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SIMULTANEOUS EXTENSIONS OF A FAMILY OF LINEAR OPERATORS
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(Communicated by P.-Y. Wu)

Abstract. In this paper we study when an arbitrary family of (positive) linear operators, defined
on vector subspaces in an ordered vector space E with values in a Dedekind complete ordered
vector space F , has a (positive) linear simultaneous extension. Some previous results of the
first author concerning the existence of a (positive) linear common extension for two (positive)
linear operators are generalized in the line of an appropriate theorem of D. Maharam. The
results obtained are related to the classical Mazur-Orlicz theorem and its famous consequence,
the Hahn-Banach theorem. Some applications of the main results pertaining to convex analysis,
functional analysis and vector measure theory are given.

1. Introduction

In the theory of ordered vector spaces, the existence of a positive linear extension
of a positive linear operator is not a trivial problem. Generally, such a problem is
very different from the similar problem of extending an operator without preserving the
positivity, because it is possible for a linear extension to fail to be positive.

The basic problem in the literature of the extension of positive linear operators can
be stated as follows: If E is an ordered vector space, G is a vector subspace of E and T
is a positive linear operator between G and a Dedekind complete ordered vector space
F , is it possible to extend T to the whole E as a positive (and linear) operator if, for
example, T is dominated on G by a monotone sublinear operator S acting between E
and F ?

A more difficult problem is that of the existence of a common positive linear ex-
tension of two positive linear operators.

An even more difficult problem arises when instead of two positive linear operators
we have an arbitrary family of positive linear operators.

A way to solve this last problem is to use an inequality between two arbitrary
linear combinations of the values of two families of maps ( fδ )δ∈Δ and (gδ )δ∈Δ . At
the end, we will put this inequality in its simplest form.

The proofs of the obtained results use the technique of the auxiliary sublinear op-
erator and apply the existence form of the Hahn-Banach theorem. (“For every sublinear
operator S : X → F there exists a linear operator L : X → F such that L � S on X ”.)

Mathematics subject classification (2010): 46A22; Secondary 47B60, 47B65.
Keywords and phrases: Common extension of positive linear operators, simultaneous extension of pos-

itive linear operators, sublinear operators, Hahn-Banach theorem, Mazur-Orlicz theorem, Maharam theorem.

c© � � , Zagreb
Paper OaM-09-05

95

http://dx.doi.org/10.7153/oam-09-05
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What does the technique of the auxiliary sublinear operator consists of?
If in the statement of the Hahn-Banach existence theorem instead of X we consider

an ordered vector space E , and, in addition, we assume that the sublinear operator
S : E → F is monotone, then the linear operator L : E → F obtained by the Hahn-
Banach theorem is positive.

The technique of the auxiliary sublinear operator is a method to prove the existence
of a linear operator by using the Hahn-Banach existence theorem. This method has two
steps:

1) construct a sublinear operator S : E → F ;
2) then apply the Hahn-Banach existence theorem, obtaining the linear operator

L : X → F dominated by S on X .
According to the fact that if S is monotone then L is positive, the technique of the

auxiliary sublinear operator can be used to extend positive linear operators by preserv-
ing the positivity.

This technique, due to V. Ptàk (1956), was used by him to give a much simpler
proof to the Mazur-Orlicz theorem; see [10]. (We will later reproduce the statement of
this theorem and in order to solve our problem we will use the idea of Ptàk’s proof.)

Actually, the idea of Ptàk comes, perhaps, from the work of F. Riesz who in 1928
(see [11]) defined, in a particular case, a monotone sublinear operator T associated
with a positive linear operator T : G → F , where G is a majorizing vector subspace of
E . Recall that G is a majorizing subspace of E if for all x ∈ E there exists v ∈ G such
that x � v, and that:

T (x) = inf{T (v) |v ∈ G,v � x} , x ∈ E.

The operator T has the following properties:
a) T is sublinear;
b) T is monotone;
c) T = T on G ;
d) L � T on E , for any L : E → F which is a positive linear extension of T .
In this paper, we will use the technique of the auxiliary sublinear operator to obtain

some positive linear operators, including a positive linear extension for an arbitrary
family of positive linear operators.

What do we need in our proofs?
We need to give a convenient description of the linear space generated by a family

of subsets. In what follows, we will denote by N∗ the set of all natural numbers different
from zero.

Firstly, recall that if X is a vector space and A, B are two nonempty subsets, then

span(A) =
{

n
∑
i=1

λiai |n ∈ N∗, λi ∈ R, ai ∈ A, i = 1, ...,n

}

and therefore

span(A∪B) =
{

n
∑
i=1

λici |n ∈ N∗, λi ∈ R, ci ∈ A∪B, i = 1, ...,n

}
.

Obviously, we can write:
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span(A∪B) ={
n
∑
i=1

λiai +
m
∑
j=1

μ jb j
∣∣n, m ∈ N∗, λi ∈ R, ai ∈ A, i = 1, ...,n, μ j ∈ R, b j ∈ B, j = 1, ...,m

}
.

Now we will extend this description to the case in which A and B are replaced by
a family (Aδ )δ∈Δ of nonempty subsets in a vector space X .

We have:

span

(⋃
δ∈Δ

Aδ

)
=

{
n

∑
i=1

λici

∣∣∣∣∣n ∈ N∗, λi ∈ R, ci ∈
⋃

δ∈Δ
Aδ , i = 1, ...,n

}
. (1)

But we need to prove that span

( ⋃
δ∈Δ

Aδ

)
is the following set:

{
n

∑
i=1

(
∑

δ∈Δ
λδ iaδ i

)∣∣n ∈ N∗, ∀i = 1, ...,n, λδ i ∈ R, (aδ i)δ∈Δ ∈ Φ
(
(Aδ )δ∈Δ

)}
, (2)

where Φ
(
(Aδ )δ∈Δ

)
is the collection of all families {vδ ∈ Aδ |δ ∈ Δ} such that vδ �= 0

for at most finitely many δ ∈ Δ .
Now let us prove (2).

In order to do this choose in (1) x =
n
∑
i=1

λici , where ci ∈ ⋃
δ∈Δ

Aδ for all i = 1, ...,n .

It follows that, for all i = 1, ...,n, there exists δi ∈ Δ such that ci ∈ Aδi
. Hence,

we have c1 ∈ Aδ1
, ...,cn ∈ Aδn .

Of course, it is possible that some or all selected indices δ1, ...,δn are equal.
And it is also possible, for example, to have another element from the set {c1, ...,c2} ,

different from c1, in the set Aδ1
. Let us denote by N1 the set of indices of all these

elements. Hence:

N1 =
{

j ∈ {1, ...,n} ∣∣c j ∈ Aδ1

}
.

(Obviously, as we have already mentioned, it is possible that N1 = {1, ...,n} .) Let us
denote by aδ1 j the elements c j ∈ Aδ1

having the index j in N1 .
Now consider the set {1, ...,n}\N1 and denote by N2 its following subset:

N2 =
{

j ∈ {1, ...,n}\N1
∣∣c j ∈ Aδ2

}
.

We also denote by aδ2 j the elements c j of Aδ2
having the index j in N2 and so

on. For any p � n , let Np be the following set

Np =
{

j ∈ {1, ...,n}\(N1 ∪ ...∪Np−1)
∣∣∣c j ∈ Aδp

}
,

and denote c j (with j ∈ Np) by aδp j .
We will stop when N1 ∪ ...∪Np = {1, ...,n} .
Therefore:

x =
n
∑
j=1

λ jc j ⇒ x = ∑
j∈N1

λ jaδ1 j + · · ·+ ∑
j∈Np

λ jaδp j.
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In each of the sums appearing in the right side of the last equality, we denote λ j

by λδ1 j (if j ∈ N1) , λδ2 j (if j ∈ N2) ,...,λδp j (if j ∈ Np), respectively.
It follows that:

x = ∑
j∈N1

λδ1 jaδ1 j + · · ·+ ∑
j∈Np

λδp jaδp j =
m
∑
i=1

λδ1iaδ1i + · · ·+
m
∑
i=1

λδpiaδpi,

where m is the greatest of the cardinal numbers of the sets N1, ...,Np , and eventually,
some coefficients in the summation of the right-hand side of this equality are equal to
zero. So, we have:

x =
m
∑
i=1

(
∑

δ∈Δ
λδ iaδ i

)
,

where for each i = 1, ...,m , (aδ i)δ∈Δ ∈ Φ
(
(Aδ )δ∈Δ

)
. �

The main aim of this paper is to generalize the following result (also obtained as a
generalization of the Mazur-Orlicz theorem - see Theorem 5 below).

PROPOSITION 1. ([5, Theorem 2.1]) Let X be a vector space, F a Dedekind
complete ordered vector space, A1 and A2 two nonempty arbitrary sets, S : X → F a
sublinear operator, and g j : Aj → X and f j : Aj → F, j = 1,2 , four maps. Then the
following are equivalent:

i) There exists L : X → F a linear operator such that:
a) L � S on X , and
b) f1 � L◦ g1 on A1 and f2 � L◦ g2 on A2.

ii) The inequality

n

∑
i=1

λi f1 (a1i)+
m

∑
j=1

μ j f2
(
a2 j
)

� S

(
n

∑
i=1

λig1 (a1i)+
m

∑
j=1

μ jg2
(
a2 j
))

(3)

holds for all n, m ∈ N∗, {a11, ...,a1n} ⊂ A1, λ1 � 0, ...,λn � 0, {a21, ...,a2m} ⊂ A2,
μ1 � 0, ...,μm � 0.

We shall achieve our main purpose by establishing a general result in the line of
a theorem of Maharam (see Theorem 3 below). This general result formulated below
as Theorem 7 will concern the simultaneous extension of an arbitrary family of linear
operators. In this result we will denote by (4) the inequality corresponding to (3). The
next goal will be to simplify the form of both sides of inequality (4).

This idea comes from the remark that the (classical) Hahn-Banach theorem can be
seen as a consequence of the Mazur-Orlicz theorem.

2. Preliminaries

In this paper, the terminology, the notation and some mentioned results are gener-
ally considered to be classical in the theory of ordered vector spaces and linear operators
(see, for example [1], [2] and [8]).
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X and Y will be vector spaces, E and E0 will be ordered vector spaces, and F
will be a Dedekind complete ordered vector space (which means that, every nonempty
order bounded set in F has a supremum or, equivalently, an infimum in F) . The order
relation between operators will be the pointwise relation, that is, if T and S are two
operators defined on a set A with values in F , then T � S on A means that T (a)� S (a)
for all a ∈ A . We will say that T is dominated (or, equivalently, majorized) by S on
A. Also, a linear operator T : E → F will be called positive, if T (x) � 0 in F for all
x � 0 in E .

An operator S : X → F is called sublinear if it is subadditive, that is, S (x1 + x2) �
S (x1)+S (x2) for all x1, x2 ∈ X , and positively homogeneous, that is, S (λx) = λS (x) ,
for all x ∈ X and λ � 0.

If G ⊆ X is a vector subspace of X and T : G → F is a linear operator, a lin-
ear operator L : X → F is called an extension of T , if L(v) = T (v) for all v in G .
Equivalently, we say that L extends T to the whole space X .

Also, if (Gδ )δ∈Δ is an arbitrary family of vector subspaces of X , and for all δ ∈Δ ,
Tδ : Gδ → F is a linear operator, we say that a linear operator L : X → F simultaneously
extends all operators (Tδ )δ∈Δ , if L(vδ ) = Tδ (vδ ) for all vδ in Gδ and all δ ∈ Δ . We
say, equivalently, that L is a simultaneous extension of the family (Tδ )δ∈Δ , or that L is
a common extension of the operators Tδ , δ ∈ Δ . Obviously, a necessary condition for
the existence of a simultaneous extension of the family (Tδ )δ∈Δ is that, for all δ �= δ ′ in
Δ , Tδ = Tδ ′ on Gδ ∩Gδ ′ . (According to the terminology employed in [7], the operators
Tδ and Tδ ′ are then consistent.)

The following famous theorem is called the Hahn-Banach theorem (see, for exam-
ple, [8, p. 44]).

THEOREM 2. For every sublinear operator S : X → F there exists a linear oper-
ator L : X → F such that L � S on X .

This theorem is a very important tool in functional analysis. Theorem 2 will be
very important for us because we will use it as the second part of the technique of
the auxiliary sublinear operator applied to demonstrate the existence of some linear
operators. (The first part of this technique consists of the construction of a sublinear
operator associated with the family of operators which should be extended.)

Below we will state two results that gave us the ideas in this paper. The first of
these results (Theorem 3) is the Maharam theorem (1972).

Before formulating this theorem, we recall that the ordered vector space E, with
the positive cone E+, has an order unit e ∈ E+, e �= 0, if E =

⋃
λ�0

[−λe,λe] .

THEOREM 3. ([7]; see also [12, Theorem 6.3]) Let E be a vector lattice with
an order unit e ∈ E+ , e �= 0, and (Gδ )δ∈Δ a family of vector subspaces of E such

that e ∈ span

( ⋃
δ∈Δ

Gδ

)
. Let F be a Dedekind complete ordered vector space and let

{Tδ : Gδ → F |δ ∈ Δ} be a family of positive linear operators. The following condi-
tions are equivalent:

i) There exists T : E → F a positive linear extension of the family (Tδ )δ∈Δ .



100 R.-M. DĂNEŢ, M.-V. POPESCU AND N. POPESCU

ii) The inequality 0 � Tδ (vδ ) holds for every family (vδ )δ∈Δ ∈ Φ
(
(Gδ )δ∈Δ

)
sat-

isfying 0 � ∑
δ∈Δ

vδ , where Φ
(
(Gδ )δ∈Δ

)
is the collection of all families {vδ ∈ Gδ |δ ∈ Δ}

such that vδ �= 0 for at most finitely many δ ∈ Δ.

The following theorem is an easy generalization of the Maharam theorem. We
recall that a vector subspace G of the ordered vector space E is called a majorizing
subspace, if for every x ∈ E there exists v ∈ G such that x � v ; obviously, if G is a
vector subspace of E , and E has an ordered unit e , and, moreover, e ∈ G , then G is a
majorizing subspace of E .

THEOREM 4. ([6, Theorem 5.4]) Let E be an ordered vector space, and let
(Gδ )δ∈Δ be a family of vector subspaces of E such that there exists at least one which
is majorizing, say Gδ0

. Let F be a Dedekind complete ordered vector space and let
{Tδ}δ∈Δ be a family of positive linear operators, where Tδ : Gδ → F . Then the follow-
ing are equivalent:

i) The family {Tδ : Gδ → F |δ ∈ Δ} has a positive common linear extension T :
E → F.

ii) The implication ∑
δ∈Δ

vδ � 0⇒ ∑
δ∈Δ

Tδ (vδ ) � 0 holds for every family (vδ )δ∈Δ ∈
Φ
(
(Gδ )δ∈Δ

)
.

3. Main results

One framework in which the problem of a simultaneous extension of a family of
linear operators can be considered is as follows: Given an arbitrary ordered vector space
E0 , a family of vector subspaces (or sets) (Gδ )δ∈Δ in E0 , a Dedekind complete ordered
vector space F , and a family (Tδ )δ∈Δ of (positive) linear operators with Tδ : Gδ → F
for all δ ∈ Δ , let E = span(Gδ )δ∈Δ and find (necessary and) sufficient conditions
under which there exists a (positive) linear operator L : E → F which simultaneously
extends all operators (Tδ )δ∈Δ .

Another framework for considering the simultaneous extension problem is the fol-
lowing: Given an arbitrary real vector space X , a family (Aδ )δ∈Δ of arbitrary subsets
of X , a Dedekind complete ordered vector space F , and two families of arbitrary maps,
namely ( fδ )δ∈Δ and (gδ )δ∈Δ with fδ : Aδ → F and gδ : Aδ → X for all δ ∈ Δ , and, in
addition, a sublinear operator S : X →F such that fδ � S◦gδ for all δ ∈Δ , find the nec-
essary and sufficient conditions under which these inequalities can be simultaneously
extended by using a linear operator L : X → F instead of S . That is, find necessary
and sufficient conditions under which there exists a linear operator L : X → F such that
fδ � L◦ gδ for all δ ∈ Δ .

We will start with the second question, which immediately reminds us of the
Mazur-Orlicz theorem. This theorem is a very useful result for establishing the ex-
istence of a linear operator dominated by a sublinear operator. It was proved in 1953
by S. Mazur and W. Orlicz; see [9].

The following statement is the vectorial form of the original theorem of Mazur and
Orlicz as it appears in a paper by W. Chojnacki and its erratum; see [3] and [4].
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THEOREM 5. (Mazur-Orlicz theorem) Let X be a vector space, F a Dedekind
complete ordered vector space and S : X → F a sublinear operator. Let A be an
arbitrary nonempty set, and let f and g be two maps, f : A → F and g : A → X . The
following conditions are equivalent:

i) There exists a linear operator L : X → F with the properties
a) L � S on X ,
b) f � L◦ g on A.

ii) The inequality

n
∑
i=1

λi f (ai) � S

(
n
∑
i=1

λig(ai)
)

holds for all finite subsets {a1, ...,an} ⊂ A and {λ1, ...,λn} ⊂ R+.

It is immediate (see [6]) that the Hahn-Banach extension theorem is a consequence
of the Mazur-Orlicz theorem.

COROLLARY 6. (Hahn-Banach theorem) Let X be a vector space, F a Dedekind
complete ordered vector space, and S : X → F a sublinear operator. Let G be a vector
subspace of X and T : G → F a linear operator. Then the following conditions are
equivalent:

i) There exists a linear operator L : X → F with the properties
a) L � S on X , and
b) L = T on G.

ii) T � S on G.

Proof. In Theorem 5, take A = G , f = T and g = i (the inclusion of G in X) . �

We remark that Proposition 1 extends the Mazur-Orlicz theorem for two sets
A1, A2 and four maps f1, f2, g1, g2 instead of A , f and g , respectively.

Now we will generalize this result for an arbitrary family (Aδ )δ∈Δ of sets and two
arbitrary families of maps ( fδ )δ∈Δ and (gδ )δ∈Δ .

THEOREM 7. (Simultaneous extension theorem in the line of the Mazur-Orlicz
theorem) Let X be a vector space, F a Dedekind complete ordered vector space
and (Aδ )δ∈Δ a family of nonempty sets. Let S : X → F be a sublinear operator, and
( fδ )δ∈Δ ,(gδ )δ∈Δ two families of maps, gδ : Aδ → X and fδ : Aδ → F, δ ∈ Δ , such
that for all δ ∈ Δ with 0 ∈ Aδ it follows that

fδ (0) = gδ (0) = 0. (∗)
Then the following are equivalent:

i) There exists a linear operator L : X → F such that
a) L � S on X , and
b) fδ � L◦ gδ on Aδ for all δ ∈ Δ.

ii) The following inequality holds:

n

∑
i=1

(
∑

δ∈Δ
λδ i fδ (aδ i)

)
� S

(
n

∑
i=1

(
∑

δ∈Δ
λδ i fδ (aδ i)

))
, (4)
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where n∈N∗ and for each i ∈ {1, ...,n} ,(λδ i)δ∈Δ ⊂R+ and (aδ i)δ∈Δ ∈ Φ
(
(Aδ )δ∈Δ

)
,

with Φ
(
(Aδ )δ∈Δ

)
the collection of all (yδ )δ∈Δ ∈ (Aδ )δ∈Δ having yδ �= 0 for at most

finitely δ ∈ Δ.

REMARK. Note that the assumption (∗) implies that ( fδ (aδ ))δ∈Δ ∈Φ
(
fδ (Aδ )δ∈Δ

)
and (gδ (aδ ))δ∈Δ ∈ Φ

(
gδ (Aδ )δ∈Δ

)
if (aδ )δ∈Δ ∈ Φ

(
(Aδ )δ∈Δ

)
. So, for example, in the

sum ∑
δ∈Δ

fδ (aδ ) , only a finite number of terms are nonzero.

Proof. Obviously, i) implies ii), for

n
∑
i=1

(
∑

δ∈Δ
λδ i fδ (aδ i)

)
i)b)
�

n
∑
i=1

(
∑

δ∈Δ
λδ i (L◦ gδ )(aδ i)

)
L linear= L

(
n
∑
i=1

(
∑

δ∈Δ
λδ igδ (aδ i)

))
i)a)
� S

(
n
∑
i=1

(
∑

δ∈Δ
λδ igδ (aδ i)

))
.

To obtain the converse, we will apply the technique of the auxiliary sublinear
operator. For every x ∈ X , define S1 (x) as the infimum of the set{

S

(
x+

n
∑
i=1

(
∑

δ∈Δ
λδ igδ (aδ i)

))
−

n
∑
i=1

(
∑

δ∈Δ
λδ i fδ (aδ i)

)}
,

where the infimum is taken over all the (aδ i)δ∈Δ ∈ Φ
(
(Aδ )δ∈Δ

)
and (λδ i)δ∈Δ ⊂ R+,

with n ∈ N∗ and i = 1, ...,n .
First, note that S1 (x) exists, because using ii) and the sublinearity of S, we have:

n
∑
i=1

(
∑

δ∈Δ
λδ i fδ (aδ i)

)
� S

(
n
∑
i=1

(
∑

δ∈Δ
λδ igδ (aδ i)

))

� S

(
x+ ∑

δ∈Δ
λδ igδ (aδ i)

)
+S (−x)

and further

−S (−x) � S

(
x+ ∑

δ∈Δ
λδ igδ (aδ i)

)
−

n
∑
i=1

(
∑

δ∈Δ
λδ i fδ (aδ i)

)
.

(Note that this inequality holds in the Dedekind complete ordered vector space F .)
Also, from the definition of S1 (x) it follows that

−S ( −x) � S1 (x) � S (x) , x ∈ X . (5)

It is not difficult to show that S1 is a sublinear operator.
Then by using the existence form of the Hahn-Banach theorem (see Theorem 2),

it follows that there exists a linear operator L : X → F such that

L(x) � S1 (x) , x ∈ X .
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Therefore, by using (5) it follows that

L(x) � S (x) , x ∈ X

that is, i a) holds.
To prove i b), note that, for each δ ∈ Δ,

L(−gδ (aδ )) � S1 (−gδ (aδ ))
� S (−gδ (aδ )+gδ (aδ ))− fδ (aδ ) = − fδ (aδ ) .

Hence, because L is linear, we obtain fδ � L◦ gδ . �

In what follows we will try to simplify the form of both sides of the inequality (4).

4. An application of the simultaneous extension result of the Mazur-Orlicz type
theorem in convex analysis

Now we shall formulate a version of Theorem 7 for the ordered vector spaces as
domain spaces. In this setting we shall assume that the operator S : E → F is not only
sublinear but it is also monotone, that is, if x � y in E , then S(x) � S(y) in F . Under
these circumstances, the appropriate extension L will not only be linear, but will also
be positive.

Note that, any linear operator L dominated by a monotone sublinear operator S
will automatically be positive (see for example [6, Remark 2.3]).

We chose the setting of ordered vector spaces because then inequality (4) becomes
simpler and, consequently, easier to be checked in applications (see (6) below).

Also, the family (Aδ )δ∈Δ of arbitrary sets becomes a family of convex sets and the
two families (gδ )δ∈Δ and ( fδ )δ∈Δ of arbitrary maps become two families of convex
and concave operators, respectively.

THEOREM 8. (Simultaneous extension theorem in the line of Mazur-Orlicz theo-
rem for ordered vector spaces) Let E be an ordered vector space, F a Dedekind com-
plete ordered vector space and S : E → F a monotone sublinear operator. Let (Kδ )δ∈Δ
be an arbitrary family of nonempty convex sets, (Pδ )δ∈Δ with Pδ : Kδ → E (δ ∈ Δ) a
family of convex operators and (Qδ )δ∈Δ with Qδ : Kδ →F (δ ∈Δ) a family of concave
operators, such that, for all δ ∈ Δ with 0 ∈ Kδ it follows that Pδ (0) = Qδ (0) = 0.

The following conditions are equivalent:
i) There exists a positive linear operator L : E → F with the properties:

a) L � S on E , and
b) Qδ � L◦Pδ on Kδ , for all δ ∈ Δ.

ii) The following inequality holds

∑
δ∈Δ

λδ Qδ (aδ ) � S

(
∑
δ∈Δ

λδ Pδ (aδ )

)
(6)
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for (λδ )δ∈Δ ⊂ R+ and (aδ )δ∈Δ ∈ Φ
(
(Kδ )δ∈Δ

)
, where Φ

(
(Kδ )δ∈Δ

)
denotes the col-

lection of all (yδ )δ∈Δ ∈ (Kδ )δ∈Δ with yδ �= 0 for at most finitely many δ ∈ Δ.

Proof. Firstly, we remark that inequality (6) is equivalent with inequality (4) from
Theorem 7. Indeed, it is obviously that (4) implies (6) if we put Aδ = Kδ , gδ = Pδ and
fδ = Qδ , for all δ ∈ Δ .

To prove the converse, consider aδ i ∈Kδ and λδ i � 0 for each i = 1, ...,n (n ∈ N∗)

and δ ∈ Δ . Suppose that, for each δ ∈ Δ, we have λδ =
n
∑
i=1

λδ i > 0 and denote αδ i =

λδ i
λδ

, for each i = 1, ...,n . It follows that
n
∑
i=1

αδ i = 1 and hence, using the fact that the

operator Pδ is convex and the operator Qδ is concave, we have:

Pδ

(
n
∑
i=1

αδ iaδ i

)
�

n
∑
i=1

αδ iPδ (aδ i) and Qδ

(
n
∑
i=1

αδ iaδ i

)
�

n
∑
i=1

αδ iQδ (aδ i)

for all δ ∈ Δ .
Next, using (6) and the condition that S is monotone, we obtain:

n
∑
i=1

(
∑

δ∈Δ
λδ iQδ (aδ i)

)
= ∑

δ∈Δ
λδ

(
n
∑
i=1

λδ i
λδ

Qδ (aδ i)
)

= ∑
δ∈Δ

λδ

(
n
∑
i=1

αδ iQδ (aδ i)
)

� ∑
δ∈Δ

λδ Qδ

(
n
∑
i=1

αδ iaδ i

)
(6)
� S

(
∑

δ∈Δ
λδ Pδ

(
n
∑
i=1

αδ iaδ i

))
S monotone

� S

(
∑

δ∈Δ
λδ

(
n
∑
i=1

αδ iPδ (aδ i)
))

= S

(
n
∑
i=1

(
∑

δ∈Δ
λδ iPδ (aδ i)

))
,

where n ∈ N∗ and, for each i = 1, ...,n , (λδ i)δ∈Δ ⊂ R+ and (aδ i)δ∈Δ ∈ Φ
(
(Kδ )δ∈Δ

)
.

To complete the proof that ii) implies i), let us observe, as we already mentioned,
that L is a positive operator because L � S and S is monotone. �

We remark that Theorem 8 generalizes Theorem 2.4 in [5] and also Theorem 2.4
in [6].

5. Some applications of the simultaneous extension theorem in the line of the
Mazur-Orlicz theorem in functional analysis

In the following result (a Hahn-Banach type theorem) which generalizes [5, The-
orem 2.8], we will apply Theorem 7 to obtain a necessary and sufficient condition for a
family of linear operators on subspaces of a vector space to be extendable to the whole
space.

THEOREM 9. (Simultaneous extension of a family of linear operators) Let X be
a vector space, (Gδ )δ∈Δ a family of vector subspaces of X and F a Dedekind complete
ordered vector space. Let S : X → F be a sublinear operator and, for each δ ∈ Δ , let
Tδ : Gδ → F be a linear operator. The following conditions are equivalent:
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i) There exists L : X → F a linear operator such that:
a) L � S on X , and
b) L = Tδ on Gδ for all δ ∈ Δ.

ii) The following inequality holds:

∑
δ∈Δ

Tδ (vδ ) � S

(
∑
δ∈Δ

vδ

)
, (7)

for all (vδ )δ∈Δ ∈Φ
(
(Gδ )δ∈Δ

)
, where Φ

(
(Gδ )δ∈Δ

)
denotes the collection of all (vδ )δ∈Δ

∈ (Gδ )δ∈Δ such that vδ �= 0 for at most finitely many δ ∈ Δ.

Proof. Obviously, i) implies ii). To prove the converse, apply Theorem 7 with
Aδ = Gδ , fδ = Tδ , and gδ chosen to be the inclusion of Gδ in X , for each δ ∈ Δ .
We thus ensure the existence of a linear operator L : X → F such that L � S on X and
Tδ � L on Gδ for all δ ∈ Δ . Actually, because Tδ and L are linear, we even have
Tδ = L on Gδ , that is, L is an extension of Tδ , for all δ ∈ Δ . �

Note that inequality (7) implies that:
1) Tδ � S on Gδ for each δ ∈ Δ ;
2) Tδ ′ = Tδ ′′ on Gδ ′ ∩Gδ ′′ (that is, Tδ ′ and Tδ ′′ are consistent) for all δ ′, δ ′′ ∈ Δ,

δ ′ �= δ ′′ .
(Indeed, to prove 2), let v ∈ Gδ ′ ∩Gδ ′′ and put in (7) vδ ′ = v , vδ ′′ = −v and vδ = 0
for all δ ∈ Δ\{δ ′,δ ′′} . Then Tδ ′ (vδ ′) + Tδ ′′ (vδ ′′) � S (0) = 0 and hence Tδ ′ (v) �
−Tδ ′′ (−v) = Tδ ′′ (v) . Similarly, we have the converse inequality Tδ ′′ (v) � Tδ ′ (v) and
hence Tδ ′ (v) = Tδ ′′ (v)) .

The next result (again a Hahn-Banach type theorem) is a version of Theorem 9 in
the ordered vector spaces setting.

THEOREM 10. (Simultaneous extension of a family of positive linear operators)
Let E be an ordered vector space, (Gδ )δ∈Δ a family of vector subspaces of E and F
a Dedekind complete ordered vector space. For each δ ∈ Δ , let Tδ : Gδ → F be a
positive linear operator. The following conditions are equivalent:

i) There exists L : E → F which is a positive linear extension of Tδ for all δ ∈ Δ.

ii) There exists a monotone sublinear operator S : E → F such that

∑
δ∈Δ

Tδ (vδ ) � S

(
∑

δ∈Δ
vδ

)

for all (vδ )δ∈Δ ∈ Φ
(
(Gδ )δ∈Δ

)
.

Proof. To show that i) implies ii) let S = L . For the converse implication, we
recall again that if ii) holds and L � S, then L is positive because S is monotone. �

The following statement is a consequence of the previous result; the condition that
the sublinear operator S is monotone will be dropped here.
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PROPOSITION 11. Let E be an ordered vector space, (Gδ )δ∈Δ a family of vector
subspaces of E and F a Dedekind complete ordered vector space. For all δ ∈ Δ , let
Tδ : Gδ → F be a positive linear operator. Then the following are equivalent:

i) There exists a positive linear operator L : E → F such that L = Tδ on Gδ for
all δ ∈ Δ.

ii) There exists S : E → F a sublinear operator such that:

∑
δ∈Δ

vδ � v in E ⇒ ∑
δ∈Δ

Tδ (vδ ) � S (v) in F, (8)

where v ∈ E and (vδ )δ∈Δ ∈ Φ
(
(Gδ )δ∈Δ

)
.

Proof. To prove that i) implies ii), put S = L and use that L is a positive linear
extension for all Tδ , δ ∈ Δ . We have:

∑
δ∈Δ

vδ � v ⇒ ∑
δ∈Δ

L(vδ ) � L(v) ⇒ ∑
δ∈Δ

Tδ (vδ ) � S (v) .

To establish the converse implication ii)⇒ i), let S : E → F be a sublinear operator
satisfying (8). Apply the technique of the auxiliary sublinear operator, defining S1 :
E → F by the following formula

S1 (v) = inf{S (w) |w ∈ E, w � v} ,

for each v ∈ E . This infimum exists in F , because the set {S (w) |w ∈ E, w � v} is
minorized in F by −S (−v) . Indeed, with vδ = 0 (δ ∈ Δ) and u � 0, we have

0 = ∑
δ∈Δ

Tδ (vδ ) � S (u) = S (v+u− v) � S (v+u)+S (−v) .

Hence, −S (−v) � S (v+u) , for all u � 0, or, equivalently, −S (−v) � S (w) for
all w ∈ E with w � u . Obviously, S1 � S on E . In addition, S1 has the following
properties:

1) S1 is a sublinear operator;
2) S1 is monotone;

3) ∑
δ∈Δ

Tδ (vδ ) � S1

(
∑

δ∈Δ
vδ

)
for all (vδ )δ∈Δ ∈ Φ

(
(Gδ )δ∈Δ

)
.

Now, using the implication ii)⇒ i) of Theorem 10 with S replaced by S1 we obtain
a positive linear extension of Tδ , for all δ ∈ Δ . �

Now remark that Theorem 4 and Theorem 3 (Maharam theorem) are both con-
sequences of our Theorem 10. Indeed, suppose that (Gδ )δ∈Δ is a family of vector
subspaces of E of which one, say Gδ0

, is a majorizing subspace. Then it follows that
ii) of Theorem 4 implies ii) of Theorem 10.

Indeed, suppose that

∑
δ∈Δ

vδ � 0 ⇒ ∑
δ∈Δ

Tδ (vδ ) � 0 (9)

for all (vδ )δ∈Δ ∈ Φ
(
(Gδ )δ∈Δ

)
. Define:
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T : span

( ⋃
δ∈Δ

Gδ

)
→ F

by

T

(
∑

δ∈Δ
vδ

)
= ∑

δ∈Δ
Tδ (vδ ) ,

for all (vδ )δ∈Δ ∈ Φ
(
(Gδ )δ∈Δ

)
.

The operator T has the following properties:
1) T is well-defined, according to (9);
2) T is linear;
3) T is positive.

Because Gδ0
is majorizing, it follows that G = span

( ⋃
δ∈Δ

Gδ

)
is majorizing, too.

Define S : E → F by S (x) = T (x) , for all x ∈ E , that is,

S (x) = inf{T (z) |z ∈ G, z � x} .

It is known that S is a monotone sublinear operator and that T � S on E . We
have for all (vδ )δ∈Δ ∈ Φ

(
(Gδ )δ∈Δ

)
,

∑
δ∈Δ

Tδ (vδ ) = T

(
∑

δ∈Δ
vδ

)
� S

(
∑

δ∈Δ
vδ

)
,

that is, the condition ii) of Theorem 10 is satisfied.

6. An application of our simultaneous extension result of the Hahn-Banach type
theorem in vector measure theory

Let Ω be a nonempty set. For a set A⊆Ω , denote by χA : Ω→{0,1} its indicator
function.

Let A be an algebra of subsets of Ω and let

D(A ) = span{χA |A ∈ A } .

(By an algebra of subsets of a set Ω we understand a nonempty family of subsets of Ω
that contains the null set /0 , the complement of each its member, and the union of any
two of its members.)

Endowed with the pointwise operations and order relation, D(A ) is a (real) vector
lattice.

Let Y be a vector space. Recall that a map (a set function) ϕ : A → Y is called a
vector measure if

ϕ (A∪B) = ϕ (A)+ ϕ (B)

for all disjoint sets A, B ∈ A .
As a consequence, a vector measure on A is a finitely additive set function, that

is,
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ϕ
(

n⋃
i=1

Ai

)
=

n
∑
i=1

ϕ (Ai)

for every finite collection (Ai)n
i=1 of disjoint sets of A .

It is known that every vector measure ϕ : A → Y induces a linear operator T :
D(A ) → Y given by

T

(
n
∑
i=1

αiχAi

)
=

n
∑
i=1

αiϕ (Ai).

T is called the representing linear operator of ϕ or, equivalently, the elementary inte-
gral with respect to ϕ .

Conversely, every linear operator T : D(A ) → Y induces a vector measure ϕ :
A → Y given by

ϕ (A) = T (χA)

for all A ∈ A .
So, there exists a one-to-one correspondence between vector measures ϕ : A →Y

and linear operators T : D(A ) → Y . This correspondence can be used to obtain some
results on vector measures from the corresponding results concerning linear operators.

Given an ordered vector space F , a vector measure ϕ : A → F is called positive
if ϕ (A) � 0 for all A ∈A . It is immediate that a vector measure is positive if and only
if its representing linear operator is positive.

In what follows, Ω will be a nonempty set, E = 2Ω , and F a Dedekind complete
ordered vector space.

Let (Aδ )δ∈Δ be a family of algebras of subsets of Ω and (ϕδ )δ∈Δ a family of
vector measures, ϕδ : Aδ → F , for each δ ∈ Δ .

We say that the family (ϕδ )δ∈Δ can be simultaneously extended to the whole E ,
if there exists a vector measure ϕ : E → F such that ϕ (A) = ϕδ (A) for all δ ∈ Δ and
A ∈ Aδ .

The following result [12, Theorem 6.4] gives a necessary and sufficient condition
for a family (ϕδ )δ∈Δ to be simultaneously extendable under the assumption that ϕδ is
positive for all δ ∈ Δ (and consequently any extension will be positive, too).

Using our Theorem 10, we can give another proof of this result.

THEOREM 12. Let Ω be a nonempty set E = 2Ω and F a Dedekind complete
ordered vector space. Let (Aδ )δ∈Δ be a family of algebras of subsets of Ω and (ϕδ )δ∈Δ
a family of positive vector measures, with ϕδ : Aδ → F for all δ ∈ Δ.

Then the following are equivalent:
i) The family (ϕδ )δ∈Δ can be simultaneously extended to a positive vector measure

ϕ : E → F.

ii)
q
∑
i=1

χAi �
q+r
∑

i=q+1
χAi ⇒

q
∑
i=1

ϕδi
(Ai) �

q+r
∑

i=q+1
ϕδi

(Ai) , for all q, r ∈N∗, A1, ...,Aq+r

∈ ⋃
δ∈Δ

Aδ and for all δ1, ...,δq+r ∈ Δ such that Ai ∈ Aδi
for all i = 1, ...,q+ r.

Proof. i)⇒ ii) is obvious. Conversely, suppose that ii) is valid.
First, we will prove that ii)⇔ ii ′ ) where ii ′ ) is the following statement:



SIMULTANEOUS EXTENSIONS OF A FAMILY OF LINEAR OPERATORS 109

ii ′ )
q

∑
i=1

μiχAi �
q+r

∑
i=q+1

μiχAi ⇒
q

∑
i=1

μiϕδi
(Ai) �

q+r

∑
i=q+1

μiϕδi
(Ai) ,

for all q, r ∈ N∗ , μ1, ...,μq+r ∈ R+ , Ai ∈ Aδi
, with δi ∈ Δ and i = 1, ...,q+ r .

Obviously ii ′ )⇒ ii). Conversely, suppose that ii) holds and that

q

∑
i=1

μiχAi �
q+r

∑
i=q+1

μiχAi (10)

as in the hypothesis of ii ′ ).
We consider three cases.
Case 1. Suppose that μ1, ...,μq+r ∈ N∗ . Define the sets (Bi)

μ1+···+μq+r
i=1 as follows:

B1 = B2 = ... = Bμ1 = A1

Bμ1+1 = Bμ1+2 = ... = Bμ1+μ2 = A2

..................................................................
Bμ1+μ2+···+μq+r−1+1 = Bμ1+μ2+···+μq+r = Aq+r.

Denoting m = μ1 + · · · + μq and n = μq+1 + · · · + μq+r it follows that m � q and
n � r because for each i = 1, ...,q+ r, μi � 1. Then inequality (10) becomes

m
∑
i=1

χBi �
m+n
∑

i=m+1
χBi .

Therefore, from ii) it follows that

q
∑
i=1

μiϕδi
(Ai) =

m
∑
i=1

ϕδi
(Bi) �

m+n
∑

i=m+1
ϕδi

(Bi) =
q+r
∑

i=q+1
μiϕδi

(Ai) .

Case 2. Assume that μi ∈ Q+ for all i = 1, ...,q+ r . Let us suppose that μi = si
ti

,
where si ∈N and ti ∈N∗ for all i = 1, ...,q+ r . Denote by t the least common multiple
of ti for all i = 1, ...,q+ r . It follows that for each i = 1, ...,q+ r there exists ki ∈ N∗
such that t = kiti .

If we assume that
q

∑
i=1

μiχAi �
q+r

∑
i=q+1

μiχAi , then

q
∑
i=1

si
ti

χAi �
q+r
∑

i=q+1

si
ti

χAi ⇒
q
∑
i=1

siki
t χAi �

q+r
∑

i=q+1

siki
t χAi .

By using Case 1, we obtain:

q

∑
i=1

sikiϕδi
(Ai) �

q+r

∑
i=q+1

sikiϕδi
(Ai) ⇒

q
∑
i=1

si
ti

ϕδi
(Ai) �

q+r
∑

i=q+1

si
ti

ϕδi
(Ai) ⇒

q
∑
i=1

μiϕδi
(Ai) �

q+r
∑

i=q+1
μiϕδi

(Ai).
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Case 3. Suppose that μi ∈ R+ for all i = 1, ...,q+ r . We will use Case 2 and that
F is Archimedean. More precisely for all i = 1, ...,q+ r there exist two sequences of
positive rational numbers, (λi,n)n∈N∗ increasing and (ρi,n)n∈N∗ decreasing, such that

λi,n → μi and ρi,n → μi as n→∞. We know that
q

∑
i=1

μiχAi �
q+r

∑
i=q+1

μiχAi . Then because

0 � λi,n � μi � ρi,n for each i = 1, ...,q+ r and each n∈N∗ , it follows that
q
∑
i=1

λi,nχAi �
q+r

∑
i=q+1

ρi,nχAi . According to Case 2, it follows that
q

∑
i=1

λi,nϕδi
(Ai) �

q+r

∑
i=q+1

ρi,nϕδi
(Ai) for

all n ∈ N∗. Because F is Archimedean according to [2, Proposition 2, p.67], we may

pass to the limit with n in both inequalities, obtaining
q
∑
i=1

μiϕδi
(Ai) �

q+r
∑

i=q+1
μiϕδi

(Ai) .

Hence we proved that ii)⇔ ii ′ ). To prove ii)⇒ i) we shall show that ii ′ )⇒ i).
For all δ ∈ Δ , define Gδ = D(Aδ )

(
= span

{
χAδ | Aδ ∈ Aδ

})
and consider Tδ :

Gδ → F the representing linear operator of ϕδ , that is,

Tδ

(
n
∑
i=1

αiχAi

)
=

n
∑
i=1

αiϕδ (Ai).

As it turns out, for all δ ∈ Δ , Gδ is a majorizing subspace in the space D(E) ,
denoted by E0 . (Recall that D(E) = D(2Ω) = span{χM|M ⊆ Ω} .) To show this, we
have to prove that if δ ∈ Δ and x∈ E0 , then there exists vδ∈ Gδ such that x � vδ . Take

x =
n
∑
i=1

αiχMi , with n ∈ N∗ , and Mi ⊆ Ω, for i = 1, ...,n. It follows that

x �
n
∑
i=1

|αi|χMi �
n
∑
i=1

|αi|χΩ.

Now, take vδ =
n
∑
i=1

|αi|χΩ and note that vδ∈ Gδ , because Aδ is an algebra of subsets

of Ω and Gδ =span
{

χAδ |Aδ ∈ Aδ
}

.
Since for all δ ∈ Δ the vector measure ϕδ is positive, it follows that the operator

Tδ is positive, too.

Define T : span

( ⋃
δ∈Δ

Gδ

)
→ F by

T

(
∑

δ∈Δ
fδ

)
= ∑

δ∈Δ
Tδ ( fδ ),

where ( fδ )δ∈Δ ∈ Φ
(
(Gδ )δ∈Δ

)
.

(Recall that Φ
(
(Gδ )δ∈Δ

)
is the family of all { fδ ∈ Gδ |δ ∈ Δ} such that fδ �= 0

for at most finitely many δ ∈ Δ .)
Firstly, we will prove that T is well-defined. It will suffice to prove that

0 � ∑
δ∈Δ

fδ ⇒ 0 � ∑
δ∈Δ

Tδ ( fδ )
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for all ( fδ )δ∈Δ ∈ Φ
(
(Gδ )δ∈Δ

)
.

Let δ1, ...,δn be the indices of all nonzero elements in the set { fδ |δ ∈ Δ} . Then
the inequality 0 � ∑

δ∈Δ
fδ reduces to the inequality

0 � fδ1
+ · · ·+ fδn , (11)

with fδ1
∈ Gδ1

, ..., fδn ∈ Gδn , that is,

fδ1
=

m1

∑
i=1

λδ1iχAδ1i
, where Aδ1i ∈ Aδ1

and λδ1i ∈ R, for all i = 1, ...,m1,

.....................................................................................................

fδn =
mn

∑
i=1

λδniχAδni
, where Aδni ∈ Aδn and λδni ∈ R, for all i = 1, ...,mn .

Then (11) becomes

0 �
m1

∑
i=1

λδ1iχAδ1i
+ · · ·+

mn

∑
i=1

λδniχAδni
.

By renumbering the indices in the right side of this inequality, starting with the second
sum, we obtain:

0 �
m1

∑
i=1

λδ1iχAδ1i
+

m1+m2

∑
i=m1+1

λδ2iχAδ2i
+ · · ·+

m1+···+mn

∑
i=m1+···+mn−1+1

λδniχAδni
. (12)

Note that the right side of inequality (12) is a sum having p = m1 +m2 + · · ·+mn terms.
Move to the left side of the inequality all terms having negative coefficients changing
the sign on the way, and apply ii ′ ). Next, in the new inequality obtained, move all the
terms from the left to the right side with a due change of sign. We obtain:

0 �
m1

∑
i=1

λδ1iϕδ1i

(
Aδ1i

)
+ · · ·+

mn

∑
i=1

λδniϕδni

(
Aδni

)
,

that is,

0 � ∑
δ∈Δ

Tδ ( fδ ).

Therefore, the operator T is well-defined. Moreover, T is linear and positive.

Note that the vector space G = span

( ⋃
δ∈Δ

Gδ

)
is a majorizing subspace in E0 =

D(E) because each Gδ is so.
Define S : E0 → F by S ( f ) = inf{T (g) |g ∈ G,g � f } , that is, S ( f ) = T ( f ) . It

is known that S is a monotone sublinear operator and that T � S on E0 .
For all ( fδ )δ∈Δ ∈ Φ

(
(Gδ )δ∈Δ

)
we have:

∑
δ∈Δ

Tδ ( fδ ) = T

(
∑

δ∈Δ
fδ

)
� S

(
∑

δ∈Δ
fδ

)
.
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Then, according to the implication ii)⇒ i) of Theorem 10, it follows that the family
(Tδ )δ∈Δ can be simultaneously extended to a linear operator L : E → F .

Define ϕ : E → F by ϕ (A) = L(χA) for all A⊆Ω . Clearly, ϕ is a positive vector
measure which extends all the vector measures ϕδ , δ ∈ Δ . �
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