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Abstract. The present paper deals with some properties for certain classes of Wiener-Hopf op-
erators associated with a wave diffraction problem. This diffraction problem is mathematically
modeled by the Helmholtz equation and higher order boundary conditions on an infinite strip.
Different types of operator relations are exhibited for different kinds of operators acting between
Lebesgue and Bessel potential spaces on a finite interval and on the positive half-line. In partic-
ular, the operators under study are analyzed in detail in what concerns their Fredholm property.
At the end, an operator normalization procedure is applied to the critical orders of the spaces
where the problem is not normally solvable.

1. Introduction

By using methods from operator theory, this paper deals with a boundary value
problem for the Helmholtz equation arising in wave diffraction theory. Namely, the
boundary value problem is derived from the problem of diffraction of an electromag-
netic wave by an infinite strip where certain higher order boundary conditions arise.

We will consider a time-harmonic electromagnetic plane wave incident on a strip
in R3 defined by some inhomogeneous, isotropic, dielectric material and invariant in
the z-direction and where we consider independence of electro-magneticfields on z. So,
if we consider the Cartesian coordinate system Oxyz with the y-axis vertically upwards,
perpendicular to the strip, the problem can be considered as to be two-dimensional and
the strip will be therefore represented by

Σ :=]0,a[, for 0 < a < ∞.

This kind of mathematical problems and, in particular, the canonical boundary
value problems for time harmonic waves governed by the Helmholtz equation was first
studied by A. Sommerfeld [38]. Since then, a great number of different approaches
have been presented and used in the applied mathematics and operators literature for
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studying various kinds of wave diffraction problems. For related works and physical
relevance of this kind of problems we refer to [3], [4], [5], [8]–[10], [12]–[17], [20]–
[22], [25], [28]–[29], [32] and [34].

The electromagnetic wave propagation is governed by the time-harmonic Maxwell
equations

∇×E− iwμH = 0 and ∇×H +(iwη −λ )E = 0,

with time dependence exp(−wτ) , frequency w > 0 and where η denotes the electric
permittivity of the medium, μ is the magnetic permeability, λ is the electric conduc-
tivity, and E and H represent the electric and magnetic fields, respectively. Since the
electric and magnetic fields satisfy the two-dimensional Helmholtz equation, with the
same wave number, we consider the electric and the magnetic fields denoted by u and,
in addition, certain higher order boundary conditions are posed on the strip. It should be
mentioned that the boundary conditions envolving normal derivatives of the nth-order
was considered in several works, see, for instance, [34, 35, 36, 37, 23, 40] and the
references cited therein.

As mentioned we want to understand better what are the operators behind such a
problem. Especially, we will deal with Wiener-Hopf operators and convolution type
operators on finite intervals with semi-almost periodic Fourier symbol matrices. Thus,
one of the main goals of the present work is the use of an operator theoretical machinery
and different kinds of operator relations that will translate the problem into the study of
properties of certain known types of operators. In particular the well-posedness of the
problem and the Fredholm properties are analyzed. Another goal is to describe when
the operators associated with the problem enjoy the Fredholm property. As we shall
see, this will depend on the initial space order parameters.

Another goal of this work is to improve the results presented in [13]. We will
determine the corresponding Fredholm index to our operators related with the problem.

At the end of the paper, an operator normalization is applied to the case of critical
orders of the spaces where the problem does not enjoy the Fredholm property.

2. Formulation of the problem

In view of presenting the mathematical formulation of the problem, we need first
to introduce some notation for the spaces we will be using.

Let S (Rn) be the Schwartz space, the space of all rapidly decreasing functions
and S ′ (Rn) the dual space of tempered distributions on Rn .

We will develop our study in a framework of Bessel potential spaces denoted by
H s defined by

H s(Rn) =
{

ϕ ∈ S ′ (Rn) : ‖ϕ‖H s(Rn) :=
∥∥∥F−1(1+ |ξ |2)s/2 ·Fϕ

∥∥∥
L2(Rn)

< +∞
}

,

where F = Fx�→ξ is the Fourier transformation in Rn defined by

(Fφ) (ξ ) =
∫

Rn
eiξ ·xφ(x)dx, ξ ∈ R

n.
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For a given domain D , on Rn , we denote by H̃ s(D) the closed subspace of
H s(Rn) whose elements have supports in D , and H s(D) denotes the space of gen-
eralized functions on D which have extensions into Rn that belong to H s(Rn) . The
space H̃ s(D) is endowed with the subspace topology, and on H s(D) we introduce
the norm of the quotient space H s(Rn)/H̃ s(Rn\D) . Throughout the paper we will
use the notation Rn± := {x = (x1, . . . ,xn−1,xn) ∈ Rn : ±xn > 0} .

We are now in position to formulate our boundary-transmission problem. Given
a positive integer m and let ε � 0, we are interested in studying if the solution of the
Helmholtz equation(

∂ 2

∂x2 +
∂ 2

∂y2 + k2
)

u = 0 in Ω := R
2 \Σ,

satisfying the boundary conditions{
u+

m = h
u−m = h

on Σ, (2.1)

with u ∈ L2
(
R2

)
and

u|Ω ∈ H 1+ε (Ω) ,

enjoy the Fredholm property, where k is a given wave number, u±m :=
(

∂mu
∂ym

)
|y=±0

denote the traces of the normal derivatives of u and h ∈ H
1
2−m+ε (Σ) is an arbitrar-

ily given element. The derivatives are understood for smooth functions with compact
support in the classical sense and for (weak) solutions u ∈ H 1 (Ω) by help of the
representation formula

u(x,y) = F−1exp [−t(ξ )y] ·Fu+
0 (x)χ+(y)+F−1exp [t(ξ )y] ·Fu−0 (x)χ−(y), (2.2)

as continuous mappings into those spaces, continuously extended from the dense sub-
space of smooth functions with compact support. In the representation formula (2.2),
χ± is the Heaviside unit-step function of R± = {x ∈ R : ±x > 0} and t(ξ ) = (ξ 2 −
k2)

1
2 = t+(ξ )t−(ξ ) , with the squareroot functions t± defined by

t±(ξ ) = (ξ ± k)
1
2 = |ξ ± k| 1

2 exp

[
1
2
iarg(ξ ± k)

]
, ξ ∈ R,

with branch cuts Γ∓ = {±k± iρ , ρ � 0} respectively, arg(ξ − k) ∈ ]− 3π
2 , π

2

[
and

arg(ξ + k) ∈ ]− π
2 , 3π

2

[
.

Furthermore, we consider the wave number k as a complex number with Rek > 0
and Imk > 0 due to a dissipative medium.

3. First results

In this section, after reducing our problem to a system of convolution type equa-
tions, we shall present certain extension methods in view to obtain corresponding op-
erator relations between the operators associated to the problem and new Wiener-Hopf



206 A. M. SIMÕES

operators. Such extension methods and relations derived from [13] and [16] will be
therefore used in the next section to study the Fredholm property of the operators as-
sociated with the problem. For more details about operator relations in the study of
boundary value problems see [39].

It is known that the function u ∈ L2
(
R2

)
with u|R2±

∈ H 1+ε (
R2±

)
satisfies the

Helmholtz equation in R2± in the weak H 1 sense if and only if it is represented by the
formula (2.2).

THEOREM 3.1. Let m be an odd number. The initial problem is equivalently
rewritten as the finite interval convolution type equation

Wtm,Σϕ = −2h, (3.1)

where

Wtm,Σ = rΣF−1tm ·F : H̃
1
2 +ε (Σ) → H

1
2−m+ε (Σ) . (3.2)

Proof. Let the densities ϑ and ϕ defined by[
ϑ
ϕ

]
=

[
u+

1 −u−1
u+

0 −u−0

]
∈ H̃ − 1

2 +ε (Σ)× H̃
1
2 +ε (Σ) .

For any integer j , by the Fourier transform properties, follows that

u+
j = (−1) jF−1t j ·Fu+

0 and u−j = F−1t j ·Fu−0 .

Using these formulas, it is possible to write the Dirichlet data (on y = 0) in the
form [

u+
0

u−0

]
= BΦB

[
ϑ
ϕ

]
(3.3)

where BΦB
= F−1ΦB ·F : H̃ − 1

2 +ε (Σ)× H̃
1
2 +ε (Σ) → H

1
2 +ε (R)×H

1
2 +ε (R) is

a convolution operator with Fourier symbol

ΦB = −1
2

[
t−1 −1
t−1 1

]
. (3.4)

Now, by the use of (3.3), it is possible to rewrite the boundary condition (2.1) as

rΣCΦC

[
u+

0
u−0

]
=

[
h
h

]
where CΦC

= F−1ΦC ·F : H
1
2 +ε (R)×H

1
2 +ε (R)→H

1
2−m+ε (R)×H

1
2−m+ε (R)

is an invertible convolution operator with Fourier symbol

ΦC =
[

(−1)mtm 0
0 tm

]
. (3.5)
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From (3.4) and (3.5) we obtain

−1
2
rΣF−1

[
(−1)mtm−1 (−1)m+1tm

tm−1 tm

]
·F

[
ϑ
ϕ

]
=

[
h
h

]
.

In the last identity, if we multiply the second equation by (−1)m and then adding
and subtracting the two equations, we obtain a new convolution type equation

W̃Φm,Σ

[
ϑ
ϕ

]
=

[
h+(−1)mh
h− (−1)mh

]
(3.6)

where the convolution type operator W̃Φm,Σ is defined by

W̃Φm,Σ = rΣF−1Φm ·F : H̃ − 1
2 +ε (Σ)× H̃

1
2 +ε (Σ) → H

1
2−m+ε (Σ)×H

1
2−m+ε (Σ)

with

Φm =
[

(−1)m+1tm−1 0
0 (−1)mtm

]
.

If m is odd, then h+(−1)mh = 0 and therefore (3.6) turns out to have the form

W̃Φm,Σ

[
ϑ
ϕ

]
=

[
0

h− (−1)mh

]
.

In this way, from the above identities, the initial problem is equivalently rewritten
as the equation

Wtm,Σϕ = −2h,

where Wtm,Σ is defined like in (3.2). �

For the even case we have a corresponding result.

THEOREM 3.2. Let m be an even number. The initial problem is equivalently
rewritten as the finite interval convolution type equation

Wtm−1,Σϑ = −2h, (3.7)

where

Wtm−1,Σ = rΣF−1tm−1 ·F : H̃ − 1
2 +ε (Σ) → H

1
2−m+ε (Σ) . (3.8)

Proof. By a similar procedure to the one presented for the odd case, if m is even
then h− (−1)mh = 0 in (3.6). Thus, we obtain

W̃Φm,Σ

[
ϑ
ϕ

]
=

[
h+(−1)mh

0

]
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and therefore the initial problem is equivalently rewritten as the single equation (3.7)
with Wtm−1,Σ defined in (3.8). �

In the last two theorems the problem is equivalently rewritten as the finite interval
convolution type equations (3.1) and (3.7), for m odd and m even, respectively, in the
sense that if u is a solution of the problem with Dirichlet traces u±0 on y = ±0, then[

ϑ
ϕ

]
= B−1

ΦB

[
u+

0
u−0

]
provides solutions ϕ and ϑ of the equations (3.1) and (3.7), for m odd and m even,
respectively. On the other hand, if ϕ and ϑ are solutions of the equations (3.1) and
(3.7), depending if m is odd or even, respectively, then u given by the representation
formula (2.2) with (u+

0 ,u−0 )T , provided by the use of (3.3), is a solution of the problem.
We will now recall some extension methods in view of obtaining corresponding

operator relations between the operators related to the problem and new Wiener-Hopf
operators. But first, we introduce an important definition, see [1, 19, 26].

DEFINITION 3.1. [1] Let us consider two operators A : X1 →Y1 and B : X2 →Y2 ,
acting between Banach spaces.

(i) The operators A and B are said to be algebraically equivalent after extension if
there exist additional Banach spaces Z1 and Z2 and invertible linear operators

E : Y2×Z2 → Y1×Z1 and F : X1×Z1 → X2×Z2

such that [
A 0
0 IZ1

]
= E

[
B 0
0 IZ2

]
F. (3.9)

(ii) If, in addition to (i), the invertible and linear operators E and F in (3.9) are
bounded, then we will say that A and B are topologically equivalent after exten-
sion operators or, to simply, we say that A and B are equivalent after extension
operators [1].

(iii) A and B are said to be equivalent operators in the particular case when

A = E BF ,

for some bounded invertible linear operators

E : Y2 → Y1 and F : X1 → X2.

Now, we will rewrite a theorem of [6] to our case. First, we present the results
when n is an odd number.
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THEOREM 3.3. Let m be an odd number. The finite interval convolution type
operator defined by

Wtm,Σ = rΣF−1tm ·F : H̃
1
2 +ε (Σ) → H

1
2−m+ε (Σ)

is algebraically equivalent after extension to the Wiener-Hopf operator

WΦod ,R+ : H̃
1
2 +ε (R+)× H̃

1
2−m+ε (R+) → H

1
2 +ε (R+)×H

1
2−m+ε (R+)

WΦod ,R+ = r+F−1Φod ·F (3.10)

where Φod is the Fourier symbol

Φod(ξ ) =
[

e−iaξ 0
tm(ξ ) −eiaξ

]
.

Proof. The equivalence is consequence of Kuijper’s extension methods and, for
more details, we advise to see [6], [26] and [27]. In abridged form and without many
details the equivalence after extension relation can be directly obtained by computing
the following operator composition⎡⎢⎣Wtm,Σ 0 0

0 I
H

1
2 +ε (R+)

0

0 0 I
H̃

1
2−m+ε (R+)

⎤⎥⎦ = ETF,

where

T : KerA×N
1
2 +ε × H̃

1
2−m+ε (R+) −→ H

1
2 +ε (R+)× ImB×M

1
2−m+ε

T =

⎡⎢⎣ 0 A
|N 1

2 +ε 0

C1 C2 BImB

C3 C4 0

⎤⎥⎦ ,

E and F are invertible operators defined by

E : H
1
2+ε (R+)× ImB×M

1
2−m+ε −→ H

1
2−m+ε (Σ)×H

1
2 +ε (R+)× H̃

1
2−m+ε (R+)

E =

⎡⎢⎢⎢⎢⎢⎣
−q

M
1
2−m+εC4

(
A
|N 1

2 +ε

)−1

0 q
M

1
2−m+ε

I
H

1
2 +ε (R+)

0 0

− [BImB]−1C2

(
A
|N 1

2 +ε

)−1

[BImB]−1 0

⎤⎥⎥⎥⎥⎥⎦
and

F : H̃
1
2 +ε (Σ)×H

1
2 +ε (R+)× H̃

1
2−m+ε (R+) −→ KerA×N

1
2 +ε × H̃

1
2−m+ε (R+)

F =

⎡⎢⎢⎢⎣
R 0 0

0

(
A
|N 1

2 +ε

)−1

0

−(BImB)−1C1R 0 I
H̃

1
2−m+ε(R+)

⎤⎥⎥⎥⎦ ,
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respectively, for some algebraic decompositions (see [24])

H̃
1
2 +ε (R+) = KerA×N

1
2 +ε and H

1
2−m+ε (R+) = ImB×M

1
2−m+ε

for convenient subspaces

N
1
2 +ε ⊂ H̃

1
2 +ε (R+) and M

1
2−m+ε ⊂ H

1
2−m+ε (R+) ,

q
M

1
2−m+ε is defined between M

1
2−m+ε and M

1
2−m+ε/ImB by q

M
1
2−m+ε (·) = q(·) where

q is the quotient map from H
1
2−m+ε (R+) to H

1
2−m+ε (R+)/ImB ,

A = r+F−1e−iξa ·F : H̃
1
2 +ε (R+) −→ H

1
2 +ε (R+) ,

B = r+F−1(−eiξa) ·F : H̃
1
2−m+ε (R+) −→ H

1
2−m+ε (R+) ,

C =
[
C1 C2

C3 C4

]
= r+F−1tm ·F : KerA×N

1
2 +ε −→ ImB×M

1
2−m+ε ,

BImB is the isomorphism defined from H̃
1
2−m+ε (R+) to ImB by BImB(·) = B(·) and

R the identity operator defined between H̃
1
2 +ε (Σ) and KerA . �

In the next result we obtain an operator relation with a new operator acting between
Lebesgue spaces by the use of the lifting procedure and choosing convenient auxiliary
bounded invertible operators. We will use the notation L2

+ (R) := H̃ 0 (R+) . For the
proof see [13].

THEOREM 3.4. Let m be an odd number. The Wiener-Hopf operator WΦod ,R+ in
(3.10) is equivalent to the Wiener-Hopf operator

ŴΦ̂od ,R+
= r+F−1Φ̂od ·F :

[
L2

+ (R)
]2 → [

L2 (R+)
]2

where Φ̂od has the matricial representation

Φ̂od(ξ ) =

[
ζ

1
2 +ε(ξ )e−iaξ 0

ζ
1
2− 1

2 m+ε (ξ ) −ζ
1
2−m+ε(ξ )eiaξ

]
. (3.11)

For the even case, we have similar results to those presented in Theorems 3.3 and
3.4. Thus, we present them omitting the proofs.

THEOREM 3.5. Let m be an even number. The finite interval convolution type
operator defined by

Wtm−1,Σ = rΣF−1tm−1 ·F : H̃ − 1
2 +ε (Σ) → H

1
2−m+ε (Σ)

is algebraically equivalent after extension to the Wiener-Hopf operator

WΦev,R+ : H̃ − 1
2 +ε (R+)× H̃

1
2−m+ε (R+) → H − 1

2 +ε (R+)×H
1
2−m+ε(R+)

WΦev,R+ = r+F−1Φev ·F , (3.12)
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where Φev is the Fourier symbol

Φev(ξ ) =
[

e−iaξ 0
tm−1(ξ ) −eiaξ

]
.

THEOREM 3.6. Let m be an even number. The Wiener-Hopf operator WΦev,R+

in (3.12) is equivalent to the Wiener-Hopf operator

W̃Φ̃ev,R+
= r+F−1Φ̃ev ·F :

[
L2

+ (R)
]2 → [

L2 (R+)
]2

where Φ̂ev has the matricial representation

Φ̃ev(ξ ) =

[
ζ− 1

2 +ε(ξ )e−iaξ 0

ζ− 1
2 m+ε (ξ ) −ζ

1
2−m+ε(ξ )eiaξ

]
.

4. Fredholm analysis

The objective is now to study and characterize the Fredholm property improving
the results presented in [13] by introducing the Fredholm index of the finite interval
convolution type operators Wtm,Σ and Wtm−1,Σ , respectively, for general ε . In view
of this, we will use the operators introduced in the last section together with different
factorization procedures. We start by recalling the definition of Fredholm operator.

DEFINITION 4.1. Let X , Y be two Banach spaces and A : X → Y a bounded
linear operator with closed image. The operator A is called a Fredholm operator if

n(A) := dim KerA < ∞,

and
d(A) : dimY/ImA < ∞.

If A is a Fredholm operator, then the Fredholm index of A is the integer defined
by Ind A = n(A)−d(A) .

THEOREM 4.1. Let Φ̂od be defined by (3.11). The above defined operator ŴΦ̂od ,R+
admits the factorization

ŴΦ̂od ,R+
= ŴΦ̂−,R+

Wϒod ,R+ŴΦ̂+,R+
(4.1)

where ŴΦ̂−,R+
and ŴΦ̂+,R+

are invertible operators with the Fourier symbols

Φ̂−(ξ ) =
[

1 e−iaξ τ−(ξ )
0 1

]
, Φ̂+(ξ ) =

[
0 1
−1 eiaξ τ+(ξ )

]
,

which admit bounded analytic extensions in ℑmξ < 0 , ℑmξ > 0 , respectively, and
with

τ−(ξ ) =
1−S(ξ )

2
+

1+S(ξ )
2

eimπ
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and

τ+(ξ ) =
1−S(ξ )

2
+

1+S(ξ )
2

e−imπ

where S : C → C is the normalized sine-integral function defined by

S(ξ ) =
2
π

∫ ξ

0

sinx
x

dx.

The Fourier symbol ϒod belongs to PC2×2(
•
R) , the space of two by two matrix

functions with piecewise continuous entries on
•
R= R∪{∞} , and is given by

ϒod(ξ ) = ζ
1
2 +ε(ξ )×⎡⎣[

1− τ−(ξ )ζ− 1
2 m(ξ )

]
τ+(ξ )+ τ−(ξ )ζ−m(ξ ) e−iaξ

[
τ−(ξ )ζ− 1

2 m(ξ )−1
]

eiaξ
[
ζ− 1

2 m(ξ )τ+(ξ )− ζ−m(ξ )
]

−ζ− 1
2 m(ξ )

⎤⎦. (4.2)

Proof. The factorization can be directly obtained by computing the identity (4.1)
where we agree that lim

ξ→−∞
ζ σ (ξ ) = 1, and lim

ξ→+∞
ζ σ (ξ ) = ei2πσ for σ ∈ R . We also

have in such a case that

lim
ξ→±∞

ζ
1
2 +ε(ξ )

[
τ−(ξ )ζ− 1

2 m(ξ )−1
]

= 0 (4.3)

and
lim

ξ→±∞
ζ

1
2 +ε(ξ )

[
ζ− 1

2 m(ξ )τ+(ξ )− ζ−m(ξ )
]

= 0. (4.4)

�
In order to continue we need to introduce some auxiliary results necessary to study

the Fredholm property of the operators associated with the problems of wave diffrac-
tion.

For ϒ ∈ PCn×n(
•
R) , let us consider the function ϒ :

•
R ×[0,1]→ Cn×n defined by

ϒ(ξ ,μ) := (1− μ)ϒ(ξ −0)+ μϒ(ξ +0), (ξ ,μ) ∈ •
R ×[0,1]

where ϒ(∞−0) := ϒ(+∞) and ϒ(∞+0) := ϒ(−∞) . Note that for each ξ ∈ •
R , the set

{detϒ(ξ ,μ) : μ ∈ [0,1]} is the line segment joining detϒ(ξ −0) to detϒ(ξ +0) .

THEOREM 4.2. [2, Theorem 5.9] For ϒ ∈ PCn×n(
•
R) , it follows that

detΦ(ξ ,μ) 
= 0 for all (ξ ,μ) ∈ •
R ×[0,1]

if and only if the operator
Wϒ,R+ = r+F−1ϒ ·F
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is a Fredholm operator. Additionally, in case of Fredholm property, the Fredholm index
of Wϒ,R+ is given by

Ind Wϒ,R+ = −wind(detϒ)

where wind denotes the winding number.

We are now in position to improve the result presented in [13] for the Fredholm
study to our operator Wtm,Σ in (3.2) with the corresponding Fredholm index and con-
sequently to our initial problem in the case where m is an odd number.

THEOREM 4.3. Let m be an odd number. The finite interval convolution type
operator Wtm,Σ in (3.2) is a Fredholm operator with zero Fredholm index if and only if

ε 
= q+
m
2

for q ∈ Z. (4.5)

Proof. First of all, we notice that from Theorems 3.3–4.1 we have that the operator
Wtm,Σ is algebraically equivalent after extension to the operator

Wϒod ,R+ = r+F−1ϒod ·F :
[
L2

+ (R)
]2 → [

L2 (R+)
]2

where ϒod is given by (4.2). Therefore, to prove that Wtm,Σ is a Fredholm operator we
are going to prove that its algebraically equivalent after extension operator Wϒod ,R+ is
a Fredholm operator. For more details see [1, 26].

Letting ϒod(ξ ,μ)= (1−μ)ϒod(ξ −0)+μϒod(ξ +0) , and ϒod(∞±0) := ϒod(∓∞) ,
by Theorem 4.2, if detϒod(ξ ,μ) 
= 0 for (ξ ,μ) ∈ •

R ×[0,1] , then the operator Wϒod ,R+

is Fredholm.
From Theorem 4.1 we already know that the Fourier symbol ϒod can be written

as
ϒod(ξ ) = Φ̂−1

− (ξ )Φ̂od(ξ )Φ̂−1
+ (ξ ).

For any ξ ∈ R we have

detϒod(ξ ±0) = detΦ̂od(ξ )

because Φ̂od(ξ ) has no discontinuities on the real line, detΦ̂−1
± also have no disconti-

nuities on the real line and, moreover detΦ̂−1
± ≡ 1. Therefore,

detϒod(ξ ,μ) = det
[
(1− μ)Φ̂od(ξ )+ μΦ̂od(ξ )

]
= detΦ̂od(ξ ) = −ζ 1−m+2ε(ξ ) 
= 0,

in the case of ξ ∈ R .
For ξ = ∞ , we have

detϒod(∞,μ) = det [(1− μ)ϒod(+∞)+ μϒod(−∞)] .
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Appealing to the limits (4.3) and (4.4), we obtain

ϒod(+∞) =
[

eiπ(1−m+2ε) 0
0 −eiπ(1−m+2ε)

]
, ϒod(−∞) =

[
1 0
0 −1

]
. (4.6)

Thus

detϒod(∞,μ) = det

[
(1− μ)eiπ(1−m+2ε) + μ 0

0 −(1− μ)eiπ(1−m+2ε)− μ

]
= −

[
(1− μ)eiπ(1−m+2ε) + μ

]2
.

As a consequence, Wϒod ,R+ is a Fredholm operator if and only if

(1− μ)eiπ(1−m+2ε) + μ 
= 0, μ ∈ [0,1]. (4.7)

Since the set

S =
{

(1− μ)eiπ(1−m+2ε) + μ : μ ∈ [0,1]
}

defines the line segment joining 1 to eiπ(1−m+2ε) , to obtain the inequality (4.7), we
need that eiπ(1−m+2ε) /∈ R− . Thus π(1−m+ 2ε) 
= π + 2πq , q ∈ Z , i.e., ε 
= q+ m

2 ,
q ∈ Z .

Therefore, from the operator identities provided by both the above mentioned al-
gebraic and topological equivalence relations, given in Theorems 3.3, 3.4 and 4.1, we
conclude that C̃Φ

C̃
,R+ and CΦC,Σ are Fredholm operators if and only if condition (4.5)

holds, and that the corresponding defect spaces of these operators have the same dimen-
sions, [1, 26]. From this, and since by [1, Theorem 3] Fredholm operators in Banach
spaces are equivalent after extension if and only if their corresponding defect spaces
have equal dimensions, we even arrive at the conclusion that C̃Φ

C̃
,R+ and CΦC,Σ are

not only algebraically equivalent after extension but also topologically equivalent after
extension.

Finally, jointing the last conclusion with Theorem 4.2, we obtain the following
formula for the Fredholm index of Wtm,Σ ,

indWtm,Σ = indW̃ϒod,R+

= −wind
(
detϒod(ξ ,μ)

)
= − 1

2π

([
argdetϒod(ξ ,μ)

]
R

+
[
argdetϒod(∞,μ)

]
[0,1]

)
= − 1

2π

(
[argdetϒod(ξ )]

R
+

[
argdetϒod(∞,μ)

]
[0,1]

)
where [ f (ξ )]R denotes the increment of f (ξ ) when ξ varies through R from −∞ to
+∞ and [ f (∞,μ)][0,1] is the increment of f (∞,μ) when μ varies through R from 0 to
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1. Directly, we obtain

[argdetϒod(ξ )]
R

= argdetϒod(+∞)− argdetϒod(−∞)

= argeiπ+i2π(1−m+2ε)− argeiπ

= π +2π(1−m+2ε)−π
= 2π(1−m+2ε)

and [
argdetϒod(∞,μ)

]
[0,1] = argeiπ − argeiπ+i2π(1−m+2ε)

= π −π −2π(1−m+2ε)
= −2π(1−m+2ε).

So, we have indWtm,Σ = 0. �

For the even case we have a corresponding result.

THEOREM 4.4. Let m be an even number. The finite interval convolution type
operator Wtm−1,Σ in (3.8) is a Fredholm operator with zero Fredholm index if and only
if

ε 
= q+
1+m

2
for q ∈ Z.

Proof. Proceeding similarly to the above result, the operator

Wtm−1,Σ = rΣF−1tm−1 ·F : H̃ − 1
2 +ε (Σ) → H

1
2−m+ε (Σ)

is algebraically equivalent after extension to the operator

Wϒev,R+ = r+F−1ϒev ·F :
[
L2

+ (R)
]2 → [

L2 (R+)
]2

where ϒev is given by

ϒev(ξ ) = ζ ε (ξ )
[

ϒev,11(ξ ) ϒev,12(ξ )
ϒev,21(ξ ) ϒev,22(ξ )

]
(4.8)

with

ϒev,11(ξ ) =
[
ζ− 1

2 (ξ )−τ−(ξ )ζ− 1
2 m(ξ )

]
τ+(ξ )+τ−(ξ )ζ

1
2−m(ξ )

ϒev,12(ξ ) = e−iaξ
[
τ−(ξ )ζ− 1

2 m(ξ )−ζ− 1
2 (ξ )

]
ϒev,21(ξ ) = eiaξ

[
ζ− 1

2 m(ξ )τ+(ξ )− ζ
1
2−m(ξ )

]
ϒev,22(ξ ) = −ζ− 1

2 m(ξ )



216 A. M. SIMÕES

and where

τ−(ξ ) =
1−S(ξ )

2
+

1+S(ξ )
2

eiπ(−1+m), τ+(ξ ) =
1−S(ξ )

2
+

1+S(ξ )
2

eiπ(1−m).

Therefore, the operator Wϒev,R+ is Fredholm if and only if detϒev(ξ ,μ) 
= 0 for (ξ ,μ)∈
•
R ×[0,1] , where

ϒev(ξ ,μ) = (1− μ)ϒev(ξ −0)+ μϒev(ξ +0), ϒev(∞±0) := ϒev(∓∞).

For any ξ ∈ R we have detϒev(ξ ,μ) = −ζ−m+2ε(ξ ) 
= 0, ξ ∈ R .
For ξ = ∞ , we have

detϒev(∞,μ) = −
[
(1− μ)eiπ(−m+2ε) + μ

]2
.

This shows that Wtm−1,Σ is a Fredholm operator if and only if

(1− μ)eiπ(−m+2ε) + μ 
= 0, μ ∈ [0,1]

and therefore the result is concluded from

eiπ(−m+2ε) /∈ R− ⇔ π(−m+2ε) 
= π +2πq⇔ ε 
= q+
1+m

2
, q ∈ Z.

For the Fredholm index of Wtm−1,Σ we have

indWtm−1,Σ = − 1
2π

(
[argdetϒev(ξ )]

R
+

[
argdetϒev(∞,μ)

]
[0,1]

)
.

Directly, we obtain

[argdetϒev(ξ )]
R

= 2π(−m+2ε)

and [
argdetϒev(∞,μ)

]
[0,1] = −2π(−m+2ε).

So, we have indWtm−1,Σ = 0. �

5. Image normalization of Wiener-Hopf operators

We conclude this paper by presenting a technique widely used in the study of
the Fredholm property of Wiener-Hopf operators associated with diffraction problems.
We refer to the operator normalization. This technique relies on the fact that it is
possible to make an extension of the image space or a restriction of the domain so
that an operator which is not Fredholm, which is equivalent to say that is not normally
solvable, [33], passes to enjoy this property. By physical reasons, we will choose to
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do the normalization without changing simultaneously both space X0 and Y0 . We will
carry out the image normalization [7], [11], [30], [31]–[33].

We know, by Theorem 4.2, that if the Fourier symbol ϒ ∈ PCn×n(
•
R) fulfils the

condition

detϒod(ξ ,μ) = det [(1− μ)ϒod(ξ −0)+ μϒod(ξ +0)] = 0, (5.1)

to some (ξ ,μ) ∈ •
R ×[0,1] , then Wϒ,R+ = r+F−1ϒ ·F is not a Fredholm operator.

We also know that if we have the condition (5.1) with ϒ ∈ PCn×n(
•
R) , then the

operator associated with the diffraction problem is not normally solvable, i.e., ImW
is not closed although we have dimKerW < ∞ and dimY0/ImW < ∞ (considering
W : X0 → Y0 ), [7, Teorema 5.7].

The normalization problem for a bounded linear operator W : X0 → Y0 defined
between Banach spaces (and not normally solvable) consists in finding a pair of Banach
spaces X1 and Y1 such that

(1) the inclusion X0∩X1 ⊂ X1 is dense,

(2) W maps X0∩X1 into Y1

(3) the restriction of W to X0∩X1 admits a continuous extension

≈
W= ExtW|X0∩X1

: X1 −→ Y1

which is normally solvable.

Then we say that the pair (X1,Y1) solves the normalization problem for W with
≈

W a
Fredholm operator.

Let us consider

X1 = X0 e Y1 ⊂ Y0

and define the restriction operator

<

W= ResW : X0 −→ Y1.

In order to simplify the notation, for s ∈ Rn , we consider

H s (R+) = H s1 (R+)× . . .×H sn (R+)

and

H̃ s (R+) = H̃ s1 (R+)× . . .× H̃ sn (R+) .

Let us consider the Wiener-Hopf operator WΦ,R+ defined by

WΦ,R+ = r+F−1Φ ·F : H̃ r (R+) → H s (R+) (5.2)
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with r,s ∈ Rn and admitting the lifted Fourier symbol Φ̃ ∈ G C ν(
•
R)n×n with ν ∈]0,1[

(space of Hölder continuous matricial functions with order n , invertible and with expo-

nent ν ) and detΦ̃(ξ ) 
= 0, ξ ∈ •
R .

We know that the jump at infinity matrix is defined by Φ̃−1(+∞)Φ̃(−∞) and, con-
sidering their eigenvalues denoted by λ1,λ2, . . . ,λc with their multiplicities l1, l2, . . . , lc ,

respectively, c � n and
c

∑
j=1

l j = n , we can write it in the normal Jordan form

Φ̃−1(+∞)Φ̃(−∞) = T−1JT, (5.3)

where T ∈ G Cn×n and J is a matrix defined by

J =

⎡⎢⎢⎢⎣
J1

J2
. . .

Jc

⎤⎥⎥⎥⎦ ,

with each block Jj , j = 1, . . . ,c , have order equal to the multiplicity l j of the corre-
spondent eigenvalues λ j , is defined by

Jj =

⎡⎢⎢⎢⎢⎢⎣
λ j 1 0 · · · 0
0 λ j 1 · · · 0
...

...
. . .

. . .
...

0 0 0 · · · 1
0 0 0 · · · λ j

⎤⎥⎥⎥⎥⎥⎦ .

Considering now the following notation for the diagonal elements of J ,

diagJ = diag(λ̃1, . . . , λ̃n)
= diag(e2π iω̃1 , . . . ,e2π iω̃n),

with ω̃ j = σ̃ j + τ̃ ji such that σ̃ j ∈
[− 1

2 , 1
2

[
, j = 1, . . . ,n , we can rewrite the following

result of [31].

THEOREM 5.1. The Wiener-Hopf operator defined in (5.2) by

WΦ,R+ = r+F−1Φ ·F : H̃ r (R+) → H s (R+)

where r,s ∈ Rn with lifted Fourier symbol Φ̃ ∈ G C ν(
•
R)n×n with ν ∈]0,1[ , detΦ̃(ξ ) 
=

0 , ξ ∈ •
R and with the jump at infinity matrix with the normal Jordan form defined as

(5.3) is normally solvable if and only if

σ̃ j 
= −1
2
, j = 1, . . . ,n. (5.4)
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We now reordering the elements of the matrix J by a permutation of the columns
of T such that the m eigenvalues that violate the condition (5.4), i.e., the eigenvalues
such that

σ̃ j = −1
2
, j = 1, . . . ,n′ (5.5)

with 1 � c � n , will be positioned at the entries [ · ] j j , j = 1, . . . ,c of J .
With this reordering of the eigenvalues in the diagonal of J we have the following

theorem of [31].

THEOREM 5.2. Let the Wiener-Hopf operator defined in (5.2) by

WΦ,R+ = r+F−1Φ ·F : H̃ r (R+) → H s (R+)

where r,s∈Rn , with lifted Fourier symbol Φ̃ ∈G C ν(
•
R)n×n with ν ∈]0,1[ , detΦ̃(ξ ) 
=

0 , ξ ∈ •
R and with the jump at infinity matrix with the normal Jordan form checking the

condition (5.5).
The normalization problem is solvable by the image normalization defined by

Y1 = r+F−1(ξ − k)−s ·FT l0{
<

H −i(τ̃1,...,τ̃n′ ) (R+)× [
L2(R+)

]n−n′},

where l0 denotes the 0 extension of L2(R+) to L2(R) and

<

H −i(τ̃1,...,τ̃n′ ) (R+) =
<

H −iτ̃1 (R+)× . . .× <

H −iτ̃n′ (R+)

= r+Λ−iτ̃1− Λ− 1
2− Λ

1
2
+L2

+(R)× . . .× r+Λ−iτ̃n′− Λ− 1
2− Λ

1
2
+L2

+(R)

with

Λα
± = F−1(ξ ± k)α ·F : H s (R) → H s−Reα (R)

α ∈ C , s ∈ R .

We are able to apply these results to our problem.

THEOREM 5.3. Let m be an odd number. The Wiener-Hopf operator WΦod ,R+

defined in (3.10) by

WΦod ,R+ : H̃
1
2 +ε (R+)× H̃

1
2−m+ε (R+) → H

1
2 +ε (R+)×H

1
2−m+ε(R+)

WΦod ,R+ = r+F−1Φod ·F ,

with Fourier symbol

Φod(ξ ) =
[

e−iaξ 0
tm(ξ ) −eiaξ

]
is not normally solvable if ε = q+ m

2 with q ∈ Z .
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Considering ε = q+ m
2 , the image normalized operator

<

WΦod ,R+ : H̃
1
2 +ε (R+)× H̃

1
2−m+ε (R+) → Y1

with

Y1 = r+F−1(ξ − k)(−
1
2−ε,− 1

2 +m−ε) ·F l0{
<

H 0 (R+)× <

H 0 (R+)},

where

<

H 0 (R+) = r+Λ− 1
2− Λ

1
2
+L2

+(R)

solves the normalization problem. Thus,
<

WΦod ,R+ is a normally solvable operator,
which leads to obtaining the Fredholm property.

Proof. By Theorems 3.4 and 4.1 we know that WΦod ,R+ admits the lifted Fourier

symbol ϒod ∈ PC2×2(
•
R) defined in (4.2). If we consider ϒod(+∞) and ϒod(−∞) de-

fined in (4.6), we have the following jump at infinity (in matrix form),

ϒod(+∞)−1ϒod(−∞) =
[

eiπ(−1+m−2ε) 0
0 eiπ(−1+m−2ε)

]
.

For ε = q+ m
2 with q ∈ Z we have

ϒod(+∞)−1ϒod(−∞) =
[−1 0

0 −1

]
.

Thus, we have the eigenvalue λ̃ = −1 with multiplicity 2 such that ω̃ = − 1
2 . So, the

operator is not normally solvable.

The normalized operator
<

WΦod ,R+ is a direct consequence of Theorem 5.2. �

To the even case we have the following result.

THEOREM 5.4. Let m be an even number. The Wiener-Hopf operator defined in
(3.12) by

WΦev,R+ : H̃ − 1
2 +ε (R+)× H̃

1
2−m+ε (R+) → H − 1

2 +ε (R+)×H
1
2−m+ε(R+)

WΦev,R+ = r+F−1Φev ·F ,

with Fourier symbol

Φev(ξ ) =
[

e−iaξ 0
tm−1(ξ ) −eiaξ

]
is not normally solvable if ε = q+ 1+m

2 with q ∈ Z .
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Considering ε = q+ 1+m
2 , the image normalized operator

<

WΦev,R+ : H̃ − 1
2 +ε (R+)× H̃

1
2−m+ε (R+) → Y1

with

Y1 = r+F−1(ξ − k)(
1
2−ε,− 1

2+m−ε) ·F l0{
<

H 0 (R+)× <

H 0 (R+)},

where

<

H 0 (R+) = r+Λ− 1
2− Λ

1
2
+L2

+(R)

solves the normalization problem. Thus,
<

WΦev,R+ is a normally solvable operator,
which leads to obtaining the Fredholm property.

Proof. By the Theorem 3.6 and by the proof of Theorem 4.4 we have that the

operator WΦev,R+ admits the lifted Fourier symbol ϒev ∈ PC2×2(
•
R) defined in (4.8).

Again, although we have ϒev ∈ PC2×2(
•
R) , we can apply Theorem 5.2.

Considering ϒev(+∞) and ϒev(−∞) , we have the following jump at infinity

ϒev(+∞)−1ϒev(−∞) =
[

eiπ(−m+2ε) 0
0 −eiπ(−m+2ε)

]−1 [
1 0
0 −1

]
=

[
eiπ(m−2ε) 0

0 eiπ(m−2ε)

]
.

For ε = q+ 1+m
2 with q ∈ Z , we have

ϒev(+∞)−1ϒev(−∞) =
[−1 0

0 −1

]
.

Thus, we have the eigenvalue λ̃ = −1 with multiplicity 2 such that ω̃ = − 1
2 . So, the

operator is not normally solvable.

The normalized operator
<

WΦev,R+ is a direct consequence of Theorem 5.2. �

Finally, we like to remark that the Fredholm index of the normalized operators, in
the two last theorems, are both zero. This can be proved by the method presented in
[32].
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