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(Communicated by V. V. Peller)

Abstract. Let A be a unital separable simple exact C*-algebra. Suppose that either

1. A is purely infinite, or

2. A ⊗K has strict comparison of positive elements and stable rank one, and A has unique tracial
state.

Then for all X ∈ M (A ⊗K ) , X is a commutator if and only if X does not have the
form α1M (A ⊗K ) + x , for some α ∈ C−{0} and for some x belonging to a proper ideal of
M (A ⊗K ) .

1. Introduction

A commutator in a C*-algebra C is an element of the form [x,y] =d f xy− yx for
some x,y ∈ C . The study of commutators in the context of operator theory has a long
history, starting with Quantum Mechanics where the Heisenberg Uncertainty Principle
is implied by a commutator relation. This is one of the original motivations for the
development of “noncommutative mathematics” (operator algebras, “noncommutative
topology”, “noncommutativemeasure theory” etc.) which is a part of today’s functional
analysis.

Another early result is Shoda’s 1940 result that for a field F with characteristic
zero and n � 1, an element [x j,k]∈Mn(F) is a commutator if and only if Tr([x j,k]) =d f

∑n
j=1 x j, j = 0 ([31]).

The questions of when an element of a C*-algebra (or more general ring) is a
sum or limit (of sums) of commutators have been studied by many authors (e.g., [2],
[3], [4], [5], [6], [7], [8], [9], [14], [22], [23], [25], [27], [28], [31], [32] etc.) with far-
reaching connections and implications (e.g., equivalence relations on C*-algebras ([5]),
noncommutative dimension theory in C*-algebras ([28]), operator decomposition ques-
tions ([22], [14]), and determinant theory and the uniqueness theorems of classification
theory ([11], [32], [18]) etc.).

Perhaps one of the most definitive early results is the theorem of Brown and Pearcy,
which showed that for a separable infinite dimensional Hilbert space H and for an
operator T ∈ B(H ) , T is a commutator if and only if T is either a compact or nonthin
operator, i.e., does not have the form α1+S where α ∈ C−{0} and S ∈ K (H ) (the
compact operators on H ). (See [3].)
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Since then, there have been many attempts to generalize the Brown–Pearcy The-
orem to C*-algebras (or even Banach algebras) other than B(H ) . Among the most
definitive generalizations are those for type III and type II∞ factors, where the (corre-
sponding) compact or nonthin operators are exactly the single commutators. (See [4]
and [10]. See also [6].) There are also interesting generalizations where the analogous
operators can be expressed as a sum of at least two commutators. (Examples include
UHF-algebras and type II1 factors ([22]). In fact, the following is an open question of
Fack and de la Harpe (Marcoux): If C is a type II1 factor (resp. UHF-algebra) with
tracial state τ , then is it true that for all x ∈ C , x is a single commutator if and only
if τ(x) = 0? The best result is two commutators, which follows from Marcoux’s Com-
mutator Reduction Argument ([22]). For similar results, see [8], [9], [14], [22], [23],
[27], [28], [32] and the references therein.)

In this paper, we generalize the Brown–Pearcy Theorem to the context of multi-
plier algebras. Recall that for a C*-algebra B , the multiplier algebra M (B) , of B ,
is the largest unital C*-algebra containing B as an essential ideal. For K = K (H )
the compact operators on a Hilbert space H , M (K ) = B(H ) . Moreover, for a C*-
algebra B , M (B) encodes the extension theory of B , and multiplier algebras give the
context for attempts to generalize BDF–Theory. (In fact, an essentially normal operator
T ∈ B(H ) is one where the self-commutator [T,T ∗] is compact.) Hence, multiplier
algebras are natural objects to which to generalize the Brown–Pearcy Theorem.

In this paper, we prove the following result:

THEOREM 1.1. Let A be a unital separable simple C*-algebra such that either

1. A is purely infinite, or

2. A ⊗K has strict comparison of positive elements, A has stable rank one and
unique tracial state, and every quasitrace on A is a trace.

Let X ∈ M (A ⊗K ) .
Then X is a single commutator if and only if X does not have the form α1M (A ⊗K )

+ x , where α ∈ C−{0} and x is an element of a proper ideal of M (A ⊗K ) .

We note that, by [27], every element of the multiplier algebras in Theorem 1.1 is a
sum of two commutators.

We also note that by Theorem 1.1 and [21] Theorem 5.3 (see also the remarks
after [22] Theorem 5.2), if A is a unital separable simple C*-algebra satisfying the
hypotheses of Theorem 1.1 then for all X ∈ M (A ⊗K ) such that X does not have
the form α1+ x for some α ∈ C−{0} and x in a proper ideal of M (A ⊗K ) , X is
a sum of 14 nilpotents of order two, and X is a linear combination of 56 projections.

Finally, we note that for the multiplier algebras in Theorem 1.1, the presence of a
unital embedding of the Cuntz algebra O2 seems to be a key ingredient of the proofs of
Theorem 1.1. Hence, the next question seems natural:

QUESTION 1. Consider the Cuntz algebra O2 . Is it true that for all x ∈ O2 , x is a
single commutator if and only if x does not have the form α1O2 for some α ∈C−{0}?
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Again, it is also known, by [27], that every element of O2 is a sum of two com-
mutators.

In fact, we do not know the answers to the following questions:

QUESTION 2.

1. Does there exist a unital separable simple nonelementary C*-algebra A such
that for all x ∈ A , x is a single commutator if and only if τ(x) = 0 for all tracial
states τ on A ?

2. Does there exist a unital separable simple C*-algebra A such that for all x ∈A ,
x is a single commutator if and only if x does not have the form α1A for some
α ∈ C−{0}?

2. Elements in the canonical ideal

For most of this paper, for a C*-algebra B , we let lower case letters denote ele-
ments of B . If B is nonunital, we let capital letters denote general elements (espe-
cially full elements) of M (B) and lower case letters for elements that we know are in
a proper ideal of M (B) (e.g., B ). We occasionally vary from these conventions.

Also, for most of this paper, we use extensively the ideas developed in [2], [3], [4],
and [25].

Finally, a good reference for multiplier algebras and the strict topology is the book
[33].

The first lemma is a straightforward computation.

LEMMA 2.1. Let C be a Banach space and let {xm,n}m,n�1 be a biinfinite se-
quence in C such that

∑
m,n�1

‖xm,n‖ < ∞.

Then ∑m,n�1 xm,n converges in norm to an element of C .

LEMMA 2.2. Let B be a separable C*-algebra, and suppose that {Pn}∞
n=1 is a

sequence of pairwise orthogonal projections in M (B) and {Tm,n}m,n�1 is a biinfinite
sequence in M (B) such that

(a) Pm ∼ Pn in M (B) for all m,n,

(b) the sum ∑∞
n=1 Pn converges in the strict topology on M (B) ,

(c) PmTm,n = Tm,nPn = Tm,n for all m,n, and

(d) ∑m,n�1 ‖Tm,n‖ < ∞ .

Then ∑m,n�1 Tm,n is a commutator in M (B) .
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Proof. Firstly, by Lemma 2.1, T = ∑m,n�1 Tm,n converges in norm to an element
in M (B) .

Let P =d f ∑∞
n=1 Pn ∈ M (B) . Replacing B with PBP if necessary, we may

assume that P = 1M (B) .
We may assume that B acts faithfully and nondegenerately on a separable infinite

dimensional Hilbert space H . We may then identify M (B) with the idealizer of B
in B(H ) ; i.e.,

M (B) = {S ∈ B(H ) : SB,BS ⊆ B}.
Let {Em,n}1�m,n<∞ be a system of matrix units for a copy of K (the C*-algebra

of compact operators) in M (B) such that for all n � 1, En,n = Pn .
By [2] Theorem 4, T is a commutator in B(H ) . More precisely, by inspection of

the proof of [2] Theorem 4, we see that

T = [R,W ] = RW −WR

where R,W ∈ B(H ) are given by the following:

i.

R =d f

∞

∑
n=1

En,n+1.

ii. For all m,n � 1, let Wm,n =d f PmWPn . Then

Wm,n =

⎧⎪⎨
⎪⎩

0 m = 1

∑m−2
k=0 Em,m−k−1Tm−k−1,n−kEn−k,n 2 � m � n

∑n−1
k=0 Em,n−k−1Tm−k−1,n−kEn−k,n m > n.

Clearly, the sum for R converges strictly in M (B) ; i.e., R ∈ M (B) .
To complete the proof, it suffice to show that W = ∑m,n�1Wm,n converges strictly

in M (B) (and hence, W ∈ M (B)).
Firstly, note that since W ∈ B(H ) , ‖W‖ < ∞ .
For each N � 1, let QN =d f ∑N

n=1 Pn .

Claim: For all M1 � 1, QM1W (1−QN) → 0 as N → ∞ .
Proof of Claim: We have that QM1W = ∑1�m�M1,1�n<∞Wm,n .

Let γ > 0 be given. Since ∑m,n�1 ‖Tm,n‖ < ∞ , choose N1 � 1 so that

∑
1�m<∞,n�N1

‖Tm,n‖ < γ/(M1 +10)!.

Choose N2 � 1 so that
N2 −M1−10 > N1.

It follows, from the definition of W , that

∑
1�m�M1,n�N2

‖Wm,n‖ < γ.
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Hence, for all N � N2 ,
‖QM1W (1−QN)‖ < γ.

Since γ was arbitrary, we have proven the claim.
End of the proof of the Claim.

We now show that W ∈ M (B) and thus complete the proof.
Let b ∈ B be given. We want to prove that bW ∈ B . We may assume that

‖b‖ � 1.
Since ∑∞

n=1 Pn converges strictly in M (B) , choose M2 � 1 so that ‖bQM2 −b‖<
ε/(10(‖W‖+1)) Hence, ‖bQM2W −bW‖ < ε/10. By the Claim, we can find N3 � 1
so that ‖bQM2WQN3 − bQM2W‖ < ε/10. Hence, ‖bW − bQM2WQN3‖ < ε . Since
bQM2WQN3 ∈B , bW is within ε of an element of B . Since ε was arbitrary, bW ∈B
as we wish.

By a similar argument, Wb ∈ B .
Since b ∈ B was arbitrary, W ∈ M (B) , and this completes the proof. �

COROLLARY 2.3. Let B be a separable stable C*-algebra.
Then every element of B is a commutator in M (B) .

Proof. Since B ∼= B⊗K , we may work with B⊗K (and M (B⊗K )).
Note that M (B)⊗B(H ) ∼= M (B)⊗M (K ) can be (naturally) realized as a

unital *-subalgebra of M (B⊗K ) .
Let {e j,k}1� j,k<∞ be a system of matrix units for K . Note that {∑n

j=1 1M (B) ⊗
e j, j}∞

n=1 is an approximate identity for M (B)⊗K , consisting of an increasing se-
quence of projections.

Let x ∈B⊗K be arbitrary. We want to show that x is a commutator of M (B⊗
K ) . We may assume that ‖x‖ � 1.

Let {εn}∞
n=1 be a decreasing sequence in (0,1) such that ∑∞

n=1 εn < ∞ .
For each subset F ⊆ Z+ (Z+ is the set of positive integers), let PF =

d f ∑ j∈F 1M (B) ⊗ e j, j . Note that the sum converges strictly in M (B ⊗K ) and PF

is a projection in M (B⊗K ) . Moreover, if F is infinite then PF ∼ 1M (B⊗K ) in
M (B⊗K ) .

We construct a sequence {En}∞
n=1 of subsets of Z+ and an increasing sequence of

positive integers {Nn}∞
n=1 such that

i. En ⊂ En+1 for all n � 1,

ii. {1,2,3, ...,Nn} ⊆ En for all n � 1,

iii. Fn =d f En−En−1 is an infinite set for all n � 1 (here we take E0 =d f /0),

iv. ‖(1−∑Nn
j=1 1M (B) ⊗ e j, j)x‖,‖x(1−∑Nn

j=1 1M (B) ⊗ e j, j)‖ < εn+1/(2(n+ 1)) for
all n � 1,

v. ‖PFmxPFn‖,‖PFnxPFm‖ < εn/(2n) for all 2 � m � n ,
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vi.
⋃∞

n=1 En = Z+ , and hence, ∑∞
n=1 PFn = 1M (B⊗K ) where the sum converges in

the strict topology on M (B⊗K ) .

(Note that (v.) follows from (ii.) and (iv.).)
We denote the above statements by “(∗)”.
The construction is by induction on n .
Basis step n = 1. Since {∑m

j=1 1M (B) ⊗ e j, j}∞
m=1 is an approximate identity for

M (B)⊗K , choose N1 � 1 so that ‖(1−∑N1
j=1 1M (B)⊗e j, j)x‖,‖x(1−∑N1

j=1 1M (B)⊗
e j, j)‖ < ε2/4.

Let E1 ⊂ Z+ be such that

(a) {1,2, ...,N1 +1} ⊂ E1 , and

(b) E1 and Z+ −E1 are both infinite sets.

Induction step. Suppose that En has been constructed. We now construct En+1 .
Since {∑m

j=1 1M (B)⊗e j, j}∞
m=1 is an approximate identity for M (B)⊗K , choose

Nn+1 � Nn + 10 so that ‖(1−∑Nn+1
j=1 1M (B) ⊗ e j, j)x‖,‖x(1−∑Nn+1

j=1 1M (B) ⊗ e j, j)‖ <

εn+2/(2(n+2)) .
Let En+1 ⊆ Z+ be such that En∪{1,2, ...,Nn+1} ⊆ En+1 , En+1−En is an infinite

set, and Z+ −En+1 is an infinite set.
This completes the inductive construction.
From (∗) , we have that {PFn}∞

n=1 (as defined in (∗)) is a sequence of pairwise
orthogonal projections in M (B) such that PFn ∼ 1M (B⊗K ) for all n , ∑∞

n=1 PFn =
1M (B⊗K ) where the sum converges strictly in M (B⊗K ) , and ∑m,n�1 ‖PFmxPFn‖�
‖PF1xPF1‖+ ∑∞

n=2 εn < ∞ .
Hence, by Lemma 2.2, x is a commutator in M (B) . �

3. Some technical lemmas

Here and in the rest of the paper, we will say that a unital separable simple C*-
algebra A is in the class R if either (i.) A is purely infinite or (ii.) A is stably finite
and all quasitraces extend to traces, and A ⊗K has strict comparison of positive
elements.

Firstly, multiplier elements with “large null space” are multiplier commutators.

LEMMA 3.1. Let B be a separable stable C*-algebra, and let X ∈M (B) . Sup-
pose that P ∈ M (B) is a projection such that P ∼ 1M (B) and XP = 0 .

Then X is a commutator of M (B) .

Sketch of proof. This is essentially the argument of [25].
We sketch the short argument for the convenience of the reader.
Since P ∼ 1M (B) , there exist a sequence {Pn}∞

n=1 of pairwise orthogonal projec-
tions in M (B) such that

(a) P = ∑∞
n=1 Pn where the sum converges strictly in M (B) , and
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(b) Pn ∼ 1M (B) for all n � 1.

Replacing 1−P with (1−P) + P1 if necessary, we may assume that 1− P ∼
1M (B) .

To simplify notation, denote P0 =d f 1− P . Let {Em,n}0�m,n<∞ be a system of
matrix units for a copy of K in M (B) so that Em,m = Pm for all m � 0.

Let S =d f (−∑∞
n=0 En,n+1X)+ (∑∞

n=0 En,0XE0,n+1) , and let R =d f ∑∞
n=0 En+1,n .

It is clear that the above sums converge strictly, and hence, S,R ∈ M (B) .
Moreover, X = [S,R] . (See the proof of [25] Theorem 2.) �

LEMMA 3.2. Let C be a unital C*-algebra, and suppose that c ∈ C is a commu-
tator of C .

Then for any x ∈ M2(C ) , if x has the form

x =
[

c ∗
∗ 0

]

then x is a commutator of M2(C ) .

Proof. This follows immediately from [22] Lemma 2.4. An elementary proof can
be found in [3] Lemma 4.1. �

Following Brown and Pearcy, given a unital C*-algebra C , and x,y ∈ C , a gen-
eralized sum of x and y is an element (of C ) which has the form s−1xs+ t−1yt where
s,t are invertible elements of C .

LEMMA 3.3. Let C be a unital C*-algebra. Suppose that y,z,x0 ∈C is such that
some generalized sum of y and z is a commutator of C , and x0 is invertible in C .

Then for any x ∈ M2(C ) , if x has the form

x =
[

y x0

∗ z

]

then x is a commutator in M2(C ) .

Proof. The argument is exactly the same as that of [3] Lemma 4.2. One notes that
[12] Corollary 3.2 works in general Banach algebras. (See also [20] Theorem 10.) �

LEMMA 3.4. Let C be a unital C*-algebra, and suppose that there exists an open
subset O ⊆ C such that

i. for all z1,z2 ∈O , some generalized sum of z1 and z2 is a commutator of C , and

ii. O is closed under multiplication by nonzero scalars.
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Suppose that y1,y2,y3,y4 ∈ C and z is an invertible operator in O .
Then for sufficiently large λ > 0 , the element x ∈ M2(C ) , which is given by

x =
[

y1 y2 + λ z
y3 y4

]
,

is a commutator of M2(C ) .

Proof. The proof is exactly the same as that of [4] Lemma 4.5, except that [4]
Corollary 4.4 is replaced with (this paper) Lemma 3.3. �

LEMMA 3.5. Let C be a unital C*-algebra such that there exists a unital *-
embedding of O2 into C . Suppose that there exists an open subset O ⊆ C such that

i. for all z1,z2 ∈ O , some generalized sum of z1 and z2 is a commutator of C ,

ii. O is closed under multiplication by nonzero scalars, and

iii. O contains all elements of the form p+2q, where p,q ∈ C are projections such
that p+q = 1 , p ⊥ q and p ∼ q ∼ 1 .

Then for all a ∈ C and all v ∈ C such that v is an isometry and 1− vv∗ ∼ 1 ,
there exists an x ∈ C such that xv = 0 and a+ vx is a commutator in C .

Proof. Let e =d f vv∗ . So e ∼ 1− e ∼ 1. There exists a *-isomorphism Φ : C →
M2(C ) such that Φ(e) =

[
1 0
0 0

]
, and Φ(1− e) =

[
0 0
0 1

]
. The rest of the argument is

exactly the same as that of [4] Lemma 4.6, except that we replace [4] Lemma 4.5 with
(this paper) Lemma 3.4. �

DEFINITION 3.6. Let C be a unital C*-algebra such that there exists a unital *-
embedding of O2 into C . Let x ∈ C .

Then we say that x has property (π0 ) if there exists a *-isomorphism Φ : C →
M2(C ) such that

1. every minimal projection in M2 ⊗ 1C is Murray–von Neumann equivalent to
1M2(C ) in M2(C ) , and

2. Φ(x) has the form

Φ(x) =
[∗ v
∗ 0

]
,

where v ∈ C is an isometry such that 1C − vv∗ ∼ 1C .

PROPOSITION 3.7. Let C be a unital C*-algebra such that there exists a unital
*-embedding of O2 into C . Suppose that there exists an open subset O⊆ C such that

i. for all z1,z2 ∈ O , some generalized sum of z1 and z2 is a commutator of C ,
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ii. O is closed under multiplication by nonzero scalars, and

iii. O contains all elements of the form p+2q, where p,q ∈ C are projections such
that p+q = 1 , p ⊥ q and p ∼ q ∼ 1 .

If x ∈ C has property (π0 ) then x is a commutator in C .

Proof. The proof is exactly the same as that of [4] Theorem 1, except that [4] Lem-
mas 4.6 and 4.2 are replaced with (this paper) Lemmas 3.5, and 3.2 respectively. �

DEFINITION 3.8. Let C be a unital C*-algebra, and let x ∈ C .
Then we say that x has property (π ) if there exists a *-isomorphism Φ : C →

M3(C ) such that Φ(x) has the form

Φ(x) =

⎡
⎣ 0 ∗ ∗

1 ∗ ∗
0 ∗ ∗

⎤
⎦ .

LEMMA 3.9. Let A be a unital separable simple C*-algebra in the class R .
If A ∈ M (A ⊗K ) has property (π ) then A has property (π0 ).

Proof. Since A ⊗K is stable, there is a unital *-embedding of O2 into M (A ⊗
K ) .

Since A has property (π ), let Φ1 : M (A ⊗K ) → M3 ⊗M (A ⊗K ) be a *-
isomorphism such that Φ1(A) has the form

Φ1(A) =

⎡
⎣ ∗ ∗ 0
∗ ∗ 1
∗ ∗ 0

⎤
⎦ .

Let f1, f2 ∈M3⊗M (A ⊗K ) be given by f1 =d f diag(1M (A ⊗K ),1M (A ⊗K ),0)
and f2 =d f diag(0,0,1M (A⊗K )) .

If A is purely infinite then f1 ∼ f2 (since both are full projections in M3 ⊗
M (A ⊗K ) ∼ M (A ⊗K ) and since A ⊗K has the corona factorization prop-
erty ([15] Theorem 5.3; also [24] Proposition 2.5)).

If A is not purely infinite then (since A is in class R), τ( f1) = τ( f2) = ∞ for
all τ ∈ T (A ) ; and hence, f1 ∼ f2 in M3 ⊗M (A ⊗K ) ∼= M (A ⊗K ) (again since
both are full projections and since A ⊗K has the corona factorization property ([24]
Proposition 2.5)).

With respect to the decomposition f1 + f2 = 1, A will have the form

A =
[ ∗ V ′
∗ 0

]

where V ′ is an element of f1(M3 ⊗M (A ⊗K )) f2 such that V ′∗V ′ = f2,2 and f1 −
V ′V ′∗ ∼ f1 .
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Let W1,2 ∈ M3⊗M (A ⊗K ) be a partial isometry with initial projection f2 and
range projection f1 .

Let {e j,k}1� j,k�2 be system of matrix units for M2 .
Let Φ2 : M3 ⊗M (A ⊗K ) → M2 ⊗ f1,1(M3 ⊗M (A ⊗K )) f1,1 be the *-iso-

morphism given by Φ2(X) =d f (e1,1⊗ f1X f1)+(e1,2⊗ f1XW ∗
1,2)+(e2,1⊗W1,2X f1)+

(e2,2⊗W1,2XW ∗
1,2) , for all X ∈ M3 ⊗M (A ⊗K ) .

Noting that f1,1(M3 ⊗M (A ⊗K )) f1,1
∼= M (A ⊗K ) , we can take Φ =d f

Φ2 ◦Φ1 , and Φ is the map that witnesses that A has property (π0 ). �

LEMMA 3.10. Let A be a unital separable simple C*-algebra in the class R .
If A,B ∈ M (A ⊗K ) both have property (π ) then some generalized sum of A

and B is a commutator.

Proof. There are two *-isomorphism Φ,Ψ : M (A ⊗K ) → M3 ⊗M (A ⊗K )
such that Φ(A) and Φ(B) have the forms stated in Definition 3.8.

Let {e j,k}1� j,k�3 be a system of matrix units for M3 .
If A is purely infinite, then for all j , e j, j ⊗1M (A ⊗K ) is Murray–von Neumann

equivalent to 1M3 ⊗1M (A⊗K ) in M3 ⊗M (A ⊗K ) ([15] Theorem 5.3).
Suppose that A is not purely infinite (but still in R). Then for all j,k , and for all

τ ∈ T (A ) , τ(e j, j ⊗1M (A⊗K )) = ∞ .
Hence, e j, j⊗1M (A ⊗K ) ∼ 1M3 ⊗1M (A ⊗K ) in M3⊗M (A ⊗K ) for all j ([24]

Proposition 2.5).
The rest of the argument is exactly the same as that of [4] Lemma 4.1, except that

[25] Theorem 4 is replaced with (this paper) Lemma 3.1. �

4. The purely infinite case

For the rest of this paper, for a C*-algebra B , let Γ : M (B) →M (B)/B be the
natural quotient map.

LEMMA 4.1. Let A be a unital separable simple purely infinite C*-algebra. Sup-
pose that X ∈ M (A ⊗K ) is such that Γ(X) is not a scalar multiple of the identity.

Then there exists an α > 0 with α < ‖X‖2 , where for every ε > 0 , for every finite
subset F ⊂ A ⊗K , there exist projections p,q ∈ A ⊗K such that

1. p ⊥ q,

2. pa, ap, qa and ap are all within ε of 0 , for all a ∈ F , and

3. if x =d f qX p then there exists β � α with β � ‖X‖2 and ‖x∗x−β p‖,‖xx∗ −
βq‖ < ε .

Proof. Let ε > 0 and a finite subset F ⊂ A ⊗K be given. Contracting ε if
necessary, we may assume that all the elements of F have norm less than or equal to
one.
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Since A is unital, there exists a projection e ∈ A ⊗K such that ea , ae and eae
are all within ε/100 of a for all a ∈ F .

Since A is simple purely infinite, M (A ⊗K )/(A ⊗K ) is simple purely in-
finite and hence has real rank zero ([16]; see also [35] Theorem 3.3 and [29]). Hence,
since Γ(X) is not a scalar multiple of the identity, there exist nonzero orthogonal pro-
jections R,S ∈ M (A ⊗K )/(A ⊗K ) such that RΓ(X)S �= 0.

Let α =d f (1/2)‖RΓ(X)S‖2 > 0.
Lift R,S to orthogonal positive elements A,B ∈ (1− e)M (A ⊗K )(1− e) with

norm one (i.e., e ⊥ A ⊥ B ⊥ e , Γ(A) = R , Γ(B) = S and ‖A‖ = ‖B‖ = 1).
Choose a number δ1 > 0 so that for all Z ∈ M (A ⊗K ) and for every projection

R ∈ M (A ⊗K ) , if ZZ∗ is within δ1 of R then Z∗RZ is within ε/(100(2α +1)) of
Z∗Z . Contracting δ1 > 0 if necessary, we may assume that δ1 < ε/100.

Choose δ2 > 0 so that for all Z ∈ M (A ⊗K ) , if Z∗Z within δ2 of a projection
then ZZ∗ is within δ1/(100(2α +1)) of a projection in Her(ZZ∗) . Contracting δ2 > 0
if necessary, we may assume that δ2 < ε/100.

Since A ⊗K has real rank zero ([34]), we can choose projections q′ ∈A(A ⊗K )A
and p′ ∈ B(A ⊗K )B so that β =d f ‖q′X p′‖2 � (100/51)α > 0.

Note that p′ ⊥ q′ .
Let h1 : [0,β ] → [0,1] be the unique continuous function satisfying:

h1(s)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

= 1 s ∈ [β − δ2β
1000(β+1)(‖X‖+1),β +1]

= 0 s ∈ [0,β − δ2β
100(β+1)(‖X‖+1) ]

linear on [β − δ2β
100(β+1)(‖X‖+1),β − δ2β

1000(β+1)(‖X‖+1)].

Hence, h1(p′X∗q′X p′) �= 0 (indeed, ‖h1(p′X∗q′X p′)‖ = 1).
Since A ⊗K has real rank zero, let p ∈ Her(h1(p′X∗q′X p′)) be a nonzero pro-

jection.
Hence, p � p′ and pX∗q′X p = pp′X∗q′X p′p is within δ2β

100(β+1) of β p . Hence,

β−1pX∗q′X p is within δ2
100(β+1) of the projection p .

Hence, by our choice of δ2 , β−1q′X pX∗q′ is within δ1/(100(2α +1)) of a pro-
jection, say q∈Her(q′) . Hence, β−1qX pX∗q is within δ1/(100(2α +1)) of q . Hence,
we have that qX pX∗q is within ε/100 of βq .

Also, by our choice of δ1 , β−1pX∗qX p is within ε/(100(2α + 1)) of
β−1pX∗q′X p . Hence, β−1pX∗qX p is within ε

50(β+1) of p . Hence, pX∗qX p is wthin

ε of β p . �

LEMMA 4.2. Let C be a C*-algebra, and let x ∈ C . Suppose that there exist
projections p,q ∈ C −{0} such that

i. p ⊥ q,

ii. px∗qxp is invertible in pC p, and

iii. qxpx∗q is invertible in qC q.
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Then

(a) either xpx∗ is invertible or 0 is an isolated point of the spectrum of xpx∗ (and
hence the support projection of xpx∗ is in C ),

(b) if r ∈ C is the support projection of xpx∗ then ‖pr‖ < 1 , and

(c) if q′ ∈ C is a projection with q′ ⊥ p and r ∼ q′ , and v ∈ C is a partial isometry
with v∗v = q′ and vv∗ = r , then (p+ v)∗(p+ v) is an invertible element of (p+
q′)C (p+q′) .

Proof. Since px∗qxp is invertible in pC p and 0 � px∗qxp � px∗xp , px∗xp is
invertible in pC p .

Hence, (in C ) 0 is an isolated point in the spectrum of px∗xp . Hence, either xpx∗
is invertible or 0 is an isolated point in the spectrum of xpx∗ .

Hence, let r ∈ C be the support projection of xpx∗ .
Suppose that C acts faithfully and nondegenerately on a Hilbert space H . Hence,

xp|pH is a (continuous) bijective linear map in B(pH ,rH ) . Hence, by the Open
Mapping Theorem, there exists T ∈ B(rH , pH ) such that T ◦(xp) = p . Hence, there
exists α > 0 such that ‖xp(h)‖ � α‖h‖ for all h ∈ H .

Also, qxp|pH is an invertible bijective linear map in B(pH ,qH ) .
Hence, let β > 0 be such that ‖qxp(h)‖ � β‖h‖ for all h ∈ pH .
Choose δ > 0 so that δ < min{1/100,α/100,β/100} .
Suppose, to the contrary, that ‖pr‖ = 1.
Since r is the range projection of xp (and xp is surjective onto rH ) and since we

have assumed that ‖pr‖ = 1, choose h ∈ pH with ‖h‖ = 1 so that if k =d f xh = xph
then ‖pk‖2 � ‖k‖2 − δ 2 . (Note that since ‖h‖ = 1, ‖k‖ = ‖xph‖ � α‖h‖ = α > δ .
Hence, ‖k‖2− δ 2 � 0.)

Hence, ‖k‖2 = ‖pk‖2 +‖(1− p)k‖2 � ‖k‖2− δ 2 +‖(1− p)k‖2 .
Hence, ‖(1− p)k‖2 � δ 2 . I.e., ‖(1− p)k‖� δ � β/100.
But ‖(1− p)k‖� ‖qk‖ = ‖qxph‖� β‖h‖ = β . This is a contradiction.
Hence, we must have that ‖pr‖ < 1.
Hence, by [4] Lemma 2.1, pH ∩ rH = {0} and pH + rH is a closed linear

subspace of H .
Suppose that q′ ∈C is a projection with q′ ⊥ p and r∼ q′ , and suppose that v∈C

is a partial isometry with v∗v = q′ and vv∗ = r . Then (p+ v)|pH +q′H is a bijective
linear map in B(pH + q′H , pH + rH ) . Hence, by the Open Mapping Theorem,
there exists S ∈ B(pH + rH , pH + q′H ) such that S ◦ (p + v) = p + q′ . Hence,
(p+ v)∗(p+ v) is an invertible element of (p+q′)C (p+q′) . �

LEMMA 4.3. Let A be a unital separable simple purely infinite C*-algebra. Sup-
pose that X ∈ M (A ⊗K ) is such that Γ(X) is not a scalar multiple of the identity.

Then for every ε > 0 , there exist projections P,Q,R,S ∈ M (A ⊗K ) such that

1. P ∼ Q ∼ S ∼ 1M (A ⊗K ) ,

2. S ⊥ P ⊥ Q ⊥ S ,
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3. PX∗QXP is invertible in PM (A ⊗K )P

4. QXPX∗Q is invertible in QM (A ⊗K )Q,

5. 0 is an isolated point of the spectrum of XPX∗ ,

6. R is the left support projection of XP,

7. ‖PR‖ < 1 ,

8. ‖SR‖< ε , and

9. Γ(S)Γ(R) = 0 .

10. if Q′ ∈ M (A ⊗K ) is a projection such that Q′ ∼ 1M (A ⊗K ) and Q′ ⊥ P, and
if V ∈M (A ⊗K ) is a partial isometry such that V ∗V = Q′ and VV ∗ = R then
(P+V)∗(P+V) is an invertible element of (P+Q′)M (A ⊗K )(P+Q′) .

Proof. Apply Lemma 4.1 to X to get a number ‖X‖2 > α > 0.
Since A ⊗K is separable, let b ∈ (A ⊗K )+ be a strictly postive element with

‖b‖ = 1.
Let {εn}∞

n=1 be a strictly decreasing sequence in (0,1/100) such that ∑∞
n=1 εn <

1/100.
We now construct two sequences {pn}∞

n=1 and {qn}∞
n=1 of projections in A ⊗K

and a sequence {αn}∞
n=1 of numbers in (0,∞) such that the following statements hold:

1. pm ⊥ pn and qm ⊥ qn for all m �= n .

2. pm ⊥ qn for all m,n .

3. ∑∞
n=1 pn and ∑∞

n=1 qn both converge in the strict topology on M (A ⊗K ) . In
particular, for all n � 2, pnb and qnb are both within εn of 0.

4. ‖X‖2 � αn � α/2 for all n .

5. ‖pnX∗qnX pn−αnpn‖ < εn for all n .

6. ‖qnX pnX∗qn−αnqn‖ < εn for all n .

7. ‖qmX pn‖ < 1/1000m+n for all m �= n .

The construction is by induction on n .
Basis step n = 1. Apply Lemma 4.1 to get projections p1,q1 ∈ A ⊗K and

α1 � α so that

(a) p1 ⊥ p2 , and

(b) ‖p1X∗q1X p1−α1p1‖,‖q1X p1X∗q1−α1q1‖ < ε1 .
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We denote the above statements by “(∗)”.
Induction step. Suppose that p1, p2, ..., pn,q1,q2, ...,qn,α1,α2, ...,αn have been

constructed. We now construct pn+1,qn+1,αn+1 .
Choose δ1 > 0 so that for any C*-algebra C , if r1,r2,r3 ∈ C are projections such

that r1 ⊥ r2 and ‖r1r3‖,‖r2r3‖ < δ1 , then there exist projections r′1,r
′
2 ∈ C such that

r′j ∼ r j ( j = 1,2), r3 ⊥ r′1 ⊥ r′2 ⊥ r3 , and

‖r′j − r j‖ < min

{
εn+1

1000(‖X‖+‖X‖2+1)
,

1
10002n+3(‖X‖+1)

}
( j = 1,2).

Contracting δ1 if necessary, we may assume that δ1 < εn+1/1000.
By Lemma 4.1, let p′n+1,q

′
n+1 ∈A ⊗K be orthogonal projections and αn+1 � α

such that the following statements are true:

i. p′n+1 ⊥ q′n+1 .

ii. ‖p′n+1X
∗q′n+1X p′n+1−αn+1p′n+1‖,‖p′n+1X

∗q′n+1X p′n+1−αn+1p′n+1‖< εn+1/1000.

iv. p′n+1 (∑n
m=1(pm +qm)) , q′n+1 (∑n

m=1(pm +qm)) , p′n+1b and q′n+1b are all within
δ1 of 0.

iv. ‖qmX p′n+1‖,‖q′n+1X pm‖ < 1/10002n+3 for all m � n .

We denote the above statements by “(∗)”.
By our choice of δ1 and by statements (∗) , we have that there exists projections

pn+1,qn+1 ∈ M (A ⊗K ) such that pn+1 ∼ p′n+1 , qn+1 ∼ q′n+1 , qn+1 ⊥ (∑n
m=1(pm +

qm)) ⊥ pn+1 ⊥ qn+1 , and

‖pn+1− p′n+1‖, ‖qn+1−q′n+1‖< min

{
εn+1

1000(‖X‖+‖X‖2+1)
,

1
10002n+3(‖X‖+1)

}
.

From this and statements (∗) , we have that

1. ‖pn+1X∗qn+1X pn+1−αn+1pn+1‖,‖qn+1X pn+1X∗qn+1−αn+1qn+1‖ < εn+1 ,

2. pn+1b and qn+1b are within εn+1 of 0, and

3. ‖qmX pn+1‖,‖qn+1X pm‖ < 1/1000m+n+1 for all m � n .

This completes the inductive construction.
Choose δ > 0 so that if A,E,E ′ ∈M (A ⊗K ) where (a) A is positive, (b) ‖A‖�

‖X‖2 , (c) E and E ′ are projections, (d) EAE = A ,(e) A � (α/10)E , and (f) ‖E ′A‖ <
δ , then ‖E ′E‖ < ε .

Choose N � 1 so that for all n � N , εn < α/100.
Let {n(1,k)}∞

k=1 and {n(2,k)}∞
k=1 be two disjoint subsequences of the positive in-

tegers greater than or equal to N , {N,N+1, ...} (so, as sets, {n(1,k)}∞
k=1∪{n(2,k)}∞

k=1
⊆ {N,N +1,N +2, ...} and {n(1,k)}∞

k=1∩{n(2,k)}∞
k=1 = /0), such that

∑
k �=l

‖qn(1,k)X pn(1,l)‖ <
min{√(α/100),α/100}

(100(‖X‖+1))
(4.1)
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and

∑
1�k,l<∞

‖qn(2,k)X pn(1,l)‖ < δ/(100(1+‖X‖)). (4.2)

Let P,Q,S ∈ M (A ⊗K ) be projections given by P =d f ∑∞
k=1 pn(1,k) , Q =d f

∑∞
k=1 qn(1,k) , and S =d f ∑∞

k=1 qn(2,k) where the sums converge strictly on M (A ⊗K ) .
From statements (∗) and the definitions of P,Q,S , it follows immediately that

Q ⊥ P ⊥ S ⊥ Q , P ∼ Q ∼ S ∼ 1M (A ⊗K ) , PX∗QXP is invertible in PM (A ⊗K )P ,
and QXPX∗Q is invertible in QM (A ⊗K )Q .

Hence, by Lemma 4.2, (i.) either XPX∗ is invertible (in M (A ⊗K )) or 0 is
an isolated point in the spectrum of XPX∗ , (ii.) the support projection of XPX∗ , say
R , is an element of M (A ⊗K ) , (iii.) ‖PR‖ < 1, and (iv.) if Q′ ∈ M (A ⊗K ) is
a projection with Q′ ∼ 1 and Q′ ⊥ P , and if V ∈ M (A ⊗K ) is a partial isometry
with initial projection Q′ and range projection R , then (P+V )∗(P+V ) is an invertible
element of (P+Q′)M (A ⊗K )(P+Q′) .

Moreover, by the definitions of P,Q and by equation (4.1), PX∗QXP � (α/10)P .
Hence, since PX∗XP � PX∗QXP , we have that PX∗XP � (α/10)P . Hence, it follows
that XPX∗ � (α/10)R . (Recall that R ∈ M (A ⊗K ) is the support projection of
XPX∗ .) But also, by equation (4.2) and by the definitions of P and S , ‖SXPX∗‖ < δ .
Hence, by the definition of δ , we must have that ‖SR‖ < ε . And this implies that
R �= 1; so 0 is an isolated point in the spectrum of XPX∗ .

Finally, since ∑k�K,1�l<∞ ‖qn(2,k)X pn(1,l)X
∗‖ → 0 as K → ∞ (and since XPX∗ is

invertible in RM (A ⊗K )R), it follows that Γ(S)Γ(R) = 0. �

LEMMA 4.4. Let B be a separable stable C*-algebra, and let Γ : M (B) →
M (B)/B be the natural quotient map.

Let X ∈ M (B) be an operator. Suppose that P,Q,R,S ∈ M (B) are projections
such that

1. P ∼ Q ∼ S ∼ 1M (A ⊗K ) ,

2. S ⊥ P ⊥ Q ⊥ S ,

3. PX∗QXP is invertible in PM (A ⊗K )P

4. QXPX∗Q is invertible in QM (A ⊗K )Q,

5. 0 is an isolated point of the spectrum of XPX∗ ,

6. R is the left support projection of XP,

7. ‖PR‖ < 1 ,

8. ‖SR‖< 1/10 ,

9. Γ(S)Γ(R) = 0 , and

10. if Q′ ∈ M (A ⊗K ) is a projection such that Q′ ∼ 1M (A ⊗K ) and Q′ ⊥ P, and
if V ∈M (A ⊗K ) is a partial isometry such that V ∗V = Q′ and VV ∗ = R then
(P+V)∗(P+V) is an invertible element of (P+Q′)M (A ⊗K )(P+Q′) .
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Then X is similar to an operator with property (π ) in M (B) .

Proof. Now since PX∗QXP is invertible in PM (B)P and 0 � PX∗QXP� PX∗XP ,
PX∗XP is invertible in PM (B)P . Hence, R ∼ P (∼ 1M (B) ) in M (B) .

Since Q ∼ 1M (A⊗K ) , let Q′,Q′′ ∈ M (A ⊗K ) be orthogonal projections such
that Q′ ∼ Q′′ ∼ 1M (A ⊗K ) and Q = Q′ +Q′′ .

Let V ∈ M (B) be a partial isometry such that V ∗V = Q′ and VV ∗ = R . By
hypothesis, (P +V )∗(P +V ) is an invertible element of (P + Q′)M (B)(P + Q′) .
Hence, either (P +V )(P +V )∗ is invertible or 0 is an isolated point in the spec-
trum of (P +V)(P +V)∗ . Hence, let T ∈ M (A ⊗K ) be the support projection of
(P+V)(P+V)∗ . Hence, (P+V)(P+V)∗ is an invertible element of TM (A ⊗K )T .

Since S ∼ 1M (A ⊗K ) , S ⊥ P and Γ(S)Γ(R) = 0, Γ(S) ∼ 1M (A ⊗K )/(A⊗K ) and
Γ(S) ⊥ Γ(T ) . Hence, 1M (A ⊗K )/(A ⊗K ) � 1M (A ⊗K )/(A ⊗K ) −Γ(T ) . Hence, since
A ⊗K is stable, 1M (A ⊗K )−T ∼ 1M (A⊗K ) . Also, since A ⊗K is stable and since
Q′′ � 1M (A ⊗K ) − (P+Q′) , Q′′′ =d f 1M (A ⊗K ) − (P+Q′) ∼ 1M (A⊗K ) . Hence, let
W ∈M (A ⊗K ) be a partial isometry with W ∗W = Q′′′ and WW ∗ = 1M (A ⊗K )−T .

Let Y ∈M (A ⊗K ) be the invertible element that is given by Y =d f P+V +W .
Therefore, Y−1XYP = Y−1XP = Y−1RXP = V ∗RXP = Q′V ∗RXP . Thus, with

respect to the decomposition P+Q′ +Q′′′ = 1M (A ⊗K ) , Y−1XY has the form

Y−1XY =

⎡
⎣ 0 ∗ ∗

Z ∗ ∗
0 ∗ ∗

⎤
⎦ ,

where Z =d f Q′V ∗RXP .
Moreover, Z∗Z and ZZ∗ are invertible elements of PM (A ⊗K )P and Q′M (A ⊗

K )Q′ respectively. Let Z = U |Z| be the Polar Decomposition of Z . Then |Z| is an
invertible element of PM (A ⊗K )P , and the partial isometry U is an element of
M (A ⊗K ) . Hence, let Z1 ∈ PM (A ⊗K )P be the inverse of |Z| in PM (A ⊗
K )P . Let Y1 ∈M (A ⊗K ) be the invertible element given by Y1 = Z1+(1M (A ⊗K )−
P) .

Then, with respect to the decomposition P+Q′ +Q′′′ = 1, Y−1
1 Y−1XYY1 has the

form

Y−1
1 Y−1XYY1 =

⎡
⎣ 0 ∗ ∗

U ∗ ∗
0 ∗ ∗

⎤
⎦ .

Note that U∗U = P and UU∗ = Q′ .
From this and the fact that M (A ⊗K ) ∼= PM (A ⊗K )P , we can construct a

*-isomorphism Φ : M (A ⊗ K ) → M3 ⊗ M (A ⊗ K ) which witnesses that
Y−1

1 Y−1XYY1 is an operator with property (π ). (E.g., see the argument in Lemma
3.9.) �

THEOREM 4.5. Let A be a unital separable simple purely infinite C*-algebra.
Let X ∈ M (A ⊗K ) . Then X is a commutator if and only if X is either compact
or nonthin, i.e., X does not have the form α1M (A ⊗K ) + x where α ∈ C−{0} and
x ∈ A ⊗K .
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Proof. Note that since A is simple purely infinite, the only proper nontrivial ideal
of M (A ⊗K ) is A ⊗K . (E.g., see [35] Theorem 3.3 or [29].)

The “only if” direction is straightforward. (If α ∈ C−{0} and x ∈ A ⊗K then
Γ(α1M (A ⊗K ) +x) = α1M (A ⊗K )/(A ⊗K ) ; and no nonzero scalar multiple of the unit,
of a unital C*-algebra, can be a commutator.)

We now prove the “if” direction.
If X ∈ A ⊗K , then, by Corollary 2.3, X is a commutator.
Hence, it suffices to prove that for all X ∈ M (A ⊗K ) such that Γ(X) is not a

scalar multiple of 1M (A⊗K )/(A ⊗K ) , X is a commutator. Let O consist of all such
elements X .

O is an (norm topology) open subset of M (A ⊗K ) . (Since the set of all Y ∈
M (A ⊗K ) with Γ(Y ) being a scalar multiple of the unit is closed.)

Clearly, O is closed under multiplication by nonzero scalars. It is also clear that
for all projections P,Q ∈ M (A ⊗K ) such that P ⊥ Q , P ∼ Q ∼ 1M (A ⊗K ) and
P+Q = 1M (A ⊗K ) , P+ 2Q ∈ O . Moreover, note that since A ⊗K is stable, there
exists a unital *-embedding of the Cuntz algebra O2 into M (A ⊗K ) .

By Lemma 4.3, Lemma 4.4 and Lemma 3.9, every element of O is similar to an
operator with both properties (π ) and (π0 ). Hence, by Lemma 3.10, for all X1,X2 ∈O ,
some generalized sum of X1 and X2 is a commutator.

Hence, by Proposition 3.7, for every X ∈ O , X is a commutator. �

5. The stably finite case: Part I

At some point, in the sections to follow, we will use the notion of Cuntz sube-
quivalence. For a C*-algebra C and positive elements a,b ∈ C+ , we say that a is
Cuntz subequivalent to b (“a � b”) if there exists a sequence {xn} in C such that
xnbx∗n → a . If a and b are projections, then a is Cuntz subequivalent to b if and only
if a is Murray–von Neumann subequivalent to b .

PROPOSITION 5.1. Suppose that A is a unital separable simple C*-algebra with
stable rank one and in class R .

Suppose that P,Q∈M (A ⊗K )−A ⊗K are two projections such that τ(P) =
τ(Q) for all τ ∈ T (A).

Then P ∼ Q in M (A ⊗K ) .

Proof. This is [19] Proposition 4.2. We note that the proof works even without the
finiteness assumption. �

PROPOSITION 5.2. Suppose that A is a unital separable simple stably finite C*-
algebra in class R . Suppose, in addition, that for every bounded strictly positive affine
lower semicontinuous function f : T (A ) → (0,∞) , there exists a nonzero a ∈ (A ⊗
K )+ which is not Cuntz equivalent to a projection such that dτ(a) = f (τ) for all
τ ∈ T (A ) .
(E.g., A can be unital simple exact finite and Z -stable.)
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Then for every strictly positive, affine, lower semicontinuous function f : T (A) →
(0,∞] , there exists a projection P ∈ M (A ⊗K )− (A ⊗K ) such that

τ(P) = f (τ)

for all τ ∈ T (A )

Proof. This is [19] Corollary 4.6. �

DEFINITION 5.3. Let B be a separable, nonunital, nonelementary simple C*-
algebra, and let {en}∞

n=1 be an approximate unit for B .
Let Imin be the closure of the set

{X ∈ M (B) : ∀a ∈ B+ −{0},∃n0 s.t. (em − en)X∗X(em− en) � a,∀m > n � n0}.

By [17], Imin is independent of choice of approximate unit {en}∞
n=1 , and also

Imin is the unique smallest C*-ideal in M (B) which properly contains B (see [17]
Lemma 2.1, Remark 2.2, Lemma 2.4 and Remark 2.9).

LEMMA 5.4. Let A be a unital simple separable stably finite C*-algebra in class
R . Let Imin ⊆ M (A ⊗K ) be the C*-ideal defined in Definition in 5.3.

Let a,b ∈ (Imin)+ − (A⊗K ) such that ‖b‖ � 1 and b induces a continuous
function on T (A) . Suppose that

inf{τ(b)−dτ(a) : τ ∈ T (A)} > 0.

Then a � b.

Proof. This is [19] Lemma 4.1. �

DEFINITION 5.5. Let C be a C*-algebra. C is said to have the Hjelmborg–
Rordam Property if for every a ∈ C+ , and for every ε > 0, there exists b ∈ C+ with
‖(a− ε)+b‖ < ε and (a− ε)+ � b .

If C is a separable C*-algebra, then C has the Hjelmborg–Rordam Property if
and only if C is stable (see [13] and [30]).

LEMMA 5.6. Let A be a unital separable simple C*-algebra with stable rank
one and in class R .

Let A ∈M (A ⊗K )+ be a full positive element, and let Imin ⊆M (A ⊗K ) be
the C*-ideal defined in Definition 5.3.

Then AIminA has the Hjelmborg–Rordam Property.

Proof. We may assume that ‖A‖ = 1.
Let a ∈ (AIminA)+ − (A ⊗K ) and let ε > 0 be given. Contracting ε if neces-

sary, we may assume that ε < 1/10 and ‖a‖ � 1.
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Since a ∈ Imin , L =d f supτ∈T (A ) dτ((a− ε/100)+) < ∞ .

Choose N � 1 and δ > 0 so that (A− δ )1/N
+ (a− ε/100)+ , (a− ε/100)+(A−

δ )1/N
+ and (A− δ )1/N

+ (a− ε/100)+(A− δ )1/N
+ are all within ε/100 of (a− ε/100)+ .

Contracting δ > 0 if necessary, we may assume that δ < min{ε/100,1/100} .
Further contracting δ > 0 if necessary, we may assume that (A− δ )+ is a full

element of M (A ⊗K ) .
Let h1 : [0,1] → [0,1] be the unique continuous function which is given by

h1(s)

⎧⎪⎨
⎪⎩

= 1 s ∈ [ε/100,1]
= 0 [0,ε/1000]
linear on [ε/1000,ε/100].

Let a′ =d f h1((A− δ )1/N
+ (a− ε/100)+(A− δ )1/N

+ ) ∈ Imin .

Hence, a′(A− δ )1/N
+ (a− ε/100)+(A− δ )1/N

+ and (A− δ )1/N
+ (a− ε/100)+(A−

δ )1/N
+ a′ are both within ε/100 of (A− δ )1/N

+ (a− ε/100)+(A− δ )1/N
+ . Hence, a′(a−

ε/100)+ and (a− ε/100)+a′ are both within 3ε/100 of (a− ε/100)+ .
Let h2 : [0,1] → [0,1] be the unique continuous function such that

h2(s)

⎧⎪⎨
⎪⎩

= 1 s ∈ [δ/10,1]
= 0 s = 0

linear on [0,δ/10].

Then h2(A)a′ = a′ .
Moreover, h2(A) is a full positive element of M (A ⊗K ) , and h2(A)Iminh2(A)=

AIminA .
Since any ideal of M (A ⊗K ) , that properly contains A ⊗K , must contain

Imin , h2(A)−a′ is a full positive element of M (A ⊗K ) ([17] Remark 2.9). Hence,
since A ⊗K has the corona factorization property ([24] Proposition 2.5), there exists
X ∈ M (A ⊗K ) such that X(h2(A)−a′)X∗ = 1M (A ⊗K ) . From this and Proposition
5.2, there exists a projection p ∈ Imin − (A ⊗K ) such that p ∈ Her(h2(A)−a′) and
τ(p) � L+1 for all τ ∈ T (A ) .

Note that since p ∈ Imin and since p is a projection, p induces a continuous
function on T (A ) .

Hence, by Lemma 5.4, (a− ε)+ � p . Finally, since pa′ = 0, ‖p(a− ε)+‖ < ε .
Since a was arbitrary, AIminA has the Hjelmborg–Rordam Property. �
Note that though Imin (as above) has the Hjelmborg–Rordam Property, it need

not be stable, since Imin is not separable.

LEMMA 5.7. Let B be a separable stable C*-algebra and let B̃ be the unitiza-
tion of B .

Then B ⊆ GL(B̃) , where the closure is in the norm topology.

Proof. This is [1] Lemma 4.3.2. �
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LEMMA 5.8. Let A be a unital separable simple C*-algebra with stable rank
one and in class R . Let A ∈ M (A ⊗K )+ be a full positive element.

For every ε > 0 , for every α > 0 and for every finite subset F ⊂ AIminA, there
exists a projection p∈ AIminA− (A ⊗K ) such that τ(p) � α for all τ ∈ T (A ) , and
‖px− x‖,‖xp− x‖< ε for all x ∈ F .

In particular, AIminA has an (netwise) approximate unit consisting of projections.

Proof. We may assume that F contains a nonzero element.
Let a ∈ (AIminA)+ be given by a =d f ∑x∈F (x∗x+ xx∗)/‖∑x∈F (x∗x+ xx∗)‖ .
Find δ > 0 so that if R ∈ M (A ⊗K ) is a projection with ‖R(a− δ )+− (a−

δ )+‖ < δ then ‖Rx− x‖,‖xR− x‖< ε for all x ∈ F .
Contracting δ if necessary, we may assume that δ < min{1/100,ε/100} .
Since a ∈ Imin , L =d f supτ∈T (A ) dτ((a− δ/100)+) < ∞ .
Since A is a full positive element of M (A ⊗K ) and since A ⊗K has the

corona factorization property ([24] Proposition 2.5), there exists X ∈M (A ⊗K ) such
that XAX∗ = 1M (A ⊗K ) . From this and Proposition 5.2, let q ∈ AIminA− (A ⊗K )
be a projection such that τ(q) > max{L+10,α +10} for all τ ∈ T (A ) .

Hence, by Lemma 5.4, (a− δ/100)+ � q .
Hence, there exists y ∈ AIminA such that (a− δ/10)+ = y∗y and yy∗ � q .
Let y = v|y| be the Polar Decomposition of y . Hence, (a− δ/10)+ = |y|2 and

v|y|2v∗ � q .
Since AIminA has the Hjelmborg–Rordam Property, there exists a separable C*-

subalgebra D ⊂ AIminA such that {(a−δ/10)+,y,q}⊂D and D has the Hjelmborg–
Rordam Property. Hence, since D is separable, D is a stable C*-algebra.

Hence, by Lemma 5.7, y ∈ GL(D̃) , where D̃ is the unitization of D . Hence, by
[26] Theorem 5, let u∈ D̃ (⊂M (A ⊗K )) be a unitary such that u(|y|2−δ/10)+u∗ =
v(|y|2− δ/10)+v∗ � q .

Hence, (a− δ/5)+ = (|y|2 − δ/10)+ � u∗qu , and p =d f u∗qu is a projection in
AIminA such that τ(p) � α for all τ ∈ T (A ) . In particular, p(a− δ/5)+ = (a−
δ/5)+ . So p(a−δ )+ = (a−δ )+ . Hence, by our choice of δ , ‖px− x‖,‖xp− x‖< ε
for all x ∈ F . �

LEMMA 5.9. Let A be a unital separable simple C*-algebra with stable rank
one and in class R .

Let x ∈ Imin be given.
Then there exists a sequence {pn}∞

n=1 of pairwise orthogonal projections in Imin−
(A ⊗K ) such that

1. τ(pn) � 10 for all n � 1 ,

2. the sum ∑∞
n=1 pn converges in the strict topology on M (A ⊗K ) , and

3. ‖(∑N
n=1 pn)x−x‖,‖x(∑N

n=1 pn)−x‖,‖(∑N
n=1 pn)x(∑N

n=1 pn)−x‖→ 0 as N → ∞ .



BROWN–PEARCY THEOREM 77

Sketch of proof. The proof is an easy induction argument, repeatedly using Lemma
5.8. (In particular, we will use Lemma 5.8 (many times) to find an appropriate increas-
ing sequence {rn} of projections and then take pn =d f rn+1 − rn for all n . To ensure
strict convergence of ∑ pn , we will need the finite sets F (notation as in Lemma 5.8)
to contain a fixed strictly positive element of A ⊗K . Also, at some point, we need to
use the following perturbation result: For every ε > 0, there exists a δ > 0 such that
if e,e′ are projections with ‖ee′ − e′‖ < δ then there exists a projection e′′ � e with
‖e′ − e′′‖ < ε .) �

THEOREM 5.10. Let A be a unital separable simple C*-algebra with stable rank
one and in class R .

If x ∈ Imin then x is a commutator in M (A ⊗K ) .

Sketch of proof. By Lemma 5.9, let {rn}∞
n=1 be a sequence of pairwise orthogonal

projections in Imin − (A ⊗K ) such that

1. τ(rn) � 10 for all n � 1,

2. the sum ∑∞
n=1 rn converges in the strict topology on M (A ⊗K ) , and

3. ‖(∑N
n=1 rn)x− x‖,‖x(∑N

n=1 rn)− x‖,‖(∑N
n=1 rn)x(∑N

n=1 rn)− x‖→ ∞ as N → ∞ .

Claim: There exists a sequence {Qn}∞
n=1 of pairwise orthogonal projections in

M (A ⊗K ) such that

(a) Qn ∼ 1M (A ⊗K ) for all n ,

(b) ∑∞
n=1 Qn converges in the strict topology on M (A ⊗K ) ,

(c) (∑∞
n=1 Qn)x = x(∑∞

n=1 Qn) = x , and

(d) ∑1�m,n<∞‖QmxQn‖ < ∞ .

Sketch of proof of Claim The proof is exactly the same as that of Corollary 2.3,
except that for all j � 1, the projection 1M (B)⊗e j, j (notation as in the proof of Corol-
lary 2.3) is replaced with r j (notation as in this proof). Moreover, for all n � 1, PFn

(notation as in the proof of Corollary 2.3) will be replaced with Qm (notation as in
this proof) for some m � 1. Note that this means that each Qm will be a strict sum of
infinitely many r j s.
End of proof of the Claim.

From the Claim and from Lemma 2.2, it follows that x is a commutator of M (A ⊗
K ) . �
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6. The stably finite case: Part II

In this section, we will assume that A is a unital separable simple C*-algebra
with stable rank one, unique tracial state, and in class R . As a consequence, Imin (de-
fined in the previous section) is the unique C*-ideal of M (A ⊗K ) that sits properly
between A ⊗K and M (A ⊗K ) ; i.e., Imin is the unique C*-ideal for which the
inclusions A ⊗K ⊂ Imin ⊂ M (A ⊗K ) are proper. Moreover, if τ is the unique
tracial state of A then Imin = {X ∈ M (A ⊗K ) : τ(X∗X) < ∞} . (E.g., see [29]; see
also [36] Proposition 2.9 or [35] Proposition 3.6.)

For the rest of the paper, we let ΓImin : M (A ⊗K )→M (A ⊗K )/Imin be the
natural quotient map.

LEMMA 6.1. Let A be a unital separable simple C*-algebra with stable rank
one, unique tracial state τ , and in class R . Suppose that X ∈ M (A ⊗K ) is such
that Γmin(X) is not a scalar multiple of the identity.

Then there exists an α > 0 with α < ‖X‖2 , where for every ε > 0 , for every finite
subset F ⊂ Imin , there exist projections p,q ∈ Imin − (A ⊗K ) such that

1. τ(p),τ(q) � 10 ,

2. p ⊥ q,

3. pa, ap, qa and ap are all within ε of 0 , for all a ∈ F , and

4. if x =d f qX p then there exists β � α with β � ‖X‖2 and ‖x∗x−β p‖,‖xx∗ −
βq‖ < ε .

Proof. The proof is similar to but more complicated than that of Lemma 4.1.
Note that M (A ⊗K )/Imin is simple purely infinite and hence has real rank

zero (see, for example, [16]). Hence, since Γmin(X) is not a scalar multiple of the
identity, there exist nonzero orthogonal projections R,S∈M (A ⊗K )/Imin such that
RΓmin(X)S �= 0.

Lift R,S to orthogonal positive elements A,B ∈ M (A ⊗K ) with norm one (i.e.,
A ⊥ B , Γmin(A) = R , Γmin(B) = S and ‖A‖ = ‖B‖ = 1).

Let γ =d f ‖RΓmin(X)S‖2 > 0.
Let δ1 =d f min{1/100,γ/100} .
Let h0 : [0,2‖X‖2 + 10] → [0,1] be the unique continuous function that is given

by

h0(s)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

= 1 s = γ
= 0 s ∈ [0,γ − δ1]∪ [γ + δ1,2‖X‖2 +10]
is linear on [γ − δ1,γ]
is linear on [γ,γ + δ1].

Note that from the definitions of γ and h0 , h0(AXB2X∗A) is a full positive ele-
ment of M (A ⊗K ) . Hence, since A ⊗K has the corona factorization property,
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1M (A ⊗K ) � h0(AXB2X∗A) (e.g., see [24] Proposition 2.5). Hence, there exists a pro-
jection Q ∈ M (A ⊗K ) such that Q ∼ 1M (A⊗K ) and Q ∈ Her(h0(AXB2X∗A)) . It
follows, from the definition of h0 , that QAXB2X∗AQ is within a distance min{1/100,
γ/100} of γQ . Hence, QAXB2X∗AQ is a full positive element of M (A ⊗K ) .

But since Q ∈ Her(A) and Γmin(A) = R is a projection, Γmin(Q) � R = Γmin(A) .
Hence, Γmin(QXB2X∗Q) = Γmin(QAXB2X∗AQ) . Hence, QXB2X∗Q is a full positive
element of M (A ⊗K ) . Hence, BX∗QXB is a full positive element of M (A ⊗K ) .

Let γ ′ =d f ‖Γmin(BX∗QXB)‖ > 0. Let δ2 =d f min{1/100,γ ′/100} . Let h1 :
[0,2‖X‖2 +10]→ [0,1] be the unique continuous function such that

h1(s)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

= 1 s = γ ′

= 0 s ∈ [0,γ ′ − δ2]∪ [γ + δ2,2‖X‖2 +10]
is linear on [γ − δ2,γ]
is linear on [γ,γ + δ2].

By the definitions of γ ′ and h1 , h1(BX∗QXB) is a full positive element of M (A ⊗
K ) . Hence, since A ⊗ K has the corona factorization property, 1M (A ⊗K ) �
h1(BX∗QXB) . Hence, there exists a projection P ∈ M (A ⊗ K ) such that P ∼
1M (A ⊗K ) and P ∈ Her(h1(BX∗QXB)) . It follows, from the definition of h1 , that
PBX∗QXBP is within a distance min{1/100,γ ′/100} of γ ′P . Hence, PBX∗QXBP is
a full positive element of M (A ⊗K ) . Since P ∈ Her(B) and Γmin(B) = S is a pro-
jection, Γmin(P) � S = Γmin(B) . Hence, Γmin(PX∗QXP) = Γmin(PBX∗QXBP) . Hence,
PX∗QXP is a full positive element of M (A ⊗K ) .

Hence, P,Q ∈M (A ⊗K ) are full projections (each MvN equivalent to the unit)
with P ⊥ Q such that QXP is a full element of M (A ⊗K ) .

Let α =d f (1/2)‖Γmin(QXP)‖2 > 0.

Let ε > 0 and a finite subset F ⊂ Imin be given. Contracting ε if necessary, we
may assume that all elements of F have norm less than or equal to one.

By Lemma 5.8, there exists projections e∈PIminP−(A ⊗K ) and f ∈QIminQ−
(A ⊗K ) such that ea , ae , eae , f a , a f , f a f are within ε/100 of Pa , aP , PaP , Qa ,
aQ , QaQ respectively, for all a ∈ F .

Let Q′ ∈ QM (A ⊗K )Q and P′ ∈ PM (A ⊗K )P be projections that are given
by Q′ =d f Q− f and P′ =d f P−e . Note that Q′,P′ are both full projections in M (A ⊗
K ) and Q′XP′ is a full element of M (A ⊗K ) with ‖Γmin(Q′XP′)‖2 = 2α > 0.
Also, Q′ ⊥ P′ .

Choose a number δ3 > 0 so that for any C*-algebra C , for all z ∈C and for every
projection r ∈ C , if zz∗ is within δ1 of r then z∗rz is within ε/(100(2α +1)) of z∗z .
Contracting δ3 > 0 if necessary, we may assume that δ3 < ε/100.

Choose δ4 > 0 so that for any C*-algebra C , for all z ∈ C , if z∗z is within
δ4 of a projection then zz∗ is within δ3/(100(2α + 1)) of a projection in Her(zz∗) .
Contracting δ4 > 0 if necessary, we may assume that δ4 < ε/100.
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Let h2 : [0,‖X‖2 +10]→ [0,1] be the unique continuous function satisfying:

h2(s)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

= 1 s ∈
[
2α − δ4α

1000(α+1)(‖X‖2+1) ,2α + δ4α
1000(α+1)(‖X‖2+1)

]

= 0 s ∈
[
0,2α − δ4α

100(α+1)(‖X‖2+1)

]
∪

[
2α + δ4α

100(α+1)(‖X‖2+1) ,‖X‖2 +10
]

linear on
[
2α − δ4α

100(α+1)(‖X‖2+1) ,2α − δ4α
1000(α+1)(‖X‖2+1)

]

linear on
[
2α + δ4α

1000(α+1)(‖X‖2+1) ,2α + δ4α
100(α+1)(‖X‖2+1)

]
.

Hence, by the definitions of h2 and α , ‖Γmin(h2(P′X∗Q′XP′))‖ = 1. Hence,
by Lemma 5.8, let p ∈ HerImin(h2(P′X∗Q′XP′)) be a nonzero projection such that
τ(p) � 15 and τ(pX∗Q′X p) = τ(pP′X∗Q′XP′p) � 15.

Hence, p � P′ and pX∗Q′X p is within δ4α
100(α+1) of 2α p .

Hence, (1/(2α))pX∗Q′X p is within δ4
200(α+1) of the projection p .

Hence, by our choice of δ4 , (1/(2α))Q′X pX∗Q′ is within δ3
100(2α+1) of a projec-

tion, say q ∈ HerImin(Q
′) =d f Q′IminQ′ . So qX pX∗q is within ε/100 of 2αq .

Also, by our choice of δ3 , (1/(2α))pX∗qX p is wthin ε/(100(2α + 1)) of
(1/(2α))pX∗Q′X p . Hence, pX∗qX p is within ε of 2α p .

Taking β =d f 2α , we are done. �

LEMMA 6.2. Let A be a unital separable simple C*-algebra with stable rank
one, unique tracial state, and in class R .

Suppose that X ∈ M (A ⊗K ) is such that Γmin(X) is not a scalar multiple of
the identity.

Then for every ε > 0 , there exist projections P,Q,R,S ∈ M (A ⊗K ) such that

1. P ∼ Q ∼ S ∼ 1M (A ⊗K ) ,

2. S ⊥ P ⊥ Q ⊥ S ,

3. PX∗QXP is invertible in PM (A ⊗K )P

4. QXPX∗Q is invertible in QM (A ⊗K )Q,

5. 0 is an isolated point of the spectrum of XPX∗ ,

6. R is the left support projection of XP,

7. ‖PR‖ < 1 ,

8. ‖SR‖< ε , and

9. Γ(S)Γ(R) = 0 .

10. if Q′ ∈ M (A ⊗K ) is a projection such that Q′ ∼ 1M (A ⊗K ) and Q′ ⊥ P, and
if V ∈M (A ⊗K ) is a partial isometry such that V ∗V = Q′ and VV ∗ = R then
(P+V)∗(P+V) is an invertible element of (P+Q′)M (A ⊗K )(P+Q′) .
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Proof. The proof is exactly the same as that of Lemma 4.3, except that we use
Lemma 6.1 in place of Lemma 4.1. �

THEOREM 6.3. Let A be a unital separable simple C*-algebra with stable rank
one and unique tracial state, such that every quasitrace is a trace, and A ⊗K has
strict comparison of positive elements.

Let X ∈ M (A ⊗K ) .
Then X is a commutator if and only if X does not have the form α1M (A ⊗K ) + x

where α ∈ C−{0} and x ∈ Imin .

Proof. The proof is exactly the same as that of Theorem 4.5, except that Lemma
4.3 and Corollary 2.3 is replaced with Lemma 6.2 and Theorem 5.10 respectively. Also,
the map Γ is replaced with Γmin . �
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