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ORTHONORMAL JORDAN BASES IN

FINITE DIMENSIONAL HILBERT SPACES

BÉLA NAGY

(Communicated by V. V. Peller)

Abstract. Necessary and sufficient conditions are presented for a linear operator in a finite di-
mensional complex or real Hilbert space to have a Jordan form in an orthonormal basis. Further,
necessary conditions are given in terms of the self-commutator operator.

1. Introduction and terminology

The aim of this paper is twofold: first, we give a necessary and sufficient condition
for a linear operator in a finite dimensional complex or real Hilbert space to have a Jor-
dan form in an orthonormal basis. Recall that Veselic [12] established such a condition
for the special case of a nilpotent operator by an elegant reasoning. Second, since this
characterization is not always simple to check, we give necessary conditions with the
help of the (self-adjoint) self-commutator operators. The method of study in the real
(Euclidean) case is complexification, for which general references can be found, e.g., in
[2], [4], [5], or [9].

At first some notation and terminology. In a finite dimensional Hilbert space H
with scalar product 〈,〉 the symbol L(H) will denote the space of linear operators in
H , and | · | the norm of a vector or of a linear operator. T |S will denote the restriction
of the operator T to the linear subspace S , and TS its range. Mn(C) denotes the space
of n× n matrices over C , and N0 the set of all nonnegative integers. diag(z1, . . . ,zn)
denotes the n×n diagonal matrix with the indicated diagonal. We shall use the notation
of the commutator [A,B] := AB−BA for an ordered pair of operators and also for an
ordered pair of matrices. ⊕ will denote direct sum of spaces or operators, and we shall
explicitly say if it is orthogonal.

We recall in a very simple case the definition of a multiset. Let A be a finite set,
and m : A → N0 be a function. The pair (A,m) is called a multiset with set of elements
(equivalently: basic set) A and multiplicity function m. The basic set can be written as
A = {a1,a2, . . . ,ak} , and the multiset as

(A,m) = {[a1,m(1)], . . . , [ak,m(k)]}.
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As a natural example we can consider the basic set σ(T ) of the spectrum of a self-
adjoint operator T in a finite dimensional Hilbert space with the generally used concept
of multiplicity function m(T ) there. The corresponding multiset s(T ) := (σ(T ),m(T ))
can also be called the spectral list of T , and yields much more information than the
basic set σ(T ) .

It will be convenient to agree that (for any n -dimensional space H , ordered bases
e, f , and linear operator T ∈ L(H)) we denote the e− f basis representation (matrix)
of T by

f [T ]e := [[Te1] f , . . . [Ten] f ]],

where [Tek] f is the column of the coordinates of the vector Tek in the basis f (cf., e.g.,
[7, pp. 39-40]). Further, the shorter notation [T ]b will denote the same as b[T ]b .

Let 〈,〉 be a fixed scalar product (i.e. a bilinear form on a real, or a sesquilinear
form conjugate-linear in the second variable on a complex H ). Note that if e is an
ordered basis, and E is the Gram matrix of e with respect to the scalar product 〈,〉 ,
defined entrywise by

e jk := 〈ek,e j〉,
then (see, e.g., [3, pp. 163-164]), we have

e[T ∗]e = E−1(e[T ]e)hE.

Here and in what follows ∗ will denote the adjoint of an operator, and h denote the
conjugate transpose of a matrix. Introducing the notation

M :=e [T ]e,

we obtain for the self-commutator operator [T,T ∗] of T

e[TT ∗ −T∗T ]e = ME−1MhE −E−1MhEM.

If the ordered basis e is orthonormal, then the corresponding Gram matrix E is the
identity, and the preceding equality simplifies to

e[TT ∗ −T ∗T ]e = MMh −MhM,

where Mh = e[T ]e
h =e [T ∗]e . If the ordered basis e is, in addition, a Jordan basis for

the operator T , then M is a Jordan matrix for T .
The symbol s(·) will denote, as above, the multiset or spectral list of the spec-

trum of the self-adjoint operator or matrix · , i.e. a finite list of numbers with possible
repetitions. For any ordered basis e we have then

s([T,T ∗]) = s(e[T,T ∗]e) = s(ME−1MhE −E−1MhEM).

If the basis e is orthonormal, then s([T,T ∗]) = s([M,Mh]) . In words: the spectral list
of the operator [T,T ∗] is then equal to the spectral list of the matrix [M,Mh] .

We shall say that T ∈ L(H) has an orthonormal Jordan basis if H has an or-
thonormal basis in which the matrix of T is a (complex or real) Jordan matrix. Hence,
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if there exists an orthonormal Jordan basis e for T , the preceding equality holds with
M :=e [T ]e , where M is a Jordan matrix.

We know that every operator T ∈ L(H) is the (uniquely determined) sum of a
simple structure (in a complex space: diagonal) operator S plus a nilpotent operator N
commuting with S . We shall call this the Jordan-Dunford decomposition of T (valid in
both complex and real spaces).

Recall that J ∈ L(H) is a partial isometry iff the operator J∗J is an orthogonal
projection. J is called a power partial isometry (p.p.i.) iff each nonnegative integer
power of J is a partial isometry.

2. The case of a complex Hilbert space

Let T ∈ L(H) , where H is a Hilbert space over C . The problem of when an
orthonormal basis b exists such that b[T ]b is a Jordan matrix is clearly equivalent to
the problem of when a matrix representation e[T ]e of T in an orthonormal basis e is
unitarily similar to a Jordan matrix. The problem was solved by Veselic [12] for the
case when T is a nilpotent operator (using ideas, among others, of Ptak [10] and of
Halmos and Wallen [6]). A solution to the general question is the following:

THEOREM 1. Consider the Jordan-Dunford decomposition T = S+N of the op-
erator T , where S is the diagonal (≡ scalar-type spectral) and N is the nilpotent part
of T (which commutes with S). There is an orthonormal basis b such that [T ]b is
a Jordan matrix if and only if N is a power partial isometry, and the operator S is
normal.

Proof. If [T ]b is a Jordan matrix, then [N]b is clearly a Jordan matrix for the oper-
ator N . If b is, in addition, orthonormal, then it is an orthonormal basis for N . Veselic
[12, Theorem 2] shows that then N is a power partial isometry. [S]b is a diagonal
matrix, and b is orthonormal, hence the operator S is normal.

In the converse direction we shall need several important results of Veselic’s paper
[12], which we cite here as Facts. Note that, by [12], they are valid both in complex
and in real Hilbert spaces.

Fact 1. Let X be a finite dimensional Hilbert space and N ∈ L(X) satisfy for some
p ∈ N , p > 1

Np = 0, |N| = |Np−1| = 1.

(Note that this implies |N2| = · · · |Np−2| = 1.) Let

r := dimspan{x ∈ X : |Np−1x| = |x|}.

Then r > 0, and there is an N -reducing orthogonal decomposition X = X1 ⊕X0 such
that X1 has an orthonormal basis

{ei j; i = 1, . . . , p, j = 1, . . . ,r}
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such that for every j we have

Nei j = ei−1, j (i > 1), Ne1 j = 0.

Fact 2. If N ∈ L(X) is a power partial isometry satisfying Np = 0, Np−1 	= 0
for some p ∈ N , p > 1, then |N| = |Np−1| = 1. Further, the restriction N|Y to any
N -reducing subspace Y is again a p.p.i.

To start the proof of the converse direction, let N ∈ L(H) satisfy the assumptions
of Fact 2, and let the normal S ∈ L(H) commute with N . The spectral decomposition
of S is the finite sum

S = ∑
h

zhPh (zh ∈ C, PhPk = δhkPh),

where the idempotents Ph = P(zh) are orthogonal projections. It is known that then
each Ph commutes with N (cf. [8, I.4]). With the notation Nh := N|PhH it follows that
N = ⊕hN|PhH = ⊕hNh . By Fact 2, the restrictions Nh are all p.p.i.-s (with possibly
different pair p,r from the original one: it is also possible that Nh = 0, that is p = 1).
Whatever the case, start with the operator M := N1 , and proceed as follows.

As mentioned above, it can be that M = N|P1H = 0, though P1 	= 0. Then we
have T |P1H = S|P1H = z1I|P1H , hence for this part of H and T we certainly have
an orthonormal basis of the required sort. If M 	= 0, then apply Fact 1 to this M =
N|P1H (with the corresponding p > 1, r > 0). Then there is an M -reducing orthogonal
decomposition M = M1⊕M0 such that the subspace of M1 has an orthonormal basis of
the required sort. Continue then with the orthogonal summand part M0 as above. After
a finite number number of steps we shall have obtained an orthonormal basis for the
subspace P1H which is a Jordan basis for N|P1H . In P1H we have S|P1H = z1I|P1H ,
thus every orthonormal basis in P1H is an orthonormal Jordan basis for S|P1H . The
restriction T |P1H has the form (z1I + N)|P1H , hence it has an orthonormal Jordan
basis.

In the next step let M := N|P2H . Proceeding as above, we obtain an orthonor-
mal basis for the subspace P2H which is a Jordan basis for N|P2H . Here the restriction
T |P2H has the form (z2I+N)|P2H , hence it has an orthonormal Jordan basis. Since the
subspaces PjH and PkH are orthogonal for j 	= k , the union of the bases obtained is an
orthonormal basis. (More precisely, the basis vectors in the subspaces at first must and
trivially can be extended to vectors in the whole space H = ⊕hPhH .) Proceeding simi-
larly for all the subspaces N|PhH we obtain in a finite number of steps an orthonormal
Jordan basis for the operator T = S+N . �

REMARK 1. Let s(A) denote the spectral list of a self-adjoint operator A , and ap-
ply the similar notation s(Q) for a self-adjoint matrix Q . For any M ∈Mn(C) it is clear
then that s([M,Mh]) is a list of real numbers (with possible repetitions) r1,r2, . . . ,rn sat-
isfying r1 + r2 + . . .+ rn = 0. We recall [1] that any such list is the spectral list of some
M ∈ Mn(C) .

Indeed, in [1, Example 4.8] it was shown that if we have such a list then, reordering
it to satisfy r1 � r2 � . . . � rn , and defining

q j := r1 + . . .+ r j ( j = 1, . . . ,n),
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we obtain q j � 0 for every j = 1, . . . ,n . Define p j as the unique nonnegative square
root of q j ( j = 1, . . . ,n) , and also M ∈ Mn(C) as the matrix with exclusively zero
entries except for the entries

mk,k+1 := pk (k = 1,2, . . . ,n−1).

Then we obtain the diagonal matrix

[M,Mh] = diag(q1,q2−q1, . . . ,qn−qn−1) = diag(r1,r2, . . . ,rn).

This means that any multiset of real numbers r1,r2, . . . ,rn as above can be realized as
the spectral list of the self-commutator matrix [M,Mh] for a suitable nilpotent M ∈
Mn(C) . Equivalently, any multiset of real numbers r1,r2, . . . ,rn as above can be re-
alized as the spectral list of the self-commutator operator TT ∗ −T ∗T (of a nilpotent
operator T ) or, equivalently, of the self-commutator matrix [T,T ∗]b ≡ [TT ∗ − T ∗T ]b
with respect to an orthonormal basis b .

LEMMA 1. Let H be a (possibly infinite dimensional) complex or real Hilbert
space and

T = S+Q, (T,S,Q ∈ L(H)),

where S is normal and Q commutes with S . Then [T,T ∗] = [Q,Q∗] .

Proof. We have

[T,T ∗] = [S+Q,S∗+Q∗] = SS∗+QS∗+SQ∗+QQ∗−S∗S−Q∗S−S∗Q−Q∗Q.

Since S is normal, [S,S∗] = 0.
Assume first that H is complex. Since Q commutes with the normal S , Fuglede’s

theorem (see, e.g., [11, pp. 9-10]) implies that Q commutes with S∗ , hence Q∗ com-
mutes with S . Thus six terms above have the sum 0, and we obtain the statement.

If H is a real Hilbert space, then consider its complexification Hc , and denote the
complexification of any operator A∈ L(H) by Ac (see, e.g., [2], [4] or [9]). By assump-
tion, SQ = QS . Hence ScQc = (SQ)c = (QS)c = QcSc . Since the complexification Sc

is a normal operator in Hc , Fuglede’s theorem applies, and yields that Qc commutes
with Sc∗ . It follows that (QS∗)c = QcS∗c = QcSc∗ = Sc∗Qc = S∗cQc = (S∗Q)c , hence
QS∗ = S∗Q . It means that Fuglede’s theorem is valid also in a real Hilbert space, and
the statement of the Lemma follows as above. �

THEOREM 2. Let H be a finite dimensional complex Hilbert space and T ∈
L(H) . If there is an (ordered) orthonormal basis b in which the matrix [T ]b has a
Jordan form, then

σ(TT ∗ −T∗T ) ⊂ {0,1,−1},
and the multiplicities of −1 and of 1 are equal. This multiplicity m is the number of
the Jordan blocks of T of order larger than 1. In the converse direction: if the multiset
Σ with basic set {0,1,−1} has the multiplicity property above, which is equivalent to

m(0)+2m = dim(H) = n,



194 BÉLA NAGY

then there is T ∈ L(H) and an (ordered) orthonormal basis b in which the matrix [T ]b
has a Jordan form, and s(TT ∗ −T ∗T ) = Σ .

Proof. Let b be an (ordered) orthonormal basis in H with the stated property, i.e.,

[T ]b = J(z1;k1)⊕·· ·⊕ J(zp;kp),

where we have displayed the eigenvalues and the dimensions of the (upper type) Jordan
blocks:

J(z;k) :=

⎛
⎜⎜⎝

z 1 0 0 · · · 0
0 z 1 0 · · · 0
· · ·
0 0 0 0 · · · z

⎞
⎟⎟⎠ .

Let T = S+N be the Jordan-Dunford decomposition of T . From the Lemma we know
that [T,T ∗] = [N,N∗] , hence

σ([TT ∗ −T ∗T ]b) = σ([NN∗ −N∗N]b).

Since b is orthonormal, the matrix [N∗]b is the conjugate transpose of [N]b , i.e.,

[N∗]b = L(0;k1)⊕·· ·⊕L(0;kp),

where we have indicated the eigenvalues and the dimensions of the (lower type) Jordan
blocks L :

L(z;k) :=

⎛
⎜⎜⎝

z 0 0 0 · · · 0 0
1 z 0 0 · · · 0 0
· · ·
0 0 0 0 · · · 1 z

⎞
⎟⎟⎠ .

Taking the corresponding pair of blocks, we see that

J(0;kr)L(0;kr) =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
· · ·
0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎠ .

Similarly,

L(0;kr)J(0;kr) =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
· · ·
0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎠ .

Hence
J(0;kr)L(0;kr)−L(0;kr)J(0;kr) = diagkr

(1,0, · · · ,0,−1).
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Here diagkr
(1,0, · · · ,0,−1) denotes the diagonal matrix of order kr with the indicated

diagonal. Note that if kr = 1, then the diagonal consists of a single 0, whereas if kr = 2,
then the diagonal is (1,−1) . It follows that

[TT ∗ −T ∗T ]b = diagk1
(1,0, · · · ,0,−1)⊕·· ·⊕diagkp

(1,0, · · · ,0,−1).

This proves the stated spectral containment relation with the slight addition that 0 is not
in the spectrum exactly when all Jordan blocks of T have the dimension kr � 2, and we
have σ(TT ∗ −T ∗T ) = {0} exactly when all Jordan blocks of T have the dimension
kr = 1, i.e., the operator T is normal. Note that this last statement holds also in an
infinite dimensional space.

In the converse direction: Assume that in the n -element multiset Σ with basic set
S := {0,1,−1} the numbers 1 and -1 have the same multiplicity m . Consider all the
n -element sequences built from all the elements of the spectral list Σ with the property
that the ordering between the 1’s and -1’s be {1,−1,1,−1, · · ·,−1} irrespective of the
places of zeros (if any). An interval of length q � 2 be a subsequence of the form
{1,0,0, · · · ,0,−1} containing exactly q−2 copies of 0. It follows that in any sequence
as above there are m intervals of lengths q j ( j = 1,2, . . . ,m) and n−q1− . . .−qm zeros
(either outside or between these intervals): these zeros will be regarded as intervals of
length 1. Thus for any sequence as above we have determined its sequence of lengths
{k1,k2, . . . ,kp} consisting (in a fixed ordering) of the q j ( j = 1,2, . . . ,m) and n−q1−
. . .−qm copies of 1. Then k1 + k2 + . . .+ kp = n .

Consider any complex numbers z1,z2, . . . ,zp , and the Jordan matrix J of the direct
sum of (say, upper) Jordan cells, J := ⊕p

j=1J(z j;k j) . For any orthonormal basis b =
{b1, . . . ,bn} of H = Cn let T ∈ L(H) be the linear operator having [T ]b := J . The
proof of the direct part shows that the multiset s(TT ∗ −T ∗T ) is identical with Σ . It is
clear that the choice of the operator T is highly nonunique. �

To see that a stricter converse of the above theorem is not valid, consider the fol-
lowing

EXAMPLE 1. There is a 2-dimensional complex Hilbert space H and T ∈ L(H)
such that the self-commutator TT ∗ −T ∗T satisfies

s(TT ∗ −T ∗T ) = {1,−1},
(hence the multiplicities of −1 and 1 are clearly 1), and there is no orthonormal basis
b in which the matrix [T ]b has a Jordan form.

To construct an example, let 〈,〉 denote the standard scalar product in C2 , and
e1 := (1,1)h, e2 := (1,0)h . Then the corresponding Gram matrix and its inverse are

E =
(

2 1
1 1

)
, E−1 =

(
1 −1
−1 2

)
.

Let m,n ∈ R satisfy 2(m−n)4 = 1, and define the operator T by

e[T ]e = M := diag(m,n).
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Then the matrix
e[TT ∗ −T ∗T ]e = ME−1MhE −E−1MhEM

has characteristic polynomial x2−2(m−n)4 , hence its spectral list is {1,−1} .
Now if J is a Jordan basis for T , then J[T ]J is the direct sum of the 1-dimensional

Jordan “blocks” m and n , hence

J[T ]J =
(

m 0
0 n

)
.

The basis vectors must be parallel to the vectors e1 and e2 , respectively. We have seen
that 〈e1,e2〉 	= 0. This shows that there is no orthonormal (in the scalar product 〈,〉)
Jordan basis for the operator T , though we have

s(TT ∗ −T ∗T ) = σ(ME−1MhE −E−1MhEM) = {1,−1}.

3. The case of a real Hilbert space

Let H be a finite dimensional real Hilbert space and A ∈ L(H) . Recall that
A is called of simple structure, nilpotent, normal exactly when its complexification
Ac ∈ L(Hc) has the corresponding property in the complexified space Hc (see, e.g., [4,
Section 9.13]). For example, A is of simple structure iff Ac has a basis consisting of
eigenvectors, and A is normal iff A commutes with its (real) adjoint At . It is known
that A is of simple structure iff there is a basis b in H such that

[A]b = diag(z1, · · · ,zp)⊕ J(c1,d1)⊕·· ·⊕ J(cq,dq) (p+2q = n),

where J(c,d) :=
(

c d
−d c

)
(c,0 	= d ∈ R) , and n is the dimension of H . A is a

normal operator iff there is an orthonormal basis b ⊂ H such that [A]b has the form
above. It is also known that every operator A∈ L(H) has a unique decomposition into a
sum S+N , where the operator S ∈ L(H) is of simple structure, N ∈ L(H) is nilpotent,
SN = NS , and they are called the corresponding parts of the operator A . A real Jordan
canonical form of A is called a matrix representation of A of the form

J(z1;k1)⊕·· ·⊕ J(zp;kp)⊕ J(c1,d1;g1)⊕·· ·⊕ J(cq,dq;gq),
[k1 + · · ·+ kp +2(g1 + · · ·+gq) = n].

where J(zr;kr) (zr ∈ R,kr ∈ N) are classical Jordan blocks as in Section 2, and

J(c,d;g) :=

⎛
⎜⎜⎜⎜⎝

K I2 0 . . . 0
0 K I2 . . . 0
. . .
0 0 0 . . . I2
0 0 0 . . . K

⎞
⎟⎟⎟⎟⎠ , K := J(c,d) =

(
c d
−d c

)
(c,0 	= d ∈ R),

where J(c,d;g) has g block rows and columns of 2× 2 submatrices, and I2 is the
identity matrix of order 2. J(c,d;g) is called a real Jordan block corresponding to the
conjugate complex eigenvalues c + id,c− id of multiplicity g . Note that if the last
parameter in the notation of a Jordan block is 1, we shall sometimes omit it.
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THEOREM 3. Consider the decomposition T = S+N of the operator T ∈ L(H) ,
where S is the simple structure part and N is the nilpotent part of T (which commutes
with S). There is an orthonormal basis b⊂H such that [T ]b is a real Jordan canonical
form (matrix) if and only if N is a power partial isometry, and the operator S is normal.

Proof. If [T ]b is a real Jordan canonical matrix as above, then

[N]b = J(0;k1)⊕·· ·⊕ J(0;kp)⊕ J(0,0;g1)⊕·· ·⊕ J(0,0;gq),
[k1 + · · ·+ kp +2(g1 + · · ·+gq) = n].

Note that in this formula we allow the second parameter in J(c,d;g) to be 0. Define
the basis β by reordering b as follows. For the blocks of the type J(0;k) retain the
ordering. For simplicity in notation we consider every block of the type J(0,0;g) sep-
arately, and assume that the part of b in the subspace span(b) is {b1, . . . ,bh} , where
h = 2g . Define the corresponding part of the basis β by

{β1, . . . ,βh} := {b1,b3, . . . ,bh−1,b2,b4, . . . ,bh}.

The matrix of the operator N restricted to the subspace span(b) = span(β ) in the
reordered basis β will then become J(0;g)⊕ J(0;g) . The basis vectors in these bases
b and β can trivially be extended from the subspace span(b) = span(β ) to all of H
by defining them to be the vector 0 on the orthogonally complementing subspace. We
shall retain the notation for the extended vectors. The matrix of the operator N in the
reordered basis β will be

[N]β = J(0;k1)⊕·· ·⊕ J(0;kp)⊕ J(0;g1)⊕ J(0;g1)⊕·· ·⊕ J(0;gq)⊕ J(0;gq),
[k1 + · · ·+ kp +2(g1 + · · ·+gq) = n],

which is clearly a Jordan canonical form for N . If b is, in addition, orthonormal, then
β is an orthonormal basis for N . [12, Theorem 2] shows that then N is a power partial
isometry. [S]β is a real matrix of simple structure, and β is orthonormal, hence the
operator S is normal.

In the converse direction, let the nilpotent N ∈ L(H) satisfy the assumptions of
Facts 1,2 from the proof of Theorem 1, and let the normal S ∈ L(H) commute with N .
The complexification Sc of the operator S is normal in the complexified Hilbert space
Hc , hence the spectral theorem yields that

Sc =
K

∑
k=1

zkQ(zk) (zk ∈ C), Q(z j)Q(zk) = δ jkQ(z j),
K

∑
k=1

Q(zk) = Ic,

where the (orthogonal) spectral projections Q(zk) are in L(Hc) .
Since the Jordan-Dunford decomposition of the complexification Tc is Tc = Sc +

Nc , for every eigenvalue zk the projection Q(zk) commutes with the nilpotent operator
Nc . Hence NcQ(zk)Hc ⊂ Q(zk)Hc , and the latter subspace orthogonally reduces Nc .
From general spectral theory we know that Q(zk)Hc = ker(Sc− zkIc) .
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The proof continues as follows. For each zk ∈R we construct one orthonormal real
Jordan basis for the restriction Tc|Q(zk)Hc from vectors in H . Then for each zk ∈C\R

we shall construct one orthonormal real Jordan basis for the restriction Tc|[Q(zk) +
Q(zk)]Hc from vectors in H . Since

Hc = ⊕K
k=1Q(zk)Hc, Tc = ⊕K

k=1T
c|Q(zk)Hc,

a suitable “orthogonal union” of these bases will yield an orthonormal real Jordan basis
for the operator Tc from vectors in H . In view of the last fact, this basis will be an
orthonormal real Jordan basis for the operator T ∈ L(H) itself.

Let zk ∈ R . Then Tc|Q(zk)Hc = [Sc +Nc]|Q(zk)Hc = [zkIc +Nc]|Q(zk)Hc . Since
Nc is also a p.p.i., we see exactly as in the proof of Theorem 1 that Tc|Q(zk)Hc has an
orthonormal Jordan basis from vectors in H .

If zk ∈ C\R , then the spectral projections Q(zk) and Q(zk) have the same ranks
(dimensions). The restrictions Nc|Q(zk)Hc and Nc|Q(zk)Hc are, by Fact 2, p.p.i.-s,
hence there are orthonormal Jordan bases for both of them. In fact, if β is such a
basis for Nc|Q(zk)Hc , then β (consisting of the conjugates of the vectors of β ) is
such a basis for Nc|Q(zk)Hc , and they are (lying in orthogonal subspaces) orthogonal
to each other. Further, if β = {b1, . . . ,bn} , β = {b1, . . . ,bn} , and for j = 2, . . . ,n we
have Ncb j = ε jb j−1 , where ε j is equal to 0 or 1 then, since NH ⊂ H , we obtain
Ncb j = Ncb j = ε jb j−1 .

Consider now the ordered basis e := {b1, . . . ,bn,b1, . . . ,bn} for the subspace
(Q(zk)+Q(zk))Hc . For simplicity, we shall write z instead of zk , and obtain that

[Tc|(Q(z)+Q(z))Hc]e =

⎛
⎜⎜⎜⎜⎝

z ε2 0 0 . . . 0
0 z ε3 0 . . . 0
. . .
0 0 0 0 . . . εn

0 0 0 0 . . . z

⎞
⎟⎟⎟⎟⎠⊕

⎛
⎜⎜⎜⎜⎝

z ε2 0 0 . . . 0
0 z ε3 0 . . . 0
. . .
0 0 0 0 . . . εn

0 0 0 0 . . . z

⎞
⎟⎟⎟⎟⎠ .

Reorder now the basis e to obtain the (orthonormal) basis f := {b1,b1, . . . ,bn,bn} .
Then we obtain the following 2n× 2n matrix [Tc|(Q(z)+Q(z))Hc] f : the main diag-
onal is {z,z,z,z, . . . ,z,z} , the first bydiagonal upwards consists of 2n− 1 zeros, the
second bydiagonal upwards is {ε2,ε2,ε3,ε3, . . . ,εn,εn} , and all other entries are 0.

Consider now the 2× 2 matrix U2 := 2−1/2

(
1 −i
1 i

)
. It is unitary with inverse

U∗
2 = 2−1/2

(
1 1
i −i

)
. If z = c+ id , then we have U∗

2 diag(z,z)U2 =
(

c d
−d c

)
= J(c,d) .

Define the n -term direct sum matrix

U := U2⊕U2⊕·· · ⊕U2.

It is unitary, and we obtain that U∗[Tc|(Q(z) + Q(z))Hc] fU is the following n× n
block matrix with 2× 2 entries: the main block diagonal is diag[J(c,d), . . . ,J(c,d)] ,
and the first block bydiagonal upwards is {E2,E3, . . . ,En} , where the 2×2 matrix Ej

is defined as diag(ε j,ε j) . It follows that Ej is the 2×2 identity I2 if ε j = 1, or else is
the 2×2 zero matrix 02 if ε j = 0.
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On the other hand, the change of basis rule shows that U∗[Tc|(Q(z)+Q(z))Hc] fU
= [Tc|(Q(z)+Q(z))Hc]u , where the new basis u = {u1, . . . u2n}⊂ (Q(z)+Q(z))Hc has
the property that

{[u1] f , . . . , [u2n] f } = U

or, equivalently, U∗ = {[ f1]u, . . . , [ f2n]u} . Clearly, the basis u of (Q(z)+Q(z))Hc is
orthonormal. Further,

u2k−1 = 2−1/2(bk +bk) ∈ H ∩ [(Q(z)+Q(z))Hc],

u2k = 2−1/2(−ibk + ibk) ∈ H ∩ [(Q(z)+Q(z))Hc] (k = 1,2, . . . ,n)

shows that the basis u is in H . Summarizing, we have shown that in the orthonormal
basis u ⊂ H the matrix [Tc|(Q(z)+Q(z))Hc]u is a real Jordan canonical form.

We can proceed in the same way for any nonreal eigenvalue z = zm ∈ C\R of T
and obtain a corresponding orthonormal basis u(m) ⊂ H for (Q(zm)+Q(zm))Hc . For
real eigenvalues z = z j of T Theorem1 shows that there are corresponding orthonormal
bases v( j) ⊂ H for Q(z j)H . Clearly, we can complete each basis vector in each of
these bases of subspaces by adding the vector 0 from the orthogonally complementing
subspace. Retaining the notation for these completed basis vectors, the union of all
the bases u(m) and v( j) is an orthonormal basis in H in which the matrix of the
operator Tc is a real Jordan canonical matrix. Since all the basis vectors are elements
of H , the matrix of T is identical with the matrix of Tc , hence a real Jordan canonical
matrix. �

THEOREM 4. Let H be a finite dimensional real Hilbert space and T ∈ L(H) .
If there is an (ordered) orthonormal basis b in which [T ]b is a real Jordan canonical
form, then the spectrum of the self-commutator TT ∗ −T ∗T satisfies

σ(TT ∗ −T∗T ) ⊂ {0,1,−1},

and the multiplicities of −1 and 1 are identical nonnegative integers. This multiplicity
m is equal to the sum of the number of Jordan blocks of T with real eigenvalues of
order not less than 2, plus twice the number of real Jordan blocks of T corresponding
to conjugate complex eigenvalues. In the converse direction: if the multiset Σ with
basic set {0,1,−1} has the multiplicity property above, i.e.,

m(0)+2m = dim(H) = n,

then there is T ∈ L(H) and an (ordered) orthonormal basis b in which [T ]b is a real
Jordan canonical form, and s(TT ∗ −T ∗T ) = Σ .

Proof. Let b be an (ordered) orthonormal basis in H with the stated property, i.e.,

[T ]b = J(z1;k1)⊕·· ·⊕ J(zp;kp)⊕ J(c1,d1;g1)⊕·· ·⊕ J(cq,dq;gq),
[k1 + · · ·+ kp +2(g1 + · · ·+gq) = n].
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where z1, . . . zp,c1, . . .cq,d1, . . .dq ∈ R , and the numbers d j are not zero. Here the
terms J(zr;kr) are upper type Jordan blocks as in Section 2, and the real Jordan blocks
J(cs,ds;gs) are as above. An application of Lemma 1 shows that

[TT ∗ −T ∗T ]b = [QQ∗ −Q∗Q]b,

where [Q]b is the nilpotent matrix part of [T ]b , i.e.,

[Q]b = J(0;k1)⊕·· ·⊕ J(0;kp)⊕ J(0,0;g1)⊕·· ·⊕ J(0,0;gq).

Since b is orthonormal and [Q]b is a real matrix, the matrix [Q∗]b is the transpose of
[Q]b , i.e.,

[Q∗]b = L(0;k1)⊕·· ·⊕L(0;kp)⊕ J(0,0;g1)t ⊕·· ·⊕ J(0,0;gq)t ,

where the L are, as before, lower type Jordan blocks, and t denote transposes. Taking
the corresponding pair of blocks, we see that the classical Jordan blocks (belonging to
the real eigenvalues zr ) behave as before, hence for these pairs

J(0;kr)L(0;kr)−L(0;kr)J(0;kr) = diagkr
(1,0, . . . ,0,−1).

Similarly we obtain

J(0,0;g)J(0,0;g)t − J(0,0;g)tJ(0,0;g) = diagg(1,1,0, . . . ,0,−1,−1),

where there are 2(g−2) zeros in the middle. It follows that

[TT ∗ −T ∗T ]b = diagk1
(1,0, . . . ,0,−1)⊕·· ·⊕diagkp

(1,0, . . . ,0,−1)⊕

⊕diagg1
(1,1,0, . . . ,0,−1,−1)⊕·· ·⊕diaggq

(1,1,0, . . . ,0,−1,−1).

The proof for the converse direction can be done in the same style as for the case
of Theorem 2. �

REMARK 2. An alternative way of proof could be to apply the technique of the
beginning of the proof of Theorem 3 and reduce the problem to the complexification
Tc . Application of Theorem 2 would then finish the proof. We feel that the proof
described above is more straightforward, not longer, and gives the explicit form of
[TT ∗ −T∗T ]b .
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