison of positive elements, \mathscr{A} has stable rank one and unique tracial state, and every quasitrace on \mathscr{A} is a trace. ``` Let X \in \mathcal{M}(\mathcal{A} \otimes \mathcal{K}). ``` Then X is a single commutator if and only if X does not have the form $\alpha 1_{\mathcal{M}(\mathscr{A} \otimes \mathscr{K})} + x$, where $\alpha \in \mathbb{C} - \{0\}$ and x is an element of a proper ideal of $\mathcal{M}(\mathscr{A} \otimes \mathscr{K})$. We note that, by [27], every element of the multiplier algebras in Theorem 1.1 is a sum of two commutators. We also note that by Theorem 1.1 and [21] Theorem 5.3 (see also the remarks after [22] Theorem 5.2), if \mathscr{A} is a unital separable simple C*-algebra satisfying the hypotheses of Theorem 1.1 then for all $X \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ such that X does not have the form $\alpha 1 + x$ for some $\alpha \in \mathbb{C} - \{0\}$ and x in a proper ideal of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$, X is a sum of 14 nilpotents of order two, and X is a linear combination of 56 projections. Finally, we note that for the multiplier algebras in Theorem 1.1, the presence of a unital embedding of the Cuntz algebra O_2 seems to be a key ingredient of the proofs of Theorem 1.1. Hence, the next question seems natural: QUESTION 1. Consider the Cuntz algebra O_2 . Is it true that for all $x \in O_2$, x is a single commutator if and only if x does not have the form $\alpha 1_{O_2}$ for some $\alpha \in \mathbb{C} - \{0\}$? Again, it is also known, by [27], that every element of O_2 is a sum of two commutators. In fact, we do not know the answers to the following questions: ## QUESTION 2. - 1. Does there exist a unital separable simple nonelementary C*-algebra $\mathscr A$ such that for all $x \in \mathscr A$, x is a single commutator if and only if $\tau(x) = 0$ for all tracial states τ on $\mathscr A$? - 2. Does there exist a unital separable simple C*-algebra $\mathscr A$ such that for all $x \in \mathscr A$, x is a single commutator if and only if x does not have the form $\alpha 1_{\mathscr A}$ for some $\alpha \in \mathbb C \{0\}$? #### 2. Elements in the canonical ideal For most of this paper, for a C*-algebra \mathcal{B} , we let lower case letters denote elements of \mathcal{B} . If \mathcal{B} is nonunital, we let capital letters denote general elements (especially full elements) of $\mathcal{M}(\mathcal{B})$ and lower case letters for elements that we know are in a proper ideal of $\mathcal{M}(\mathcal{B})$ (e.g., \mathcal{B}). We occasionally vary from these conventions. Also, for most of this paper, we use extensively the ideas developed in [2], [3], [4], and [25]. Finally, a good reference for multiplier algebras and the strict topology is the book [33]. The first lemma is a straightforward computation. LEMMA 2.1. Let $\mathscr C$ be a Banach space and let $\{x_{m,n}\}_{m,n\geqslant 1}$ be a biinfinite sequence in $\mathscr C$ such that $$\sum_{m,n\geqslant 1}\|x_{m,n}\|<\infty.$$ Then $\sum_{m,n\geqslant 1} x_{m,n}$ converges in norm to an element of \mathscr{C} . LEMMA 2.2. Let \mathcal{B} be a separable C^* -algebra, and suppose that $\{P_n\}_{n=1}^{\infty}$ is a sequence of pairwise orthogonal projections in $\mathcal{M}(\mathcal{B})$ and $\{T_{m,n}\}_{m,n\geqslant 1}$ is a biinfinite sequence in $\mathcal{M}(\mathcal{B})$ such that - (a) $P_m \sim P_n$ in $\mathcal{M}(\mathcal{B})$ for all m, n, - (b) the sum $\sum_{n=1}^{\infty} P_n$ converges in the strict topology on $\mathcal{M}(\mathcal{B})$, - (c) $P_m T_{m,n} = T_{m,n} P_n = T_{m,n}$ for all m, n, and - (d) $\sum_{m,n\geqslant 1} ||T_{m,n}|| < \infty$. Then $\sum_{m,n\geqslant 1} T_{m,n}$ is a commutator in $\mathcal{M}(\mathcal{B})$. *Proof.* Firstly, by Lemma 2.1, $T = \sum_{m,n \ge 1} T_{m,n}$ converges in norm to an element in $\mathcal{M}(\mathcal{B})$. Let $P =_{df} \sum_{n=1}^{\infty} P_n \in \mathcal{M}(\mathcal{B})$. Replacing \mathcal{B} with $P\mathcal{B}P$ if necessary, we may assume that $P = 1_{\mathcal{M}(\mathcal{B})}$. We may assume that \mathscr{B} acts faithfully and nondegenerately on a separable infinite dimensional Hilbert space \mathscr{H} . We may then identify $\mathscr{M}(\mathscr{B})$ with the idealizer of \mathscr{B} in $\mathbb{B}(\mathscr{H})$; i.e., $$\mathcal{M}(\mathcal{B}) = \{ S \in \mathbb{B}(\mathcal{H}) : S\mathcal{B}, \mathcal{B}S \subseteq \mathcal{B} \}.$$ Let $\{E_{m,n}\}_{1\leqslant m,n<\infty}$ be a system of matrix units for a copy of $\mathscr K$ (the C*-algebra of compact operators) in $\mathscr M(\mathscr B)$ such that for all $n\geqslant 1$, $E_{n,n}=P_n$. By [2] Theorem 4, T is a commutator in $\mathbb{B}(\mathcal{H})$. More precisely, by inspection of the proof of [2] Theorem 4, we see that $$T = [R, W] = RW - WR$$ where $R, W \in \mathbb{B}(\mathcal{H})$ are given by the following: i. $$R =_{df} \sum_{n=1}^{\infty} E_{n,n+1}.$$ ii. For all $m, n \ge 1$, let $W_{m,n} =_{df} P_m W P_n$. Then $$W_{m,n} = \begin{cases} 0 & m = 1\\ \sum_{k=0}^{m-2} E_{m,m-k-1} T_{m-k-1,n-k} E_{n-k,n} & 2 \leqslant m \leqslant n\\ \sum_{k=0}^{n-1} E_{m,n-k-1} T_{m-k-1,n-k} E_{n-k,n} & m > n.
\end{cases}$$ Clearly, the sum for R converges strictly in $\mathcal{M}(\mathcal{B})$; i.e., $R \in \mathcal{M}(\mathcal{B})$. To complete the proof, it suffice to show that $W = \sum_{m,n \geqslant 1} W_{m,n}$ converges strictly in $\mathscr{M}(\mathscr{B})$ (and hence, $W \in \mathscr{M}(\mathscr{B})$). Firstly, note that since $W \in \mathbb{B}(\mathcal{H})$, $||W|| < \infty$. For each $N \ge 1$, let $Q_N =_{df} \sum_{n=1}^{N} P_n$. Claim: For all $M_1 \geqslant 1$, $Q_{M_1}W(1-Q_N) \to 0$ as $N \to \infty$. *Proof of Claim:* We have that $Q_{M_1}W = \sum_{1 \leq m \leq M_1, 1 \leq n < \infty} W_{m,n}$. Let $\gamma > 0$ be given. Since $\sum_{m,n \ge 1} ||T_{m,n}|| < \infty$, choose $N_1 \ge 1$ so that $$\sum_{1\leqslant m<\infty,n\geqslant N_1}\|T_{m,n}\|<\gamma/(M_1+10)!.$$ Choose $N_2 \geqslant 1$ so that $$N_2 - M_1 - 10 > N_1$$. It follows, from the definition of W, that $$\sum_{1 \leq m \leq M_1, n \geqslant N_2} \|W_{m,n}\| < \gamma.$$ Hence, for all $N \ge N_2$, $$||Q_{M_1}W(1-Q_N)|| < \gamma.$$ Since γ was arbitrary, we have proven the claim. End of the proof of the Claim. We now show that $W \in \mathcal{M}(\mathcal{B})$ and thus complete the proof. Let $b \in \mathcal{B}$ be given. We want to prove that $bW \in \mathcal{B}$. We may assume that $||b|| \leq 1$. Since $\sum_{n=1}^{\infty} P_n$ converges strictly in $\mathcal{M}(\mathcal{B})$, choose $M_2 \geqslant 1$ so that $\|bQ_{M_2} - b\| < \varepsilon/(10(\|W\|+1))$ Hence, $\|bQ_{M_2}W - bW\| < \varepsilon/10$. By the Claim, we can find $N_3 \geqslant 1$ so that $\|bQ_{M_2}WQ_{N_3} - bQ_{M_2}W\| < \varepsilon/10$. Hence, $\|bW - bQ_{M_2}WQ_{N_3}\| < \varepsilon$. Since $bQ_{M_2}WQ_{N_3} \in \mathcal{B}$, bW is within ε of an element of \mathcal{B} . Since ε was arbitrary, $bW \in \mathcal{B}$ as we wish. By a similar argument, $Wb \in \mathcal{B}$. Since $b \in \mathcal{B}$ was arbitrary, $W \in \mathcal{M}(\mathcal{B})$, and this completes the proof. \square COROLLARY 2.3. Let \mathcal{B} be a separable stable C^* -algebra. Then every element of \mathcal{B} is a commutator in $\mathcal{M}(\mathcal{B})$. *Proof.* Since $\mathscr{B} \cong \mathscr{B} \otimes \mathscr{K}$, we may work with $\mathscr{B} \otimes \mathscr{K}$ (and $\mathscr{M}(\mathscr{B} \otimes \mathscr{K})$). Note that $\mathcal{M}(\mathcal{B}) \otimes \mathbb{B}(\mathcal{H}) \cong \mathcal{M}(\mathcal{B}) \otimes \mathcal{M}(\mathcal{K})$ can be (naturally) realized as a unital *-subalgebra of $\mathcal{M}(\mathcal{B} \otimes \mathcal{K})$. Let $\{e_{j,k}\}_{1\leqslant j,k<\infty}$ be a system of matrix units for \mathscr{K} . Note that $\{\sum_{j=1}^n 1_{\mathscr{M}(\mathscr{B})} \otimes e_{j,j}\}_{n=1}^\infty$ is an approximate identity for $\mathscr{M}(\mathscr{B}) \otimes \mathscr{K}$, consisting of an increasing sequence of projections. Let $x \in \mathcal{B} \otimes \mathcal{K}$ be arbitrary. We want to show that x is a commutator of $\mathcal{M}(\mathcal{B} \otimes \mathcal{K})$. We may assume that $||x|| \leq 1$. Let $\{\varepsilon_n\}_{n=1}^{\infty}$ be a decreasing sequence in (0,1) such that $\sum_{n=1}^{\infty} \varepsilon_n < \infty$. For each subset $\mathscr{F}\subseteq \mathbb{Z}_+$ (\mathbb{Z}_+ is the set of positive integers), let $P_{\mathscr{F}}=df\sum_{j\in\mathscr{F}}1_{\mathscr{M}(\mathscr{B})}\otimes e_{j,j}$. Note that the sum converges strictly in $\mathscr{M}(\mathscr{B}\otimes\mathscr{K})$ and $P_{\mathscr{F}}$ is a projection in $\mathscr{M}(\mathscr{B}\otimes\mathscr{K})$. Moreover, if \mathscr{F} is infinite then $P_{\mathscr{F}}\sim 1_{\mathscr{M}(\mathscr{B}\otimes\mathscr{K})}$ in $\mathscr{M}(\mathscr{B}\otimes\mathscr{K})$. We construct a sequence $\{\mathscr{E}_n\}_{n=1}^{\infty}$ of subsets of \mathbb{Z}_+ and an increasing sequence of positive integers $\{N_n\}_{n=1}^{\infty}$ such that - i. $\mathscr{E}_n \subset \mathscr{E}_{n+1}$ for all $n \geqslant 1$, - ii. $\{1,2,3,...,N_n\}\subseteq \mathcal{E}_n$ for all $n\geqslant 1$, - iii. $\mathscr{F}_n =_{df} \mathscr{E}_n \mathscr{E}_{n-1}$ is an infinite set for all $n \ge 1$ (here we take $\mathscr{E}_0 =_{df} \emptyset$), - iv. $\|(1-\sum_{j=1}^{N_n}1_{\mathscr{M}(\mathscr{B})}\otimes e_{j,j})x\|, \|x(1-\sum_{j=1}^{N_n}1_{\mathscr{M}(\mathscr{B})}\otimes e_{j,j})\| < \varepsilon_{n+1}/(2(n+1))$ for all $n\geqslant 1$, - v. $||P_{\mathscr{F}_m}xP_{\mathscr{F}_n}||, ||P_{\mathscr{F}_n}xP_{\mathscr{F}_m}|| < \varepsilon_n/(2n)$ for all $2 \leqslant m \leqslant n$, vi. $\bigcup_{n=1}^{\infty} \mathscr{E}_n = \mathbb{Z}_+$, and hence, $\sum_{n=1}^{\infty} P_{\mathscr{F}_n} = 1_{\mathscr{M}(\mathscr{B} \otimes \mathscr{K})}$ where the sum converges in the strict topology on $\mathscr{M}(\mathscr{B} \otimes \mathscr{K})$. (Note that (v.) follows from (ii.) and (iv.).) We denote the above statements by "(*)". The construction is by induction on n. Basis step n=1. Since $\{\sum_{j=1}^m 1_{\mathscr{M}(\mathscr{B})} \otimes e_{j,j}\}_{m=1}^\infty$ is an approximate identity for $\mathscr{M}(\mathscr{B}) \otimes \mathscr{K}$, choose $N_1 \geqslant 1$ so that $\|(1-\sum_{j=1}^{N_1} 1_{\mathscr{M}(\mathscr{B})} \otimes e_{j,j})x\|, \|x(1-\sum_{j=1}^{N_1} 1_{\mathscr{M}(\mathscr{B})} \otimes e_{j,j})\| < \varepsilon_2/4$. Let $\mathscr{E}_1 \subset \mathbb{Z}_+$ be such that - (a) $\{1,2,...,N_1+1\}\subset \mathcal{E}_1$, and - (b) \mathcal{E}_1 and $\mathbb{Z}_+ \mathcal{E}_1$ are both infinite sets. Induction step. Suppose that \mathscr{E}_n has been constructed. We now construct \mathscr{E}_{n+1} . Since $\{\sum_{j=1}^m 1_{\mathscr{M}(\mathscr{B})} \otimes e_{j,j}\}_{m=1}^\infty$ is an approximate identity for $\mathscr{M}(\mathscr{B}) \otimes \mathscr{K}$, choose $N_{n+1} \geqslant N_n + 10$ so that $\|(1 - \sum_{j=1}^{N_{n+1}} 1_{\mathscr{M}(\mathscr{B})} \otimes e_{j,j})x\|, \|x(1 - \sum_{j=1}^{N_{n+1}} 1_{\mathscr{M}(\mathscr{B})} \otimes e_{j,j})\| < \varepsilon_{n+2}/(2(n+2))$. Let $\mathscr{E}_{n+1} \subseteq \mathbb{Z}_+$ be such that $\mathscr{E}_n \cup \{1,2,...,N_{n+1}\} \subseteq \mathscr{E}_{n+1}$, $\mathscr{E}_{n+1} - \mathscr{E}_n$ is an infinite set, and $\mathbb{Z}_+ - \mathscr{E}_{n+1}$ is an infinite set. This completes the inductive construction. From (*), we have that $\{P_{\mathscr{F}_n}\}_{n=1}^{\infty}$ (as defined in (*)) is a sequence of pairwise orthogonal projections in $\mathscr{M}(\mathscr{B})$ such that $P_{\mathscr{F}_n} \sim 1_{\mathscr{M}(\mathscr{B} \otimes \mathscr{K})}$ for all n, $\sum_{n=1}^{\infty} P_{\mathscr{F}_n} = 1_{\mathscr{M}(\mathscr{B} \otimes \mathscr{K})}$ where the sum converges strictly in $\mathscr{M}(\mathscr{B} \otimes \mathscr{K})$, and $\sum_{m,n\geqslant 1} \|P_{\mathscr{F}_m} x P_{\mathscr{F}_n}\| \leq \|P_{\mathscr{F}_1} x P_{\mathscr{F}_1}\| + \sum_{n=2}^{\infty} \varepsilon_n < \infty$. Hence, by Lemma 2.2, x is a commutator in $\mathcal{M}(\mathcal{B})$. \square ### 3. Some technical lemmas Here and in the rest of the paper, we will say that a unital separable simple C*-algebra \mathscr{A} is in the class \mathfrak{R} if either (i.) \mathscr{A} is purely infinite or (ii.) \mathscr{A} is stably finite and all quasitraces extend to traces, and $\mathscr{A} \otimes \mathscr{K}$ has strict comparison of positive elements. Firstly, multiplier elements with "large null space" are multiplier commutators. LEMMA 3.1. Let \mathcal{B} be a separable stable C^* -algebra, and let $X \in \mathcal{M}(\mathcal{B})$. Suppose that $P \in \mathcal{M}(\mathcal{B})$ is a projection such that $P \sim 1_{\mathcal{M}(\mathcal{B})}$ and XP = 0. Then X is a commutator of $\mathcal{M}(\mathcal{B})$. Sketch of proof. This is essentially the argument of [25]. We sketch the short argument for the convenience of the reader. Since $P \sim 1_{\mathcal{M}(\mathcal{B})}$, there exist a sequence $\{P_n\}_{n=1}^{\infty}$ of pairwise orthogonal projections in $\mathcal{M}(\mathcal{B})$ such that (a) $P = \sum_{n=1}^{\infty} P_n$ where the sum converges strictly in $\mathcal{M}(\mathcal{B})$, and (b) $P_n \sim 1_{\mathcal{M}(\mathcal{B})}$ for all $n \ge 1$. Replacing 1-P with $(1-P)+P_1$ if necessary, we may assume that $1-P\sim 1_{\mathscr{M}(\mathscr{B})}$. To simplify notation, denote $P_0 =_{df} 1 - P$. Let $\{E_{m,n}\}_{0 \le m,n < \infty}$ be a system of matrix units for a copy of \mathcal{K} in $\mathcal{M}(\mathcal{B})$ so that $E_{m,m} = P_m$ for all $m \ge 0$. Let $S =_{df} (-\sum_{n=0}^{\infty} E_{n,n+1}X) + (\sum_{n=0}^{\infty} E_{n,0}XE_{0,n+1})$, and let $R =_{df} \sum_{n=0}^{\infty} E_{n+1,n}$. It is clear that the above sums converge strictly, and hence, $S, R \in \mathcal{M}(\mathcal{B})$. Moreover, X = [S, R]. (See the proof of [25] Theorem 2.) LEMMA 3.2. Let $\mathscr C$ be a unital C^* -algebra, and suppose that $c \in \mathscr C$ is a commutator of $\mathscr C$. Then for any $x \in M_2(\mathcal{C})$, if x has the form $$x = \begin{bmatrix} c & * \\ * & 0 \end{bmatrix}$$ then x is a commutator of $M_2(\mathscr{C})$. *Proof.* This follows immediately from [22] Lemma 2.4. An elementary proof can be found in [3] Lemma 4.1. \Box Following Brown and Pearcy, given a unital C*-algebra \mathscr{C} , and $x, y \in \mathscr{C}$, a generalized sum of x and y is an element (of \mathscr{C}) which has the form $s^{-1}xs + t^{-1}yt$ where s,t are invertible elements of \mathscr{C} . LEMMA 3.3. Let $\mathscr C$ be a unital C^* -algebra. Suppose that $y,z,x_0\in\mathscr C$ is such that some generalized sum of y and z is a commutator of $\mathscr C$, and x_0 is invertible in $\mathscr C$. Then for any $x \in \mathbb{M}_2(\mathscr{C})$, if x has the form $$x = \begin{bmatrix} y & x_0 \\ * & z \end{bmatrix}$$ then x is a commutator in $M_2(\mathscr{C})$. *Proof.* The argument is exactly the same as that of [3] Lemma 4.2. One notes that [12] Corollary 3.2 works in general Banach algebras. (See also [20] Theorem 10.)
\Box LEMMA 3.4. Let $\mathscr C$ be a unital C^* -algebra, and suppose that there exists an open subset $\mathfrak D \subset \mathscr C$ such that i. for all $z_1, z_2 \in \mathfrak{O}$, some generalized sum of z_1 and z_2 is a commutator of \mathscr{C} , and ii. \mathfrak{O} is closed under multiplication by nonzero scalars. Suppose that $y_1, y_2, y_3, y_4 \in \mathcal{C}$ and z is an invertible operator in \mathfrak{D} . Then for sufficiently large $\lambda > 0$, the element $x \in \mathbb{M}_2(\mathcal{C})$, which is given by $$x = \begin{bmatrix} y_1 & y_2 + \lambda z \\ y_3 & y_4 \end{bmatrix},$$ is a commutator of $M_2(\mathscr{C})$. *Proof.* The proof is exactly the same as that of [4] Lemma 4.5, except that [4] Corollary 4.4 is replaced with (this paper) Lemma 3.3. \Box LEMMA 3.5. Let \mathscr{C} be a unital C^* -algebra such that there exists a unital * -embedding of O_2 into \mathscr{C} . Suppose that there exists an open subset $\mathfrak{D} \subseteq \mathscr{C}$ such that - i. for all $z_1, z_2 \in \mathfrak{D}$, some generalized sum of z_1 and z_2 is a commutator of \mathscr{C} , - ii. D is closed under multiplication by nonzero scalars, and - iii. $\mathfrak D$ contains all elements of the form p+2q, where $p,q\in\mathscr C$ are projections such that p+q=1, $p\perp q$ and $p\sim q\sim 1$. Then for all $a \in \mathcal{C}$ and all $v \in \mathcal{C}$ such that v is an isometry and $1 - vv^* \sim 1$, there exists an $x \in \mathcal{C}$ such that xv = 0 and a + vx is a commutator in \mathcal{C} . *Proof.* Let $e =_{df} vv^*$. So $e \sim 1 - e \sim 1$. There exists a *-isomorphism $\Phi : \mathscr{C} \to \mathbb{M}_2(\mathscr{C})$ such that $\Phi(e) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, and $\Phi(1-e) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. The rest of the argument is exactly the same as that of [4] Lemma 4.6, except that we replace [4] Lemma 4.5 with (this paper) Lemma 3.4. \square DEFINITION 3.6. Let $\mathscr C$ be a unital C*-algebra such that there exists a unital *-embedding of O_2 into $\mathscr C$. Let $x \in \mathscr C$. Then we say that x has property (π_0) if there exists a *-isomorphism $\Phi : \mathscr{C} \to \mathbb{M}_2(\mathscr{C})$ such that - 1. every minimal projection in $\mathbb{M}_2\otimes 1_\mathscr{C}$ is Murray-von Neumann equivalent to $1_{\mathbb{M}_2(\mathscr{C})}$ in $\mathbb{M}_2(\mathscr{C})$, and - 2. $\Phi(x)$ has the form $$\Phi(x) = \begin{bmatrix} * & v \\ * & 0 \end{bmatrix},$$ where $v \in \mathscr{C}$ is an isometry such that $1_{\mathscr{C}} - vv^* \sim 1_{\mathscr{C}}$. PROPOSITION 3.7. Let \mathscr{C} be a unital C^* -algebra such that there exists a unital * -embedding of O_2 into \mathscr{C} . Suppose that there exists an open subset $\mathfrak{D} \subseteq \mathscr{C}$ such that i. for all $z_1, z_2 \in \mathfrak{O}$, some generalized sum of z_1 and z_2 is a commutator of \mathscr{C} , - ii. \mathfrak{O} is closed under multiplication by nonzero scalars, and - iii. $\mathfrak D$ contains all elements of the form p+2q, where $p,q\in\mathscr C$ are projections such that p+q=1, $p\perp q$ and $p\sim q\sim 1$. If $x \in \mathcal{C}$ has property (π_0) then x is a commutator in \mathcal{C} . *Proof.* The proof is exactly the same as that of [4] Theorem 1, except that [4] Lemmas 4.6 and 4.2 are replaced with (this paper) Lemmas 3.5, and 3.2 respectively. \Box DEFINITION 3.8. Let $\mathscr C$ be a unital C*-algebra, and let $x \in \mathscr C$. Then we say that x has *property* (π) if there exists a *-isomorphism $\Phi : \mathscr{C} \to \mathbb{M}_3(\mathscr{C})$ such that $\Phi(x)$ has the form $$\Phi(x) = \begin{bmatrix} 0 & * & * \\ 1 & * & * \\ 0 & * & * \end{bmatrix}.$$ LEMMA 3.9. Let \mathscr{A} be a unital separable simple C^* -algebra in the class \mathfrak{R} . If $A \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ has property (π) then A has property (π_0) . *Proof.* Since $\mathscr{A} \otimes \mathscr{K}$ is stable, there is a unital *-embedding of O_2 into $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$. Since A has property (π) , let $\Phi_1: \mathcal{M}(\mathscr{A} \otimes \mathscr{K}) \to \mathbb{M}_3 \otimes \mathcal{M}(\mathscr{A} \otimes \mathscr{K})$ be a *-isomorphism such that $\Phi_1(A)$ has the form $$\Phi_1(A) = \begin{bmatrix} * * 0 \\ * * 1 \\ * * 0 \end{bmatrix}.$$ Let $f_1, f_2 \in \mathbb{M}_3 \otimes \mathcal{M}(\mathcal{A} \otimes \mathcal{K})$ be given by $f_1 =_{df} diag(1_{\mathcal{M}(\mathcal{A} \otimes \mathcal{K})}, 1_{\mathcal{M}(\mathcal{A} \otimes \mathcal{K})}, 0)$ and $f_2 =_{df} diag(0, 0, 1_{\mathcal{M}(\mathcal{A} \otimes \mathcal{K})})$. If \mathscr{A} is purely infinite then $f_1 \sim f_2$ (since both are full projections in $\mathbb{M}_3 \otimes \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) \sim \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ and since $\mathscr{A} \otimes \mathscr{K}$ has the corona factorization property ([15] Theorem 5.3; also [24] Proposition 2.5)). If \mathscr{A} is not purely infinite then (since \mathscr{A} is in class \mathfrak{R}), $\tau(f_1) = \tau(f_2) = \infty$ for all $\tau \in T(\mathscr{A})$; and hence, $f_1 \sim f_2$ in $\mathbb{M}_3 \otimes \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) \cong \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ (again since both are full projections and since $\mathscr{A} \otimes \mathscr{K}$ has the corona factorization property ([24] Proposition 2.5)). With respect to the decomposition $f_1 + f_2 = 1$, A will have the form $$A = \begin{bmatrix} * \ V' \\ * \ 0 \end{bmatrix}$$ where V' is an element of $f_1(\mathbb{M}_3 \otimes \mathscr{M}(\mathscr{A} \otimes \mathscr{K}))f_2$ such that $V'^*V' = f_{2,2}$ and $f_1 - V'V'^* \sim f_1$. Let $W_{1,2} \in \mathbb{M}_3 \otimes \mathcal{M}(\mathcal{A} \otimes \mathcal{K})$ be a partial isometry with initial projection f_2 and range projection f_1 . Let $\{e_{j,k}\}_{1 \le j,k \le 2}$ be system of matrix units for \mathbb{M}_2 . Let $\Phi_2: \mathbb{M}_3 \otimes \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) \to \mathbb{M}_2 \otimes f_{1,1}(\mathbb{M}_3 \otimes \mathscr{M}(\mathscr{A} \otimes \mathscr{K})) f_{1,1}$ be the *-isomorphism given by $\Phi_2(X) =_{df} (e_{1,1} \otimes f_1 X f_1) + (e_{1,2} \otimes f_1 X W_{1,2}^*) + (e_{2,1} \otimes W_{1,2} X f_1) + (e_{2,2} \otimes W_{1,2} X W_{1,2}^*)$, for all $X \in \mathbb{M}_3 \otimes \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$. Noting that $f_{1,1}(\mathbb{M}_3 \otimes \mathcal{M}(\mathcal{A} \otimes \mathcal{K}))f_{1,1} \cong \mathcal{M}(\mathcal{A} \otimes \mathcal{K})$, we can take $\Phi =_{df} \Phi_2 \circ \Phi_1$, and Φ is the map that witnesses that A has property (π_0) . \square LEMMA 3.10. Let \mathscr{A} be a unital separable simple C^* -algebra in the class \mathfrak{R} . If $A,B \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ both have property (π) then some generalized sum of A and B is a commutator. *Proof.* There are two *-isomorphism $\Phi, \Psi : \mathcal{M}(\mathscr{A} \otimes \mathscr{K}) \to \mathbb{M}_3 \otimes \mathcal{M}(\mathscr{A} \otimes \mathscr{K})$ such that $\Phi(A)$ and $\Phi(B)$ have the forms stated in Definition 3.8. Let $\{e_{i,k}\}_{1 \le i,k \le 3}$ be a system of matrix units for \mathbb{M}_3 . If \mathscr{A} is purely infinite, then for all j, $e_{j,j} \otimes 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}$ is Murray–von Neumann equivalent to $1_{\mathbb{M}_3} \otimes 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}$ in $\mathbb{M}_3 \otimes \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ ([15] Theorem 5.3). Suppose that \mathscr{A} is not purely infinite (but still in \mathfrak{R}). Then for all j,k, and for all $\tau \in T(\mathscr{A}), \ \tau(e_{j,j} \otimes 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}) = \infty$. Hence, $e_{j,j} \otimes 1_{\mathcal{M}(\mathcal{A} \otimes \mathcal{K})} \sim 1_{\mathbb{M}_3} \otimes 1_{\mathcal{M}(\mathcal{A} \otimes \mathcal{K})}$ in $\mathbb{M}_3 \otimes \mathcal{M}(\mathcal{A} \otimes \mathcal{K})$ for all j ([24] Proposition 2.5). The rest of the argument is exactly the same as that of [4] Lemma 4.1, except that [25] Theorem 4 is replaced with (this paper) Lemma 3.1. \Box # 4. The purely infinite case For the rest of this paper, for a C*-algebra \mathcal{B} , let $\Gamma: \mathcal{M}(\mathcal{B}) \to \mathcal{M}(\mathcal{B})/\mathcal{B}$ be the natural quotient map. LEMMA 4.1. Let \mathscr{A} be a unital separable simple purely infinite C^* -algebra. Suppose that $X \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ is such that $\Gamma(X)$ is not a scalar multiple of the identity. Then there exists an $\alpha > 0$ with $\alpha < \|X\|^2$, where for every $\varepsilon > 0$, for every finite subset $\mathscr{F} \subset \mathscr{A} \otimes \mathscr{K}$, there exist projections $p,q \in \mathscr{A} \otimes \mathscr{K}$ such that - 1. $p \perp q$, - 2. pa, ap, qa and ap are all within ε of 0, for all $a \in \mathscr{F}$, and - 3. if $x =_{df} qXp$ then there exists $\beta \geqslant \alpha$ with $\beta \leqslant ||X||^2$ and $||x^*x \beta p||, ||xx^* \beta q|| < \varepsilon$. *Proof.* Let $\varepsilon > 0$ and a finite subset $\mathscr{F} \subset \mathscr{A} \otimes \mathscr{K}$ be given. Contracting ε if necessary, we may assume that all the elements of \mathscr{F} have norm less than or equal to one. Since \mathscr{A} is unital, there exists a projection $e \in \mathscr{A} \otimes \mathscr{K}$ such that ea, ae and eae are all within $\varepsilon/100$ of a for all $a \in \mathscr{F}$. Since \mathscr{A} is simple purely infinite, $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})/(\mathscr{A} \otimes \mathscr{K})$ is simple purely infinite and hence has real rank zero ([16]; see also [35] Theorem 3.3 and [29]). Hence, since $\Gamma(X)$ is not a scalar multiple of the
identity, there exist nonzero orthogonal projections $R,S \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})/(\mathscr{A} \otimes \mathscr{K})$ such that $R\Gamma(X)S \neq 0$. Let $\alpha =_{df} (1/2) ||R\Gamma(X)S||^2 > 0$. Lift R,S to orthogonal positive elements $A,B \in (1-e)\mathcal{M}(\mathcal{A} \otimes \mathcal{K})(1-e)$ with norm one (i.e., $e \perp A \perp B \perp e$, $\Gamma(A) = R$, $\Gamma(B) = S$ and ||A|| = ||B|| = 1). Choose a number $\delta_1 > 0$ so that for all $Z \in \mathcal{M}(\mathcal{A} \otimes \mathcal{K})$ and for every projection $R \in \mathcal{M}(\mathcal{A} \otimes \mathcal{K})$, if ZZ^* is within δ_1 of R then Z^*RZ is within $\varepsilon/(100(2\alpha+1))$ of Z^*Z . Contracting $\delta_1 > 0$ if necessary, we may assume that $\delta_1 < \varepsilon/100$. Choose $\delta_2 > 0$ so that for all $Z \in \mathcal{M}(\mathcal{A} \otimes \mathcal{K})$, if Z^*Z within δ_2 of a projection then ZZ^* is within $\delta_1/(100(2\alpha+1))$ of a projection in $\operatorname{Her}(ZZ^*)$. Contracting $\delta_2 > 0$ if necessary, we may assume that $\delta_2 < \varepsilon/100$. Since $\mathscr{A} \otimes \mathscr{K}$ has real rank zero ([34]), we can choose projections $q' \in \overline{A(\mathscr{A} \otimes \mathscr{K})A}$ and $p' \in \overline{B(\mathscr{A} \otimes \mathscr{K})B}$ so that $\beta =_{df} \|q'Xp'\|^2 \geqslant (100/51)\alpha > 0$. Note that $p' \perp q'$. Let $h_1: [0,\beta] \to [0,1]$ be the unique continuous function satisfying: $$h_1(s) \begin{cases} = 1 & s \in [\beta - \frac{\delta_2 \beta}{1000(\beta+1)(\|X\|+1)}, \beta+1] \\ = 0 & s \in [0, \beta - \frac{\delta_2 \beta}{100(\beta+1)(\|X\|+1)}] \\ \text{linear} & \text{on } [\beta - \frac{\delta_2 \beta}{100(\beta+1)(\|X\|+1)}, \beta - \frac{\delta_2 \beta}{1000(\beta+1)(\|X\|+1)}]. \end{cases}$$ Hence, $h_1(p'X^*q'Xp') \neq 0$ (indeed, $||h_1(p'X^*q'Xp')|| = 1$). Since $\mathscr{A} \otimes \mathscr{K}$ has real rank zero, let $p \in \operatorname{Her}(h_1(p'X^*q'Xp'))$ be a nonzero projection. Hence, $p \leqslant p'$ and $pX^*q'Xp = pp'X^*q'Xp'p$ is within $\frac{\delta_2\beta}{100(\beta+1)}$ of βp . Hence, $\beta^{-1}pX^*q'Xp$ is within $\frac{\delta_2}{100(\beta+1)}$ of the projection p. Hence, by our choice of δ_2 , $\beta^{-1}q'XpX^*q'$ is within $\delta_1/(100(2\alpha+1))$ of a projection, say $q\in \operatorname{Her}(q')$. Hence, $\beta^{-1}qXpX^*q$ is within $\delta_1/(100(2\alpha+1))$ of q. Hence, we have that $qXpX^*q$ is within $\varepsilon/100$ of βq . Also, by our choice of δ_1 , $\beta^{-1}pX^*qXp$ is within $\varepsilon/(100(2\alpha+1))$ of $\beta^{-1}pX^*q'Xp$. Hence, $\beta^{-1}pX^*qXp$ is within $\frac{\varepsilon}{50(\beta+1)}$ of p. Hence, pX^*qXp is within ε of βp . \square LEMMA 4.2. Let $\mathscr C$ be a C^* -algebra, and let $x \in \mathscr C$. Suppose that there exist projections $p,q \in \mathscr C - \{0\}$ such that i. $p \perp q$, ii. px^*qxp is invertible in pCp, and iii. $qxpx^*q$ is invertible in qCq. Then (a) either xpx^* is invertible or 0 is an isolated point of the spectrum of xpx^* (and hence the support projection of xpx^* is in \mathscr{C}), - (b) if $r \in \mathcal{C}$ is the support projection of xpx^* then ||pr|| < 1, and - (c) if $q' \in \mathcal{C}$ is a projection with $q' \perp p$ and $r \sim q'$, and $v \in \mathcal{C}$ is a partial isometry with $v^*v = q'$ and $vv^* = r$, then $(p+v)^*(p+v)$ is an invertible element of $(p+q')\mathcal{C}(p+q')$. *Proof.* Since px^*qxp is invertible in $p\mathscr{C}p$ and $0 \le px^*qxp \le px^*xp$, px^*xp is invertible in $p\mathscr{C}p$. Hence, (in \mathscr{C}) 0 is an isolated point in the spectrum of px^*xp . Hence, either xpx^* is invertible or 0 is an isolated point in the spectrum of xpx^* . Hence, let $r \in \mathscr{C}$ be the support projection of xpx^* . Suppose that $\mathscr C$ acts faithfully and nondegenerately on a Hilbert space $\mathscr H$. Hence, $xp|_{p\mathscr H}$ is a (continuous) bijective linear map in $\mathbb B(p\mathscr H,r\mathscr H)$. Hence, by the Open Mapping Theorem, there exists $T\in\mathbb B(r\mathscr H,p\mathscr H)$ such that $T\circ(xp)=p$. Hence, there exists $\alpha>0$ such that $\|xp(h)\|\geqslant \alpha\|h\|$ for all $h\in\mathscr H$. Also, $qxp|_{p\mathcal{H}}$ is an invertible bijective linear map in $\mathbb{B}(p\mathcal{H}, q\mathcal{H})$. Hence, let $\beta > 0$ be such that $||qxp(h)|| \ge \beta ||h||$ for all $h \in p\mathcal{H}$. Choose $\delta > 0$ so that $\delta < \min\{1/100, \alpha/100, \beta/100\}$. Suppose, to the contrary, that ||pr|| = 1. Since r is the range projection of xp (and xp is surjective onto $r\mathcal{H}$) and since we have assumed that $\|pr\|=1$, choose $h\in p\mathcal{H}$ with $\|h\|=1$ so that if $k=_{df}xh=xph$ then $\|pk\|^2\geqslant \|k\|^2-\delta^2$. (Note that since $\|h\|=1$, $\|k\|=\|xph\|\geqslant \alpha\|h\|=\alpha>\delta$. Hence, $\|k\|^2-\delta^2\geqslant 0$.) Hence, $||k||^2 = ||pk||^2 + ||(1-p)k||^2 \ge ||k||^2 - \delta^2 + ||(1-p)k||^2$. Hence, $||(1-p)k||^2 \le \delta^2$. I.e., $||(1-p)k|| \le \delta \le \beta/100$. But $||(1-p)k|| \ge ||qk|| = ||qxph|| \ge \beta ||h|| = \beta$. This is a contradiction. Hence, we must have that ||pr|| < 1. Hence, by [4] Lemma 2.1, $p\mathcal{H} \cap r\mathcal{H} = \{0\}$ and $p\mathcal{H} + r\mathcal{H}$ is a closed linear subspace of \mathcal{H} . Suppose that $q' \in \mathscr{C}$ is a projection with $q' \perp p$ and $r \sim q'$, and suppose that $v \in \mathscr{C}$ is a partial isometry with $v^*v = q'$ and $vv^* = r$. Then $(p+v)|_{p\mathscr{H}+q'\mathscr{H}}$ is a bijective linear map in $\mathbb{B}(p\mathscr{H}+q'\mathscr{H},p\mathscr{H}+r\mathscr{H})$. Hence, by the Open Mapping Theorem, there exists $S \in \mathbb{B}(p\mathscr{H}+r\mathscr{H},p\mathscr{H}+q'\mathscr{H})$ such that $S \circ (p+v) = p+q'$. Hence, $(p+v)^*(p+v)$ is an invertible element of $(p+q')\mathscr{C}(p+q')$. \square LEMMA 4.3. Let \mathscr{A} be a unital separable simple purely infinite C^* -algebra. Suppose that $X \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ is such that $\Gamma(X)$ is not a scalar multiple of the identity. Then for every $\varepsilon > 0$, there exist projections $P,Q,R,S \in \mathcal{M}(\mathscr{A} \otimes \mathscr{K})$ such that - 1. $P \sim Q \sim S \sim 1_{\mathcal{M}(\mathcal{A} \otimes \mathcal{K})}$, - 2. $S \perp P \perp Q \perp S$, - 3. PX^*QXP is invertible in $P\mathcal{M}(\mathcal{A}\otimes\mathcal{K})P$ - 4. $QXPX^*Q$ is invertible in $QM(A \otimes \mathcal{K})Q$, - 5. 0 is an isolated point of the spectrum of XPX^* , - 6. R is the left support projection of XP, - 7. ||PR|| < 1, - 8. $||SR|| < \varepsilon$, and - 9. $\Gamma(S)\Gamma(R) = 0$. - 10. if $Q' \in \mathcal{M}(\mathcal{A} \otimes \mathcal{K})$ is a projection such that $Q' \sim 1_{\mathcal{M}(\mathcal{A} \otimes \mathcal{K})}$ and $Q' \perp P$, and if $V \in \mathcal{M}(\mathcal{A} \otimes \mathcal{K})$ is a partial isometry such that $V^*V = Q'$ and $VV^* = R$ then $(P+V)^*(P+V)$ is an invertible element of $(P+Q')\mathcal{M}(\mathcal{A} \otimes \mathcal{K})(P+Q')$. *Proof.* Apply Lemma 4.1 to X to get a number $||X||^2 > \alpha > 0$. Since $\mathscr{A}\otimes\mathscr{K}$ is separable, let $b\in(\mathscr{A}\otimes\mathscr{K})_+$ be a strictly postive element with $\|b\|=1$. Let $\{\varepsilon_n\}_{n=1}^{\infty}$ be a strictly decreasing sequence in (0, 1/100) such that $\sum_{n=1}^{\infty} \varepsilon_n < 1/100$. We now construct two sequences $\{p_n\}_{n=1}^{\infty}$ and $\{q_n\}_{n=1}^{\infty}$ of projections in $\mathscr{A} \otimes \mathscr{K}$ and a sequence $\{\alpha_n\}_{n=1}^{\infty}$ of numbers in $(0,\infty)$ such that the following statements hold: - 1. $p_m \perp p_n$ and $q_m \perp q_n$ for all $m \neq n$. - 2. $p_m \perp q_n$ for all m, n. - 3. $\sum_{n=1}^{\infty} p_n$ and $\sum_{n=1}^{\infty} q_n$ both converge in the strict topology on $\mathcal{M}(\mathcal{A} \otimes \mathcal{K})$. In particular, for all $n \ge 2$, $p_n b$ and $q_n b$ are both within ε_n of 0. - 4. $||X||^2 \geqslant \alpha_n \geqslant \alpha/2$ for all n. - 5. $||p_n X^* q_n X p_n \alpha_n p_n|| < \varepsilon_n$ for all n. - 6. $||q_n X p_n X^* q_n \alpha_n q_n|| < \varepsilon_n$ for all n. - 7. $||q_m X p_n|| < 1/1000^{m+n}$ for all $m \neq n$. The construction is by induction on n. Basis step n=1. Apply Lemma 4.1 to get projections $p_1,q_1\in\mathscr{A}\otimes\mathscr{K}$ and $\alpha_1\geqslant\alpha$ so that - (a) $p_1 \perp p_2$, and - (b) $||p_1X^*q_1Xp_1 \alpha_1p_1||, ||q_1Xp_1X^*q_1 \alpha_1q_1|| < \varepsilon_1$. We denote the above statements by "(*)". *Induction step.* Suppose that $p_1, p_2, ..., p_n, q_1, q_2, ..., q_n, \alpha_1, \alpha_2, ..., \alpha_n$ have been constructed. We now construct $p_{n+1}, q_{n+1}, \alpha_{n+1}$. Choose $\delta_1 > 0$ so that for any C*-algebra $\mathscr C$, if $r_1, r_2, r_3 \in \mathscr C$ are projections such that $r_1 \perp r_2$ and $||r_1r_3||, ||r_2r_3|| < \delta_1$, then there exist projections $r'_1, r'_2 \in \mathscr C$ such that $r'_i \sim r_j$ $(j=1,2), r_3 \perp r'_1 \perp r'_2 \perp r_3$, and $$||r'_j - r_j|| < \min\left\{\frac{\varepsilon_{n+1}}{1000(||X|| + ||X||^2 + 1)}, \frac{1}{1000^{2n+3}(||X|| + 1)}\right\} \quad (j = 1, 2).$$ Contracting δ_1 if necessary, we may assume that $\delta_1 < \varepsilon_{n+1}/1000$. By Lemma 4.1, let $p'_{n+1}, q'_{n+1} \in \mathscr{A} \otimes \mathscr{K}$ be orthogonal projections and $\alpha_{n+1} \geqslant \alpha$ such that the following statements are true: i. $$p'_{n+1} \perp q'_{n+1}$$. ii. $$\|p_{n+1}'X^*q_{n+1}'Xp_{n+1}' - \alpha_{n+1}p_{n+1}'\|, \|p_{n+1}'X^*q_{n+1}'Xp_{n+1}' - \alpha_{n+1}p_{n+1}'\| < \varepsilon_{n+1}/1000.$$ iv. $$p'_{n+1}(\sum_{m=1}^{n}(p_m+q_m)), q'_{n+1}(\sum_{m=1}^{n}(p_m+q_m)), p'_{n+1}b$$ and $q'_{n+1}b$ are all within δ_1 of 0. iv.
$$||q_m X p'_{n+1}||, ||q'_{n+1} X p_m|| < 1/1000^{2n+3}$$ for all $m \le n$. We denote the above statements by "(*)". By our choice of δ_1 and by statements (*), we have that there exists projections $p_{n+1},q_{n+1}\in \mathscr{M}(\mathscr{A}\otimes\mathscr{K})$ such that $p_{n+1}\sim p'_{n+1}$, $q_{n+1}\sim q'_{n+1}$, $q_{n+1}\perp (\sum_{m=1}^n (p_m+q_m))\perp p_{n+1}\perp q_{n+1}$, and $$\|p_{n+1} - p_{n+1}'\|, \ \|q_{n+1} - q_{n+1}'\| < \min\left\{\frac{\varepsilon_{n+1}}{1000(\|X\| + \|X\|^2 + 1)}, \frac{1}{1000^{2n+3}(\|X\| + 1)}\right\}.$$ From this and statements (*), we have that 1. $$\|p_{n+1}X^*q_{n+1}Xp_{n+1} - \alpha_{n+1}p_{n+1}\|, \|q_{n+1}Xp_{n+1}X^*q_{n+1} - \alpha_{n+1}q_{n+1}\| < \varepsilon_{n+1},$$ - 2. $p_{n+1}b$ and $q_{n+1}b$ are within ε_{n+1} of 0, and - 3. $||q_m X p_{n+1}||, ||q_{n+1} X p_m|| < 1/1000^{m+n+1}$ for all $m \le n$. This completes the inductive construction. Choose $\delta > 0$ so that if $A, E, E' \in \mathcal{M}(\mathcal{A} \otimes \mathcal{K})$ where (a) A is positive, (b) $||A|| \leq ||X||^2$, (c) E and E' are projections, (d) EAE = A,(e) $A \geqslant (\alpha/10)E$, and (f) $||E'A|| < \delta$, then $||E'E|| < \varepsilon$. Choose $N \ge 1$ so that for all $n \ge N$, $\varepsilon_n < \alpha/100$. Let $\{n(1,k)\}_{k=1}^{\infty}$ and $\{n(2,k)\}_{k=1}^{\infty}$ be two disjoint subsequences of the positive integers greater than or equal to N, $\{N,N+1,...\}$ (so, as sets, $\{n(1,k)\}_{k=1}^{\infty} \cup \{n(2,k)\}_{k=1}^{\infty}$ $\subseteq \{N,N+1,N+2,...\}$ and $\{n(1,k)\}_{k=1}^{\infty} \cap \{n(2,k)\}_{k=1}^{\infty} = \emptyset$), such that $$\sum_{k \neq l} \|q_{n(1,k)} X p_{n(1,l)}\| < \frac{\min\{\sqrt{(\alpha/100)}, \alpha/100\}}{(100(\|X\|+1))}$$ (4.1) and $$\sum_{1 \leq k,l < \infty} \|q_{n(2,k)} X p_{n(1,l)}\| < \delta/(100(1 + \|X\|)). \tag{4.2}$$ Let $P,Q,S\in\mathcal{M}(\mathscr{A}\otimes\mathscr{K})$ be projections given by $P=_{df}\sum_{k=1}^{\infty}p_{n(1,k)},\ Q=_{df}\sum_{k=1}^{\infty}q_{n(1,k)}$, and $S=_{df}\sum_{k=1}^{\infty}q_{n(2,k)}$ where the sums converge strictly on $\mathscr{M}(\mathscr{A}\otimes\mathscr{K})$. From statements (*) and the definitions of P,Q,S, it follows immediately that $Q\perp P\perp S\perp Q,\ P\sim Q\sim S\sim 1_{\mathscr{M}(\mathscr{A}\otimes\mathscr{K})},\ PX^*QXP$ is invertible in $P\mathscr{M}(\mathscr{A}\otimes\mathscr{K})P$, and $OXPX^*O$ is invertible in $O\mathscr{M}(\mathscr{A}\otimes\mathscr{K})O$. Hence, by Lemma 4.2, (i.) either XPX^* is invertible (in $\mathcal{M}(\mathscr{A}\otimes\mathscr{K})$) or 0 is an isolated point in the spectrum of XPX^* , (ii.) the support projection of XPX^* , say R, is an element of $\mathcal{M}(\mathscr{A}\otimes\mathscr{K})$, (iii.) $\|PR\|<1$, and (iv.) if $Q'\in\mathcal{M}(\mathscr{A}\otimes\mathscr{K})$ is a projection with $Q'\sim 1$ and $Q'\perp P$, and if $V\in\mathcal{M}(\mathscr{A}\otimes\mathscr{K})$ is a partial isometry with initial projection Q' and range projection R, then $(P+V)^*(P+V)$ is an invertible element of $(P+Q')\mathcal{M}(\mathscr{A}\otimes\mathscr{K})(P+Q')$. Moreover, by the definitions of P,Q and by equation (4.1), $PX^*QXP \geqslant (\alpha/10)P$. Hence, since $PX^*XP \geqslant PX^*QXP$, we have that $PX^*XP \geqslant (\alpha/10)P$. Hence, it follows that $XPX^* \geqslant (\alpha/10)R$. (Recall that $R \in \mathcal{M}(\mathcal{A} \otimes \mathcal{H})$ is the support projection of XPX^* .) But also, by equation (4.2) and by the definitions of P and S, $||SXPX^*|| < \delta$. Hence, by the definition of δ , we must have that $||SR|| < \varepsilon$. And this implies that $R \neq 1$; so 0 is an isolated point in the spectrum of XPX^* . Finally, since $\sum_{k\geqslant K,1\leqslant l<\infty}\|q_{n(2,k)}Xp_{n(1,l)}X^*\|\to 0$ as $K\to\infty$ (and since XPX^* is invertible in $R\mathcal{M}(\mathscr{A}\otimes\mathscr{K})R$), it follows that $\Gamma(S)\Gamma(R)=0$. \square LEMMA 4.4. Let \mathscr{B} be a separable stable C^* -algebra, and let $\Gamma: \mathscr{M}(\mathscr{B}) \to \mathscr{M}(\mathscr{B})/\mathscr{B}$ be the natural quotient map. Let $X \in \mathcal{M}(\mathcal{B})$ be an operator. Suppose that $P,Q,R,S \in \mathcal{M}(\mathcal{B})$ are projections such that - 1. $P \sim Q \sim S \sim 1_{\mathcal{M}(\mathcal{A} \otimes \mathcal{K})}$ - 2. $S \perp P \perp Q \perp S$, - 3. PX^*QXP is invertible in $P\mathcal{M}(\mathcal{A}\otimes\mathcal{K})P$ - 4. $QXPX^*Q$ is invertible in $Q\mathcal{M}(\mathcal{A}\otimes\mathcal{K})Q$, - 5. 0 is an isolated point of the spectrum of XPX^* , - 6. R is the left support projection of XP, - 7. ||PR|| < 1, - 8. ||SR|| < 1/10, - 9. $\Gamma(S)\Gamma(R) = 0$, and - 10. if $Q' \in \mathcal{M}(\mathcal{A} \otimes \mathcal{K})$ is a projection such that $Q' \sim 1_{\mathcal{M}(\mathcal{A} \otimes \mathcal{K})}$ and $Q' \perp P$, and if $V \in \mathcal{M}(\mathcal{A} \otimes \mathcal{K})$ is a partial isometry such that $V^*V = Q'$ and $VV^* = R$ then $(P+V)^*(P+V)$ is an invertible element of $(P+Q')\mathcal{M}(\mathcal{A} \otimes \mathcal{K})(P+Q')$. Then X is similar to an operator with property (π) in $\mathcal{M}(\mathcal{B})$. *Proof.* Now since PX^*QXP is invertible in $P\mathcal{M}(\mathcal{B})P$ and $0 \le PX^*QXP \le PX^*XP$, PX^*XP is invertible in $P\mathcal{M}(\mathcal{B})P$. Hence, $R \sim P$ ($\sim 1_{\mathcal{M}(\mathcal{B})}$) in $\mathcal{M}(\mathcal{B})$. Since $Q \sim 1_{\mathcal{M}(\mathscr{A} \otimes \mathscr{K})}$, let $Q', Q'' \in \mathcal{M}(\mathscr{A} \otimes \mathscr{K})$ be orthogonal projections such that $Q' \sim Q'' \sim 1_{\mathcal{M}(\mathscr{A} \otimes \mathscr{K})}$ and Q = Q' + Q''. Let $V \in \mathcal{M}(\mathcal{B})$ be a partial isometry such that $V^*V = Q'$ and $VV^* = R$. By hypothesis, $(P+V)^*(P+V)$ is an invertible element of $(P+Q')\mathcal{M}(\mathcal{B})(P+Q')$. Hence, either $(P+V)(P+V)^*$ is invertible or 0 is an isolated point in the spectrum of $(P+V)(P+V)^*$. Hence, let $T \in \mathcal{M}(\mathcal{A} \otimes \mathcal{K})$ be the support projection of $(P+V)(P+V)^*$. Hence, $(P+V)(P+V)^*$ is an invertible element of $T\mathcal{M}(\mathcal{A} \otimes \mathcal{K})T$. Since $S \sim 1_{\mathcal{M}(\mathscr{A} \otimes \mathscr{K})}$, $S \perp P$ and $\Gamma(S)\Gamma(R) = 0$, $\Gamma(S) \sim 1_{\mathcal{M}(\mathscr{A} \otimes \mathscr{K})/(\mathscr{A} \otimes \mathscr{K})}$ and $\Gamma(S) \perp \Gamma(T)$. Hence, $1_{\mathcal{M}(\mathscr{A} \otimes \mathscr{K})/(\mathscr{A} \otimes \mathscr{K})} \leq 1_{\mathcal{M}(\mathscr{A} \otimes \mathscr{K})/(\mathscr{A} \otimes \mathscr{K})} - \Gamma(T)$. Hence, since $\mathscr{A} \otimes \mathscr{K}$ is stable, $1_{\mathcal{M}(\mathscr{A} \otimes \mathscr{K})} - T \sim 1_{\mathcal{M}(\mathscr{A} \otimes \mathscr{K})}$. Also, since $\mathscr{A} \otimes \mathscr{K}$ is stable and since $Q'' \leq 1_{\mathcal{M}(\mathscr{A} \otimes \mathscr{K})} - (P + Q')$, $Q''' = d_f 1_{\mathcal{M}(\mathscr{A} \otimes \mathscr{K})} - (P + Q') \sim 1_{\mathcal{M}(\mathscr{A} \otimes \mathscr{K})}$. Hence, let $W \in \mathcal{M}(\mathscr{A} \otimes \mathscr{K})$ be a partial isometry with $W^*W = Q'''$ and $WW^* = 1_{\mathcal{M}(\mathscr{A} \otimes \mathscr{K})} - T$. Let $Y \in \mathcal{M}(\mathcal{A} \otimes \mathcal{K})$ be the invertible element that is given by $Y =_{df} P + V + W$. Therefore, $Y^{-1}XYP = Y^{-1}XP = Y^{-1}RXP = V^*RXP = Q'V^*RXP$. Thus, with respect to the decomposition $P + Q' + Q''' = 1_{\mathcal{M}(\mathcal{A} \otimes \mathcal{K})}$, $Y^{-1}XY$ has the form $$Y^{-1}XY = \begin{bmatrix} 0 & * & * \\ Z & * & * \\ 0 & * & * \end{bmatrix},$$ where $Z =_{df} Q'V^*RXP$. Moreover, Z^*Z and ZZ^* are invertible elements of $P\mathcal{M}(\mathscr{A}\otimes\mathscr{K})P$ and $Q'\mathcal{M}(\mathscr{A}\otimes\mathscr{K})Q'$ respectively. Let Z=U|Z| be the Polar Decomposition of Z. Then |Z| is an invertible element of $P\mathcal{M}(\mathscr{A}\otimes\mathscr{K})P$, and the partial isometry U is an element of $\mathcal{M}(\mathscr{A}\otimes\mathscr{K})$. Hence, let $Z_1\in P\mathcal{M}(\mathscr{A}\otimes\mathscr{K})P$ be the inverse of |Z| in $P\mathcal{M}(\mathscr{A}\otimes\mathscr{K})P$. Let $Y_1\in\mathcal{M}(\mathscr{A}\otimes\mathscr{K})$ be the invertible element given by $Y_1=Z_1+(1_{\mathcal{M}(\mathscr{A}\otimes\mathscr{K})}-P)$. Then, with respect to the decomposition P + Q' + Q''' = 1, $Y_1^{-1}Y^{-1}XYY_1$ has the form $$Y_1^{-1}Y^{-1}XYY_1 = \begin{bmatrix} 0 & * & * \\ U & * & * \\ 0 & * & * \end{bmatrix}.$$ Note that $U^*U = P$ and $UU^* = Q'$. From this and the fact that $\mathcal{M}(\mathcal{A} \otimes \mathcal{K}) \cong P\mathcal{M}(\mathcal{A} \otimes \mathcal{K})P$, we can construct a *-isomorphism $\Phi: \mathcal{M}(\mathcal{A} \otimes \mathcal{K}) \to \mathbb{M}_3 \otimes \mathcal{M}(\mathcal{A} \otimes \mathcal{K})$ which witnesses that $Y_1^{-1}Y^{-1}XYY_1$ is an operator with property (π) . (E.g., see the argument in Lemma 3.9.) \square THEOREM 4.5. Let \mathscr{A} be a unital separable simple purely infinite C^* -algebra. Let $X \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$. Then X is a commutator if and only if X is either compact or nonthin, i.e., X does not have the form $\alpha 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})} + x$ where $\alpha \in \mathbb{C} - \{0\}$ and $x \in \mathscr{A} \otimes \mathscr{K}$. *Proof.* Note that since \mathscr{A} is simple purely infinite, the only proper nontrivial ideal of $\mathscr{M}(\mathscr{A}\otimes\mathscr{K})$ is $\mathscr{A}\otimes\mathscr{K}$. (E.g., see [35] Theorem 3.3 or [29].) The "only if" direction is straightforward. (If $\alpha \in \mathbb{C} - \{0\}$ and $x \in \mathcal{A} \otimes \mathcal{K}$ then $\Gamma(\alpha 1_{\mathcal{M}(\mathcal{A} \otimes \mathcal{K})} + x) = \alpha 1_{\mathcal{M}(\mathcal{A} \otimes \mathcal{K})/(\mathcal{A} \otimes \mathcal{K})}$; and no nonzero scalar multiple of the unit, of a
unital C*-algebra, can be a commutator.) We now prove the "if" direction. If $X \in \mathcal{A} \otimes \mathcal{K}$, then, by Corollary 2.3, X is a commutator. Hence, it suffices to prove that for all $X \in \mathcal{M}(\mathscr{A} \otimes \mathscr{K})$ such that $\Gamma(X)$ is not a scalar multiple of $1_{\mathcal{M}(\mathscr{A} \otimes \mathscr{K})/(\mathscr{A} \otimes \mathscr{K})}$, X is a commutator. Let $\mathfrak O$ consist of all such elements X. $\mathfrak O$ is an (norm topology) open subset of $\mathscr M(\mathscr A\otimes\mathscr K)$. (Since the set of all $Y\in\mathscr M(\mathscr A\otimes\mathscr K)$ with $\Gamma(Y)$ being a scalar multiple of the unit is closed.) Clearly, $\mathfrak D$ is closed under multiplication by nonzero scalars. It is also clear that for all projections $P,Q\in \mathcal M(\mathscr A\otimes \mathscr K)$ such that $P\perp Q,\ P\sim Q\sim 1_{\mathcal M(\mathscr A\otimes \mathscr K)}$ and $P+Q=1_{\mathcal M(\mathscr A\otimes \mathscr K)},\ P+2Q\in \mathfrak D$. Moreover, note that since $\mathscr A\otimes \mathscr K$ is stable, there exists a unital *-embedding of the Cuntz algebra O_2 into $\mathcal M(\mathscr A\otimes \mathscr K)$. By Lemma 4.3, Lemma 4.4 and Lemma 3.9, every element of $\mathfrak O$ is similar to an operator with both properties (π) and (π_0) . Hence, by Lemma 3.10, for all $X_1, X_2 \in \mathfrak O$, some generalized sum of X_1 and X_2 is a commutator. Hence, by Proposition 3.7, for every $X \in \mathfrak{D}$, X is a commutator. \square # 5. The stably finite case: Part I At some point, in the sections to follow, we will use the notion of Cuntz subequivalence. For a C*-algebra $\mathscr C$ and positive elements $a,b\in\mathscr C_+$, we say that a is Cuntz subequivalent to b (" $a \leq b$ ") if there exists a sequence $\{x_n\}$ in $\mathscr C$ such that $x_nbx_n^* \to a$. If a and b are projections, then a is Cuntz subequivalent to b if and only if a is Murray-von Neumann subequivalent to b. PROPOSITION 5.1. Suppose that \mathscr{A} is a unital separable simple C^* -algebra with stable rank one and in class \Re . Suppose that $P,Q \in \mathcal{M}(\mathcal{A} \otimes \mathcal{K}) - \mathcal{A} \otimes \mathcal{K}$ are two projections such that $\tau(P) = \tau(Q)$ for all $\tau \in T(A)$. Then $P \sim Q$ in $\mathcal{M}(\mathcal{A} \otimes \mathcal{K})$. *Proof.* This is [19] Proposition 4.2. We note that the proof works even without the finiteness assumption. \Box PROPOSITION 5.2. Suppose that \mathscr{A} is a unital separable simple stably finite C^* -algebra in class \Re . Suppose, in addition, that for every bounded strictly positive affine lower semicontinuous function $f: T(\mathscr{A}) \to (0, \infty)$, there exists a nonzero $a \in (\mathscr{A} \otimes \mathscr{K})_+$ which is not Cuntz equivalent to a projection such that $d_{\tau}(a) = f(\tau)$ for all $\tau \in T(\mathscr{A})$. (E.g., \mathcal{A} can be unital simple exact finite and \mathcal{Z} -stable.) Then for every strictly positive, affine, lower semicontinuous function $f: T(A) \to (0,\infty]$, there exists a projection $P \in \mathcal{M}(\mathcal{A} \otimes \mathcal{K}) - (\mathcal{A} \otimes \mathcal{K})$ such that $$\tau(P) = f(\tau)$$ *for all* $\tau \in T(\mathscr{A})$ *Proof.* This is [19] Corollary 4.6. \square DEFINITION 5.3. Let \mathscr{B} be a separable, nonunital, nonelementary simple C*-algebra, and let $\{e_n\}_{n=1}^{\infty}$ be an approximate unit for \mathscr{B} . Let \mathcal{I}_{min} be the closure of the set $$\{X \in \mathcal{M}(\mathcal{B}) : \forall a \in \mathcal{B}_+ - \{0\}, \exists n_0 \text{ s.t. } (e_m - e_n) X^* X (e_m - e_n) \leq a, \forall m > n \geqslant n_0\}.$$ By [17], \mathscr{I}_{min} is independent of choice of approximate unit $\{e_n\}_{n=1}^{\infty}$, and also \mathscr{I}_{min} is the unique smallest C*-ideal in $\mathscr{M}(\mathscr{B})$ which properly contains \mathscr{B} (see [17] Lemma 2.1, Remark 2.2, Lemma 2.4 and Remark 2.9). LEMMA 5.4. Let \mathscr{A} be a unital simple separable stably finite C^* -algebra in class \mathfrak{R} . Let $\mathscr{I}_{min} \subseteq \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ be the C^* -ideal defined in Definition in 5.3. Let $a,b \in (\mathscr{I}_{min})_+ - (A \otimes \mathscr{K})$ such that $||b|| \leq 1$ and b induces a continuous function on T(A). Suppose that $$\inf\{\tau(b)-d_{\tau}(a):\tau\in T(A)\}>0.$$ Then $a \prec b$. *Proof.* This is [19] Lemma 4.1. \square DEFINITION 5.5. Let $\mathscr C$ be a C*-algebra. $\mathscr C$ is said to have the *Hjelmborg-Rordam Property* if for every $a \in \mathscr C_+$, and for every $\varepsilon > 0$, there exists $b \in \mathscr C_+$ with $\|(a-\varepsilon)_+b\| < \varepsilon$ and $(a-\varepsilon)_+ \preceq b$. If $\mathscr C$ is a separable C*-algebra, then $\mathscr C$ has the Hjelmborg–Rordam Property if and only if $\mathscr C$ is stable (see [13] and [30]). LEMMA 5.6. Let \mathscr{A} be a unital separable simple C^* -algebra with stable rank one and in class \Re . Let $A \in \mathcal{M}(\mathcal{A} \otimes \mathcal{K})_+$ be a full positive element, and let $\mathcal{I}_{min} \subseteq \mathcal{M}(\mathcal{A} \otimes \mathcal{K})$ be the C^* -ideal defined in Definition 5.3. Then $\overline{A\mathcal{I}_{min}A}$ has the Hjelmborg–Rordam Property. *Proof.* We may assume that ||A|| = 1. Let $a \in (\overline{A\mathscr{I}_{min}A})_+ - (\mathscr{A} \otimes \mathscr{K})$ and let $\varepsilon > 0$ be given. Contracting ε if necessary, we may assume that $\varepsilon < 1/10$ and $||a|| \le 1$. Since $a \in \mathscr{I}_{min}$, $L =_{df} \sup_{\tau \in T(\mathscr{A})} d_{\tau}((a - \varepsilon/100)_{+}) < \infty$. Choose $N\geqslant 1$ and $\delta>0$ so that $(A-\delta)_+^{1/N}(a-\varepsilon/100)_+, \ (a-\varepsilon/100)_+(A-\varepsilon/100)_+$ δ)₊^{1/N} and $(A - \delta)$ ₊^{1/N} $(a - \varepsilon/100)_+ (A - \delta)$ ₊^{1/N} are all within $\varepsilon/100$ of $(a - \varepsilon/100)_+$. Contracting $\delta > 0$ if necessary, we may assume that $\delta < \min\{\varepsilon/100, 1/100\}$. Further contracting $\delta > 0$ if necessary, we may assume that $(A - \delta)_{\perp}$ is a full element of $\mathcal{M}(\mathcal{A} \otimes \mathcal{K})$. Let $h_1: [0,1] \rightarrow [0,1]$ be the unique continuous function which is given by $$h_1(s) \begin{cases} = 1 & s \in [\varepsilon/100, 1] \\ = 0 & [0, \varepsilon/1000] \\ \text{linear} & \text{on } [\varepsilon/1000, \varepsilon/100]. \end{cases}$$ Let $a' =_{df} h_1((A - \delta)_+^{1/N}(a - \varepsilon/100)_+(A - \delta)_+^{1/N}) \in \mathscr{I}_{min}$. Hence, $a'(A - \delta)_+^{1/N}(a - \varepsilon/100)_+(A - \delta)_+^{1/N}$ and $(A - \delta)_+^{1/N}(a - \varepsilon/100)_+(A - \delta)_+^{1/N}$ δ)₊^{1/N} a' are both within ϵ /100 of $(A - \delta)$ ₊^{1/N} $(a - \epsilon/100)$ ₊ $(A - \delta)$ ₊^{1/N}. Hence, $a'(a - \epsilon/100)$ ₊ $(a ₊($\varepsilon/100$)₊ and $(a-\varepsilon/100)_+a'$ are both within $3\varepsilon/100$ of $(a-\varepsilon/100)_+$. Let $h_2: [0,1] \to [0,1]$ be the unique continuous function such that $$h_2(s) \begin{cases} = 1 & s \in [\delta/10, 1] \\ = 0 & s = 0 \\ \text{linear} & \text{on } [0, \delta/10]. \end{cases}$$ Then $h_2(A)a' = a'$. Moreover, $h_2(A)$ is a full positive element of $\mathcal{M}(\mathcal{A} \otimes \mathcal{K})$, and $\overline{h_2(A)\mathcal{I}_{min}h_2(A)} =$ $\overline{A\mathscr{I}_{min}A}$. Since any ideal of $\mathcal{M}(\mathcal{A} \otimes \mathcal{K})$, that properly contains $\mathcal{A} \otimes \mathcal{K}$, must contain \mathscr{I}_{min} , $h_2(A) - a'$ is a full positive element of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ ([17] Remark 2.9). Hence, since $\mathscr{A} \otimes \mathscr{K}$ has the corona factorization property ([24] Proposition 2.5), there exists $X \in \mathcal{M}(\mathscr{A} \otimes \mathscr{K})$ such that $X(h_2(A) - a')X^* = 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}$. From this and Proposition 5.2, there exists a projection $p \in \mathscr{I}_{min} - (\mathscr{A} \otimes \mathscr{K})$ such that $p \in \operatorname{Her}(h_2(A) - a')$ and $\tau(p) \geqslant L+1$ for all $\tau \in T(\mathscr{A})$. Note that since $p \in \mathcal{I}_{min}$ and since p is a projection, p induces a continuous function on $T(\mathscr{A})$. Hence, by Lemma 5.4, $(a-\varepsilon)_+ \leq p$. Finally, since pa' = 0, $||p(a-\varepsilon)_+|| < \varepsilon$. Since a was arbitrary, $\overline{A\mathcal{I}_{min}A}$ has the Hjelmborg–Rordam Property. \square Note that though \mathcal{I}_{min} (as above) has the Hjelmborg-Rordam Property, it need not be stable, since \mathcal{I}_{min} is not separable. LEMMA 5.7. Let \mathscr{B} be a separable stable C^* -algebra and let $\widetilde{\mathscr{B}}$ be the unitization of \mathcal{B} . Then $\mathscr{B} \subseteq \overline{GL(\tilde{\mathscr{B}})}$, where the closure is in the norm topology. *Proof.* This is [1] Lemma 4.3.2. \square LEMMA 5.8. Let \mathscr{A} be a unital separable simple C^* -algebra with stable rank one and in class \mathfrak{R} . Let $A \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})_+$ be a full positive element. For every $\varepsilon > 0$, for every $\alpha > 0$ and for every finite subset $\mathscr{F} \subset \overline{A\mathscr{I}_{min}A}$, there exists a projection $p \in \overline{A\mathscr{I}_{min}A} - (\mathscr{A} \otimes \mathscr{K})$ such that $\tau(p) \geqslant \alpha$ for all $\tau \in T(\mathscr{A})$, and $\|px - x\|, \|xp - x\| < \varepsilon$ for all $x \in \mathscr{F}$. In particular, $\overline{A\mathcal{I}_{min}A}$ has an (netwise) approximate unit consisting of projections. *Proof.* We may assume that \mathscr{F} contains a nonzero element. Let $a \in (\overline{A\mathscr{I}_{min}A})_+$ be given by $a =_{df} \sum_{x \in \mathscr{F}} (x^*x + xx^*) / \|\sum_{x \in \mathscr{F}} (x^*x + xx^*)\|$. Find $\delta > 0$ so
that if $R \in \mathcal{M}(\mathcal{A} \otimes \mathcal{K})$ is a projection with $||R(a - \delta)_+ - (a - \delta)_+|| < \delta$ then $||Rx - x||, ||xR - x|| < \varepsilon$ for all $x \in \mathcal{F}$. Contracting δ if necessary, we may assume that $\delta < \min\{1/100, \varepsilon/100\}$. Since $a \in \mathscr{I}_{min}$, $L =_{df} \sup_{\tau \in T(\mathscr{A})} d_{\tau}((a - \delta/100)_{+}) < \infty$. Since A is a full positive element of $\mathcal{M}(\mathscr{A} \otimes \mathscr{K})$ and since $\mathscr{A} \otimes \mathscr{K}$ has the corona factorization property ([24] Proposition 2.5), there exists $X \in \mathcal{M}(\mathscr{A} \otimes \mathscr{K})$ such that $XAX^* = 1_{\mathscr{M}(\mathscr{A} \otimes \mathscr{K})}$. From this and Proposition 5.2, let $q \in \overline{A\mathscr{I}_{min}A} - (\mathscr{A} \otimes \mathscr{K})$ be a projection such that $\tau(q) > \max\{L+10, \alpha+10\}$ for all $\tau \in T(\mathscr{A})$. Hence, by Lemma 5.4, $(a - \delta/100)_+ \leq q$. Hence, there exists $y \in \overline{A\mathscr{I}_{min}A}$ such that $(a - \delta/10)_+ = y^*y$ and $yy^* \leq q$. Let y = v|y| be the Polar Decomposition of y. Hence, $(a - \delta/10)_+ = |y|^2$ and $v|y|^2v^* \leq q$. Since $\overline{A\mathscr{I}_{min}A}$ has the Hjelmborg–Rordam Property, there exists a separable C*-subalgebra $\mathscr{D}\subset \overline{A\mathscr{I}_{min}A}$ such that $\{(a-\delta/10)_+,y,q\}\subset \mathscr{D} \text{ and } \mathscr{D} \text{ has the Hjelmborg-Rordam Property. Hence, since } \mathscr{D} \text{ is separable, } \mathscr{D} \text{ is a stable C*-algebra.}$ Hence, by Lemma 5.7, $y \in \overline{GL(\tilde{\mathscr{D}})}$, where $\tilde{\mathscr{D}}$ is the unitization of \mathscr{D} . Hence, by [26] Theorem 5, let $u \in \tilde{\mathscr{D}}$ ($\subset \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$) be a unitary such that $u(|y|^2 - \delta/10)_+ u^* = v(|y|^2 - \delta/10)_+ v^* \leqslant q$. Hence, $(a-\delta/5)_+=(|y|^2-\delta/10)_+\leqslant u^*qu$, and $p=_{df}u^*qu$ is a projection in $\overline{A\mathscr{I}_{min}A}$ such that $\tau(p)\geqslant \alpha$ for all $\tau\in T(\mathscr{A})$. In particular, $p(a-\delta/5)_+=(a-\delta/5)_+$. So $p(a-\delta)_+=(a-\delta)_+$. Hence, by our choice of δ , $\|px-x\|, \|xp-x\|<\varepsilon$ for all $x\in\mathscr{F}$. \square Lemma 5.9. Let \mathscr{A} be a unital separable simple C^* -algebra with stable rank one and in class \mathfrak{R} . Let $x \in \mathcal{I}_{min}$ be given. Then there exists a sequence $\{p_n\}_{n=1}^{\infty}$ of pairwise orthogonal projections in $\mathscr{I}_{min}-(\mathscr{A}\otimes\mathscr{K})$ such that - 1. $\tau(p_n) \geqslant 10$ for all $n \geqslant 1$, - 2. the sum $\sum_{n=1}^{\infty} p_n$ converges in the strict topology on $\mathcal{M}(\mathcal{A} \otimes \mathcal{K})$, and - 3. $\|(\sum_{n=1}^N p_n)x x\|, \|x(\sum_{n=1}^N p_n) x\|, \|(\sum_{n=1}^N p_n)x(\sum_{n=1}^N p_n) x\| \to 0 \text{ as } N \to \infty.$ Sketch of proof. The proof is an easy induction argument, repeatedly using Lemma 5.8. (In particular, we will use Lemma 5.8 (many times) to find an appropriate increasing sequence $\{r_n\}$ of projections and then take $p_n =_{df} r_{n+1} - r_n$ for all n. To ensure strict convergence of $\sum p_n$, we will need the finite sets \mathscr{F} (notation as in Lemma 5.8) to contain a fixed strictly positive element of $\mathscr{A} \otimes \mathscr{K}$. Also, at some point, we need to use the following perturbation result: For every $\varepsilon > 0$, there exists a $\delta > 0$ such that if e, e' are projections with $\|ee' - e'\| < \delta$ then there exists a projection $e'' \leqslant e$ with $\|e' - e''\| < \varepsilon$.) \square THEOREM 5.10. Let \mathscr{A} be a unital separable simple C^* -algebra with stable rank one and in class \mathfrak{R} . If $x \in \mathcal{I}_{min}$ then x is a commutator in $\mathcal{M}(\mathcal{A} \otimes \mathcal{K})$. *Sketch of proof.* By Lemma 5.9, let $\{r_n\}_{n=1}^{\infty}$ be a sequence of pairwise orthogonal projections in $\mathcal{I}_{min} - (\mathscr{A} \otimes \mathscr{K})$ such that - 1. $\tau(r_n) \geqslant 10$ for all $n \geqslant 1$, - 2. the sum $\sum_{n=1}^{\infty} r_n$ converges in the strict topology on $\mathcal{M}(\mathscr{A} \otimes \mathscr{K})$, and 3. $$\|(\sum_{n=1}^{N} r_n)x - x\|, \|x(\sum_{n=1}^{N} r_n) - x\|, \|(\sum_{n=1}^{N} r_n)x(\sum_{n=1}^{N} r_n) - x\| \to \infty$$ as $N \to \infty$. Claim: There exists a sequence $\{Q_n\}_{n=1}^{\infty}$ of pairwise orthogonal projections in $\mathcal{M}(\mathcal{A}\otimes\mathcal{K})$ such that - (a) $Q_n \sim 1_{\mathcal{M}(\mathcal{A} \otimes \mathcal{K})}$ for all n, - (b) $\sum_{n=1}^{\infty} Q_n$ converges in the strict topology on $\mathcal{M}(\mathscr{A} \otimes \mathscr{K})$, - (c) $(\sum_{n=1}^{\infty} Q_n)x = x(\sum_{n=1}^{\infty} Q_n) = x$, and - (d) $\sum_{1 \leq m,n < \infty} ||Q_m x Q_n|| < \infty$. Sketch of proof of Claim The proof is exactly the same as that of Corollary 2.3, except that for all $j \ge 1$, the projection $1_{\mathscr{M}(\mathscr{B})} \otimes e_{j,j}$ (notation as in the proof of Corollary 2.3) is replaced with r_j (notation as in this proof). Moreover, for all $n \ge 1$, $P_{\mathscr{F}_n}$ (notation as in the proof of Corollary 2.3) will be replaced with Q_m (notation as in this proof) for some $m \ge 1$. Note that this means that each Q_m will be a strict sum of infinitely many r_j s. End of proof of the Claim. From the Claim and from Lemma 2.2, it follows that x is a commutator of $\mathcal{M}(\mathcal{A} \otimes \mathcal{K})$. \square ## 6. The stably finite case: Part II In this section, we will assume that \mathscr{A} is a unital separable simple C*-algebra with stable rank one, unique tracial state, and in class \Re . As a consequence, \mathscr{I}_{min} (defined in the previous section) is the unique C*-ideal of $\mathscr{M}(\mathscr{A}\otimes\mathscr{K})$ that sits properly between $\mathscr{A}\otimes\mathscr{K}$ and $\mathscr{M}(\mathscr{A}\otimes\mathscr{K})$; i.e., \mathscr{I}_{min} is the unique C*-ideal for which the inclusions $\mathscr{A}\otimes\mathscr{K}\subset\mathscr{I}_{min}\subset\mathscr{M}(\mathscr{A}\otimes\mathscr{K})$ are proper. Moreover, if τ is the unique tracial state of \mathscr{A} then $\mathscr{I}_{min}=\overline{\{X\in\mathscr{M}(\mathscr{A}\otimes\mathscr{K}):\tau(X^*X)<\infty\}}$. (E.g., see [29]; see also [36] Proposition 2.9 or [35] Proposition 3.6.) For the rest of the paper, we let $\Gamma_{\mathscr{I}_{min}}: \mathscr{M}(\mathscr{A} \otimes \mathscr{K}) \to \mathscr{M}(\mathscr{A} \otimes \mathscr{K})/\mathscr{I}_{min}$ be the natural quotient map. LEMMA 6.1. Let \mathscr{A} be a unital separable simple C^* -algebra with stable rank one, unique tracial state τ , and in class \Re . Suppose that $X \in \mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ is such that $\Gamma_{min}(X)$ is not a scalar multiple of the identity. Then there exists an $\alpha > 0$ with $\alpha < \|X\|^2$, where for every $\varepsilon > 0$, for every finite subset $\mathscr{F} \subset \mathscr{I}_{min}$, there exist projections $p, q \in \mathscr{I}_{min} - (\mathscr{A} \otimes \mathscr{K})$ such that - *1.* $\tau(p), \tau(q) \ge 10$, - 2. $p \perp q$, - 3. pa, ap, qa and ap are all within ε of 0, for all $a \in \mathcal{F}$, and - 4. if $x =_{df} qXp$ then there exists $\beta \geqslant \alpha$ with $\beta \leqslant ||X||^2$ and $||x^*x \beta p||, ||xx^* \beta q|| < \varepsilon$. *Proof.* The proof is similar to but more complicated than that of Lemma 4.1. Note that $\mathcal{M}(\mathscr{A} \otimes \mathscr{K})/\mathscr{I}_{min}$ is simple purely infinite and hence has real rank zero (see, for example, [16]). Hence, since $\Gamma_{min}(X)$ is not a scalar multiple of the identity, there exist nonzero orthogonal projections $R, S \in \mathcal{M}(\mathscr{A} \otimes \mathscr{K})/\mathscr{I}_{min}$ such that $R\Gamma_{min}(X)S \neq 0$. Lift R, S to orthogonal positive elements A, $B \in \mathcal{M}(\mathcal{A} \otimes \mathcal{K})$ with norm one (i.e., $A \perp B$, $\Gamma_{min}(A) = R$, $\Gamma_{min}(B) = S$ and ||A|| = ||B|| = 1). Let $\gamma =_{df} ||R\Gamma_{min}(X)S||^2 > 0$. Let $\delta_1 =_{df} \min\{1/100, \gamma/100\}$. Let $h_0: [0,2||X||^2+10] \rightarrow [0,1]$ be the unique continuous function that is given by $$h_0(s) \begin{cases} = 1 & s = \gamma \\ = 0 & s \in [0, \gamma - \delta_1] \cup [\gamma + \delta_1, 2\|X\|^2 + 10] \\ \text{is linear} & \text{on } [\gamma - \delta_1, \gamma] \\ \text{is linear} & \text{on } [\gamma, \gamma + \delta_1]. \end{cases}$$ Note that from the definitions of γ and h_0 , $h_0(AXB^2X^*A)$ is a full positive element of $\mathcal{M}(\mathcal{A} \otimes \mathcal{H})$. Hence, since $\mathcal{A} \otimes \mathcal{H}$ has the corona factorization property, $1_{\mathscr{M}(\mathscr{A}\otimes\mathscr{K})} \preceq h_0(AXB^2X^*A)$ (e.g., see [24] Proposition 2.5). Hence, there exists a projection $Q \in \mathscr{M}(\mathscr{A}\otimes\mathscr{K})$ such that $Q \sim 1_{\mathscr{M}(\mathscr{A}\otimes\mathscr{K})}$ and $Q \in \operatorname{Her}(h_0(AXB^2X^*A))$. It follows, from the definition of h_0 , that $QAXB^2X^*AQ$ is within a distance $\min\{1/100, \gamma/100\}$ of γQ . Hence, $QAXB^2X^*AQ$ is a full positive element of $\mathscr{M}(\mathscr{A}\otimes\mathscr{K})$. But since $Q \in \text{Her}(A)$ and $\Gamma_{min}(A) = R$ is a projection, $\Gamma_{min}(Q) \leqslant R = \Gamma_{min}(A)$. Hence, $\Gamma_{min}(QXB^2X^*Q) = \Gamma_{min}(QAXB^2X^*AQ)$. Hence, QXB^2X^*Q is a full positive element of $\mathcal{M}(\mathcal{A} \otimes \mathcal{K})$. Hence, BX^*QXB is a full positive element of $\mathcal{M}(\mathcal{A} \otimes \mathcal{K})$. Let $\gamma'=_{df}\|\Gamma_{min}(BX^*QXB)\|>0$. Let $\delta_2=_{df}\min\{1/100,\gamma'/100\}$. Let $h_1:[0,2\|X\|^2+10]\to[0,1]$ be the unique continuous
function such that $$h_1(s) \begin{cases} = 1 & s = \gamma' \\ = 0 & s \in [0, \gamma' - \delta_2] \cup [\gamma + \delta_2, 2||X||^2 + 10] \\ \text{is linear} & \text{on } [\gamma - \delta_2, \gamma] \\ \text{is linear} & \text{on } [\gamma, \gamma + \delta_2]. \end{cases}$$ By the definitions of γ' and h_1 , $h_1(BX^*QXB)$ is a full positive element of $\mathcal{M}(\mathscr{A}\otimes\mathscr{K})$. Hence, since $\mathscr{A}\otimes\mathscr{K}$ has the corona factorization property, $1_{\mathscr{M}(\mathscr{A}\otimes\mathscr{K})} \leq h_1(BX^*QXB)$. Hence, there exists a projection $P \in \mathscr{M}(\mathscr{A}\otimes\mathscr{K})$ such that $P \sim 1_{\mathscr{M}(\mathscr{A}\otimes\mathscr{K})}$ and $P \in \operatorname{Her}(h_1(BX^*QXB))$. It follows, from the definition of h_1 , that PBX^*QXBP is within a distance $\min\{1/100,\gamma'/100\}$ of $\gamma'P$. Hence, PBX^*QXBP is a full positive element of $\mathscr{M}(\mathscr{A}\otimes\mathscr{K})$. Since $P \in \operatorname{Her}(B)$ and $\Gamma_{min}(B) = S$ is a projection, $\Gamma_{min}(P) \leq S = \Gamma_{min}(B)$. Hence, $\Gamma_{min}(PX^*QXP) = \Gamma_{min}(PBX^*QXBP)$. Hence, PX^*QXP is a full positive element of $\mathscr{M}(\mathscr{A}\otimes\mathscr{K})$. Hence, $P,Q \in \mathcal{M}(\mathcal{A} \otimes \mathcal{K})$ are full projections (each MvN equivalent to the unit) with $P \perp Q$ such that QXP is a full element of $\mathcal{M}(\mathcal{A} \otimes \mathcal{K})$. Let $$\alpha =_{df} (1/2) \| \Gamma_{min}(QXP) \|^2 > 0$$. Let $\varepsilon > 0$ and a finite subset $\mathscr{F} \subset \mathscr{I}_{min}$ be given. Contracting ε if necessary, we may assume that all elements of \mathscr{F} have norm less than or equal to one. By Lemma 5.8, there exists projections $e \in P\mathscr{I}_{min}P - (\mathscr{A} \otimes \mathscr{K})$ and $f \in Q\mathscr{I}_{min}Q - (\mathscr{A} \otimes \mathscr{K})$ such that ea, ae, eae, fa, af, faf are within $\varepsilon/100$ of Pa, aP, PaP, Qa, aQ, QaQ respectively, for all $a \in \mathscr{F}$. Let $Q' \in \mathcal{QM}(\mathscr{A} \otimes \mathscr{K})Q$ and $P' \in \mathcal{PM}(\mathscr{A} \otimes \mathscr{K})P$ be projections that are given by $Q' =_{df} Q - f$ and $P' =_{df} P - e$. Note that Q', P' are both full projections in $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ and Q'XP' is a full element of $\mathscr{M}(\mathscr{A} \otimes \mathscr{K})$ with $\|\Gamma_{min}(Q'XP')\|^2 = 2\alpha > 0$. Also, $Q' \perp P'$. Choose a number $\delta_3 > 0$ so that for any C*-algebra $\mathscr C$, for all $z \in \mathscr C$ and for every projection $r \in \mathscr C$, if zz^* is within δ_1 of r then z^*rz is within $\varepsilon/(100(2\alpha+1))$ of z^*z . Contracting $\delta_3 > 0$ if necessary, we may assume that $\delta_3 < \varepsilon/100$. Choose $\delta_4>0$ so that for any C*-algebra $\mathscr C$, for all $z\in\mathscr C$, if z^*z is within δ_4 of a projection then zz^* is within $\delta_3/(100(2\alpha+1))$ of a projection in $\mathrm{Her}(zz^*)$. Contracting $\delta_4>0$ if necessary, we may assume that $\delta_4<\varepsilon/100$. Let $h_2: [0, ||X||^2 + 10] \rightarrow [0, 1]$ be the unique continuous function satisfying: $$h_2(s) \begin{cases} = 1 & s \in \left[2\alpha - \frac{\delta_4 \alpha}{1000(\alpha+1)(\|X\|^2+1)}, 2\alpha + \frac{\delta_4 \alpha}{1000(\alpha+1)(\|X\|^2+1)} \right] \\ = 0 & s \in \left[0, 2\alpha - \frac{\delta_4 \alpha}{100(\alpha+1)(\|X\|^2+1)} \right] \cup \left[2\alpha + \frac{\delta_4 \alpha}{100(\alpha+1)(\|X\|^2+1)}, \|X\|^2 + 10 \right] \\ \text{linear} & \text{on } \left[2\alpha - \frac{\delta_4 \alpha}{1000(\alpha+1)(\|X\|^2+1)}, 2\alpha - \frac{\delta_4 \alpha}{1000(\alpha+1)(\|X\|^2+1)} \right] \\ \text{linear} & \text{on } \left[2\alpha + \frac{\delta_4 \alpha}{1000(\alpha+1)(\|X\|^2+1)}, 2\alpha + \frac{\delta_4 \alpha}{100(\alpha+1)(\|X\|^2+1)} \right]. \end{cases}$$ Hence, by the definitions of h_2 and α , $\|\Gamma_{min}(h_2(P'X^*Q'XP'))\| = 1$. Hence, by Lemma 5.8, let $p \in \operatorname{Her}_{\mathscr{I}_{min}}(h_2(P'X^*Q'XP'))$ be a nonzero projection such that $\tau(p) \geqslant 15$ and $\tau(pX^*Q'Xp) = \tau(pP'X^*Q'XP'p) \geqslant 15$. Hence, $p \leqslant P'$ and $pX^*Q'Xp$ is within $\frac{\delta_4\alpha}{100(\alpha+1)}$ of $2\alpha p$. Hence, $(1/(2\alpha))pX^*Q'Xp$ is within $\frac{\delta_4}{200(\alpha+1)}$ of the projection p. Hence, by our choice of δ_4 , $(1/(2\alpha))Q'XpX^*Q'$ is within $\frac{\delta_3}{100(2\alpha+1)}$ of a projection, say $q \in \text{Her}_{\mathcal{I}_{min}}(Q') =_{df} Q' \mathcal{I}_{min}Q'$. So $qXpX^*q$ is within $\varepsilon/100$ of $2\alpha q$. Also, by our choice of δ_3 , $(1/(2\alpha))pX^*qXp$ is wthin $\varepsilon/(100(2\alpha+1))$ of $(1/(2\alpha))pX^*Q'Xp$. Hence, pX^*qXp is within ε of $2\alpha p$. Taking $\beta =_{df} 2\alpha$, we are done. \square LEMMA 6.2. Let \mathscr{A} be a unital separable simple C^* -algebra with stable rank one, unique tracial state, and in class \Re . Suppose that $X \in \mathcal{M}(\mathcal{A} \otimes \mathcal{K})$ is such that $\Gamma_{min}(X)$ is not a scalar multiple of the identity. Then for every $\varepsilon > 0$, there exist projections $P, Q, R, S \in \mathcal{M}(\mathcal{A} \otimes \mathcal{K})$ such that - 1. $P \sim Q \sim S \sim 1_{\mathcal{M}(\mathcal{A} \otimes \mathcal{K})}$, - 2. $S \perp P \perp Q \perp S$, - 3. PX^*QXP is invertible in $P\mathcal{M}(A \otimes \mathcal{K})P$ - 4. $QXPX^*Q$ is invertible in $Q\mathcal{M}(\mathcal{A}\otimes\mathcal{K})Q$, - 5. 0 is an isolated point of the spectrum of XPX*, - 6. R is the left support projection of XP, - 7. ||PR|| < 1, - 8. $||SR|| < \varepsilon$, and - 9. $\Gamma(S)\Gamma(R) = 0$. - 10. if $Q' \in \mathcal{M}(\mathcal{A} \otimes \mathcal{K})$ is a projection such that $Q' \sim 1_{\mathcal{M}(\mathcal{A} \otimes \mathcal{K})}$ and $Q' \perp P$, and if $V \in \mathcal{M}(\mathcal{A} \otimes \mathcal{K})$ is a partial isometry such that $V^*V = Q'$ and $VV^* = R$ then $(P+V)^*(P+V)$ is an invertible element of $(P+Q')\mathcal{M}(\mathcal{A}\otimes\mathcal{K})(P+Q')$. *Proof.* The proof is exactly the same as that of Lemma 4.3, except that we use Lemma 6.1 in place of Lemma 4.1. \Box THEOREM 6.3. Let \mathscr{A} be a unital separable simple C^* -algebra with stable rank one and unique tracial state, such that every quasitrace is a trace, and $\mathscr{A} \otimes \mathscr{K}$ has strict comparison of positive elements. Let $X \in \mathcal{M}(\mathcal{A} \otimes \mathcal{K})$. Then X is a commutator if and only if X does not have the form $\alpha 1_{\mathcal{M}(\mathscr{A} \otimes \mathscr{K})} + x$ where $\alpha \in \mathbb{C} - \{0\}$ and $x \in \mathscr{I}_{min}$. *Proof.* The proof is exactly the same as that of Theorem 4.5, except that Lemma 4.3 and Corollary 2.3 is replaced with Lemma 6.2 and Theorem 5.10 respectively. Also, the map Γ is replaced with Γ_{min} . \square #### REFERENCES - [1] B. BLACKADAR, L. ROBERT, A. TIKUISIS, A. S. TOMS AND W. WINTER, An algebraic approach to the radius of comparison, Trans. Amer. Math. Soc. 364, 7 (2012), 3657–3674. - [2] A. BROWN, P. R. HALMOS AND C. PEARCY, Commutators of operators on a Hilbert space, Canad. J. Math. 17 (1965), 695–708. - [3] A. BROWN AND C. PEARCY, *Structure of commutators of operators*, Annals of Math. Second Series, **82**, 1 (1965), 112–127. - [4] A. BROWN AND C. PEARCY, Commutators in factors of type III, Canad. J. Math. 18 (1965), 1152– 1160. - [5] J. CUNTZ AND G. K. PEDERSEN, Equivalence and traces on C*-algebras, J. Funct. Anal. 33, 2 (1979), 135–164. - [6] D. DOSEV, W. B. JOHNSON AND G. SCHECHTMAN, Commutators on L_p , $1 \le p < \infty$, J. Amer. Math. Soc. 26, 1 (2013), 101–127. - [7] K. DYKEMA AND A. SKRIPKA, On single commutators in II₁ factors, Proc. Amer. Math. Soc. 140, 3 (2012), 931–940. - [8] T. FACK, Finite sums of commutators in C*-algebras, Annales de l'Institut Fourier 32, 1 (1982), 129– 137. - [9] T. FACK AND P. DE LA HARPE, Sommes de commutateurs dans les algebres de von Neumann finies continues, Ann. Inst. Fourier (Grenoble) 30 (1980) 49–73. - [10] H. HALPERN, Commutators in properly infinite von Neumann algebras, Trans. Amer. Math. Soc. 139 (1969), 55–73. - [11] P. DE LA HARPE AND G. SKANDALIS, *Produits finis de commutateurs dans les C*-algebres*, Ann. Inst. Fourier (Grenoble) **34**, 4 (1984), 169–202. - [12] D. A. HERRERO, Approximation of Hilbert space operators I., volume 224 of Pitman Research Notes in Math., Longman Scientific and Technical, Harlow, New York, second edition, 1989. - [13] J. HJELMBORG AND M. RORDAM, On stability of C*-algebras, J. Funct. Anal. 155, 1 (1998), 153–171. - [14] V. KAFTAL, P. W. NG AND S. ZHANG, Commutators and linear spans of projections in certain finite C*-algebras, J. Funct. Anal. 266, 4 (2014), 1883–1912. - [15] D. KUCEROVSKY AND P. W. NG, The corona factorization property and approximate unitary equivalence, Houston J. Math. 32, 2 (2006), 531–550. - [16] D. KUCEROVSKY, P. W. NG AND F. PERERA, Purely infinite corona algebras of simple C*-algebras, Math. Ann. 346, 1 (2010), 23–40. - [17] H. LIN, Simple C*-algebras with continuous scales and simple corona algebras, Proceedings of the American Mathematical Society, 112, 3 (1991), 871–880. - [18] H. LIN, Asymptotic unitary equivalence and classification of simple amenable C*-algebras, Invent. Math. 183, 2 (2011), 385–450. A copy is available at http://arxiv.org/pdf/0806.0636. - [19] H. LIN AND P. W. NG, *The corona algebra of stabilized Jiang–Su algebra*, Preprint. A copy can be found at http://arxiv.org/pdf/1302.4135. - [20] G. LUMER AND M. ROSENBLUM, Linear operator equations, Proc. Amer. Math. Soc. 10 (1959), 32–41. - [21] L. W. MARCOUX, Linear spans of projections in certain C*-algebras, Indiana Univ. Math. J. 51 (2002), 753–771. - [22] L. W. MARCOUX, Sums of small numbers of commutators, J.
Operator Theory 56, 1 (2006), 111-142. - [23] P. W. NG, Commutators in $C_r^*(\mathbb{F}_{\infty})$, Houston J. Math, **40**, 2 (2014), 421–446. - [24] P. W. NG AND W. WINTER, *Nuclear dimension and the corona factorization property*, Int. Math. Res. Not. IMRN (2010), no. 2, 261–278. - [25] C. PEARCY, On commutators of operators on Hilbert space, Proc. Amer. Math. Soc. 10 (1965), 53–59. - [26] G. K. PEDERSEN, Unitary extensions and polar decompositions in a C*-algebra, J. Operator Theory 17 (1987), 357–364. - [27] C. POP, Finite sums of commutators, Proc. Amer. Math. Soc., 130, 10 (2002), 3039–3041. - [28] L. ROBERT, Nuclear dimension and sums of commutators. Indiana Univ. Math. J. (to appear). - [29] M. RORDAM, *Ideals in the multiplier algebra of a stable C*-algebra*, J. Operator Theory **25**, 2 (1991), 283–298. - [30] M. RORDAM, Stable C*-algebras, Advanced Studies in Pure Mathematics 38 "Operator Algebras and Applications". Edited by Hideki Kosaki. (2004), 177–199. - [31] K. Shoda, Einige Satze uber Matrizen, Japanese J. Math. 13 (1936), 361–365. - [32] K. THOMSEN, Finite sums and products of commutators in inductive limit C*-algebras, Ann. Inst. Fourier, Grenoble, 43, 1 (1993), 225–249. - [33] N. E. WEGGE-OLSEN, K-theory and C*-algebras. A friendly approach, Oxford University Press, New York, 1993. - [34] S. ZHANG, A property of purely infinite simple C*-algebras, Proc. Amer. Math. Soc. 109, 3 (1990), 717–720. - [35] S. ZHANG, A riesz decomposition property and ideal structure of multiplier algebras, J. Operator Theory 24, 2 (1990), 209–225. - [36] S. ZHANG, Certain C*-algebras with real rank zero and their corona a multiplier algebrs. Part I, Pacific Journal of Mathematics 155, 1 (1992), 169–197. (Received March 7, 2014) P. W. Ng Department of Mathematics University of Louisiana at Lafayette 217 Maxim Doucet Hall P. O. Box 41010 Lafayette, Louisiana 70504-1010 USA