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ON THE DOUBLE COMMUTANT EXPECTATION

PROPERTY FOR OPERATOR SYSTEMS

FLORIN POP

(Communicated by Z.-J. Ruan)

Abstract. In this note we present an alternative viewpoint to the Double Commutant Expectation
Property (DCEP) for operator systems, introduced by Kavruk, Paulsen, Todorov and Tomforde.
Our approach is based on the universal C∗ -algebra of an operator system and is used to obtain
new proofs of several results for operator systems analogue to the properties C∗ -algebras have.

1. Introduction

The notion of a weak expectation goes back to E. C. Lance [12], where he consid-
ered, for a C∗ -algebra A ⊂ B(H), a unital completely positive map (u.c.p. for short)
ϕ : B(H) → A′′ which acts identically on A, and he called ϕ a weak expectation for
A. A C∗ -algebra is said to have the Weak Expectation Property (WEP) if it has a weak
expectation in every faithful representation on a Hilbert space. The WEP turned out to
play a key role in Kirchberg’s seminal work [9, 10] and, together with the Local Lifting
Property (LLP), it now stands out as a central topic in the study of C∗ -algebras.

In [18] Pisier generalized the WEP to arbitrary operator spaces. If iX : X → X∗∗
is the canonical inclusion, then X is said to have the λ -WEP if there exist com-
pletely bounded maps T1 : B(H) → X∗∗ and T2 : X → B(H) such that iX = T1T2 and
||T1||cb||T2||cb � λ .

More recently [7, 8], Kavruk, Paulsen, Tomforde and Todorov established a gen-
eral theory of tensor products of operator systems and were, perhaps inevitably, lead
to the WEP, which they defined in very much the same way as Pisier, by requiring
an injective operator system T and u.c.p. maps ϕ1 : S → T and ϕ2 : T → S∗∗ such
that iS = ϕ2 ◦ϕ1, where iS : S → S∗∗ is the canonical inclusion. Subsequently, they
introduced the Double Commutant Expectation Property (DCEP), which turned out to
be a more flexible notion, and which was successful in extending a number of results,
mostly due to Kirchberg [9], from C∗ -algebras to operator systems. In particular [8],
Kirchberg’s conjecture found its prominent place in the category of operator systems.
An operator system S has the double commutant expectation property (DCEP) pro-
vided that for every completely order isomorphic inclusion S ⊂ B(H), there exists a
completely positive map ϕ : B(H) → S′′ such that ϕ(s) = s for all s ∈ S. As shown in
[8], the DCEP is strictly weaker than the WEP.
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The goal of the present paper is to adopt a C∗ -algebraic viewpoint for the results in
[8]. We make extensive use of the universal C∗ -algebra C∗

u(S) of an operator system S
introduced by Kirchberg and Wassermann in [11], and use some of the groundbreaking
methods in Kirchberg’s seminal paper [9]. Our relying on C∗

u(S) lead us to a new notion
of WEP, which we call UWEP, and which requires for every faithful representation
C∗

u(S) ⊂ B(H) the existence of a u.c.p. map ϕ : B(H) → C∗
u(S)∗∗ such that ϕ(s) =

s for all s ∈ S. As it turns out, the UWEP and DCEP are equivalent, and thus the
methods in this paper augment the operator system techniques in [7, 8] to enlarge the
framework in which operator systems are studied and provide a diversified range of
options for further investigation. As it is often the case, the analogy between operator
systems and C∗ -algebras has its limitations, as we shall see in section 5 where we
present a somewhat surprising subsystem of Mn(C), namely the Paulsen system S�n

∞ ⊂
�n

∞⊗M2(C) associated with �n
∞, which, at least for n � 5, fails to have either the lifting

property LP or the DCEP.
While most of the results in this note are not new, the methods of proof are different

from [8]. We must, however, point out that a few things here are new even in the C∗ -
algebra context, like Proposition 5.2 and the proof of (2) ⇒ (3) in Proposition 3.5,
which is inspired by an elegant argument of Pisier [17].

For more details and information on Kirchberg’s results, as well as a wider back-
ground, we refer to [9, 10, 13, 2]. For the general theory of operator spaces and systems
we relied on [16, 18], while for tensor products of operator systems [7] is the basic
reference. For more details on the WEP we refer the reader to Chapter 15 in [18], as
well as to [8] and [5].

2. Background and preliminary results

Throughout this paper all C∗ -algebras are assumed to be unital. By an isomor-
phism of operator systems we will always mean a unital, completely isometrical iso-
morphism. In particular, such a map and its inverse are u.c.p. maps, so they establish a
complete order isomorphism. A sum of elementary tensors in a tensor product will be
called an elementary operator.

The min and max norms. We begin by recalling the definitions of the minimal and
maximal C∗ -cross-norms and refer the reader to [16] for more details. Let A1 and
A2 be unital C∗ -algebras. A C∗ -cross-norm on the algebraic tensor product A1 ⊗A2

is a C∗ -norm γ satisfying the additional condition ||a ⊗ b||γ = ||a|| · ||b||. If π1 :
A1 → B(H1) and π2 : A2 → B(H2) are unital *-homomorphisms, we get a unital, *-
preserving homomorphism π1⊗π2 : A1⊗A2 →B(H1⊗H2) by letting π1⊗π2(a⊗b) =
π1(a)⊗ π2(b). Thus, if for x ∈ A1 ⊗A2 we set ||x||min = sup{π1 ⊗ π2(x) : πi : Ai →
B(Hi) unital, *-homomorphism, i = 1,2}, then we obtain a C∗ - cross-norm on A1⊗A2.
The completion of A1⊗A2 in this norm is denoted by A1⊗min A2 and is called the min-
imal (or the spatial) tensor norm. It is the smallest possible C∗ -cross-norm on the
algebraic tensor product A1⊗A2.

Let now π1 : A → B(H) and π2 : B → B(H) be unital *-homomorphisms such that
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π1(a)π2(b) = π2(b)π1(a) for all a ∈ A1 and b ∈ A2. We may then define a unital *-
homomorphism π : A⊗B → B(H) by π(x) = ∑n

i=1 π1(ai)π2(bi), where x = ∑n
i=1 ai ⊗

bi. Conversely, if we have a unital *-homomorphism π : A⊗B → B(H) and we define
π1(a) = π(a⊗ I), π2(b) = π(I ⊗ b), we obtain a pair of unital *-homomorphisms of
A and B, respectively, with commuting ranges such that π(a⊗ b) = π1(a)π2(b). We
define ||x||max = sup{||π(x)|| : π : A⊗ B → B(H) unital *-homomorphisms} . The
completion of A⊗B in this norm is denoted by A⊗max B, is called the maximal tensor
norm, and is the largest possible C∗ -cross-norm on the algebraic tensor product A⊗B.
A C∗ -algebra is called nuclear if A⊗min B = A⊗max B for evey C∗ -algebra B. It is well
known that abelian algebras and Mn(C) are nuclear.

It can be proved without difficulty that if Ai ⊂ Bi, i = 1,2, then A1 ⊗min A2 ⊂
B1⊗min B2, but this is no longer the case for the max norm. Specifically, if A ⊂ B, then
it is possible that the inclusion A⊗C ⊂ B⊗max C does not induce the max norm on
A⊗C. If it does, we write A⊗maxC ⊂ B⊗maxC.

In [12] Lance observed that A⊗maxC ⊂ A∗∗ ⊗maxC for all C∗ -algebras A,C, and
introduced the following property: given a unital inclusion A ⊂ B, we say that A is
weakly c.p. complemented in B if there exists a u.c.p. map ψ : B → A∗∗ such that
ψ(a) = a for all a ∈ A. We say that A is c.p. complemented in B if the above map
ψ takes values in A. Lance proved in [12] that if A is weakly c.p. complemented in
B, then A⊗max C ⊂ B⊗max C for any C. A C∗ -algebra A has the weak expectation
property (WEP) if it can be faithfully represented on a Hilbert space H such that in this
representation A is weakly c.p. complemented in B(H). It can be seen ([12]) that this
definition does not depend on the particular representation of A. The following is an
important characterization of the WEP due to Kirchberg [9], [10].

PROPOSITION 2.1. A C∗ -algebra A has the WEP if and only if A⊗maxC∗(F∞) =
A⊗minC∗(F∞).

Next we recall the three basic tensor norms for operator systems and refer to [7]
for a detailed presentation.

(1) The minimal tensor product min. If S ⊂ B(H) and T ⊂ B(K) are operator
systems acting on the Hilbert spaces H, respectively K, then S⊗min T is the operator
system arising from the natural inclusion of S⊗T into B(H⊗K).

(2) The maximal tensor product max [7] is the operator system structure on S⊗T
obtained from the Archimedeanization of the matrix order given by positive cones

Dn =
{
A∗(P⊗Q)A : A ∈ Mn,km(C),P ∈ Mk(S)+,Q ∈ Mm(T )+

}
.

(3) The commuting tensor product ”c” was introduced in [16] (where it was re-
ferred to as max). If θi : Si → B(H) are u.c.p. maps with commuting ranges, we have a
well-defined map θ1⊗θ2 : S1⊗S2 → B(H). For (xi j) ∈ Mn(S1⊗S2), we set

||(xi j)|| = sup{||(θ1 ⊗θ2)(xi j)|| : θk : Sk → B(H), k = 1,2}

where θ1 and θ2 are u.c.p. maps with commuting ranges and H is an arbitrary Hilbert
space.
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The universal C∗ -algebra of an operator system. A fundamental role in the study
of tensor products of operator systems is played by the universal C∗ -algebra C∗

u(S) of
an operator system S [11]. It is, up to isomorphism, the unique C∗ -algebra A satisfy-
ing:

(1) There exists a unital completely isometric map u : S → A such that A =
C∗(u(S)), that is, A is generated by u(S).

(2) If θ : S→B is a u.c.p. map into a C∗ -algebra B, then there is a *-homomorphism
π : A → B such that θ (s) = π(u(s)) for every s ∈ S.

Throughout this paper, we will always identify S and u(S).
Two important facts were proved in [7]: first, S⊗c T ⊂C∗

u(S)⊗maxC∗
u(T ), which

shows in particular that if A is a C∗ -algebra, then in the definition of S⊗c A the u.c.p.
maps θ2 pertaining to A can be chosen to be *-monomorphisms. The second result is
that if A is a C∗ -algebra, then S⊗c A = S⊗max A. Throughout this paper, consequently,
we will always use the notation “max” when one of the operator systems is a C∗ -
algebra.

We continue with a few useful results which will be used subsequently, collected
in

LEMMA 2.2. (i) If A and B are C∗ -algebras, then A⊗max B ⊂C∗
u(A)⊗max B.

(ii) If S is an operator system and A is a C∗ -algebra then A⊗max S ⊂ A⊗max

C∗
u(S).

(iii) If S and T are operator systems, then S⊗c T ⊂ S⊗maxC∗
u(T ).

(iv) Let A and B be C∗ -algebras such that A is weakly c.p. complemented in B.
Then S⊗max A ⊂ S⊗max B for every operator system S.

(v) Let A be a C∗ -algebra with a closed, two-sided ideal J. If S is an operator
system such that S⊗max A = S⊗min A, then S⊗max J = S⊗min J.

(vi) Let A be a C∗ -algebra with a closed, two-sided ideal J. If S is an operator
system, then (S⊗max A)/(S⊗max J) and S⊗max A/J are isomorphic.

Proof. (i) The inclusion A ⊂ C∗
u(A) induces a u.c.p. map from A⊗max B with

values in C∗
u(A)⊗max B acting identically on elementary operators. If a1, ...,an ∈ A

and b1, ...,bn ∈ B, this shows that ||
n

∑
i=1

ai ⊗bi||C∗
u (A)⊗maxB � ||

n

∑
i=1

ai⊗bi||A⊗maxB. The

identity map of A extends, by universality, to a *-homomorphism π : C∗
u(A) → A, so

we obtain a u.c.p. π ⊗ id : C∗
u(A)⊗max B → A⊗max B acting identically on elementary

operators. It follows that ||
n

∑
i=1

ai⊗bi||A⊗maxB � ||
n

∑
i=1

ai ⊗bi||C∗
u (A)⊗maxB.

(ii) By part (i) we have A⊗max C∗
u(S) ⊂ C∗

u(A)⊗max C∗
u(S). Then the algebraic

tensor product A⊗S inherits from A⊗maxC∗
u(S) the same operator system structure as

the one inherited from C∗
u(A)⊗maxC∗

u(S). But the latter is precisely A⊗c S = A⊗max S
by Theorem 6.4 in [7], so the conclusion follows.

(iii) By part (ii) we have S⊗max C∗
u(T ) ⊂ C∗

u(S)⊗max C∗
u(T ). It follows that S⊗

T inherits from S⊗max C∗
u(T ) the same structure as the one from C∗

u(S)⊗max C∗
u(T ),

namely S⊗c T.
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(iv) We have C∗
u(S)⊗max A ⊂C∗

u(S)⊗max B and now apply part (ii) of this lemma.
(v) Is a consequence of (iv), as J is weakly c.p. complemented in A (recall that

A∗∗ = J∗∗ ⊕ (A/J)∗∗ ).
(vi) The C∗ -algebras (C∗

u(S)⊗max A)/(C∗
u(S)⊗max J) and C∗

u(S)⊗max A/J are iso-
morphic, so the conclusion will follow once we prove that

dist(
n

∑
i=1

si ⊗ai,S⊗max J) = dist(
n

∑
i=1

si ⊗ai,C
∗
u(S)⊗max J)

for all a1, ...,an ∈ A and s1, ...,sn ∈ S, and it is clear that the right-hand side is the
smaller of the two. To prove the reverse inequality, assume that

dist(
n

∑
i=1

si ⊗ai,C
∗
u(S)⊗max J) = 1 and choose x1, ...,xm ∈C∗

u(S) and j1, ..., jm ∈ J

such that, for fixed but arbitrary ε > 0, we have ||
n

∑
i=1

si ⊗ai +
m

∑
k=1

xk ⊗ jk||C∗
u(S)⊗maxA <

1+ ε/2. If (eα) is an approximate unit for J we have

||(
n

∑
i=1

si ⊗ai +
m

∑
k=1

xk ⊗ jk)(I⊗ (I− eα))||C∗
u (S)⊗maxA < 1+ ε/2

Choose α such that jk(I− eα) are small enough to ensure that

||
n

∑
i=1

si ⊗ai(I− eα)||C∗
u(S)⊗maxA < 1+ ε

which shows that dist(
n

∑
i=1

si ⊗ai,S⊗maxJ)< 1+ε, which concludes the proof. �

We continue with a result which will be used repeatedly.

LEMMA 2.3. If S is an operator system and B is a C∗ -algebra, then M2(S)⊗max

B and M2(S⊗max B) are isomorphic.

Proof. The operator systems (S1 ⊗max S2)⊗max S3 and S1 ⊗max (S2 ⊗max S3) are
isomorphic by Theorem 5.5 in [7]. In particular, it follows that M2(S)⊗maxB = (M2(C)
⊗min S)⊗maxB = (M2(C)⊗max S)⊗maxB and M2(S⊗maxB) = M2(C)⊗min (S⊗maxB) =
M2(C)⊗max (S⊗max B) are isomorphic. In other words, each of the four corners of
M2(S)⊗max B is isomorphic to S⊗max B. �

Lifting Properties. An operator system S, in particular a C∗ -algebra, has the Lifting
Property (LP) if for every C∗ -algebra B with a closed, two-sided ideal J, and every
u.c.p. map ϕ : S → B/J there exists a u.c.p. map ψ : S → B such that ϕ = π ◦ψ ,
where π is the quotient map π : B→ B/J. S has the Local Lifting Property (LLP) if, in
the above definition, for any finite dimensional operator subsystem E ⊂ S, there exists
a u.c.p. map ψ : E → B such that ϕ = π ◦ψ on E.
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The first major result in this direction is due to Choi and Effros [3], stating that
separable nuclear C∗ -algebras have the LP. Later [10], Kirchberg proved that C∗(F∞)
also has the LP. Of course, the LP implies the LLP, and an important result of Kirchberg
[9] is that A has the LLP if and only if A⊗max B(H) = A⊗min B(H).

Miscellaneous results. We conclude this section with two well known results which
will be used subsequently. Statements (i) and (ii) are, respectively, Corollary 2.4 and
Lemma 3.15 in [13].

PROPOSITION 2.4. (i) (Arveson) If ϕ : A → B is a u.c.p. map, then for any C∗ -
algebra C, the map ϕ ⊗ id extends to a u.c.p. map defined on A⊗maxC with values in
B⊗maxC.

(ii) Let U1,U2, ... be the generators of C∗(F∞), set U0 = I, and fix x0,x1, ...,xn−1 ∈
B. Then ||

n−1

∑
i=0

xi ⊗Ui||B⊗minC∗(F∞) = ||ϕ ||cb, where ϕ : �n
∞ → B is defined by

ϕ((λ0,λ1, ...,λn−1)) =
n−1

∑
i=0

λixi.

3. The double commutant expectation property

In this section we extend the notion of WEP to operator systems. We proceed
from the Double Commutant Expectation Property of [8] and introduce a new version
of WEP, which is more malleable for our approach.

DEFINITION 3.1. [8] We say that an operator system S has the double commu-
tant expectation property (DCEP) provided that for every completely order isomorphic
inclusion S ⊂ B(H), there exists a completely positive map ϕ : B(H) → S′′ such that
ϕ(s) = s for all s ∈ S.

From a C∗ -algebraic viewpoint, this definition encounters the obstacle caused by
the fact that A⊗max B is not always isometrically contained in A′′ ⊗max B, hence the
need to involve the second dual A∗∗, which has the nice property that A⊗max B ⊂
A∗∗⊗max B. We therefore need another definition for the WEP, one that will rely on the
second dual of the universal C∗ -algebra of S . For this reason we will call this ad-hoc
property “The Universal Weak Expectation Property” (UWEP), and use it for a short
while, until Proposition 3.5 proves its equivalence to the DCEP. We also note that a
C∗ -algebra has the WEP if and only if it has the DCEP as an operator system.

DEFINITION 3.2. We say that an operator system S has the universal weak expec-
tation property (UWEP) provided that for every faithful representation C∗

u(S) ⊂ B(H),
there exists a u.c.p. map ϕ : B(H) →C∗

u(S)∗∗ such that ϕ(s) = s for all s ∈ S.

By arguing like in Proposition 2.11 in [12] we see that for S to have the UWEP it
suffices for the property in Definition 3.2 to hold in just one particular faithful represen-
tation of C∗

u(S). This is certainly not the case with Definition 3.1, where the property
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must hold in every inclusion S ⊂ B(H). This aspect will be discussed in more detail in
section 5.

LEMMA 3.3. If E ⊂B(H) is an operator system, S is an operator system with the
UWEP, and ϕ : E → Mn(S) is a u.c.p. map, then there exists a u.c.p. map ψ : B(H) →
Mn(C∗

u(S)∗∗) such that ψ(x) = ϕ(x) for all x ∈ E.

Proof. Suppose that C∗
u(S) is faithfully represented in B(K) and let θ : B(K) →

C∗
u(S)∗∗ be the u.c.p. map such that θ (s) = s for all s ∈ S. Then θ ⊗ idn : Mn(B(K))→

Mn(C∗
u(S)∗∗) is a u.c.p. map acting identically on Mn(S). If Ψ : B(H) → Mn(B(K)) is

any u.c.p. extension of ϕ given by Arveson’s extension theorem, then ψ =(θ ⊗ idn)◦Ψ
is the desired map. �

While a u.c.p. map ϕ : A → B induces a u.c.p. map ϕ ⊗ id : A⊗maxC → B⊗maxC
for any C∗ -algebra C , a complete contraction does not always extend this way. Huruya
[6] constructed a complete contraction from A to B such that the map ϕ ⊗ id is not
even bounded on A⊗max C. It thus becomes very important to find conditions under
which such extensions exist, and the next result illustrates the case when the range has
the WEP.

The proof relies on the “off diagonal” technique due to Paulsen ([14], [15]). A
fundamental role in this technique is played by the Paulsen system SE associated to an
arbitrary operator space E ⊂ B(H) and defined as

SE =
{(

λ I a
b∗ μI

)
; a,b ∈ E

}

PROPOSITION 3.4. Let A be a C∗ -algebra, S an operator system with the UWEP,
and ϕ : A → Mn(S) a completely contractive map. Then, for any C∗ -algebra C, the
map ϕ ⊗ id extends to a completely contractive map from A⊗max C with values in
Mn(S)⊗maxC.

Proof. Consider the operator system SA ⊂ A⊗M2(C)

SA =
{(

λ I a
b∗ μI

)
; a,b ∈ A

}

and define the map ψ : SA → Mn(S)⊗M2(C) defined by

ψ
((

λ I a
b∗ μI

))
=

(
λ I ϕ(a)

ϕ(b)∗ μI

)

It is well-known that ϕ is completely contractive if and only if ψ is completely positive
(Lemma 8.1 in [16]).

We apply Lemma 3.3 and denote by Ψ : A⊗M2(C) → Mn(C∗
u(S)∗∗)⊗M2(C) a

u.c.p. map extending ψ . The next step is to consider the u.c.p. map Ψ⊗ id : (A⊗
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M2(C))⊗max C → (Mn(C∗
u(S)∗∗)⊗M2(C))⊗max C and use Lemma 2.3 to look at the

(1,2) corners of this map. The map Ψ⊗ id takes the operator

(
0 a
0 0

)
⊗ c ∈ (A⊗M2(C))⊗maxC = M2(A)⊗maxC = M2(A⊗maxC) to the operator

(
0 ϕ(a)
0 0

)
⊗ c ∈ (Mn(S)⊗M2(C))⊗maxC ⊂ (Mn(C∗

u(S))⊗M2(C))⊗maxC

⊂ (Mn(C∗
u(S)∗∗)⊗M2(C))⊗maxC

thus to an operator in M2(Mn(S))⊗maxC = M2(Mn(S)⊗maxC).
It follows that the u.c.p. map Ψ⊗ id induces a (necessarily completely contractive)

map, namely ϕ ⊗ id, between the (1, 2) corners of M2(A⊗maxC) and M2(Mn(S)⊗max

C). By taking into account Lemma 2.3, these corners are A⊗max C and, respectively,
Mn(S)⊗maxC, which concludes the proof. �

We have come to the main result of this section, which presents several properties
equivalent to the UWEP and which are reminiscent of the properties shared by C∗ -
algebras with the WEP. The equivalence of (1), (3), (4), and (5) was first proved, from
a fairly different perspective, in [8].

PROPOSITION 3.5. The following are equivalent for an operator system S:
(1) S has the DCEP.
(2) S has the UWEP.
(3) S⊗maxC∗(F∞) = S⊗minC∗(F∞).
(4) If S ⊂ T is an inclusion of operator systems, then for every C∗ -algebra A we

have S⊗max A ⊂ T ⊗max A.

(5) If S ⊂ T is an inclusion of operator systems, then for every operator system E
we have S⊗c E ⊂ T ⊗c E.

Proof. (1) ⇒ (2) is immediate if one considers S in the universal representation
of C∗

u(S) and apply the definition of DCEP. (2) ⇒ (3) Let U1,U2, ... be the genera-
tors of C∗(F∞), set U0 = I, and fix x0,x1, ...,xn−1 ∈ Mn(S) ⊂ Mn(C∗

u(S)). Recall from
Proposition 2.4(ii) that

||
n−1

∑
i=0

xi⊗Ui||Mn(C∗
u(S))⊗minC∗(F∞) = ||ϕ ||cb where ϕ : �n

∞ → Mn(S) is defined by

ϕ((λ0,λ1, ...,λn−1)) =
n−1

∑
i=0

λixi. Without loss of generality we may assume that

||
n−1

∑
i=0

xi⊗Ui||Mn(C∗
u(S))⊗minC∗(F∞) = 1, thus ϕ is a complete contraction.

By Proposition 3.4, the map ϕ⊗ id extends to a complete contraction from �n
∞⊗max

C∗(F∞) = �n
∞ ⊗min C∗(F∞) with values in Mn(S)⊗maxC∗(F∞) (note that �n

∞ is abelian,
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thus nuclear). In particular, if ei = (0, ...,0,1,0, ...,0) where 1 appears in the ith coor-
dinate, 0 � i � n−1, we have

||
n−1

∑
i=0

xi ⊗Ui||Mn(C∗
u (S))⊗maxC∗(F∞) = ||

n−1

∑
i=0

ϕ(ei)⊗Ui||Mn(C∗
u(S))⊗maxC∗(F∞)

� ||
n−1

∑
i=0

ei ⊗Ui||�n
∞⊗minC∗(F∞)

It follows that ||
n−1

∑
i=0

xi⊗Ui||Mn(C∗
u(S))⊗maxC∗(F∞) � 1 because

n−1

∑
i=0

ei ⊗Ui is a unitary op-

erator. In combination with the assumption made in the previous paragraph, namely

that ||
n−1

∑
i=0

xi⊗Ui||Mn(C∗
u(S))⊗minC∗(F∞) = 1, we obtain

||
n−1

∑
i=0

xi ⊗Ui||Mn(C∗
u(S))⊗maxC∗(F∞) � ||

n−1

∑
i=0

xi ⊗Ui||Mn(C∗
u(S))⊗minC∗(F∞)

and therefore equality holds.
If we denote by E1 ⊂ S⊗minC∗(F∞), respectively E2 ⊂ S⊗maxC∗(F∞)⊂ B(K), the

operator spaces generated by s⊗Ui in each of the two tensor products, we proved the
fact that θ , the identity map on elementary operators, is a complete isometry between
E1 and E2. This map extends to a complete contraction between C∗

u(S)⊗min C∗(F∞)
and B(K), still denoted by θ . Since θ is unital, it must be a u.c.p. map. Since θ takes
Ui to Ui, the unitary operators Ui belong to the multiplicative domain of θ , therefore
θ extends to a u.c.p. map between S⊗minC∗(F∞) and S⊗maxC∗(F∞), acting identically
on elementary operators, which concludes the proof.

(3)⇒ (4) By Proposition 9 in [11] the inclusion S ⊂ T induces a canonical inclu-
sion C∗

u(S)⊂C∗
u(T ), hence a u.c.p. map from C∗

u(S)⊗max A with values in C∗
u(T )⊗max

A acting identically on elementary operators. If s1, ...,sn ∈ S and a1, ...,an ∈ A, this

shows that ||
n

∑
i=1

si ⊗ai||T⊗maxA � ||
n

∑
i=1

si ⊗ai||S⊗maxA. To prove the reverse inequality,

assume without loss of generality that ||
n

∑
i=1

si ⊗ai||T⊗maxA = 1. Writing A =C∗(F∞)/J,

apply Lemma 2.2(vi) to obtain t1, ...,tm ∈ T and j1, ..., jm ∈ J such that, for fixed but

arbitrary ε > 0, we have ||
n

∑
i=1

si ⊗ai +
m

∑
k=1

tk ⊗ jk||T⊗maxC∗(F∞) < 1+ ε/2. If (eα) is an

approximate unit for J we have

||(
n

∑
i=1

si ⊗ai +
m

∑
k=1

tk ⊗ jk)(I⊗ (I− eα))||T⊗maxC∗(F∞) < 1+ ε/2

Choose α in such a way that jk(I− eα) are small enough to ensure that

||
n

∑
i=1

si ⊗ai(I− eα)||T⊗maxC∗(F∞) < 1+ ε
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The algebraic tensor product S⊗C∗(F∞) inherits from T ⊗maxC∗(F∞) an operator
system structure. By hypothesis, this structure must be the max, thus S⊗maxC∗(F∞) ⊂
T ⊗maxC∗(F∞). In particular, we obtain

||
n

∑
i=1

si ⊗ai(I− eα)||S⊗maxC∗(F∞) < 1+ ε

Finally, we apply the completely contractive quotient map from S ⊗max C∗(F∞) to

S⊗max A (whose kernel is S⊗max J ) and get ||
n

∑
i=1

si ⊗ai||S⊗maxA < 1+ ε. Since ε > 0

was arbitrary, the proof is complete.
(4) ⇒ (5) Follows from (3) since S⊗maxC∗

u(E) ⊂ T ⊗maxC∗
u(E).

(5) ⇒ (1) Consider an arbitrary inclusion S ⊂ B(H) and denote by A the com-
mutant of S′′ in B(H). By hypothesis, the inclusion S ⊂ S′′ induces the inclusion
S⊗maxA⊂ S′′⊗maxA. By composing this inclusion with the *-representation x⊗a→ xa
from S′′ ⊗max A to B(H), we obtain a u.c.p. ϕ : S⊗max A→ B(H) such that ϕ(x⊗a) =
xa. Again by hypothesis we have S⊗max A ⊂ B(H)⊗max A, so there exists a u.c.p. ex-
tension of ϕ from B(H)⊗max A to B(H), still denoted by ϕ . Since ϕ acts identically
on A, we see that A is in the multiplicative domain of ϕ , thus the restriction of ϕ to
B(H) takes values in A′ = S′′ and acts identically on S, which concludes the proof. �

Due to the equivalence of (1) and (2), we will stop using the term UWEP, in favor
of DCEP.

It is known [9] that if a C∗ -algebra A has the WEP, then A⊗max B = A⊗min B
whenever B has the LLP, and a similar result holds true for operator systems.

PROPOSITION 3.6. If S is an operator system with the DCEP and A is a C∗ -
algebra with the LLP, then S⊗max A = S⊗min A.

Proof. Since A = C∗(F∞)/J has the LLP, the sequence

C∗
u(S)⊗min J →C∗

u(S)⊗minC∗(F∞) →C∗
u(S)⊗min A

is exact [9], so S⊗min A is isomorphic to (S ⊗min C∗(F∞))/(S⊗min J), by using an
approximate unit like in the proof of Lemma 2.2(vi). On the other hand, we already
know from Lemma 2.2(vi) that S⊗max A is isomorphic to (S⊗maxC∗(F∞))/(S⊗max J).
Since S has the DCEP, we have S⊗maxC∗(F∞) = S⊗minC∗(F∞) by Proposition 3.5 and
S⊗max J = S⊗min J by Lemma 2.2(v). The conclusion follows. �

4. The relationship with exactness and nuclearity

It is known that a C∗ -algebra which is exact and has the WEP must be nuclear (cf.
[13]). An analogue result holds true for operator systems, but we must pay attention
to the appropriate notion of exactness, as there exist several of them [8]. An operator
system S is called 1-exact if the operator systems (S⊗min A)/(S⊗min J) and S⊗min A/J
are isomorphic for every C∗ -algebra A. With this definition of exactness we have
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PROPOSITION 4.1. If the operator system S is 1-exact and has the DCEP, then
S⊗max A = S⊗min A for every C∗ -algebra A.

Proof. If A = C∗(F∞)/J, then (S⊗min C∗(F∞))/(S⊗min J) and S⊗min A are iso-
morphic because of 1-exactness. By Lemma 2.2(vi) we also have a complete order
isomorphism between (S ⊗max C∗(F∞))/(S ⊗max J) and S ⊗max A. Since S has the
DCEP, S⊗max C∗(F∞) = S⊗min C∗(F∞) and S⊗max J = S⊗min J and from here we
get S⊗max A = S⊗min A. �

The nuclearity property for S in the previous result is weaker than the established
definition of nuclearity for operator systems, which requires S⊗maxT = S⊗min T for all
operator systems T. Moreover, it was proved in [7] that there exist non-nuclear operator
systems S satisfying S⊗max A = S⊗min A for every C∗ -algebra A. We next observe that
the difference between the two notions of nuclearity hinges upon the difference between
the tensor norms S⊗max T and S⊗c T.

REMARK 4.2. If S⊗max A = S⊗min A for every C∗ -algebra A, then S⊗min T =
S⊗c T for every operator system T.

Proof. By hypothesis we have S⊗max C∗
u(T ) = S⊗min C∗

u(T ) and we look at the
closures of the algebraic tensor product S⊗T in both sides. From Lemma 2.2(iii) we
get S⊗c T ⊂ S⊗maxC∗

u(T ) = S⊗minC∗
u(T ) and the conclusion follows. �

5. Examples and applications

In this section we present an example of a matricial operator system outside the
class of C∗ -algebras which does not have the DCEP.

The next lemma captures the essence of a beautiful argument of Kirchberg. We
omit the proof, since it is almost identical to the proof of Lemma 2.5, including Sub-
lemma 2.5.1, in [9] (see also the proof of Corollary 3.12 in [13]).

LEMMA 5.1. Let E be an operator system with the LP and S ⊂ E a finite di-
mensional subsystem. If A is a C∗ -algebra and ϕ : E → A∗∗ is a u.c.p. map such
that ϕ(S) ⊂ A, then for every ε > 0 there exists a u.c.p. map ψ : E → A such that
||(ψ −ϕ)|S|| < ε.

PROPOSITION 5.2. Let E be an operator system with the LP. If S ⊂ E is a finite
dimensional subsystem with the DCEP, then S has the LP.

Proof. Let ϕ : S → B/J be a u.c.p. map. By universality, let π : C∗
u(S) → B/J be

the *-homomorphism extending ϕ . Since S has the DCEP, let θ : E → C∗
u(S)∗∗ be a

u.c.p. map such that θ (s) = s for all s∈ S. By Lemma 5.1, let ψ : E →C∗
u(S) be a u.c.p.

map such that ||(ψ−θ )|S||< ε. Since E has the LP, there exists a u.c.p. map α : E →B
such that, if q : B→ B/J denotes the quotient map, we have q◦α = π ◦ψ . If we denote
by β the restriction of α to S, we have ||q◦β −ϕ ||= ||(π ◦ψ −π ◦θ )|S|| < ε, which
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shows that ϕ is uniformly approximable by liftable maps. By a well-known result of
Arveson (Theorem 6 in [1]), this implies that ϕ is itself liftable. �

Consider now the Paulsen system S�n
∞ ⊂ �n

∞ ⊗M2(C) associated with �n
∞

S�n
∞ =

{(
λ In a
b∗ μIn

)
; a,b ∈ �n

∞

}

We will prove the rather surprising fact that, at least for n � 5, S�n
∞ does not have the

DCEP. This emphasizes the remark we made after Definition 3.2, namely that in Defini-
tion 3.1 every completely order isomorphic inclusion S ⊂ B(H) is relevant, as it easily
seen that in the above representation, as a subsystem of the injective von Neumann
algebra �n

∞ ⊗M2(C), S clearly satisfies the property in Definition 3.1.

PROPOSITION 5.3. For n � 5 the operator system S�n
∞ does not have the DCEP.

Proof. We apply Proposition 5.2 for S = S�n
∞ and E = �n

∞ ⊗M2(C), which, as a
nuclear C∗ -algebra, has the LP. The conclusion will be a consequence of �

PROPOSITION 5.4. For n � 5 the operator system S�n
∞ does not have the LP.

Proof. The argument is essentially a short cut through the proofs of Proposition
3.4 and (2) ⇒ (3) in Proposition 3.5. Let A be a QWEP C∗ -algebra (quotient of a
C∗ -algebra with the WEP) and set A = B/J, where B has the WEP. Fix x0, ...,xn−1 ∈ A
and let U1,U2, ... be the generators of C∗(F∞), where U0 = I.

Recall that we have ||
n−1

∑
i=0

xi ⊗Ui||A⊗minC∗(F∞) = ||ϕ ||cb where ϕ : �n
∞ → A is de-

fined by ϕ((λ0,λ1, ...,λn−1)) =
n−1

∑
i=0

λixi and assume without loss of generality that

||
n−1

∑
i=0

xi ⊗Ui||A⊗minC∗(F∞) = 1, making ϕ a complete contraction. Next, we consider

the u.c.p. map ψ : S�n
∞ → M2(A) defined by

ψ
((

λ In a
b∗ μIn

))
=

(
λ In ϕ(a)

ϕ(b)∗ μIn

)

and suppose that S�n
∞ has the LP. Then there exists a u.c.p. map Ψ : S�n

∞ → M2(B) such
that q ◦Ψ = ψ , where q is the quotient map from M2(B) onto M2(A). We obtain the
composition of the sequence of u.c.p. maps

S�n
∞ ⊗minC

∗(F∞) Ψ⊗id−→ M2(B)⊗minC
∗(F∞)= M2(B)⊗maxC

∗(F∞)
q⊗id−→M2(A)⊗maxC

∗(F∞)

and use Lemma 2.3 to focus on the (1,2) corner of this map, namely ϕ ⊗ id, which
represents a complete contraction from �n

∞ ⊗minC∗(F∞) with values in A⊗maxC∗(F∞).
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Like in the proof of (2) ⇒ (3) in Proposition 3.5, we get

||
n−1

∑
i=0

xi⊗Ui||A⊗maxC∗(F∞) = ||
n−1

∑
i=0

ϕ(ei)⊗Ui||A⊗maxC∗(F∞)

� ||
n−1

∑
i=0

ei ⊗Ui||�n
∞⊗minC∗(F∞) = 1

therefore

||
n−1

∑
i=0

xi ⊗Ui||A⊗maxC∗(F∞) = ||
n−1

∑
i=0

xi ⊗Ui||A⊗minC∗(F∞)

This would imply that every QWEP C∗ -algebra must have the WEP, which is simply
not true (e.g. C∗

red(Fn)). However, this general contradiction does not shed any light on
the values of n for which S�n

∞ fails to have the LP, so we need to look more closely into
a particular case.

Let g1, ...,gn be the generators of Fn and λ the left regular representation λ : Fn →
B(�2(Fn)). If U1,U2, ... are the generators of C∗(F∞), we apply Proposition 1.1(2) in
[4] to obtain

||
n

∑
i=1

λ (gi)⊗Ui||C∗
red (Fn)⊗minC∗(F∞) � 2max

{
||

n

∑
i=1

U∗
i Ui||1/2, ||

n

∑
i=1

UiU
∗
i ||1/2

}
= 2

√
n

On the other hand, there exists a surjective *-homomorphism π from C∗(F∞) onto
C∗

red(Fn)op carrying Ui to λ (gi), i = 1, ...,n, therefore a *-homomorphism id ⊗ π :
C∗

red(Fn)⊗maxC∗(F∞) →C∗
red(Fn)⊗maxC∗

red(Fn)op carrying
n

∑
i=1

λ (gi)⊗Ui to
n

∑
i=1

λ (gi)⊗λ (gi). But in B(�2(Fn)) we have ||
n

∑
i=1

λ (gi)⊗λ (gi)||= n,

as it is easily seen by applying the operator to the vector in �2(Fn) coming from the
identity, so consequently

||
n

∑
i=1

λ (gi)⊗Ui||C∗
red (Fn)⊗maxC∗(F∞) = n

For n � 5, this is the contradiction which completes the proof. �
We conclude by proving that S�n

∞ is not isomorphic to a C∗ -algebra.

PROPOSITION 5.5. For n � 2 the operator system S�n
∞ is not (completely order)

isomorphic to a C∗ -algebra.

Proof. To get a contradiction, suppose that A is a C∗ -algebra and ϕ : S�n
∞ → A

is a complete order isomorphism. Since A is generated as a linear space by unitary
operators, ϕ extends to a *-homomorphism ψ : �n

∞ ⊗M2(C) → A by Lemma 3.16 in
[13]. Since dimS�n

∞ = dimA = 2n + 2 and dim�n
∞ ⊗M2(C) = 4n, we see that 4n >

2n + 2 so, consequently, kerψ �= {0}. But J = kerψ is an ideal in �n
∞ ⊗M2(C) so
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it must be of the form J = �k
∞ ⊗M2(C) for some k � 1. In particular, J contains a

non-zero operator of the form s =
(

0 a
0 0

)
for some a �= 0 ∈ �n

∞. But then s is seen to

belong to S�n
∞ as well, so ψ(s) = 0 implies ϕ(s) = 0, contradiction. �

Another example of interest is the seven-dimensional operator subsystem S ⊂
M3(C) studied in [7, 8] and described by the star diagram

S =

⎧⎨
⎩

⎛
⎝∗ ∗ 0

∗ ∗ ∗
0 ∗ ∗

⎞
⎠

⎫⎬
⎭

where the stars are any complex numbers. It was proved in [7] and [8] that S has the
DCEP but not the WEP. It follows from Proposition 5.2 that S has the LP, showing
that in the category of operator systems the LP does not imply the WEP. Whether or
not the LP (or the LLP) implies the DCEP is equivalent to Kirchberg’s conjecture, by
Theorem 9.1 in [8].
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