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Abstract. We provide that any Jordan derivation from the block upper triangular matrix alge-
bra T = T (n1,n2, · · · ,nk) ⊆ Mn(C ) into a 2-torsion free unital T -bimodule is the sum of a
derivation and an antiderivation.

1. Introduction

Throughout this paper C will denote a commutative ring with unity. Let A be an
algebra over C . Recall that a C -linear map D from A into an A -bimodule M is said
to be a Jordan derivation if D(ab+ba)= D(a)b+aD(b)+D(b)a+bD(a) for all a,b∈
A . It is called a derivation if D(ab) = D(a)b+ aD(b) for all a,b ∈ A . If D is only
additive, we will call D is an additive (Jordan) derivation. For an element m ∈M , the
mapping Im : A →M , given by Im(a) = am−ma , is a derivation which will be called
an inner derivation. Also D is called an antiderivation if D(ab) = D(b)a+bD(a) for
all a,b ∈ A . Clearly, each derivation or antiderivation is a Jordan derivation. The
converse is, in general, not true (see [1]).

The question under what conditions that a map becomes a derivation attracted
much attention of mathematicians and hence it is natural and interesting to find some
conditions under which a Jordan derivation is a derivation. Herstein [4] proved that ev-
ery additive Jordan derivation from a 2-torsion free prime ring into itself is an additive
derivation. Brešar [2] proved that Herstein’s result is true for 2-torsion free semiprime
rings. Sinclair [8] proved that every continuous Jordan derivation on semisimple Ba-
nach algebras is a derivation. Johnson showed in [5] that a continuous Jordan deriva-
tion from a C∗ -algebra A into a Banach A -bimodule is a derivation. Zhang in [9]
proved that every Jordan derivation on nest algebras is an inner derivation. Li and Lu
[7] showed that every additive Jordan derivation on reflexive algebras is an additive
derivation which generalized the result in [9]. By a classical result of Jacobson and
Rickart [6] every additive Jordan derivation on a full matrix ring over a 2-torsion free
unital ring is an additive derivation. In [3], the author proved that any additive Jordan
derivation from a full matrix ring over a unital ring into any of its 2-torsion free bimod-
ule (not necessarily unital) is an additive derivation which generalized the result in [6].
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Benković [1] determined Jordan derivations on triangular matrices over commutative
rings and proved that every Jordan derivation from the algebra of all upper triangular
matrices into its arbitrary unital bimodule is the sum of a derivation and an antideriva-
tion. Zhang and Yu [10] showed that every Jordan derivation of triangular algebras is a
derivation.

In this note we prove that any Jordan derivation from the block upper triangu-
lar matrix algebra T = T (n1,n2, · · · ,nk) ⊆ Mn(C ) into a 2-torsion free unital T -
bimodule is the sum of a derivation and an antiderivation, where C is a commutative
ring with unity. This result generalizes the main result of [1].

2. Preliminaries

Throughout this paper, by Mn(C ) , n � 1, we denote the algebra of all n× n
matrices over C , by Tn(C ) its subalgebra of all upper triangular matrices, and by
Dn(C ) its subalgebra of all diagonal matrices. We shall denote the identity matrix by
I . Also, Ei j is the matrix unit and xi, j is the (i j) th entry of X ∈Mn(C ) for 1 � i, j � n .
Hence we have EiiXE j j = xi, jEi j for X ∈ Mn(C ) and 1 � i, j � n .

For n � 1 and a finite sequence of positive integers n1,n2, · · · ,nk (k � 1) , satis-
fying n1 + n2 + · · ·+ nk = n , let T (n1,n2, · · · ,nk) be the subalgebra of Mn(C ) of all
matrices of the form

X =

⎛
⎜⎜⎜⎝

X11 X12 · · · X1k

0 X22 · · · X2k
...

...
. . .

...
0 0 · · · Xkk

⎞
⎟⎟⎟⎠ ,

where Xi j is an ni×n j matrix. We call such an algebra a block upper triangular matrix
algebra. Also we call k is the number of summands of T (n1,n2, · · · ,nk) . Note that
Mn(C ) is a special case of block upper triangular matrix algebras. In particular, if k = 1
with n1 = n , then T (n1,n2, · · · ,nk) = Mn(C ) . Also, when k = n and ni = 1 for every
1 � i � k , we have T (n1,n2, · · · ,nk) = Tn(C ) .

Let F1 = ∑n1
i=1 Ei and Fj = ∑

n j
i=1 Ei+n1+···+n j−1 for 2 � j � k , where El = Ell .

Then {F1, . . . ,Fk} is a set of non-trivial idempotents of T (n1,n2, · · · ,nk) such that
F1 + · · ·+Fk = I and FiFj = FjFi = 0 for 1 � i, j � k with i �= j . Moreover, we have
FjT (n1,n2, · · · ,nk)Fj

∼= Mnj (C ) for any 1 � j � k . We use D(n1,n2, · · · ,nk) for a
subalgebra of T (n1,n2, · · · ,nk) defined by

D(n1,n2, · · · ,nk) = F1T (n1,n2, · · · ,nk)F1 + · · ·+FkT (n1,n2, · · · ,nk)Fk.

Note that, if T (n1,n2, · · · ,nk) = Tn(C ) , then D(n1,n2, · · · ,nk) = Dn(C ) .
By [X ,Y ] = XY −YX we denote the commutator or the Lie product of elements

X ,Y ∈ Mn(C ) .

3. Main result

From [3, Theorem 3.2] and the fact that every Jordan derivation from C into its
bimoduls is zero, we have the following lemma which will be needed in the proofs of
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our results.

LEMMA 3.1. Every Jordan derivation from Mn(C ) , for n � 1 , into any of its
bimodules is a derivation.

In this note, our main result is the following theorem.

THEOREM 3.2. Let T = T (n1,n2, · · · ,nk) be a block upper triangular algebras
in Mn(C ) (n � 1) and M be a 2 -torsion free unital T -bimodule. Suppose that
D : T → M is a Jordan derivation. Then there exist a derivation d : T → M and
an antiderivation α : T → M such that D = d + α and α(D(n1,n2, · · · ,nk)) = {0} .
Moreover, d and α are uniquely determined.

Proof. The proof is by induction on k , the number of summands of T . If k = 1,
then T = Mn(C ) and D(n1) = Mn(C ) . So by Lemma 3.1, D is derivation and α = 0
is the only antiderivation such that α(D(n1)) = 0. Hence the result is obvious in this
case.

Assume inductively that k � 1 and the result holds for each block upper triangular
algebra T (n1,n2, · · · ,nk) with k summands.

Let T = T (n1,n2, · · · ,nk+1) ⊆ Mn(C ) be a block upper triangular algebra with
n1 +n2 + · · ·+nk+1 = n .

Set P = F1 and Q = I−P = F2 + · · ·+Fk+1 . Then P and Q are nontrivial idem-
potents of T such that PQ = QP = 0. Also QT P = {0} , PT P and QT Q are subal-
gebras of T with unity P and Q , respectively, and T = PT P+̇PT Q+̇QT Q as sum
of C -linear spaces. Moreover, PT P ∼= Mn1(C ) and QT Q ∼= T (n2,n3, · · · ,nk+1) ⊆
Mn−n1(C ) (C -algebra isomorphisms) is a block upper triangular algebra with k sum-
mands n2, · · · ,nk+1 , where D(n2, · · · ,nk+1) ∼= F2T F2 + · · ·+Fk+1T Fk+1 .

Suppose M is a 2-torsion free unital T -bimodule and D : T → M is a Jordan
derivation. Define Δ : T → M by Δ(X) = D(X)− IB(X) , where B = PD(P)Q−
QD(P)P . Then Δ is a Jordan derivation such that PΔ(P)Q = QΔ(P)P = 0. We will
show that Δ is the sum of a derivation and an antiderivation.

We complete the proof by checking some steps.

Step 1. Δ(X) = PΔ(PXP)P + PΔ(PXQ)Q + QΔ(PXQ)P + QΔ(QXQ)Q for all
X ∈ T .

Let X ∈ T . Since P(QXQ)+ (QXQ)P = 0, we have

PΔ(QXQ)+ Δ(P)QXQ+QXQΔ(P)+ Δ(QXQ)P= 0. (3.1)

Multiplying this identity by P both on the left and on the right we arrive at 2PΔ(QXQ)P
= 0 so PΔ(QXQ)P = 0. Now, multiplying the Equation(3.1) from the left by P , from
the right by Q and by the fact that PΔ(P)Q = 0, we find PΔ(QXQ)Q = 0. Simi-
larly, from Equation(3.1) and the fact that QΔ(P)P = 0, we see that QΔ(QXQ)P = 0.
Therefore, from above equations we get

Δ(QXQ) = QΔ(QXQ)Q

Applying Δ to (PXP)Q+Q(PXP) = 0, we see that

PXPΔ(Q)+ Δ(PXP)Q+QΔ(PXP)+Δ(Q)PXP= 0. (3.2)
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By Δ(QXQ) = QΔ(QXQ)Q , Equation(3.2) and using similar methods as above we
obtain

Δ(PXP) = PΔ(PXP)P.

Since P(PXQ)+ (PXQ)P = PXQ , we have

PΔ(PXQ)+ Δ(P)PXQ+PXQΔ(P)+Δ(PXQ)P= Δ(PXQ). (3.3)

Multiplying Equation(3.3) by P both on the left and on the right and by the fact that
QΔ(P)P = 0, we get PΔ(PXQ)P = 0. Now multiplying Equation(3.3) by Q both on
the left and on the right and by the fact that QΔ(P)P = 0, we have QΔ(PXQ)Q = 0.
Hence from these equations we find

Δ(PXQ) = PΔ(PXQ)Q+QΔ(PXQ)P.

Now from above results we have

Δ(X) = Δ(PXP)+ Δ(PXQ)+ Δ(QXQ)
= PΔ(PXP)P+PΔ(PXQ)Q+QΔ(PXQ)P+QΔ(QXQ)Q.

Step 2. PΔ(PXPYP)P = PXPΔ(PYP)P+PΔ(PXP)PYP for all X ,Y ∈ T .
PMP is a 2-torsion free unital PT P-bimodule. Define J : PT P → PMP by

J(PXP) = PΔ(PXP)P . Clearly J is a well defined linear map. Since Δ is a Jordan
derivation, it follows that J is a Jordan derivation. By Lemma 3.1 and the fact that
PT P ∼= Mn1(C ) , we see that J is a derivation. So we obtain the result of this step.

Step 3. PΔ(PXPYQ)Q = PXPΔ(PYQ)Q+PΔ(PXP)PYQ and PΔ(PXQYQ)Q =
PXQΔ(QYQ)Q+PΔ(PXQ)QYQ for all X ,Y ∈ T .

Let X ,Y ∈ T . Applying Δ to the equations: PXPYQ = (PXP)(PYQ) +
(PYQ)(PXP) and PXQYQ = (PXQ)(QYQ)+ (QYQ)(PXQ) , we get

Δ(PXPYQ) = PXPΔ(PYQ)+ Δ(PXP)PYQ+PYQΔ(PXP)+ Δ(PYQ)PXP

and

Δ(PXQYQ) = PXQΔ(QYQ)+ Δ(PXQ)QYQ+QYQΔ(PXQ)+ Δ(QYQ)PXQ.

(3.4)

Multiplying these identities by P on the left and by Q on the right, from Step 1 we
yield the result.

Step 4. There exists a derivation g : QT Q → QMQ and an antiderivation γ :
QT Q → QMQ such that QΔ(QXQ)Q = g(QXQ)+ γ(QXQ) for all X ∈ T . More-
over, γ(F2T F2 + · · ·+Fk+1T Fk+1) = {0} and PXQγ(QYQ) = 0 for all X ,Y ∈ T .

QMQ is a 2-torsion free unital QT Q-bimodule. Define G : QT Q→QMQ by
G(QXQ) = QΔ(QXQ)Q . Clearly G is a well defined linear map. Since Δ is a Jordan
derivation, we see that G is a Jordan derivation. In view of the isomorphisms QT Q ∼=
T (n2,n3, · · · ,nk+1) ⊆ Mn−n1(C ) , D(n2, · · · ,nk+1) ∼= F2T F2 + · · ·+ Fk+1T Fk+1 and
induction hypothesis, there exists a derivation g : QT Q→QMQ and an antiderivation
γ : QT Q → QMQ such that QΔ(QXQ)Q = G(QXQ) = g(QXQ)+ γ(QXQ) for all
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X ∈T . Also, γ(F2T F2+ · · ·+Fk+1T Fk+1)= {0} . We will show that PXQγ(QYQ) =
0 for all X ,Y ∈ T .

By Step 3 and above results for all X ,Y,Z ∈ T , we have

PΔ(PXQYQZQ)Q = PXQΔ(QYQZQ)Q+PΔ(PXQ)QYQZQ

= PXQg(QYQZQ)+PXQγ(QYQZQ)+PΔ(PXQ)QYQZQ.

On the other hand,

PΔ(PXQYQZQ)Q = PXQYQΔ(QZQ)Q+PΔ(PXQYQ)QZQ

= PXQYQΔ(QZQ)Q+PXQΔ(QYQ)QZQ+PΔ(PXQ)QYQZQ

= PXQYQg(QZQ)+PXQYQγ(QZQ)+PXQg(QYQ)QZQ

+PXQγ(QYQ)QZQ+PΔ(PXQ)QYQZQ

= PXQg(QYQZQ)+PXQγ(QZQYQ)+PΔ(PXQ)QYQZQ,

since g is a derivation and γ is an antiderivation. By comparing the two expressions
for PΔ(PXQYQZQ)Q , we arrive at

PXQγ([QYQ,QZQ]) = 0, (3.5)

for all X ,Y,Z ∈ T . Now from the fact that Q = F2 + · · ·+Fk+1 and FjQ = QFj = Fj

for all 2 � j � k+1, we have

QXQ−
k+1

∑
j=2

FjXFj = (
k+1

∑
j=2

Fj)QXQ−
k+1

∑
j=2

FjXFj =
k+1

∑
j=2

(FjXQ−FjXFj)

=
k+1

∑
j=2

FjX(Q−Fj) =
k+1

∑
j=2

[Fj,FjX(Q−Fj)],

(3.6)

for all X ∈ T . Note that Fj,FjX(Q− Fj) ∈ QT Q . By Equation (3.5), (3.6) and
γ(F2T F2 + · · ·+Fk+1T Fk+1) = {0} , we conclude that

PXQγ(QYQ) = PXQγ(QYQ−
k+1

∑
j=2

FjYFj +
k+1

∑
j=2

FjYFj)

= PXQγ(QYQ−
k+1

∑
j=2

FjYFj)

= PXQγ([Fj,FjY (Q−Fj)]) = 0,

for all X ,Y ∈ T .

Step 5. PXQΔ(PYQ)P = 0 and QΔ(PXQ)PYQ = 0 for all X ,Y ∈ T .
Multiplying Equations (3.4) by Q on the left and by P on the right, we have

QΔ(PXPYQ)P = QΔ(PYQ)PXP

and

QΔ(PXQYQ)P = QYQΔ(PXQ)P,
(3.7)
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for all X ,Y ∈T . Now applying Δ to (PXQ)(PYQ)+(PYQ)(PXQ)= 0 for any X ,Y ∈
T , we see that

PXQΔ(PYQ)+ Δ(PXQ)PYQ+PYQΔ(PXQ)+ Δ(PYQ)PXQ = 0.

From this identity we get the following equations.

PXQΔ(PYQ)P+PYQΔ(PXQ)P = 0 (3.8)

and
QΔ(PXQ)PYQ+QΔ(PYQ)PXQ = 0 (3.9)

for all X ,Y ∈ T . Let 1 � i,k � n1 and n1 < j, l � n be arbitrary. By Equations(3.7)
and Equation(3.8) we have

Ei jΔ(Ekl)P = Ei jΔ(EkiEil)P = Ei jΔ(Eil)Eki

= Ei jΔ(Ei jE jl)Eki = Ei jE jlΔ(Ei j)Eki = EilΔ(Ei j)Eki

= −Ei jΔ(Eil)Eki = −Ei jΔ(EkiEil)P = −Ei jΔ(Ekl)P,

since Eki ∈ PT P , Ei j,Eil ,Ekl ∈ PT Q , Ejl ∈ QT Q . So Ei jΔ(Ekl)P = 0. Also by
Equations(3.7) and Equation(3.9) we find

QΔ(Ei j)Ekl = QΔ(EilEl j)Ekl = El jΔ(Eil)Ekl

= El jΔ(EikEkl)Ekl = El jΔ(Ekl)EikEkl = El jΔ(Ekl)Eil

= −El jΔ(Eil)Ekl = −QΔ(EilEl j)Ekl = −QΔ(Ei j)Ekl,

since Eik ∈ PT P , Ei j,Eil,Ekl ∈ PT Q , El j ∈ QT Q . Hence QΔ(Ei j)Ekl = 0. For any
X ,Y ∈T , let PXQ= ∑n1

i=1 ∑n
j=n1+1 xi, jEi j and PYQ = ∑n1

k=1 ∑n
l=n1+1 yk,lEkl . Therefore,

by identities Ei jΔ(Ekl)P = 0, QΔ(Ei j)Ekl = 0 and linearity of Δ it follows that

PXQΔ(PYQ)P =
n1

∑
i=1

n

∑
j=n1+1

xi, jEi jΔ(
n1

∑
k=1

n

∑
l=n1+1

yk,lEkl)P

=
n1

∑
i=1

n

∑
j=n1+1

n1

∑
k=1

n

∑
l=n1+1

xi, jyk,lEi jΔ(Ekl)P = 0,

and

QΔ(PXQ)PYQ =
n1

∑
k=1

n

∑
l=n1+1

QΔ(
n1

∑
i=1

n

∑
j=n1+1

xi, jEi j)yk,lEkl

=
n1

∑
k=1

n

∑
l=n1+1

n1

∑
i=1

n

∑
j=n1+1

xi, jyk,lQΔ(Ei j)Ekl = 0.

Step 6. The mapping δ : T → M , given by

δ (X) = PΔ(PXP)P+PΔ(PXQ)Q+g(QXQ)
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is a derivation and the mapping α : T → M , given by

α(X) = QΔ(PXQ)P+ γ(QXQ)

is an antiderivation such that α(D(n1,n2, · · · ,nk+1)) = {0} . Moreover, Δ = δ + α .
Clearly, δ is a linear map. By Steps 2, 3, 4 and the fact that QT P = {0} one can

check directly that δ is a derivation.
It is clear that α is a linear map. For each X ,Y ∈ T , by Equations(3.7), Steps 4,

5 and the fact that QT P = {0} , we have

α(XY ) = QΔ(PXPYQ)P+QΔ(PXQYQ)P+ γ(QXQYQ)
= QΔ(PYQ)PXP+QYQΔ(PXQ)P+QYQγ(QXQ)+ γ(QYQ)QXQ

+QΔ(PYQ)PXQ+PYQΔ(PXQ)P+PYQγ(QXQ)+ γ(QYQ)QXP

= Yα(X)+ α(Y)X .

Let F1X1F1+F2X2F2+ · · ·+Fk+1Xk+1Fk+1 be an arbitrary element of D(n1,n2, · · · ,nk+1) .
Since γ(F2T F2 + · · · + Fk+1T Fk+1) = {0} , F1Q = QF1 = 0, PFj = FjP = 0 and
FjQ = QFj = Fj for any 2 � j � k , it follows that

α(F1X1F1 +F2X2F2 + · · · +Fk+1Xk+1Fk+1)
= QΔ(P(F1X1F1 +F2X2F2 + · · · +Fk+1Xk+1Fk+1)Q)P

+ γ(Q(F1X1F1 +F2X2F2 + · · · +Fk+1Xk+1Fk+1)Q)
= γ(F2X2F2 + · · · +Fk+1Xk+1Fk+1) = 0.

So α(D(n1,n2, · · · ,nk+1)) = {0} . By Steps 1, 4, it is obvious that Δ = δ + α .
Now from the above results we have D− IB = Δ = δ + α , where δ : T → M is

a derivation, α : T → M is an antiderivation and α(D(n1,n2, · · · ,nk+1)) = {0} . So
the mapping d : T → M given by d = δ + IB is a derivation and we find D = d + α .

Finally, we will show that d and α are uniquely determined. Suppose that D =
d′ + α ′ , where d′ : T → M is a derivation, α ′ : T → M is an antiderivation and
α ′(D(n1,n2, · · · ,nk+1)) = {0} . Hence D|QT Q : QT Q → M , the restriction of D
to QT Q , is a Jordan derivation. So D|QT Q = d|QT Q + α|QT Q = d′

|QT Q + α ′
|QT Q ,

where d|QT Q,d′
|QT Q : QT Q → M are derivations, α|QT Q,α ′

|QT Q : QT Q → M are

antiderivations and α|QT Q,α ′
|QT Q(F2T F2 + · · · +Fk+1T Fk+1) = {0} . Since QT Q∼=

T (n2,n3, · · · ,nk+1) ⊆ Mn−n1(C ) , D(n2, · · · ,nk+1) ∼= F2T F2 + · · · + Fk+1T Fk+1 , by
the uniqueness in induction hypothesis it follows that α|QT Q = α ′

|QT Q and d|QT Q =
d′
|QT Q . Define β : T → M by β = α −α ′ . Clearly β is a linear map and β = α −

α ′ = d′−d . So β is a derivation and an antiderivation. Since α(D(n1,n2, · · · ,nk+1)) =
α ′(D(n1,n2, · · · ,nk+1)) = {0} , it follows that α(PXP) = α ′(PXP) = 0 for all X ∈T ,
so β (PXP) = 0 for all X ∈T . Also from α|QT Q = α ′

|QT Q , we have β (QXQ) = 0 for
all X ∈ T . Now observe that β (P) = β (Q) = 0. Then, since β is a derivation and an
antiderivation, we have

β (PXQ) = Pβ (XQ)+ β (P)XQ = Pβ (XQ) = P(Qβ (X)+ β (Q)X) = 0.
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So
β (X) = β (PXP)+ β (PXQ)+ β (QXQ)= 0

for all X ∈T . Therefore, α = α ′ and hence d = d′ . The proof of Theorem 3.2 is thus
completed. �

We have the following corollary, which was proved in [1].

COROLLARY 3.3. Let Tn(C ) be an upper triangular matrix algebra and M be
a 2 -torsion free unital Tn(C )-bimodule. Suppose that D : Tn(C ) → M is a Jordan
derivation. Then there exist a derivation d : Tn(C ) → M and an antiderivation α :
Tn(C ) → M such that D = d + α and α(Dn(C )) = {0} . Moreover, d and α are
uniquely determined.

REMARK 3.4. In the main theorem it is possible that the antiderivation α equals
to zero i.e. α = 0. But the theorem doesn’t say when any Jordan derivation on block
upper triangular matrix algebras is a derivation. So this question may be interested that
under what conditions every Jordan derivation from the block upper triangular matrix
algebra T = T (n1,n2, · · · ,nk) ⊆ Mn(C ) into a 2-torsion free unital T -bimodule is
a derivation?
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