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PDE APPROXIMATION OF LARGE
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KUNSZENTI-KOVÁCS AND PÉTER L. SIMON

(Communicated by B. Jacob)

Abstract. A large system of ordinary differential equations is approximated by a parabolic partial
differential equation with dynamic boundary condition and a different one with Robin boundary
condition. Using the theory of differential operators with Wentzell boundary conditions and
similar theories, we give estimates on the order of approximation. The theory is demonstrated
on a voter model where the Fourier method applied to the PDE is of great advantage.

1. Introduction

It has been known for a long time that there is a wonderful interplay between
discrete time stochastic processes and partial differential equations, see the seminal
paper by Courant, Friedrichs and Lewy [8]. Since then, the pioneering work of Feller
revealed deep connections to second order differential equations with “complicated”
boundary conditions, see the monograph by Mandl [13] for further details.

Our intention with this work is to go back to the roots and explore the connec-
tions of large systems of ordinary differential equations to parabolic partial differential
equations with various (Wentzell, Robin) boundary conditions from a rather particular
point of view: given a large system of ordinary differential equations, we construct
an “approximating” partial differential equation, give estimates on the accuracy of this
approximation, and show that in some cases it is much easier to handle the parabolic
equation than the large ODE system.

The main motivation of this theoretical investigation is to approximate a dynamic
process on a network by a partial differential equation. The network is given by an
undirected graph and the process is specified by the possible states of the nodes and the
transition probabilities. Typical examples are epidemic processes and opinion propa-
gation on networks. Analysing the mean field approximation for the expected number
of infected nodes in an epidemic process on a large network we were led to a first or-
der PDE approximation in our previous work Bátkai et al. [7]. In a recent paper, in
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which regular random, Erdős-Rényi, bimodal random, and Barabási-Albert graphs are
studied, we have shown that a suitable choice of the coefficients in the master equation
leads to an ODE approximationwith tridiagonal transition rate matrices (see Nagy, Kiss
and Simon [14]). Our study in this paper aims at approximating dynamic processes on
networks, for which the transition rate matrix of the underlying Markov chain has a
tridiagonal structure (with a possible extension to similar matrices).

The paper is organized as follows. First, we introduce our general notation and
setup along with a standard heuristic derivation of an approximating PDE with dynamic
boundary conditions via finite differences. It is followed by a different finite difference
approximation to yield an approximating PDE with Robin boundary conditions. Then
in Section 4 we present the operator semigroup theoretic setup with the general approx-
imation theorems needed, and we show how to use the well-developed operator matrix
approach to differential operators with Wentzell boundary conditions due to Engel and
coauthors [9, 10, 6] to prove error estimates. Finally, in the last section we illustrate
our results with two examples: The first one is the propagation of two opinions along a
cycle graph, called a voter-like model, the second is an SIS type epidemic propagation
on a complete graph.

2. Dynamic boundary conditions

In this section we fix our notation, collect the main definitions, derive the first ap-
proximating partial differential equation, and give the main heuristics which lie behind
our approximation.

Let N ∈ N be a large, fixed integer, and a,b and c real-valued functions on
[− 1

N ,1+ 1
N ] . For 0 � k � N , let ak := a( k

N ) , bk := b( k
N ) , and ck := c( k

N ) . Consider
the following tridiagonal matrix

AN :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0 c1 0 · · · 0 0 0
a0 b1 c2 · · · 0 0 0
0 a1 b2 0 0 0
...

. . .
...

0 0 0 bN−2 cN−1 0
0 0 0 aN−2 bN−1 cN

0 0 0 · · · 0 aN−1 bN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and the corresponding (ODE) system{

ẋ(t) = ANx(t)

x(0) = v ∈ C
N+1 (1)

on CN+1 .
We wish to approximate the solution x(t) to this (ODE) by considering it as a

discretisation of a continuous function u(t,z) on the interval [0,1] , i.e.,

u

(
t,

k
N

)
= xk(t)
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for 0 � k � N . Now we derive an approximate (PDE) for the function u(·, ·) using the
(ODE) given above. For any 1 � k � N−1 we have:

∂tu

(
t,

k
N

)
= ẋk(t) = ak−1xk−1(t)+bkxk(t)+ ck+1xk+1(t)

=
1
2
ak−1 (xk−1(t)−2xk(t)+ xk+1(t))

−ak−1

(
xk+1(t)− xk−1(t)

2

)
+(ak−1 +bk + ck+1)xk(t)

+
1
2
ck+1 (xk−1(t)−2xk(t)+ xk+1(t))

+ck+1

(
xk+1(t)− xk−1(t)

2

)
=

1
2
ak−1

(
u

(
t,

k−1
N

)
−2u

(
t,

k
N

)
+u

(
t,

k+1
N

))
−ak−1

(
u
(
t, k+1

N

)−u
(
t, k−1

N

)
2

)

+(ak−1 +bk + ck+1)u
(

t,
k
N

)
+

1
2
ck+1

(
u

(
t,

k−1
N

)
−2u

(
t,

k
N

)
+u

(
t,

k+1
N

))
+ck+1

(
u
(
t, k+1

N

)−u
(
t, k−1

N

)
2

)
.

By considering the approximations

u

(
t,

k−1
N

)
−2u

(
t,

k
N

)
+u

(
t,

k+1
N

)
=

1
N2

(
∂zzu

(
t,

k
N

)
+O

(
1
N2

))
and

u
(
t, k+1

N

)−u
(
t, k−1

N

)
2

=
1
N

(
∂zu

(
t,

k
N

)
+O

(
1
N2

))
,

using the functions a,b and c , and writing h := 1
N , we obtain the approximate (PDE)⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂t u(t,z) � h2

2
(a(z−h)+ c(z+h))∂zzu(t,z)

+h(c(z+h)−a(z−h))∂zu(t,z)
+ (a(z−h)+b(z)+ c(z+h))u(t,z),

(2)

valid for z ∈ (0,1) . Note that the approximation is of order h3 .
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On the boundary, similar transformations yield the first order boundary equations

∂t u(t,0)� hc(h)∂zu(t,0)+ (c(h)+b(0))u(t,0) (3)

and
∂t u(t,1) �−ha(1−h)∂zu(t,1)+ (a(1−h)+b(1))u(t,1). (4)

Note that here the approximations are only of order h2 .
The initial condition u(0,z) is to be chosen as a suitable interpolation of the values

xk(0) = vk at z = k
N (0 � k � N ).

3. Robin boundary condition

Motivated by stochastic processes, we restrict ourselves here to the important spe-
cial case where the column sums of the matrix AN are zero, i.e., a0 = −b0, bk =
−(ak + ck),k = 1,2 . . . ,N −1, and cN = −bN . Our aim is to find a PDE with suitable
boundary condition the appropriate discretisation of which results in (1), and which
preserves the integral of the initial function.

Let us seek the PDE in the form

∂t u(t,z) = ∂zz(α(z)u(t,z))+ ∂z(β (z)u(t,z)), (5)

where z ∈ (− 1
2N ,1+ 1

2N ) and t ∈ (0,T ] , and the functions α and β are to be defined.
For the derivation of the boundary conditions we take into account the requirement that

∫ 1+ 1
2N

− 1
2N

u(t,z)dz = const. ∀t ∈ [0,T ].

Integrating (5) on [− 1
2N ,1+ 1

2N ] we obtain the equality

0 = ∂t

(∫ 1+ 1
2N

− 1
2N

u(t,z)dz

)
= ∂z(αu)

(
1+

1
2N

,t

)
− ∂z(αu)

(
− 1

2N
,t

)
+(βu)

(
1+

1
2N

,t

)
− (βu)

(
− 1

2N
, t

)
,

which obviously holds if

∂z(αu)
(
− 1

2N
,t

)
+(βu)

(
− 1

2N
,t

)
= 0, and (6)

∂z(αu)
(

1+
1

2N
,t

)
+(βu)

(
1+

1
2N

,t

)
= 0 (7)

hold. Consider now the continuous problem (5) with boundary conditions (6)–(7) and
an initial condition u(0,z) obtained from a suitable interpolation of v in (1).
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Denote the approximation of the solution at the point z = kh by xk(t),k = 0,1 . . . ,N .
We seek the functions α and β such that by approximating appropriately the deriva-
tives w.r.t. the variable z in (5), for the functions x0(t),x1(t), . . . , xN(t) we obtain a
system of ODE’s of the form (1).

Let us approximate the partial derivatives w.r.t. z for the mesh points of the indices
k = 0,1,2, . . . ,N by central differences. To this aim we define two virtual mesh points:
− 1

N and 1 + 1
N , where the corresponding solutions will be denoted by x−1(t) and

xN+1(t) , respectively. Then

x′k(t) =
αk−1xk−1−2αkxk + αk+1xk+1

h2 +
βk+1xk+1 −βk−1xk−1

2h
(8)

for k = 0,1,2, . . . ,N . Eliminate x−1 in the equation for k = 0 by considering the
left-hand side boundary condition (6). To do so, we approximate the derivative w.r.t.
z by central difference, while the function value by the arithmetic mean of the two
neighboring values, x−1 and x1 , to obtain

α0x0 −α−1x−1

h
+

β0x0 + β−1x−1

2
= 0.

From this we have
α0x0

h2 +
β0x0

2h
=

α−1x−1

h2 − β−1x−1

2h
,

which yields

x′0(t) =
(
−α0

h2 +
β0

2h

)
x0 +

(
α1

h2 +
β1

2h

)
x1. (9)

Comparing (9) to the first equation of (1), we have

b0 = −α0

h2 +
β0

2h
and c1 =

α1

h2 +
β1

2h
.

Comparing the further equations of (8) with system (1), we obtain the relations

ak =
αk

h2 − βk

2h
, ck =

αk

h2 +
βk

2h
. (10)

It is easy to see that a0 = −b0, bk = −(ak + ck),k = 1,2 . . . ,N − 1, and similar con-
siderations on the right boundary show that cN = −bN . The functions α and β can be
determined from the equations (10) to obtain

αk =
(ak + ck)h2

2
, βk = (ck −ak)h,

from which

α(z) =
(a(z)+ c(z))h2

2
and β (z) = (c(z)−a(z))h

follows.
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The order of approximation of this scheme is yet to be calculated. For k =
1,2, . . .N the approximation is obviously of order h3 as in the previous example. How-
ever, in the points z = 0 and z = 1 (corresponding to k = 0 and k = N +1) it has only
order of h2 , since for z = 0 we have(

−α0 +
β0

2

)
x0(t)+

(
α1 +

β1

2

)
u1(t)

=
α−1u−1(t)−2α0u0(t)+ α1u1(t)

h2 h2 +
β1u1(t)−β−1u−1(t)

2h
h

+
1
h

(
α0u0(t)−α−1u−1(t)

h
h2 +

β0u0(t)+ β−1u−1(t)
2

h

)
= ∂zz(αu)(0, t)+O(h4)+ ∂z(βu)(0,t)+O(h3)+

1
h
(∂z(αu)(−h/2, t)+O(h4)

+ (βu)(−h/2,t)+O(h3))

= ∂zz(αu)(0, t)+ ∂z(βu)(0,t)+O(h3)+
1
h
(0+O(h3))

= ∂zz(αu)(0, t)+ ∂z(βu)(0,t)+O(h2).

For z = 1 similar relations hold.
In the following we consider the exact PDE and its solution, the latter being the

approximation of the exact solution to the ODE at the points k
N , and show estimates on

how good this approximation is.

4. Theorems

Now we give a rather general setup to prove the desired estimates on the approx-
imation. We use the theory of operator semigroups and our general reference is Engel
and Nagel [11] or Bátkai et al. [4].

ASSUMPTIONS 4.1. Let Xn , X be Banach spaces and assume that there are boun-
ded linear operators Pn : X → Xn , Jn : Xn → X with the following properties:

• There is a constant K > 0 with ‖Pn‖, ‖Jn‖ � K for all n ∈ N ,

• PnJn = In , the identity operator on Xn , and

• JnPn f → f as n → ∞ for all f ∈ X .

ASSUMPTIONS 4.2. Suppose that the operators An , A generate strongly continu-
ous semigroups on Xn and X , respectively, and that there are constants M � 0, ω ∈ R

such that the stability condition

‖Tn(t)‖ � Meωt holds for all n ∈ N, t � 0. (11)

We will make use of a special variant of the Trotter-Kato theorem, which we cite
here for convenience, see the lectures by Bátkai, Csomós, Farkas and Ostermann [4,
Proposition 3.8].
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PROPOSITION 4.3. Suppose that Assumptions 4.1 hold, that there is a dense sub-
set Y ⊂ D(A) invariant under the semigroup T such that PnY ⊂ D(An) , and that Y is
a Banach space with some norm ‖ · ‖Y satisfying

‖T (t)‖Y � Meωt .

If there are constants C > 0 and p ∈ N with the property that for all f ∈Y

‖AnPn f −PnA f‖Xn � C
‖ f‖Y

np ,

then for each t > 0 there is C′ > 0 such that

‖Tn(t)Pn f −PnT (t) f‖Xn � C′ ‖ f‖Y

np .

Moreover, this convergence is uniform in t on compact intervals.

This result can be slightly improved in case analytic semigroups are involved.

LEMMA 4.4. Suppose that the conditions of Proposition 4.3 are satisfied and that
A generates an analytic semigroup. If there is ε ∈ (0,1) and there are spaces Y ↪→
D(A) ↪→ Z ↪→ X such that T (s)Z ⊂ Y for all s > 0 and

‖T (s)‖L (Z,Y ) � M
s1−ε

holds, then

‖Tn(t)Pn f −PnT (t) f‖Xn � C′ ‖ f‖Z

np

for all n ∈ N and f ∈ Z .

Note that this condition is for example satisfied if there is α ∈ (0,1) so that Y =
D((I−A)1+α) and D(A) ↪→ Z ↪→ D((I−A)α+ε) holds.

Proof. As in the proof of Bátkai, Kiss, Sikolya and Simon [7, Lemma 5], we have
the representation

(PnT (t)−Tn(t)Pn) f =
∫ t

0
Tn(t− s)(PnA−AnPn)T (s) f ds

for all f ∈ D(A) . Hence, using the analyticy of the semigroup T , we obtain the norm
estimate

‖PnT (t) f −Tn(t)Pn f‖ �
∫ t

0
Meω(t−s)‖(PnA−AnPn)T (s) f‖ ds

�
∫ t

0
M′C

‖T (s) f‖Y

np ds � M′′ ‖ f‖Z

np

∫ t

0

1
s1−ε ds,

where the constants M′ , C′ and M′′ only depend on t > 0. �
We have seen in the calculations of the previous sections that our approximation

is of third order in the interior of the interval and of second order on the boundary. Let
us formalize now the calculations and put them into the general framework presented
above.
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4.1. Dynamic boundary condition

Our aim is now to show that for sufficiently smooth initial values the derived par-
tial differential equation (2) with dynamic boundary conditions (3) and (4) is the right
approximation to the ordinary differential equation (1).

As a first step, we have to associate to the partial differential equation (2) with
boundary conditions (3) and (4) a Banach space X and a generator A . Following the
approach of Engel [9, 10] or Bátkai and Engel [6], we introduce the spaces

X := C[0,1],

and
X̃ :=

{(
f
y

) ∈ X ×C
2
∣∣y = ( f (0), f (1))T } .

Let us also consider the operators

(Dm f )(z) :=
h2

2
(a(z−h)+ c(z+h)) f ′′(z)

+h(c(z+h)−a(z−h)) f ′(z)+ (a(z−h)+b(z)+ c(z+h)) f (z)

defined on its maximal possible domain, D(Dm) := C2[0,1] , and

B f :=
(

hc(h) f ′(0)+(c(h)+b(0)) f (0)
−ha(1−h) f ′(1)+(a(1−h)+b(1)) f (1)

)
defined on D(Dm) and mapping to C2 . Our associated operator should be

A f = Dm f with D(A) :=
{

f ∈ D(Dm) : (Dm f (0),Dm f (1) )T = B f
}

.

Note that the operator

Ã =
(

A 0
B 0

)∣∣∣∣
X̃

is similar to the operator A , see Bátkai and Engel [6]. Further, for a function f ∈C[0,1]
we introduce the notation

fN := ( f (0), f ( 1
N ), . . . , f (1))T ∈ C

N+1.

After all these preparations, we can state the main result of this Section.

THEOREM 4.5. Consider the ordinary differential equation given by (1) and the
approximating partial differential equation (2) with dynamic boundary conditions (3)
and (4), where v = uN(0) . If there is ε ∈ (0, 1

2 ) such that u(0, ·) ∈D((I−A)
1
2+ε) , then

for all T > 0 there is C = C(T ) > 0 such that for all t ∈ (0,T ] we get

‖uN(t, ·)− x(t)‖∞ � C
N2 ‖u(0, ·)‖

D((I−A)
1
2 +ε)

. (12)
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Proof. By Engel [9] or Bátkai and Engel [6, Remark 4.4], the operator A gener-
ates an analytic semigroup of angle π

2 in the space X , and this semigroups gives the
solutions of the partial differential equation (2) with dynamic boundary conditions (3)
and (4).

Further, we introduce the spaces

XN := C
N−1 ×C

2

and define the operators PN : X̃ → XN as

PN( f ,y) := ( fN ,y)

Clearly, these operators and spaces satisfy the conditions in Assumptions 4.1.
Abusing the matrix notation, define now on XN � C

N+1 the operator

ÃN :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 c2 · · · 0 0 a0 0
a1 b2 0 0 0 0
...

. . .
...

0 0 bN−2 cN−1 0 0
0 0 aN−2 bN−1 0 cN

c1 0 · · · 0 0 b0 0
0 0 · · · 0 aN−1 0 bN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Taking
( f

y

) ∈ D(Ã) (i.e., f ∈W 1,1(0,1) and y1 = f (0), y2 = f (1)), we see that

ÃNPN
( f

y

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a0 f (0)+b1 f ( 1
N )+ c2 f ( 2

N )
a1 f ( 1

N )+b2 f ( 2
N )+ c3 f ( 3

N )
...

aN−2 f (N−2
N )+bN−1 f (N−1

N )+ cN f (1)
b0 f (0)+ c1 f ( 1

N )
aN−1 f (N−1

N )+bN f (1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and that

(PNÃ
( f

y

)
)k = 1

2N2 (a( k−1
N ) f ( k−1

N )− c( k+1
N ) f ( k+1

N )) f ′′( k
N )

+ 1
N (a( k+1

N ) f ( k+1
N )− c( k−1

N ) f ( k−1
N )) f ′( k

N )

+ (a( k−1
N )+b( k

N )+ c( k+1
N ) f ( k

N )

for k = 1,2, . . . ,N −1, and

(PNÃ
( f

y

)
)N = 1

N c( 1
N ) f ′(0)+ (c( 1

N )+b(0)) f (0)

(PNÃ
( f

y

)
)N+1 =− 1

N c(N−1
N ) f ′(1)+ (a(N−1

N )+b(1)) f (1)

By the calculations in the previous Section 2, we see that there is C > 0 such that

|(PNÃ
( f

y

)
)k − (ÃNPN

( f
y

)
)k| � C

N3 ‖ f ′′′‖∞,
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|(PNÃ
( f

y

)
)N − (ÃNPN

( f
y

)
)N| � C

N2 ‖ f ′′‖∞,

|(PNÃ
( f

y

)
)N+1 − (ÃNPN

( f
y

)
)N+1| � C

N2 ‖ f ′′‖∞

hold. Since A generates an analytic semigroup, it leaves Y =C3[0,1] invariant. Hence,
Proposition 4.3 is applicable with Y = C3[0,1] and we obtain the desired estimate for
all u(0, ·) ∈ Y . To improve this result and relax the regularity assumption on the initial
value, we use the analyticity of the semigroup and Lemma 4.4 with α = 1

2 .
Introducing the notation B = I − A , our aim now is to show that D(B3/2) ⊂

C2[0,1]∩C3(0,1) . Since D(B)⊂C2[0,1] , it is enough to show that D(B1/2)⊂C1(0,1) .
Let f ∈D(B1/2) such that g = B1/2 f . Then by Engel and Nagel [11, Corollary II.5.28],

f =
∫ ∞

0

1√
λ

R(λ +1,A)g dλ .

Further, by checking the explicit representation of the resolvent as in the proof in Engel
and Nagel [11, Theorem VI.4.5], we see that the resolvent is given by the combina-
tion of exponential terms and a convolution term. Since we are in the interior of the
domain, we can drop the exponential terms because they do not disturb regularity and
concentrate on the convolution term. Hence we may assume that

f =
∫ ∞

0

1√
λ

1

2
√

λ +1

∫ 1

0
e−

√
λ+1|·−s|g(s)dsdλ .

Rewriting, we obtain

f (x) =
∫ ∞

0

1

2
√

λ
√

λ +1

{∫ x

0
e−

√
λ+1(x−s)g(s)ds

+
∫ 1

x
e−

√
λ+1(s−x)g(s)ds

}
dλ

=
∫ ∞

0

1

2
√

λ
√

λ +1

{
e−

√
λ+1x

∫ x

0
e
√

λ+1sg(s)ds

+ e
√

λ+1x
∫ 1

x
e−

√
λ+1sg(s)ds

}
dλ .

Formally differentiating with respect to x behind the first integral, we obtain∫ ∞

0

1

2
√

λ
√

λ +1

{ −1√
λ +1

e−
√

λ+1x
∫ x

0
e
√

λ+1sg(s)ds+g(x)

+
1√

λ +1
e
√

λ+1x
∫ 1

x
e−

√
λ+1sg(s)ds−g(x)

}
dλ

=
∫ ∞

0

1

2
√

λ (λ +1)

{ −1√
λ +1

e−
√

λ+1x
∫ x

0
e
√

λ+1sg(s)ds

+
1√

λ +1
e
√

λ+1x
∫ 1

x
e−

√
λ+1sg(s)ds

}
dλ .
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Since this improper integral converges uniformly in x on any closed subinterval of
(0,1) , and depends continuously on x , the function f is indeed continuously differen-
tiable on (0,1) . �

4.2. Robin boundary condition

Using analogous argument, we can prove the approximating property of the PDE
with Robin boundary conditions. To this end, we introduce the space X =C[− h

2 ,1+ h
2 ]

and the operator

A f (z) :=
d2

dz2

(
h2 a(z)+ c(z)

2
f (z)
)

+
d
dz

(
h
c(z)−a(z)

2
f (z)
)

,

with domain

D(A) :=
{

f ∈C1[− h
2 ,1+ h

2 ]∩C2(− h
2 ,1+ h

2) :

d
dz

(
h2 a(z)+ c(z)

2
f (z)
)

+
(
h
c(z)−a(z)

2
f (z)
)

= 0

for z = − h
2 ,1+ h

2

}
.

Further, as before, for a function f ∈C[0,1] we use the notation

fN := ( f (0), f ( 1
N ), . . . , f (1))T ∈ C

N+1.

THEOREM 4.6. Consider the ordinary differential equation given by (1) and the
approximating partial differential equation (5) with Robin-type boundary conditions
(6) and (7), where v = uN(0) . If there is ε ∈ (0, 1

2) such that u(0, ·) ∈ D((I −A)
1
2 +ε) ,

then for all T > 0 there is C = C(T ) > 0 such that for all t ∈ (0,T ] we get

‖uN(t, ·)− x(t)‖∞ � C
N2 ‖u(0, ·)‖

D((I−A)
1
2 +ε)

. (13)

Proof. The proof can be carried out in a completely analogous way as for the
previous theorem. For second order differential operators with Robin-type boundary
conditions we refer to the works by Arendt and coauthors [1, 2] or Warma [16]. �

5. Applications

The main motivation of the previous theoretical investigation is to approximate a
dynamic process on a network with a partial differential equation and to justify empiri-
cal observations. The network is usually given by an undirected graph and the process
can be specified by the possible states of the nodes and the transition rate probabilities.
The latter is the probability that the state of a node changes from one state to another
depending on the states of the neighbouring nodes. In certain classes of models the
complete state space can be reduced (using e.g. mean field approximations or structural
symmetries), leading to tridiagonal systems.
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In this section we show in two cases how the theory can be applied. The first
one is the propagation of two opinions along a cycle graph, called a voter-like model,
the second is an SIS type epidemic propagation on a complete graph. As usual in the
literature, in both models the natural Markov process is conditioned on not reaching the
absorbing state(s).

5.1. Voter-like model on a cycle graph

Let us consider a cycle graph with N +2 nodes, i.e. we have a connected graph, in
which each node has two neighbours. A node can be in one of two states, let us denote
them by 0 and 1. These states represent two opinions propagating along the edges of
the graph (see Holley and Liggett [12]). If a node is in state 0 and has k neighbours in
state 1 (k = 0,1,2) , then its state will change to 1 with probability kτΔt in a small time
interval Δt . This expresses that opinion 1 invades that node. The opposite case can also
happen, that is a node in state 1 can become a node with opinion 0 with a probability
kγΔt in a small time interval Δt , if it has k neighbours in state 0. The parameters τ
and γ characterize the strengths of the two opinions. The model originates in physics,
where in a network of interacting particles each node holds either spin 1 or −1 (see
Vazquez and Eguiluz [15]). In a single event, a randomly chosen node adopts the spin
of one of its neighbors, also chosen at random.

Assuming that at the initial instant the territories of the two opinions are connected
sets, the underlying conditioned Markov chain can be given as follows. The state space
is the set {0,1,2, . . . ,N} , where a number k represents the state in which there are k+1
nodes in state 1 and they form a connected arc along the cycle graph. Starting from state
k the system can move either to state k+1 or to k−1, since at a given instant only one
node can change its state (by using the usual assumption that the changes at the nodes
can be given by independent Poisson processes). When the system moves from state k
to k + 1 then a new node in state 1 appears at one of the two ends of the arc of state
1 nodes. Hence the rate of this transition is 2τ , expressing that a node in state 0 and
having a single neighbour in state 1 becomes a state 1 node, and this can happen at both
ends of the state 1 territory. Similarly, the rate of transition from state k to k−1 is 2γ .
Let us denote by xk(t) the probability that the system is in state k . The above transition
rates lead to the differential equation

ẋ(t) = 2τxk−1(t)−2(τ + γ)xk(t)+2γxk+1(t).

(For k = 0 and for k = N the equations contain only two terms.) Thus our system of
ODEs takes the form given in (1) with a ≡ 2τ , c ≡ 2γ and b|[1/N,1−1/N] ≡−2(τ + γ) ,
b(0) = −2τ , b(1) = −2γ , yielding to the differential equation

ẋ(t) = Avx(t) (14)
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with the matrix

Av = 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−τ γ 0 · · · 0 0 0
τ −(τ + γ) γ · · · 0 0 0
0 τ −(τ + γ) 0 0 0
...

. . .
...

0 0 0 −(τ + γ) γ 0
0 0 0 τ −(τ + γ) γ
0 0 0 · · · 0 τ −γ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
subject to the initial condition x(0) = v ∈ CN+1 . Using (2) the corresponding approxi-
mating PDE is then given by:⎧⎪⎨⎪⎩

∂t u(t,z) = (τ + γ)h2∂zzu(t,z)+2(γ − τ)h∂zu(t,z)
∂t u(t,0) = 2γh∂zu(t,0)+2(γ − τ)u(t,0)
∂t u(t,1) = −2τh∂zu(t,1)−2(γ − τ)u(t,1).

(15)

To illustrate the effectiveness of our method numerically, we consider the special
case of τ = γ = α/2, leading to the simplified equations⎧⎪⎨⎪⎩

∂t u(t,z) = αh2∂zzu(t,z)
∂t u(t,0) = αh∂zu(t,0)
∂t u(t,1) = −αh∂zu(t,1),

(16)

where the associated generator has all its eigenvalues in (−∞,0] . Wishing to apply the
Fourier method, we look for the solution in the form

u(t,z) =
∞

∑
j=0

c je
λ jtw j(z)

It is enough to find the eigenfunctions eλ jtw j(z) . The PDE and the boundary conditions
then yield the system of equations⎧⎪⎨⎪⎩

λw = αh2w′′

λw(0) = αhw′(0)
λw(1) = −αhw′(1).

The first equation yields

wj(z) = c1,λ j
cos(ω jz/h)+ c2,λ j

sin(ω jz/h),

with λ j = −ω2
j , ω j � 0. Substituting into the first boundary condition we obtain

−ω jc1,λ j
= c2,λ j

, allowing us to choose c1,λ j
= 1 and hence write

wj(z) = cos(ω jz/h)−ω j sin(ω jz/h).
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Now substituting into the second boundary condition we obtain

tan
(ω j

h

)
=

2ω j

ω2
j −1

.

This has exactly one solution in each interval
(
(2 j−1)h π

2 ,(2 j +1)h π
2

)
for j � 0. The

constants c j are determined by the initial condition

u(0,z) =
∞

∑
j=0

c jwj(z).

Introducing the infinite matrix G = ((〈wk,wl〉)k,l) , where 〈·, ·〉 is the L2 scalar
product, and the vectors U = (〈wj,u(0, ·)〉 j) and c = (c j) j , this leads to the equation

Gc = U (17)

for the Fourier coefficients of the solution.

Figure 1: The probability distribution xk(t) , k = 0,1,2, . . . ,N at time t = 500 obtained from
system (14) (circles) and the solution z �→ u(t,z) of the PDE (15) at time t = 500 (continuous
line), with initially 200 nodes in state 1 with probability 1, and with N = 1000 , τ = 0.5 , γ = 0.5 .

In Figure 1 the solution of system (14) is compared to the solution of the PDE
(15) when τ = γ = 0.5, the latter was plotted using the Fourier method with the first 40
eigenfunctions. The first 40 eigenvalues were determined by using Newton’s method
within each interval given above, and then we solved equation (17) restricted to the first
40 variables. We observed that on our desktop computer MATLAB needed 15.719000
seconds to get the ODE solution at t = 100, while for the Fourier method 0.016000
seconds were needed to solve the PDE.

We also compared the solutions of the ODE and the PDE for the Robin-type
boundary condition. For the voter-like model equation (5) has the form

∂t u(t,z) = (τ + γ)h2∂zzu(t,z)+2(γ − τ)h∂zu(t,z), (18)
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with z ∈ (− 1
2N ,1+ 1

2N

)
, t ∈ (0,T ] , and the Robin-type boundary conditions read as

(τ + γ)h∂zu

(
t,− 1

2N

)
+2(γ − τ)u

(
t,− 1

2N

)
= 0, (19)

(τ + γ)h∂zu

(
t,1+

1
2N

)
+2(γ − τ)u

(
t,1+

1
2N

)
= 0 (20)

for t ∈ [0,T ] . The system (14) was solved with MATLAB’s ode45 solver, while the par-
tial differential equation with MATLAB’s pdepe solver. The results of the comparison
are shown in Fig. 2 at time t = 500 for two different parameter choices.

Figure 2: The probability distribution xk(t) , k = 0,1,2, . . . ,N at time t = 500 obtained from
system (14) (circles) and the solution z �→ u(t,z) of the PDE (18) with boundary conditions (19)
and (20) at time t = 500 (continuous line) with initially 200 nodes in state 1 with probability 1,
and with N = 1000 , for τ = γ = 0.5 (left panel) and for τ = 0.7 , γ = 0.3 (right panel).

5.2. SIS disease transmission model on a complete graph

The second motivation of our study comes from epidemiology where a paradigm
disease transmission model is the simple susceptible-infected-susceptible (SIS ) model
on a completely connected graph with N +1 nodes, i.e. all individuals are connected to
each other. From the disease dynamic viewpoint, each individual is either susceptible
(S ) or infected ( I ) – a susceptible one with k+1 infected neighbours can be infected at
rate (kτ ) and the infected ones can recover at a given rate (γ ) and become susceptible
again. Since the graph is complete, the state space is the set {0,1,2, . . . ,N} , where a
number k represents the state in which there are k infected nodes. Starting from state
k the system can move either to state k + 1 or to k− 1, since at a given instant only
one node can change its state. When the system moves from state k to k + 1 then
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a susceptible node becomes infected. Hence the rate of this transition is k(N − k)τ ,
expressing that any of the N − k susceptible nodes can become infected and each of
them has k infected neighbours (since the graph is complete). The rate of transition
from state k to k− 1 is kγ , because any of the k infected nodes can recover. Let us
denote by xk(t) the probability that the system is in state k , i.e. there are k infected
nodes. The above transition rates lead to the differential equation

ẋ(t) = (k−1)(N− k+1)τxk−1(t)− (k(N− k)τ + kγ)x(t)+ (k+1)γxk+1(t).

(For k = 0 and for k = N the equations contain only two terms.) Thus our system of
ODEs takes the form given in (1) with ak = k(N − k)τ , ck = kγ and bk = −ak − ck ,
that is a(z) = N2τz(1− z) , c(z) = Nγz and b(z) = −a(z)− c(z) . We note that an
approximation of this system by a first order PDE was investigated in Bátkai, Kiss,
Sikolya and Simon [7]. According to (2) our method yields the following second order
approximation

∂t u(t,z) =
α(z−h)(1− z+h)+ γ(z+h)

2
h∂zzu(t,z)+ (γ(z+h)

−α(z−h)(1− z+h))∂zu(t,z)+ (α(2z−1−h)+ γ)u(t,z)
∂t u(t,0) = γh∂zu(t,0)+ γu(t,0)
∂t u(t,1) = −α(1−h)h∂zu(t,1)+ α(1−h)u(t,1).

Our theorem implies that the solution of this PDE approximates the solution of the
corresponding ODE (1) in the order of 1/N2 . We note that the usually used first order
PDE approximates the ODE in the order of 1/N . The advantage of that first order PDE
is that it can be solved analytically yielding the well-known mean-field approximation
for the expected number of infected nodes, see Bátkai et al. [7]. Our second order PDE
cannot be solved analytically, hence only a numerical approximation can be obtained
by using our method. It is the subject of future work to derive PDE approximations for
epidemic propagation on different random graphs and compare their solutions to those
of the original ODE system.
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Eötvös Loránd University

Institute of Mathematics and Numerical Analysis and Large
Networks Research Group

Hungarian Academy of Sciences
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