C-SYMMETRIC OPERATORS AND REFLEXIVITY

KAMILA KLIŚ-GARLICKA AND MAREK PTAK

(Communicated by H. Radjavi)

Abstract. We study subspaces of all C-symmetric operators. Description of the preanihilator of all C-symmetric operators is given. It is shown that the subspace of all C-symmetric operators is transitive and 2-hyperreflexive.

1. Introduction and preliminaries

Let \mathscr{H} be a complex separable Hilbert space with an inner product $\langle \cdot, \cdot \rangle$. Let *C* be an isometric antilinear involution in \mathscr{H} . By isometric it is meant that $\langle f, g \rangle = \langle Cg, Cf \rangle$ for all $f, g \in \mathscr{H}$. Since *C* is an involution, $C^2 = I$. A bounded operator $T \in B(\mathscr{H})$ is called *C*-symmetric, if $CTC = T^*$. This is equivalent to the symmetry of *T* with respect to the bilinear form $[f,g] = \langle f, Cg \rangle$. Let us denote the set of all *C*-symmetric operators by $\mathscr{C} = \{T \in B(\mathscr{H}) : CTC = T^*\}$.

C-symmetric operators and the whole set \mathscr{C} was intensively studied in [3]. There were given many examples of *C*-symmetric operators such as Jordan blocks, truncated Toeplitz operators, Hankel operators ect.. The aim of the paper is to study the space of *C*-symmetric operators from reflexivity–transitivity point of view, for definitions see bellow. It is shown that the subspace of all *C*-symmetric operators is transitive and 2-reflexive or even 2-hyperreflexive. It means that the preanihilator of \mathscr{C} does not contain any rank-one operators and rank-two operators are dense in the preanihilator. Moreover, we describe all rank-two operators in this preanihilator.

The set of all trace class operators on \mathscr{H} will be denoted by τc with the norm $\|\cdot\|_1$, (this class of operators is often also denoted by \mathscr{C}_1 , see [8], or \mathscr{B}_1 , see [2]). The dual action between τc and $B(\mathscr{H})$ is given by trace, i.e. $\langle A, t \rangle = \operatorname{tr}(At)$ for $A \in B(\mathscr{H})$, $t \in \tau c$. For $k \in \mathbb{N}$, F_k stands for the set of operators on \mathscr{H} of rank at most k. Every rank-one operator may be written as $x \otimes y$, for $x, y \in \mathscr{H}$, and $(x \otimes y)z = \langle z, y \rangle x$ for $z \in \mathscr{H}$. Moreover, $\langle T, x \otimes y \rangle = \operatorname{tr}(T(x \otimes y)) = \langle Tx, y \rangle$ for any $T \in B(\mathscr{H})$.

Recall that *the reflexive closure* of a subspace $\mathscr{S} \subset B(\mathscr{H})$ is given by

$$\operatorname{Ref} \mathscr{S} = \{ T \in B(\mathscr{H}) : Tx \in [\mathscr{S}x] \text{ for all } x \in \mathscr{H} \},\$$

where $[\cdot]$ denotes the norm-closure. A subspace \mathscr{S} is called *reflexive*, if $\mathscr{S} = \operatorname{Ref} \mathscr{S}$ and \mathscr{S} is called *transitive*, if $\operatorname{Ref} \mathscr{S} = B(\mathscr{H})$. Transitivity means that there are no

© CENN, Zagreb Paper OaM-09-13

Mathematics subject classification (2010): Primary 47A15; Secondary 47L99.

Keywords and phrases: C-symmetric operators, preanihilator, reflexivity, hyperreflexivity.

rank-one operators in the preanihilator. Reflexivity means, in contrast, that we have "a lot" of rank-one operators in the preanihilator. Namely, due to [7] we know that when \mathscr{S} is a weak* closed subspace of $B(\mathscr{H})$, then \mathscr{S} is reflexive if and only if \mathscr{S}_{\perp} is a closed linear span of rank-one operators contained in \mathscr{S}_{\perp} (i.e., $\mathscr{S}_{\perp} = [\mathscr{S}_{\perp} \cap F_{1}]$). A subspace $\mathscr{S} \subset B(\mathscr{H})$ is called *k-reflexive* if $\mathscr{S}^{(k)} = \{S^{(k)} : S \in \mathscr{S}\}$ is reflexive in $B(\mathscr{H}^{(k)})$, where $S^{(k)} = S \oplus \ldots \oplus S$ and $\mathscr{H}^{(k)} = \mathscr{H} \oplus \ldots \oplus \mathscr{H}$. In [6, Theorem 2.1] it was proved that a weak* closed subspace $\mathscr{S} \subset B(\mathscr{H})$ is *k*-reflexive if and only if \mathscr{S}_{\perp} is a closed linear span of rank-*k* operators contained in \mathscr{S}_{\perp} (i.e., $\mathscr{S}_{\perp} = [\mathscr{S}_{\perp} \cap F_{k}]$).

Now we recall the definition of stronger property than reflexivity. Suppose that $\mathscr{S} \subseteq B(\mathscr{H})$ is a subspace. By $d(A,\mathscr{S})$ we denote the standard distance from an operator A to the subspace \mathscr{S} , i.e., $d(A,\mathscr{S}) = \inf\{||A - T|| : T \in \mathscr{S}\}$. In [1] Arveson defines an algebra \mathscr{W} as *hyperreflexive* if there is a constant κ such that

$$d(A, \mathscr{W}) \leq \kappa \sup\{\|P^{\perp}AP\| : P \in \operatorname{Lat} \mathscr{W}\} \text{ for all } A \in B(\mathscr{H}).$$

As it was shown in [6] the supremum on the right hand side of the inequality above is equal to $\sup\{|\langle A, g \otimes h \rangle| : g \otimes h \in \mathcal{W}_{\perp}, ||g \otimes h||_1 \leq 1\}$. It is known that when \mathscr{S} is weak* closed, then $d(A, \mathscr{S}) = \sup\{|tr(Af)| : f \in \mathscr{S}_{\perp}, ||f||_1 \leq 1\}$. Now we can generalize the definition of hyperreflexivity for *k*-hyperreflexivity not only for algebras but also for subspaces, see [4],[5]. For an operator $A \in B(\mathcal{H})$ and $k \in \mathbb{N}$ we consider the following quantity

$$\alpha_k(A,\mathscr{S}) = \sup\{|\langle A,t\rangle| \colon t \in \mathscr{S}_{\perp} \cap F_k, ||t||_1 \leq 1\},\$$

where $\langle A,t \rangle = tr(At)$. Recall that $d(A, \mathscr{S}) \ge \alpha_k(A, \mathscr{S})$ for every $A \in B(\mathscr{H})$. The subspace \mathscr{S} is called *k*-hyperreflexive if there is a constant κ such that

$$d(A,\mathscr{S}) \leqslant \kappa \, \alpha_k(A,\mathscr{S}), \quad A \in \mathcal{B}(\mathscr{H}). \tag{1}$$

It was noted in [4] that property of k-hyperreflexivity is stronger than k-reflexivity.

For more properties of *C*-symmetric operators we refer the reader to [3]. Recall only that the set of all *C*-symmetric operators $\mathscr{C} = \{T \in B(\mathscr{H}) : CTC = T^*\} \subset B(\mathscr{H})$ is a subspace, which is closed in norm, weak and strong operator topology. In the same manner it can be proved that \mathscr{C} is also weak* closed.

2. Transitivity

Let start with the following:

THEOREM 2.1. Let \mathscr{H} be a complex separable Hilbert space with an antilinear involution C. Let \mathscr{C} be the set of C-symmetric operators. The subspace \mathscr{C} is transitive.

Proof. Let $\{e_n\}$ be an orthonormal basis of \mathscr{H} such that $Ce_n = e_n$ (see [3, Lemma 1]). Let us consider a rank-one operator $x \otimes y \in \mathscr{C}_{\perp}$. By [3, Lemma 2] the operator $u \otimes Cu \in \mathscr{C}$ for all $u \in \mathscr{H}$. Hence $e_i \otimes e_i \in \mathscr{C}$, $i \in \mathbb{N}$. Thus

$$0 = \langle e_i \otimes e_i, x \otimes y \rangle = \langle (e_i \otimes e_i) x, y \rangle = \langle x, e_i \rangle \langle e_i, y \rangle.$$

Hence $x \perp e_i$ or $y \perp e_i$ for all $i \in \mathbb{N}$. Let $k \in \mathbb{N}$ be the smallest number such that $\langle x, e_k \rangle \neq 0$ and $l \in \mathbb{N}$ be the smallest number such that $\langle y, e_l \rangle \neq 0$. Clearly $k \neq l$ and $\langle x, e_l \rangle = 0$, $\langle y, e_k \rangle = 0$.

Consider vector $\alpha e_l + \beta e_k$ for $\alpha, \beta \neq 0$, then, by antilinearity of *C*, we have $C(\alpha e_l + \beta e_k) = \overline{\alpha} e_l + \overline{\beta} e_k$. Hence $(\alpha e_l + \beta e_k) \otimes (\overline{\alpha} e_l + \overline{\beta} e_k) \in \mathscr{C}$ for any $\alpha, \beta \neq 0$. Thus

$$0 = \langle (\alpha e_l + \beta e_k) \otimes (\overline{\alpha} e_l + \overline{\beta} e_k), x \otimes y \rangle$$

= $\langle x, \overline{\alpha} e_l + \overline{\beta} e_k \rangle \langle \alpha e_l + \beta e_k, y \rangle = \beta \langle x, e_k \rangle \alpha \langle e_l, y \rangle$

Since $\alpha, \beta \neq 0$ and $\langle x, e_k \rangle \neq 0$, $\langle e_l, y \rangle \neq 0$ we get the contradiction. Hence x = 0 or y = 0. \Box

3. Rank-two operators in the preanihilator of \mathscr{C}

In the previous section it was shown that there is no rank-one operator in the preanihilator of the space of all *C*-symmetric operators. In what follows we describe all rank-two operators in this preanihilator. Namely

THEOREM 3.1. Let \mathscr{H} be a complex separable Hilbert space with an antilinear involution C. Let \mathscr{C} be the set of all C-symmetric operators. Then

$$F_2 \cap \mathscr{C}_{\perp} = \{h \otimes g - Cg \otimes Ch : h, g \in \mathscr{H}\}.$$

To proof the theorem above we will need some lemmas for real Hilbert spaces.

LEMMA 3.2. Let \mathscr{H} be a real Hilbert space and let $h,h',g,g' \in \mathscr{H}$ have norm 1. Assume that

$$\langle A, h \otimes g - h' \otimes g' \rangle = 0 \quad for \ all \quad A = A^* \in \mathcal{B}(\mathscr{H}),$$
(2)

then $h \otimes g = h' \otimes g'$ or $h \otimes g = g' \otimes h'$.

As a special case of the previous lemma we will prove the following:

LEMMA 3.3. Let \mathscr{H} be a real Hilbert space and let $h, g \in \mathscr{H}$. If $\langle A, h \otimes g \rangle = 0$ for all $A = A^* \in B(\mathscr{H})$, then $h \otimes g = 0$.

Proof. Assume that $g, h \neq 0$. Note that for selfadjoint operator $h \otimes h$ we have

$$0 = \langle h \otimes h, h \otimes g \rangle = \|h\|^2 \langle h, g \rangle.$$

Thus $h \perp g$. Consider a selfadjoint operator $g \otimes h + h \otimes g$ and observe also that

$$0 = \langle g \otimes h + h \otimes g, h \otimes g \rangle = \|h\|^2 \|g\|^2 + \langle h, g \rangle \langle h, g \rangle = \|h\|^2 \|g\|^2.$$

Thus we get the contradiction. \Box

Proof of Lemma 3.2. Let $H_0 = span\{h, g\}$ and $H_1 = H_0^{\perp}$. Denote $h'_1 = P_{H_1}h'$, $g'_1 = P_{H_1}g'$. Then $0 = \langle h'_1 \otimes g'_1 + g'_1 \otimes h'_1, h \otimes g \rangle$. Since the operator $h'_1 \otimes g'_1 + g'_1 \otimes h'_1$ is selfadjoint, by (2) we have

$$\begin{split} 0 &= \langle (h'_1 \otimes g'_1 + g'_1 \otimes h'_1), h' \otimes g' \rangle \\ &= \langle h', g'_1 \rangle \langle h'_1, g' \rangle + \langle h', h'_1 \rangle \langle g'_1, g' \rangle = \langle h'_1, g'_1 \rangle^2 + \|h'_1\|^2 \|g'_1\|^2 \end{split}$$

Hence $h'_1 = 0$ or $g'_1 = 0$.

Assume that $h'_1 = 0$, i.e. $h' \in H_0$, and decompose $g = \beta h + g_0$, where $g_0 \perp h$. Observe that $\langle g_0 \otimes g_0, h \otimes g \rangle = 0$. Since $g_0 \otimes g_0$ is selfadjoint thus by (2)

$$0 = \langle g_0 \otimes g_0, h' \otimes g' \rangle = \langle h', g_0 \rangle \langle g_0, g' \rangle$$

and $h' \perp g_0$ or $g' \perp g_0$. If $h' \perp g_0$ and $h' \in H_0$ thus $h' = \alpha h$. Hence for all selfadjoit $A \in B(\mathscr{H})$ we have $\langle Ah, g \rangle = \langle A\alpha h, g' \rangle$. Thus $\langle Ah, g - \alpha g' \rangle = 0$. By Lemma 3.3, $g = \alpha g'$ and we get $h \otimes g = h' \otimes g'$.

Assume now that $g' \perp g_0$ and decompose $g' = \alpha h + g_1$, where $g_1 \perp H_0$. Note that

$$\langle g_1 \otimes g_0 + g_0 \otimes g_1, h \otimes g \rangle = \langle h, g_0 \rangle \langle g_1, g \rangle + \langle h, g_1 \rangle \langle g_1, g \rangle = 0.$$

Since $g_1 \otimes g_0 + g_0 \otimes g_1$ is selfadjoint thus

$$0 = \langle g_1 \otimes g_0 + g_0 \otimes g_1, h' \otimes g' \rangle$$

= $\langle h', g_0 \rangle \langle g_1, g' \rangle + \langle h', g_1 \rangle \langle g_0, g' \rangle = \langle h', g_0 \rangle ||g_1||^2.$

Hence $h' \perp g_0$ or $g_1 = 0$ thus $h' = \alpha h$ or $g' = \alpha h$. The case $h' = \alpha h$ was considered above. If $g' = \alpha h$, then for selfadjoint A we have $\langle Ah, g \rangle = \langle Ah', \alpha h \rangle = \langle Ah, \alpha h' \rangle$ and as before $g = \alpha h'$ and we get $h \otimes g = g' \otimes h'$.

Since for selfadjoint A we have $\langle Ah',g'\rangle = \langle h',Ag'\rangle = \langle Ag',h'\rangle$ thus (2) is equivalent to

$$\langle A, h \otimes g - g' \otimes h' \rangle = 0$$
 for all $A = A^* \in B(\mathscr{H}).$

The case $g'_1 = 0$ is symmetric. \Box

Proof of Theorem 3.1. In [3, Lemma 1] it was proved that each $h \in \mathcal{H}$ can be uniquely decomposed to $h = h_R + ih_I$, where $Ch_R = h_R$, $Ch_I = h_I$ and $||h||^2 = ||h_R||^2 + ||h_I||^2$. In other words, $\mathcal{H} = H_R + iH_I$, where H_R, H_I are real Hilbert spaces.

To show the inclusion " \supset " note that for $T \in \mathscr{C}$ we have

$$\begin{aligned} \langle T,h\otimes g-Cg\otimes Ch\rangle &= \langle Th,g\rangle - \langle TCg,Ch\rangle \\ &= \langle Th,g\rangle - \langle C^2h,CTCg\rangle = \langle h,T^*g\rangle - \langle h,CTCg\rangle = 0. \end{aligned}$$

For the converse inclusion " \subset " let us take the operator $h \otimes g - h' \otimes g'$ of rank at most 2. Consider the decomposition $h = h_R + ih_I$, $g = g_R + ig_I$, $h' = h'_R + ih'_I$, $g' = g'_R + ig'_I$. An operator *T* can be decomposed to $\begin{bmatrix} W & X \\ Y & Z \end{bmatrix}$ with respect to the decomposition $\mathcal{H} = H_R + iH_I$, where $W : H_R \to H_R$, $Z : H_I \to H_I$, $X : H_I \to H_R$, $Y : H_R \to H_I$. It can be easily obtained that *T* is *C*-symmetric if and only if $W = W^*$, $Z = Z^*$ and $Y = -X^*$, where the adjoints are taken with respect to the real Hilbert spaces.

If the operator $h \otimes g - h' \otimes g' \in \mathscr{C}_{\perp}$ then, in particular, $\langle W, h_R \otimes g_R - h'_R \otimes g'_R \rangle = 0$ for all selfadjoint operators W on the real Hilbert space H_R . Thus by Lemma 3.2 we get

$$h_R \otimes g_R = h'_R \otimes g'_R$$
 or $h_R \otimes g_R = g'_R \otimes h'_R$. (3)

Similarly $\langle Z, h_I \otimes g_I - h'_I \otimes g'_I \rangle = 0$ for all selfadjoint operators Z in the real Hilbert space H_I . Thus we get

$$h_I \otimes g_I = h'_I \otimes g'_I$$
 or $h_I \otimes g_I = g'_I \otimes h'_I$. (4)

Since $h \otimes g - h' \otimes g' \in \mathscr{C}_{\perp}$ thus it annihilates all operators with the decomposition $\begin{bmatrix} 0 & X \\ -X^* & 0 \end{bmatrix}$ according to the decomposition $\mathscr{H} = H_R + iH_I$, where $X : H_I \to H_R$ is an arbitrary operator. Thus

$$0 = \langle Xh_I, g_R \rangle - \langle X^*h_R, g_I \rangle - \langle Xh'_I, g'_R \rangle + \langle X^*h'_R, g'_I \rangle$$

= $\langle Xh_I, g_R \rangle - \langle Xg_I, h_R \rangle - \langle Xh'_I, g'_R \rangle + \langle Xg'_I, h'_R \rangle.$

Using (3) and (4) we will consider the following cases:

(a) $h'_R = \alpha g_R$, $g'_R = \frac{1}{\alpha} h_R$, $h'_I = \beta g_I$, $g'_I = \frac{1}{\beta} h_I$,

(b)
$$h'_R = \alpha h_R, \quad g'_R = \frac{1}{\alpha} g_R, \quad h'_I = \beta h_I, \quad g'_I = \frac{1}{\beta} g_I,$$

- (c) $h'_R = \alpha h_R$, $g'_R = \frac{1}{\alpha} g_R$, $h'_I = \beta g_I$, $g'_I = \frac{1}{\beta} h_I$,
- (d) $h'_R = \alpha g_R$, $g'_R = \frac{1}{\alpha} h_R$, $h'_I = \beta h_I$, $g'_I = \frac{1}{\beta} g_I$,

where $\alpha \neq 0$, $\beta \neq 0$.

Let us start with the crucial one (a). For any $X: H_I \to H_R$ we have

$$0 = \langle Xh_I, g_R \rangle - \langle Xg_I, h_R \rangle - \langle X\beta g_I, \frac{1}{\alpha}h_R \rangle + \langle X\frac{1}{\beta}h_I, \alpha g_R \rangle$$
$$= (1 + \frac{\alpha}{\beta})\langle Xh_I, g_R \rangle - (1 + \frac{\beta}{\alpha})\langle Xg_I, h_R \rangle$$

or equivalently

$$\langle X(\alpha+\beta)h_I, \alpha g_R \rangle = \langle X(\alpha+\beta)g_I, \beta h_R \rangle.$$
(5)

If $\beta = -\alpha$, then the equality (5) is fulfilled for any $X \in B(H_I, H_R)$. Thus by (a) we have

$$h \otimes g - h' \otimes g' = (h_R + ih_I) \otimes (g_R + ig_I) - (\alpha g_R - i\alpha g_I) \otimes (\frac{1}{\alpha}h_R - i\frac{1}{\alpha}h_I)$$

or equivalently

$$h \otimes g - h' \otimes g' = h \otimes g - Cg \otimes Ch.$$
(6)

If $\alpha + \beta \neq 0$, then $g_I = h_I$, $g_R = \frac{\beta}{\alpha}h_R$ by (5), since X is an arbitrary operator. Hence, using (a) we get

$$\begin{split} h \otimes g - h' \otimes g' &= (h_R + ih_I) \otimes (g_R + ig_I) - (\alpha g_R + i\beta g_I) \otimes (\frac{1}{\alpha} h_R + i\frac{1}{\beta} h_I) \\ &= (h_R + ih_I) \otimes (\frac{\beta}{\alpha} h_R + ih_I) - (\beta h_R + i\beta h_I) \otimes (\frac{1}{\alpha} h_R + i\frac{1}{\beta} h_I) = 0. \end{split}$$

Hence in this case we have inclusion " \subset ". Considering other cases from (b) to (d) and using similar calculations we obtain either equality (6) or 0 operator. \Box

Let now consider some examples of *C*-symmetries given in [3] in the context of Theorem 3.1.

EXAMPLE 3.4. A natural example of a *C*-symmetry in $l^2(\mathbb{N})$ is given by

$$C(z_0, z_1, z_2, \ldots) = (\overline{z_0}, \overline{z_1}, \overline{z_2}, \ldots).$$

In this case

$$\mathscr{C}_{\perp} \cap F_2 = \{h \otimes g - \overline{g} \otimes \overline{h} : h, g \in l^2(\mathbb{N})\}$$

EXAMPLE 3.5. Consider the classical Hardy space H^2 and take a nonconstant inner function u. Denote by $H_u = H^2 \ominus uH^2$. For $f \in H_u$ and $h \in H^2$ the formula

$$Cf = u\overline{zf}$$

defines a *C*-symmetry on H_u . Then

$$\mathscr{C}_{\perp} \cap F_2 = \{h \otimes g - u\overline{zg} \otimes u\overline{zh} : h, g \in H_u\}.$$

EXAMPLE 3.6. Let ρ be a bounded, positive continuous weight on the interval [-1,1], symmetric with respect to the midpoint of the interval: $\rho(t) = \rho(-t)$ for $t \in [0,1]$. Then

$$Cf(t) = \overline{f(-t)}$$

defines a C-symmetry on $L^2([-1,1],\rho dt)$. In this case

$$\mathscr{C}_{\perp} \cap F_2 = \{h(\cdot) \otimes g(\cdot) - \overline{g(-(\cdot))} \otimes \overline{h(-(\cdot))} : h, g \in L^2([-1,1],\rho dt)\}.$$

EXAMPLE 3.7. Consider the isometric antilinear operator

$$C(z_1, z_2) = (\overline{z}_2, \overline{z}_1)$$

on $\mathbb{C}^2.$ Then

$$\mathscr{C}_{\perp} \cap F_2 = \{(h_1, h_2) \otimes (g_1, g_2) - (\overline{g}_2, \overline{g}_1) \otimes (\overline{h}_2, \overline{h}_1) : (h_1, h_2), (g_1, g_2) \in \mathbb{C}^2\}.$$

4. 2-reflexivity and 2-hyperreflexivity

As the straightforward consequence of the previous section we have

THEOREM 4.1. Let \mathscr{H} be a complex separable Hilbert space with an antilinear involution *C*. The subspace $\mathscr{C} \subset B(\mathscr{H})$ of all *C*-symmetric operators is 2-reflexive.

Proof. If $T \notin C$, then $\langle T, h \otimes g - Cg \otimes Ch \rangle = \langle h, (T^* - CTC)g \rangle \neq 0$ for some $h, g \in \mathcal{H}$. This means that the rank-two operator $h \otimes g - Cg \otimes Ch$ separates T from C, hence $C_{\perp} \cap F_2$ is linearly dense in C_{\perp} . \Box

In fact we will prove stronger result for the space of *C*-symmetric operators than Theorem 4.1.

THEOREM 4.2. Let \mathscr{H} be a complex separable Hilbert space with an antilinear involution C. The subspace \mathscr{C} of all C-symmetric operators is 2-hyperreflexive with constant 1.

Proof. Let $A \in B(\mathcal{H})$. Note that by Theorem 3.1 we have

$$\begin{split} \alpha_{2}(A,\mathscr{C}) &= \sup\{|\mathrm{tr}(A(\frac{1}{2}(h\otimes g - Cg\otimes Ch)))| : \|\frac{1}{2}(h\otimes g - Cg\otimes Ch)\|_{1} \leqslant 1\} \\ &= \frac{1}{2}\sup\{|\langle Ah,g \rangle - \langle ACg,Ch \rangle| : \|\frac{1}{2}(h\otimes g - Cg\otimes Ch)\|_{1} \leqslant 1\} \\ &= \frac{1}{2}\sup\{|\langle h,A^{*}g \rangle - \langle h,CACg \rangle| : \|\frac{1}{2}(h\otimes g - Cg\otimes Ch)\|_{1} \leqslant 1\} \\ &= \frac{1}{2}\sup\{|\langle h,(A^{*} - CAC)g \rangle| : \|\frac{1}{2}(h\otimes g - Cg\otimes Ch)\|_{1} \leqslant 1\} \\ &\geq \frac{1}{2}\sup\{|\langle h,(A^{*} - CAC)g \rangle| : \|h\| \leqslant 1, \|g\| \leqslant 1\} \\ &= \frac{1}{2}\|A^{*} - CAC\|. \end{split}$$

Note that

$$C(A + CA^*C)C = CAC + C^2A^*C^2 = CAC + A^*$$

and

$$\langle CACx, y \rangle = \langle Cy, C^2ACx \rangle = \langle Cy, ACx \rangle$$

= $\langle A^*Cy, Cx \rangle = \langle C^2x, CA^*Cy = \langle x, CA^*Cy \rangle$

Since $(A + CA^*C)^* = A^* + CAC$, then $A + CA^*C \in \mathcal{C}$, which implies that

$$d(A, \mathscr{C}) \leq ||A - \frac{1}{2}(A + CA^*C)|| = \frac{1}{2}||A - CA^*C|| \leq \alpha_2(A, \mathscr{C}).$$

Hence \mathscr{C} is 2-hyperreflexive with constant 1. \Box

REFERENCES

- [1] W. T. ARVESON, Interpolation problems in nest algebras, J. Funct. Anal. 20 (1975), 208–233.
- [2] J. B. CONWAY, A course in operator theory, AMS, Graduate studies in mathematics; v. 21.
- [3] S. R. GARCIA, M. PUTINAR, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358, 3 (2005), 1285–1315.
- [4] K. KLIŚ, M. PTAK, k-hyperreflexive subspaces, Houston J. Math. 32, 1 (2006), 299-313.
- [5] J. KRAUS, D. LARSON, Some applications of a technique for constructing reflexive operator algebras, J. Operator Theory 13 (1985), 227–236.
- [6] J. KRAUS, D. R. LARSON, *Reflexivity and distance formulae*, Proc. London Math. Soc. 53 (1986), 340–356.
- [7] W. E. LONGSTAFF, On the operation Alg Lat in finite dimensions, Lin. Alg. Appl. 27 (1979), 27–29.
- [8] J. R. RINGROSE, Compact non-self-adjoint operators, Van Nostrand-Reinhold, New York, 1971.

(Received March 24, 2014)

Kamila Kliś-Garlicka Institute of Mathematics University of Agriculture Balicka 253c 30-198 Krakow, Poland e-mail: rmklis@cyfronet.pl

Marek Ptak Institute of Mathematics University of Agriculture Balicka 253c 30-198 Krakow, Poland and Institute of Mathematics Pedagogical University ul. Podchorążych 2 30-084 Kraków, Poland e-mail: rmptak@cyfronet.pl

Operators and Matrices www.ele-math.com oam@ele-math.com