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A SIMPLE SUFFICIENT CONDITION FOR COMPLETE POSITIVITY
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(Communicated by R. Bhatia)

Abstract. We use row sums and rank to give a sufficient condition on the diagonal entries of a
doubly nonnegative matrix for it to be completely positive and its cp-rank equal to its rank.

1. Introduction

Let R be the set of real numbers, and R+ be the set of nonnegative real numbers.
An n× n real matrix A is called completely positive (CP) if there is some entrywise
nonnegative m×n matrix B such that A = BT B . The minimum m is called the cp-rank
of A and is denoted by cp-rank(A) , the corresponding B is called a minimal cp-factor
of A . An n× n entrywise nonnegative matrix is called doubly nonnegative (DN) if it
is also positive semi-definite. As usual, we denote DNn the set of DN matrices of order
n � 1, and CPn the set of CP matrices of order n � 1.

A CP matrix is obviously a DN matrix, but the converse is generally not true
for matrices of order greater than four [3]. There are three basic problems about CP
matrices:

1. Determine which DN matrices are CP.

2. Determine cp-rank(A) if A is CP.

3. Find a minimal cp-factor if cp-rank(A) is known.

There are many partial solutions to these problems in literature, see [1] for a com-
prehensive survey up to 2003. We mention the one by Kaykobad [4] using diagonally
dominance: if a DN mairx A = [ai j] satisfies the condition |aii| � ∑ j �=i |ai j| for all i
then A is CP with cp-rank � number of nonzero entries above the diagonal + number
of strictly diagonally dominant rows. Kaykobad’s result can be restated as follows: if
A = [ai j] ∈ DNn is such that, for all i ,

aii �
1
2
Ri

where Ri = ∑n
j=1 ai j is the i-th row sum, then A∈CPn . Therefore large diagonal entries

(relative to row sums) guarantee complete positivity. In Section 2, we prove our main
result which states that small diagonal entries (relative to row sums) also guarantee
complete positivity. In Section 3, we compare our result with a recent result of Reams
[7].

Mathematics subject classification (2010): 15A23, 15B48, 15B57.
Keywords and phrases: completely positive; doubly nonnegative; cp-rank.

c© � � , Zagreb
Paper OaM-09-14

233

http://dx.doi.org/10.7153/oam-09-14


234 W. SO AND C. XU

2. Main result

In this section, we give a sufficient condition on the diagonal entries of a doubly
nonnegative matrix A of rank r for A to be completely positive with cp-rank equals r .
The proof is based on the following consequence of Cauchy-Schwarz inequality:

(z1 + · · ·+ zk)2 � k(z2
1 + · · ·+ z2

k)

where z1, . . . ,zk are real numbers. Let e be the vector in Rr with all entries equal
to 1, 〈·, ·〉 be the standard inner product, and ‖ · ‖ be the Euclidean norm of a vector.
The next lemma shows that any vector with a small angle with e also has nonnegative
entries.

LEMMA 2.1. Let z ∈ Rr be such that 〈z,e〉 �
√

r−1
r ‖z‖‖e‖ . Then z ∈ Rr

+ .

Proof. Without loss of generality, we assume z = [z1,z2, . . . ,zr]T where z1 � z2 �
· · · � zr . Then the hypothesis is

z1 + z2 + · · ·+ zr �
√

(r−1)(z2
1 + · · ·+ z2

r ) � 0,

and so
(z1 + z2 + · · ·+ zr)2 � (r−1)(z2

1 + · · ·+ z2
r ).

Now suppose the contrary that there exists 1 � k � r−1 such that z1 � · · · � zk � 0 >
zk+1 � · · · � zr . Hence, z1 + z2 + · · ·+ zk � 0 and −(zk+1 + · · ·+ zr) > 0. It follows
from the Cauchy-Schwarz inequality above that

(z1 + · · ·+ zk + zk+1 + · · ·+ zr)2 � (z1 + · · ·+ zk)2 +(zk+1 + · · ·+ zr)2

� k(z2
1 + · · ·+ z2

k)+ (r− k)(z2
k+1 + · · ·+ z2

r ).

Combining with the hypothesis, we have

(r−1)(z2
1 + · · ·+ z2

r ) � k(z2
1 + · · ·+ z2

k)+ (r− k)(z2
k+1 + · · ·+ z2

r ),

and so
(r−1− k)(z2

1 + · · ·+ z2
k)+ (r−1− r+ k)(z2

k+1 + · · ·+ z2
r ) � 0.

Because of zk+1 < 0 and z1 + z2 + · · ·+ zr � 0, it follows that r− 1− k = 0 and r−
1− r + k = 0, i.e., k = 1 and r = 2. Consequently, we have z1 � 0 > z2 , and so

z1z2 < 0. On the other hand, the hypothesis gives z1 +z2 �
√

z2
1 + z2

2 , and so 2z1z2 � 0,
a contradiction! �

EXAMPLE 2.2. This example shows that the parameter
√

r−1
r in Lemma 2.1 is

optimal. For c <
√

r−1
r , choose small ε > 0 such that −ε +

√
r−1

√
1− ε2 > c

√
r .

Take
z = [−ε

√
r−1,

√
1− ε2, · · · ,

√
1− ε2] /∈ Rr

+
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and so ‖z‖ =
√

r−1, ‖e‖ =
√

r ,

〈z,e〉 = −ε
√

r−1+(r−1)
√

1− ε2

=
√

r−1(−ε +
√

r−1
√

1− ε2) > c‖z‖‖e‖ .

LEMMA 2.3. Given vectors βi ∈ Rr . If there exists a nonzero vector x ∈ Rr such
that

〈βi, x〉 �
√

r−1
r

‖βi‖‖x‖
for all i , then there exists an orthogonal matrix Q such that Qβi ∈ Rr

+ for all i .

Proof. Case 1: x is a positive multiple of e , i.e., x = ‖x‖√
r e . Then take Q to be the

identity matrix I , and we have Qx = x = ‖x‖√
r e ∈ Rr

+ .

Case 2: x is not a positive multiple of e . Then v = x− ‖x‖√
r e �= 0. Take Q =

I− 2
vT v

vvT . Hence, Q is orthogonal since

QT Q = Q2 =
(

I− 2
vT v

vvT
)2

= I− 4
vT v

vvT +
4

(vT v)2 vvT vvT

= I− 4
vT v

vvT +
4

vT v
vvT = I.

Moreover vT x = xT x− ‖x‖√
r eT x and

vT v =
(

xT − ‖x‖√
r
eT

)(
x− ‖x‖√

r
e

)

= xT x− 2‖x‖√
r

eT x+
‖x‖2

r
eT e

= 2

(
xT x− ‖x‖√

r
eT x

)

= 2vTx.

And so

Qx = x− 2
vT v

vvT x

= v+
‖x‖√

r
e− 2

vT v
vvT x

=
(

1− 2
vT v

vT x

)
v+

‖x‖√
r
e

=
‖x‖√

r
e.
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Finally, in both cases, we have

〈Qβi,e〉
‖Qβi‖‖e‖ =

〈Qβi,
‖x‖√

r e〉
‖Qβi‖‖‖x‖√

r
e‖

=
〈Qβi,Qx〉
‖Qβi‖‖Qx‖ =

〈βi,x〉
‖βi‖‖x‖ �

√
r−1

r
,

and so Qβi ∈ Rr
+ by Lemma 2.1. �

The following result of Gray and Wilson [2] can be proved by Lemma 2.3.

COROLLARY 2.4. Let A∈DNn with rank(A)= 2 . Then A∈CPn with cp-rank(A)=
2 .

Proof. Since A is a positive semidefinite matrix of rank 2, we have A = BT B for
some 2×n matrix B = [v1,v2, . . . ,vn] where vi ∈ R2 . Moreover A is nonnegative, and
so vT

i v j =
〈
vi,v j

〉
� 0. Take x ∈R2 to be the angle bisector of the largest angle among

all pairs of vectors. Then 〈vi,x〉 �
√

1
2‖vi‖‖x‖ for all i . By Lemma 2.3, there exists

orthogonal Q such that Qvi � 0. Consequently, A = BT B = (QB)T (QB) is CP with
cp-rank(A) = 2. �

Now we give a simple sufficient condition for complete positivity.

THEOREM 2.5. Let A = [ai j] ∈ DNn with rank(A) = r , and denote Ri the i-th
row sum of A. If

rR2
i � (r−1)aii(R1 + · · ·+Rn)

for all i then A ∈CPn with cp-rank(A) = r .

Proof. Since A is a positive semidefinite matrix of rank r , A = BT B for some
r× n matrix B = [β1, β2, . . . ,βn] where βi ∈ Rr . Note that βi = Bei where ei is the
i-th column of the n× n identity matrix. Take x = β1 + β2 + · · ·+ βn = Be1 +Be2 +
· · ·+Ben = B(e1 + · · ·+ en) = Be . Now

〈βi,x〉 = 〈Bei,Be〉 = eT
i BT Be = eT

i Ae = Ri,

‖βi‖2 = 〈βi,βi〉 = 〈Bei,Bei〉 = eT
i BTBei = eT

i Aei = aii,

and
‖x‖2 = 〈x,x〉 = 〈Be,Be〉 = eT BTBe = eT Ae = R1 + · · ·+Rn.

Hence, by hypothesis,

〈βi,x〉
‖βi‖‖x‖ =

Ri√
aii
√

R1 + · · ·+Rn
�

√
r−1

r
.

By Lemma 2.3, there exists an r× r orthogonal matrix Q such that Qβi � 0, and so
QB is an r×n nonnegative matrix. Consequently, A = BTB = BTQT QB = (QB)T (QB)
is CP with cp-rank(A) � r . On the other hand, r = rank(A) � cp-rank(A) , so we have
cp-rank(A) = r . �
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Note that the proofs of Lemma 2.3 and Theorem 2.5 indeed provide a method
to find a minimal cp-factor. The next two examples show how to use the sufficient
condition in Theorem 2.5 to determine a given DN matrix of rank 3 to be CP with
cp-rank being 3.

EXAMPLE 2.6. Consider matrix

A =

⎡
⎢⎢⎣

93 27 55 45
27 45 33 51
55 33 41 43
45 51 43 62

⎤
⎥⎥⎦ .

It is easy to check that A ∈ DN4 with rank(A) = 3. Using the result of Maxfield and
Minc [6] that any 4×4 DN matrix is CP (whose cp-rank is less than or equal to 4), we
know that A is CP, but we don’t know its exact cp-rank. However, by Theorem 2.5, we
know that A ∈CP4 with cp-rank(A) = 3.

EXAMPLE 2.7. Consider matrix

A =

⎡
⎢⎢⎢⎢⎣

41 43 80 56 50
43 62 89 78 51
80 89 162 120 93
56 78 120 104 62
50 51 93 62 65

⎤
⎥⎥⎥⎥⎦ .

Then A ∈ DN5 with rank(A) = 3. But the result of Maxifeld and Minc [6] cannot be
applied. Nonetheless, it can be easily checked that the sufficient condition in Theorem
2.5 is satisfied and so A ∈CP5 with cp-rank(A) = 3.

REMARK 2.8. Unfortunately, the sufficient condition in Theoem 2.5 is far from

necessary. For example, the diagonal matrix

[
100 0
0 1

]
∈ DN2 = CP2 but it fails the

condition in Theorem 2.5.
Without using the rank of the matrix, we have the following weaker result.

COROLLARY 2.9. If A ∈ DNn is such that aii � nR2
i

(n−1)(R1+R2+···+Rn)
for all i then

A ∈CPn .

Note that the matrix A in Example 2.7 fails the sufficient condition in Corollary
2.9, but satisfies the sufficient condition in Theorem 2.5. For matrix with constant row
sums, the sufficient condition looks even simpler.

COROLLARY 2.10. Let A ∈DNn with rank(A) = r . If A has constant row sum R
such that aii � rR

(r−1)n for all i , then A ∈CPn with cp-rank(A) = r .
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3. Discussion

Recently, Reams [7] gave a sufficient condition for complete positivity. We restate
his result as follows.

THEOREM 3.1. If A = [ai j] ∈ DNn has the perron value ρ > 0 and perron vector
v = [vi] > 0 with vp = mini vi such that

aii �
ρv2

i

∑ j �=p v2
j

for all i , then A ∈ CPn . Indeed if A = C2 for some positive semi-definite C then
C ∈ DNn .

Theorem 2.5 and Theorem 3.1 are similar in the sense that both sufficient con-
ditions involve smallness of the diagonal entries. Moreover, the following result of
Marcus and Minc [5] can be deduced from either Theorem 2.5 (use Corollary 2.9) or
Theorem 3.1 [7, Corollary 2].

COROLLARY 3.2. If A = [ai j]∈DNn has constant row sum 1 with aii � 1
n−1 then

A ∈CPn .

On the other hand, Reams’ result asserts that A =C2 for some DN matrix C but it
says nothing about cp-rank of A . And, our result asserts that cp-rank(A) = rank(A) but
say nothing about nonnegativity of A’s square root. Next example shows that Theorem
2.5 applies, but Theorem 3.1 does not apply.

EXAMPLE 3.3. Consider the matrix

A =

⎡
⎢⎢⎣

93 27 55 45
27 45 33 51
55 33 41 43
45 51 43 62

⎤
⎥⎥⎦ .

The perron value is ρ = 191.0752, and the perron vector is

vT =
[
0.6307 0.3962 0.4571 0.5193

]
.

Then

a11 = 93 �� 82.5969 =
ρv2

1

∑ j �=2 v2
j

i.e., Theorem 3.1 fails. However, from Example 2.6, A is CP by Theorem 2.5.
Finally we remark that we could find NO example such that Theorem 3.1 can be

applied but Theorem 2.5 cannot.

Acknowledgement. The authors would like to thank Professor Jor-Ting Chan for
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