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ALGEBRAIC PROPERTIES OF THE SET OF OPERATORS

WITH 0 IN THE CLOSURE OF THE NUMERICAL RANGE

CRISTINA DIOGO

(Communicated by P.-Y. Wu)

Abstract. Sets of operators which have zero in the closure of the numerical range are studied.
For some particular sets T ⊆B(H ) , we characterize the set of all operators A ∈B(H ) such
that 0 ∈W(TA) for every T ∈ T .

1. Introduction and preliminaries

Let B(H ) be the Banach algebra of all bounded linear operators on a separable
complex Hilbert space H and SH = {x ∈ H ; ‖x‖ = 1} be the unit sphere of H .
The numerical range of A ∈ B(H ) is defined by

W (A) = {〈Ax,x〉; x ∈ SH }.

It is well known that W (A) is a convex subset of the complex plane C (Toeplitz-
Hausdorff Theorem) which contains in its closure the convex hull of the spectrum
σ(A) , i.e., conv(σ(A)) ⊆ W (A) . If A is normal, then conv(σ(A)) = W (A) . For an
arbitrary operator A , conv(σ(A)) is the intersection of the closures of numerical ranges
of all operators which are similar to A (Hildebrandt’s Theorem). This and other prop-
erties of the numerical range can be found, for instance, in [5, 6, 8]. To determine the
numerical range of an arbitrary operator is a difficult task. However, there are some
classes of operators for which a complete description of W (A) is known (see [7] and
references cited therein). For instance, if H is a two-dimensional space, then each

operator A can be represented by a matrix of the form
[

λ ω
0 μ

]
with respect to a suit-

able orthonormal basis. By the Elliptic Range Theorem (see [5]) we have that W (A)
is the elliptical disc with foci at the eigenvalues λ , μ and with semiaxes 1

2 |ω | and
1
2

√
|ω |2 + |λ − μ |2 . A similar result holds for quadratic operators on any Hilbert space

(see [9]). One among the important problems related to the numerical ranges is to find
necessary and sufficient conditions on an operator A such that 0∈W (A) . This problem
has been addressed by many authors (see, for instance, [1, 4]) and in this paper we are
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also concerned with it. We study the set of all operators which have 0 in the closure of
the numerical range, i.e.,

W{0} = {A ∈ B(H ); 0 ∈W (A)}.

It is obvious that this is a proper non-empty subset of B(H ) . We will use the following
notation: for A ⊆ B(H ) , let A ∗ = {A∗; A ∈ A } . It is easy to see that W{0} is
selfadjoint in the sense that W ∗

{0} = W{0} . Moreover, from [3, Theorem 3.6] it follows

easily that if T ∈ B(H ) is an invertible operator, then T ∈ W{0} if and only if T−1 ∈
W{0} .

In [2], it was shown that W{0} is not closed under addition and multiplication.
Let BL ⊆ B(H ) be the set of all operators which are not left invertible and BR ⊆
B(H ) be the set of all operators which are not right invertible. If A ∈ BL , then TA ∈
BL for any T ∈ B(H ) , which gives B(H )BL ⊆ W{0} . Similarly, BRB(H ) ⊆
W{0} . Taking this into account, it is natural to consider an algebraic structure in W{0}
which can be described in the following way. Let T ⊆ B(H ) be a non-empty set of
operators. It is easily seen that

QT = {A ∈ B(H ); 0 ∈W (TA) for every T ∈ T }

is the largest set of operators such that T QT ⊆ W{0} . Analogously,

RT = {A ∈ B(H ); 0 ∈W (AT ) for every T ∈ T }

is the largest set of operators such that RT T ⊆ W{0}. Let B0 = BL ∪BR be the set
of all non-invertible operators. For a non-empty set T ⊆ B(H ) , we define QT =
QT \B0 and, similarly, RT = RT \B0 . The next proposition follows easily from [2,
Proposition 2.6].

PROPOSITION 1.1. Let T ,T1 , and T2 be arbitrary non-empty subsets of B(H ) .
Then

(i) (QT )∗ = RT ∗ ;

(ii) if I ∈ T , then QT ⊆ W{0} ;

(iii) if T1 ⊆ T2 , then QT1 ⊇ QT2 .

According to this result, it is enough to consider sets QT because the properties
of RT are similar. The algebraic properties of QT , for an arbitrary T ⊆ B(H ) ,
are studied in Section 2. In Section 3, we characterize QT for some particular sets
T ⊆ B(H ) . Namely, when T = W{0} , some properties of QW{0} are studied and
it is also shown that if H is finite dimensional, then QW{0} contains only non-zero
scalar multiples of the identity matrix. In the end of the section, we are concerned with
QS , where S is the set of all selfadjoint operators.
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2. Properties of QT

Let T ⊆ B(H ) be a non-empty set. Denote CT = {λT ; λ ∈ C,T ∈ T } . It is
easily seen that QT = QCT and also that QT = CQT \ {0} .

PROPOSITION 2.1. If T ⊆B(H ) is an arbitrary non-empty subset, then QT =
QT .

Proof. It is obvious that QT ⊆QT , so we are left to prove the opposite inclusion.
Let A ∈QT and T ∈T . Let (Tn)∞

n=1 ⊆ T be a sequence whose limit is T . Then, for
ε > 0, there exists nε such that ‖Tn −T‖ < ε for every n � nε . Since A ∈ QT , we
have 0 ∈W (TnA) for each index n . On the other hand,

W (TnA) = W ((Tn −T )A+TA)⊆W ((Tn−T )A)+W(TA)

⊆ D(0,‖(Tn−T )A‖)+W(TA) ⊆ D(0,ε‖A‖)+W(TA),

which means that W (TnA) is in the ε‖A‖ -hull of W (TA) if n � nε . Since ε is arbi-
trarily small, we conclude that 0 ∈W (TA) , i.e., A ∈ QT . �

By a similar reasoning it can be shown that QT is a closed subset of B(H ) .

PROPOSITION 2.2. Let {Ti; i ∈ I} be an arbitrary family of subsets of B(H ) .
Then

(i)
⋂

i∈I QTi = Q∪iTi and

(ii)
⋃

i∈I QTi ⊆ Q∩iTi .

Proof. (i) Let A ∈ ⋂
i∈I QTi . If T ∈ Ti , for some i ∈ I , then 0 ∈W (TA) . Hence,

0 ∈ W (TA) for every T ∈ ∪iTi and therefore A ∈ Q∪iTi . Now, for the opposite in-
clusion, since Ti ⊆ ∪iTi for any i ∈ I , we have Q∪iTi ⊆ QTi and therefore Q∪iTi ⊆⋂

i∈I QTi .
(ii) Since ∩iTi ⊆ Ti for any i ∈ I , one has QTi ⊆ Q∩iTi . Hence,

⋃
i∈I QTi ⊆

Q∩iTi . �
It can be shown by an example that the inclusion in (ii) is strict.

EXAMPLE 2.3. Let T1 = {I,N1} and T2 = {I,N2} , where N1 =
[

1 0
0 i

]
and N2 =[

1 0
0 −i

]
. Since T1 ∩T2 = {I} , we have QT1∩T2 = W{0}\B0 . Taking D =

[
i 0
0 −i

]
we

have, by the Elliptic Range Theorem, that W (D) = [−i, i] and therefore 0 ∈ W (D) .
Hence, D∈QT1∩T2 . On the other hand, W (N1D) = [i,1] and W (N2D) = [i,−1] which
means that D /∈ QT1 ∪QT2 .

Let T ⊆ B(H ) be an arbitrary non-empty set. Denote by τ = {Ti; i ∈ I} the
family of all subsets Ti ⊆ B(H ) such that QT ⊆ QTi . It is easy to see that

T̂ := ∪i∈ITi (2.1)
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is the largest set in τ . Namely, since QT ⊆ QTi , we have, by Proposition 2.2, that

QT ⊆ ⋂
i∈I QTi = Q∪iTi . Hence, QT ⊆ Q

T̂
. Because of T ⊆ T̂ we also have the

other inclusion and we may conclude that for each T ⊆ B(H ) there exists the largest
subset T̂ ⊆ B(H ) , which is given by (2.1), such that QT = Q

T̂
.

For T ⊆B(H ) , let T0 = T ∩B0 and Tinv = T \T0 = {T ∈T ; T is invertible} .
Since T = T0 ∪Tinv , it follows, by Proposition 2.2, that QT = QT0 ∩QTinv . There-
fore, it is enough to consider only QTinv as QT0 consists of all invertible operators in
B(H ) .

Let T be a non-empty set of invertible operators and let T −1 = {T−1; T ∈ T } .
Let us now establish the relation between QT −1 and QT ∗ .

PROPOSITION 2.4. Let T be an arbitrary non-empty set of invertible operators
in B(H ) . Then (QT −1)∗ = (QT ∗)−1 .

Proof. If A /∈ QT , then there exists T ∈ T such that TA /∈ W{0} . It follows
that A−1T−1 /∈ W{0} . Hence we have that A−1 /∈ RT −1 , which is equivalent to A−1 /∈(
Q(T −1)∗

)∗
by Proposition 1.1. We conclude that A ∈ QT if A−1 ∈

(
Q(T −1)∗

)∗
.

Equivalently, if A∗ ∈ Q(T −1)∗ , then A−1 ∈ QT . After interchanging T and T ∗ , it
follows

(QT −1)∗ ⊆ (QT ∗)−1 . (2.2)

Now let S = (T −1)∗ . Since (2.2) holds for every set of invertible operators, we have
(QS −1)∗ ⊆ (QS ∗)−1 or, equivalently, (QT ∗)∗ ⊆ (QT −1)−1 , which gives the desired
equality. �

Using Proposition 1.1 we can write the last result in the following form.

COROLLARY 2.5. Let T be an arbitrary non-empty set of invertible operators
in B(H ) . Then (QT −1)−1 = RT .

In general, QT �= RT . For instance, let T =
[

1 1
0 1

]
and T = {T} . If A =

[
a −a
0 b

]
,

where 0 < a �
√

2−1√
2+1

b , we have W (AT ) = [a,b] , which means that 0 �∈ W (AT ) , i.e.

A /∈ RT . On the other hand, by the Elliptical Range Theorem, W (TA) is the elliptical

disc with foci at a and b and the major semiaxis
√

2
2 (b− a) . Hence, it is easy to

check that 0 is inside this elliptical disc so 0 ∈W (TA) , i.e., A ∈ QT . However, as the
following proposition shows, QT and RT contain the same set of unitary operators.

PROPOSITION 2.6. Let T be an arbitrary non-empty set of operators in B(H ) .
If U is unitary, then U ∈ QT if and only if U ∈ RT .

Proof. If U ∈QT , then 0∈W (TU) for any T ∈T . Since the numerical range is
unitarily invariant, one has W (TU) = W (U∗UTU) = W (UT ) . Therefore 0 ∈W (UT )
for any T ∈ T , which means that U ∈ RT . The opposite implication is proved simi-
larly. �
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Let T be a set of invertible operators and T ∈ T . For every A ∈ RT we have
AT ∈ W{0} , which means that T ∈ QRT

. Therefore, we conclude that T ⊆ QRT
.

The inclusion T ⊆ RQT
is obvious, as well. Taking this into account we have the

following result.

PROPOSITION 2.7. Let T be an arbitrary non-empty subset of invertible opera-
tors in B(H ) . Then QRQT

= QT and RQRT
= RT .

Proof. We will prove only the first equality since the proof of the second one is
similar. Since T ⊆QRT

for every non-empty set T ⊆B(H ) of invertible operators,
we have, in particular, that QT ⊆ QRQT

. On the other hand, taking into account that
T ⊆ RQT

and Proposition 1.1, we have the opposite inclusion. �

COROLLARY 2.8. Let T be a non-empty subset of invertible operators in B(H ) .
Then T = QRT

if and only if there exists S ⊆B(H ) such that T = QS . Similarly,
T = RQT

if and only if there exists S ⊆ B(H ) such that T = RS .

Proof. If T = QRT
, then S = RT . On the other hand, if there exists S such

that T = QS , then, by Proposition 2.7, we have that T = QS = QRQS
= QRT

.
The second statement can be proved analogously. �

This result raise a question which sets of invertible operators T can be realized
as QS for some S ⊆ B(H ) . We are concerned with this problem in the following
section.

3. QT of some sets T

In this section we obtain descriptions of QT and QT for some particular sets
T ⊆B(H ) . It is easily seen that QB(H ) = BL (and RB(H ) = BR ). Let P = {P∈
B(H ); P2 = P = P∗} be the set of all orthogonal projections on H . It is clear that the
only invertible element in P is the identity operator, so QP = W{0}. But, of course,
usually the characterization of QT , and consequently of QT , is not trivial.

3.1. Positive semidefinite operators

Let B+ be the set of all positive semidefinite operators on H . In [2], we showed
that

QB+ = {A ∈ B(H ); 0 ∈ conv(σ(A))}, (3.1)

which gives
QB+ = {A ∈ B(H ); 0 ∈ conv(σ(A))\σ(A)}. (3.2)

We will use this result to characterize Q[0,C] , where [0,C] = {T ∈ B(H ); 0 �
T � C} , for a given C ∈ B+ . If C is non-invertible, then each operator T in [0,C] is
non-invertible. Namely, if C is not invertible, then

√
C is also not invertible. Hence 0
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is in its approximate point spectrum. Let (xn)∞
n=1 ⊆ S (H ) be a sequence of vectors

such that ‖√Cxn‖→ 0. From

‖
√

Txn‖2 = 〈Txn,xn〉 � 〈Cxn,xn〉 = ‖
√

Cxn‖2 → 0

we derive that 0∈ σ(T ) and therefore T is not invertible. Since it is a normal operator,
it is left and right non-invertible. Hence, for a non-invertible C , one has Q[0,C] =
B(H )\B0 . Assume now that C is invertible. Since [0,C] ⊆ B+ , we have Q[0,C] ⊇
QB+ . In fact, these two sets are equal.

THEOREM 3.1. Let C ∈ B+ be invertible. Then Q[0,C] = QB+ .

Proof. Assume that there exists A ∈ Q[0,C] such that A /∈ QB+ . Therefore, there
is a positive and invertible operator P ∈ B+ such that PA /∈ W{0} . Since P and C

are positive and invertible operators, we have that W (P) = [c(P),‖P‖] and W (C) =
[c(C),‖C‖] , where the Crawford numbers c(P) and c(C) are positive ([3, Theorem

3.6]). Hence, taking E = c(C)P
‖P‖ it is easy to see that E ∈ [0,C] and EA /∈ W{0} , which

is a contradiction since A ∈ Q[0,C] . �

Now we are able to show that, for a general set T , there is not the smallest set Ť
such that QŤ = QT .

EXAMPLE 3.2. Let T = B+ . First we show that

C =
⋂

C∈B+
C invertible

[0,C]

is the singleton containing 0. Assume that there is A ∈ C such that A �= 0. Then
there is λ ∈W (A) ⊆ ]0,‖A‖] , which means that λ = 〈Ax,x〉 for some x ∈ SH . Let
0 < μ < λ . Then 〈μx,x〉< 〈Ax,x〉 and therefore 〈(A−μI)x,x〉> 0. Hence A /∈ [0,μI] .
This is a contradiction because A ∈ C .

Assume that B̌+ , the smallest set such that QB̌+
= QB+ , exists. Then, by The-

orem 3.1, we would have B̌+ ⊆ [0,C] , for every invertible positive definite C , which
would imply that B̌+ = {0} . However, Q{0} = B(H )\B0 . Thus, B̌+ does not exist.

3.2. Unitary and normal operators

Let U ⊆ B(H ) be the set of all unitary operators and N ⊆ B(H ) the set of
all normal operators.

PROPOSITION 3.3. QU = B0 = QN .

Proof. Since the numerical range is unitarily invariant, one has QU = RU . It
follows from U ⊆B(H ) that QU ⊇QB(H ) = BL and QU = RU ⊇RB(H ) = BR ,
which gives QU ⊇ B0 . On the other hand, if A ∈ B(H ) is invertible with polar
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decomposition A = UP , where U ∈ U and P > 0, then 0 �∈ W (P) = W (U∗A) , i.e.,
A /∈ QU , which proves the other inclusion.

To prove the second equality, let us suppose that there is a normal operator N
such that 0 �∈ W (NA) . Then 0 is not in σ(NA) . This means that NA is invertible,
and hence N is right invertible. It follows that the normal N is invertible. Thus so is
A = N−1(NA) , which proves that QU ⊇ B0 . The reverse containment follows from
QN ⊆ QU = B0 . �

3.3. Operators with 0 in the closure of the numerical range

In order to characterize QW{0} , we list some properties of this set of operators.

LEMMA 3.4. Let A ∈ QW{0} and U be unitary. Then U∗AU ∈ QW{0} .

Proof. Let U be unitary. Since W (T ) = W (UTU∗) for any T ∈ B(H ) we have
T ∈ W{0} if and only if UTU∗ ∈W{0} . Hence, if A ∈QW{0} , then 0 ∈W (UTU∗A) for

every T ∈ W{0} . This means that 0 ∈W (TU∗AU) for every T ∈ W{0} , and therefore
U∗AU ∈ QW{0} . �

PROPOSITION 3.5. QW{0} is a semigroup which contains the identity operator I .

Proof. It is obvious that I ∈ QW{0} . Suppose that A,B ∈ QW{0} . Let T ∈W{0} be

arbitrary. Then TA ∈ W{0} . Since B ∈ QW{0} , one has 0 ∈W (TAB) , and we conclude
that AB ∈ QW{0} . �

LEMMA 3.6. If A ∈ QW{0} , then A �∈ W{0} .

Proof. Let A ∈ QW{0} . If A were in W{0} , then A−1 ∈ W{0} and one would have

0 ∈W (A−1A) = {1} , which is a contradiction. �

Taking into account that
(
W{0}\B0

)−1 = W{0}\B0 = W ∗
{0}\B0 , it follows from

Proposition 2.4 and Corollary 2.5 that(
QW{0}

)∗
=

(
QW{0}

)−1
= RW{0} . (3.3)

To prove that QW{0} is selfadjoint, i.e.,
(
QW{0}

)∗
= QW{0} , we need the following

lemma.

LEMMA 3.7. Let A ∈ QW{0} and let A =UP be its polar decomposition. Then

(i) P−1U ∈ QW{0} ;

(ii) U2 ∈ QW{0} and (U∗)2 ∈ QW{0} .
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Proof. (i) Let A ∈QW{0} . By (3.3), (A∗)−1 ∈QW{0} . Since U is unitary and P is

positive definite, we have that (A∗)−1 =UP−1 ∈ QW{0} and it follows, by Lemma 3.4,

that P−1U ∈ QW{0} .

(ii) By (i), P−1U ∈ QW{0} . Since QW{0} is a semigroup, we have A(P−1U) =
U2 ∈ QW{0} . By (3.3), one has (U2)∗ ∈ RW{0} and consequently, by Proposition 2.6,

(U2)∗ ∈ QW{0} . �

PROPOSITION 3.8.
(
QW{0}

)−1
= QW{0} =

(
QW{0}

)∗
.

Proof. Let A ∈ QW{0} and let A = UP be its polar decomposition. Taking into

account Proposition 3.5 and Lemma 3.7, we have A−1 = P−1U∗ = (P−1U)(U∗)2 ∈
QW{0} . This proves the first equality and the second follows by (3.3). �

By Propositions 3.5 and 3.8, we have that QW{0} is a group.

LEMMA 3.9. Let A ∈ QW{0} . If B ∈ B(H ) is such that B �∈ W{0} , then AB �∈
W{0} .

Proof. Let A ∈ QW{0} and B ∈ B(H ) be such that 0 �∈ W (B) . If 0 were in

W (AB) , then one would have 0 ∈W (A−1(AB)) = W (B) since A−1 ∈ RW{0} by (3.3).
This is a contradiction. �

Now we will characterize QW{0} as the set of all non-zero scalar multiplies of the
identity operator if the underlying space is finite dimensional. We believe that the same
result holds also in the infinite dimensional case. We start with a lemma, which holds
in any separable complex Hilbert space.

LEMMA 3.10. If U ∈ QW{0} is unitary, then U = λ I for some λ ∈ C , |λ | = 1 .

Proof. Let U ∈ QW{0} be unitary. Since the spectrum σ(U) is a subset of the

unit circle and U is normal, we have W (U) = conv(σ(U)) ⊆ D . Assume that there is
a number μ ∈ W (U) such that |μ | < 1. By Lemma 3.6, μ �= 0. Hence, μ−1 exists
and |μ−1| > 1. Since μ ∈W (U) , we have 0 ∈W (U − μI) , i.e., U − μI ∈ W{0} . By
Proposition 3.8, U−1 ∈ QW{0} and therefore (U − μI)U−1 ∈ W{0} . Since μ �= 0, it

follows U−1 − μ−1I ∈ W{0} , that is, μ−1 ∈W (U−1) . However U−1 = U∗ is unitary

and therefore W (U−1) ⊆ D , which is a contradiction. We have proved that W (U)
does not contain numbers of modulus strictly less than 1. Because of the convexity of
W (U) , we may conclude that W (U) = {λ} for some number λ of modulus 1. Hence
U = λ I . �

PROPOSITION 3.11. If A ∈ QW{0} , then A = λP, where λ ∈ C , |λ | = 1 , and P
is positive definite.
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Proof. Let A = UP be the polar decomposition of A ∈ QW{0} . Since A is invert-

ible and P is a positive definite operator, we have 0 /∈W (P) and therefore 0 /∈W (P−1) .
Hence, by Lemma 3.9, 0 /∈W (AP−1) = W (U) .

On the other hand, by Lemma 3.7, U2 ∈ QW{0} . Since U2 is unitary one has, by

Lemma 3.10, that U2 = μI for some μ ∈C , |μ |= 1. Let λ ∈ C , |λ |= 1, be such that
μ = λ 2 . If U �= ±λ I , then λ and −λ are in the spectrum σ(U) and consequently
0 ∈W (U) , which is a contradiction. Hence, either U = λ I or U = −λ I , i.e., A = λP
or A = −λP . �

LEMMA 3.12. Let P = diag{1, p1, . . . , pn−1} be a non-scalar positive definite
matrix with eigenvalues 0 < p1 � p2 � · · · � pn = 1 (which means that p1 < 1 ). Let
B =

[
1 ω
0 1

]
, where 2 � ω < 2√

p1
. Then A := B⊕ diag{1/p2, . . . ,1/pn−1} ∈ W{0} and

AP �∈ W{0} .

Proof. Since ω � 2, one has 0 ∈W (B) , which means that 0 is also in the numer-

ical range of A and therefore A ∈ W{0} . Let C =
[

1 ω p1
0 p1

]
. Then AP = C⊕ In−2 and

therefore W (AP) = conv(W (C)∪W (In−2)) . By the Elliptical Range Theorem, W (C)

is an elliptical disc with foci at 1 and p1 and the major axis
√

ω2p2
1 +(1− p1)2 . It

follows that the inequality describing W (C) is |z−1|+ |z− p1|�
√

ω2p2
1 +(1− p1)2 .

It is obvious now that 1 ∈ W (C) , i.e., W (AP) = W (C) . Since ω < 2√
p1

, one has

1+ p1 >
√

ω2p2
1 +(1− p1)2 , which means that 0 /∈W (AP) . �

PROPOSITION 3.13. If P ∈ Mn is a non-scalar positive definite matrix, then P /∈
QW{0} .

Proof. Let P be a non-scalar positive definite matrix with eigenvalues 0 < p1 �
p2 � · · ·� pn (which means that p1 < pn ). Then 1

pn
P is positive definite with eigenval-

ues p1
pn

� p2
pn

� · · ·� pn−1
pn

� 1. Let U ∈ Mn be a unitary matrix such that U( 1
pn

P)U∗ =
diag{1, p1/pn, . . . , pn−1/pn} . By Lemma 3.12, there exists A ∈ W{0} such that 0 �∈
W (AU( 1

pn
P)U∗) = 1

pn
W (U∗AUP) . Let T = U∗AU . Then T ∈ W{0} and 0 �∈W (TP) .

�

THEOREM 3.14. If dim(H ) < ∞ , then QW{0} = {λ I; λ ∈ C\{0}} .

Proof. If A ∈ QW{0} , then A = λ I for some λ �= 0 by Propositions 3.11 and
3.13. �

We would like to point out the following equivalent formulation of Theorem 3.14.
If dim(H ) < ∞ and A ∈ B(H ) is an invertible non-scalar operator, then there exists
an operator T ∈ B(H ) such that 0 ∈W (T ) and 0 �∈W (TA) .
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CONJECTURE 3.15. Let H be an arbitrary complex Hilbert space. If A∈B(H )
is an invertible non-scalar operator, then there exists an operator T ∈ B(H ) such that
0 ∈W (T ) but 0 /∈W (TA) .

3.4. Selfadjoint operators

Let us denote by S the set of all selfadjoint operators in B(H ) . Since B+ ⊆S ,
we conclude that QS ⊆ QB+ . Let us show that QS is a proper subset of QB+ .
Namely, if H ∈ S is invertible such that its spectrum has positive and negative values,
then 0 /∈ σ(H) but 0 ∈ conv(σ(H)) = W (H) . Therefore, by (3.2), we have that H ∈
QB+ . On the other hand, taking S = H−1 , which is also a selfadjoint operator, we
conclude that SH /∈ W{0} , that is, H /∈ QS .

CONJECTURE 3.16. Let H be a finite-dimensional complex Hilbert space. If
A ∈ B(H ) is invertible, then there exists a selfadjoint operator H ∈ B(H ) such that
0 /∈W (HA) .

The following result gives some evidence that this conjecture holds.

PROPOSITION 3.17. Let H be a separable complex Hilbert space and A∈B(H )
an invertible quadratic operator. Then there exists a selfadjoint operator H ∈ B(H )
such that 0 /∈W (HA) .

Proof. It is obvious that the proposition holds for non-zero scalar operators. As-
sume therefore that A is a non-scalar invertible quadratic operator with eigenvalues
λ , μ ∈ C\{0} . By [9, Theorem 2.1] and because of the unitary invariance of the

numerical range we can assume that A has a block matrix representation

[
λ I P 0
0 μI 0
0 0 γI

]
,

where γ ∈ {λ ,μ} and P positive semidefinite. If γ = μ , then let H =
[

I 0 0
0 rI 0
0 0 rI

]
, and if

γ = λ , then let H =
[

I 0 0
0 rI 0
0 0 I

]
, where r = ε|r| (ε ∈ {1,−1}) is a real number such that

ε Re(λ μ) � 0 and |r| > ‖P‖2

2(|λ ||μ |+ ε Re(λ μ))
. (3.4)

When γ = μ , then HA =
[

λ I P 0
0 rμI 0
0 0 rμI

]
and when γ = λ , then HA =

[
λ I P 0
0 rμI 0
0 0 λ I

]
. In

both cases, HA is a quadratic operator. Hence, by [9, Theorem 2.1], the numerical
range of HA is an elliptical disc with foci at λ , rμ , and with the minor axis ‖P‖ .
Therefore the major axis is

√‖P‖2 + |λ − rμ |2 and the inequality which describes this
elliptical disc is

|z−λ |+ |z− rμ |�
√
‖P‖2 + |λ − rμ |2. (3.5)

It follows from (3.4) that

2|r||λ ||μ |+2rRe(λ μ) > ‖P‖2,
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which gives

|λ |+ |rμ |>
√
‖P‖2 + |λ − rμ |2.

This shows that 0 is not in the elliptical disc (3.5). We conclude that for a selfadjoint
operator H , where r is chosen to satisfy (3.4), one has 0 �∈W (HA) . �
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