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SPECTRAL GAP ESTIMATES FOR SOME BLOCK MATRICES

IVAN VESELIĆ AND KREŠIMIR VESELIĆ

(Communicated by A. Böttcher)

Abstract. We estimate the size of the spectral gap at zero for some Hermitian block matrices.
Included are quasi-definite matrices, quasi-semidefinite matrices (the closure of the set of the
quasi-definite matrices) and some related block matrices which need not belong to either of these
classes. Matrices of such structure arise in quantum models of possibly disordered systems with
supersymmetry or graphene like symmetry. Some of the results immediately extend to infinite
dimension.

1. Introduction

Consider (finite) Hermitian block matrices of the form

H =
[

A B
B∗ −C

]
(1)

(the minus sign is set by convenience). If A,C are positive definite then the matrix H is
called quasi-definite. These matrices have several remarkable properties, one of them
being that they are always nonsingular with a spectral gap at zero,

ρ(H) ⊇ (−minσ(C),minσ(A)) (2)

(ρ the resolvent set, σ the spectrum). That is, the spectral gap of the block-diagonal
part of H in (1) can only grow if any B is added. Moreover, quasi-definite matrices
have two remarkable monotonicity properties:

(A) If B is replaced by tB , t > 0, then all the eigenvalues go monotonically asunder
as t is growing ([18],[11]).

(B) The same holds if A,C is replaced by A+ tI,C+ tI , t > 0, respectively ([9]).

In this note we study some related classes of matrices. If in (1) the blocks A,C
are allowed to be only positive semidefinite then H will naturally be called quasi-
semidefinite. These matrices need not to be invertible.

It is relatively easy to characterise the nonsingularity of a quasi-semidefinite ma-
trix, see Proposition 2.1 below. Giving estimates for the gap at zero is more involved
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and this note offers some results in this direction. Since the size of the spectral gap at
zero is bounded from below by 2‖H−1‖−1 we will give various bounds for this quantity
in terms of the blocks A,B,C where A,C are only positive semidefinite and the prop-
erties of B come into play. It is known from [19] that the invertibility of B carries over
to H , but no bound for H−1 was provided there. Some bounds for H−1 were given in
[21].

As a technical tool we derive a bound for the matrix (I +AC)−1 with A,C positive
semidefinite which might be of independent interest. We also sketch a related functional
calculus for such products. More specifically, the present article provides the following.

1. A bound for (I +AC)−1 with A,C positive semidefinite.

2. A characterisation of the nonsingularity of a quasi-semidefinite matrix.

3. A bound for H−1 based on the bound for B−1 including an immediate generali-
sation to unbounded Hilbert-space operators defined by quadratic forms. To this
general environment we also extend an elegant estimate obtained by [12] for the
special case A = C, B = B∗ .

4. A bound for H−1 based on the geometry of the null-spaces of all of A,B,C and
certain restrictions of these operators to the orthogonal complements of these
null-spaces.

5. Several counterexamples; some of them showing that some plausibly looking
generalisations of the properties (A), (B) above are not valid.

6. A monotonicity and a sharp spectral inclusion result for the case of Stokes matri-
ces (those with C = 0).

7. A study of the spectral gap of a particular class of matrices which arise in the
quantum mechanical modelling of disordered systems (see e.g. [4]). There we
have C = A in (1), but A is not necessarily positive definite. In particular, we will
illustrate how changing boundary conditions can remove spurious eigenvalues
from the gap. This is a specific, thoroughly worked out example on how to deal
successfully with what is called spectral pollution.

Let us remark that the variety of special cases as well as techniques which we use
illustrate the fact that we did not succeed in obtaining a unified framework for spectral
gap estimates for general quasi-definite matrices.

Quasi-semidefinite matrices and their infinite dimensional analogs have important
applications in Mathematical Physics. Although we here have no space to discuss the
relevant models in detail, we would like to convey an impression of the questions arising
in this context. These have been the motivation for much of the research presented
here. Certain types of Dirac operators are important examples. In these cases the
nonsingularity of H is typically due to the one of B (see [21] where this phenomenon
was dubbed ’off-diagonal dominance’).

Another particular motivation are quantummechanical models of disordered solids.
While this is a well established research field, recently there has been interest in such
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models which give rise to operators with block-structure, see e.g. [12] or [4]. For some
of these models the block structure is a consequence of the Dirac-like symmetry arising
in Hamiltonians describing graphene.

Let us describe some of the specific spectral features which are of interest in this
context. We consider several instances of one-parameter Hermitian pencils A+ t B,t ∈
R . The well known monotonicity property, namely that the eigenvalues of A+ t B grow
monotonically in t , if B is positive semidefinite can, at least partly, be carried over to
quasi-definite matrices as show the properties (A), (B) listed above. Here a question
of particular importance is whether and how fast the spectral gap increases as t grows.
Several theorems of this paper provide answers to this question in specific situations.

As mentioned, certain physical models of disordered systems give rise to block-
structured operator families. In this context, estimates have to take into account the
following two important aspects.

(I) The size of the original physical system is macroscopic, i.e. essentially infinite.
A mathematical understanding of the physical situation is – as a rule – only possible by
analysing larger and larger finite sample systems which describe the original physical
situation in the thermodynamic limit.

This leads to finite matrices or to operators with compact resolvent. In any case,
effectively one can reduce the focus on a finite number, say n , of eigenvalues, when
analysing monotonicity properties. However, n is not fixed but growing unboundedly
as one passes to larger and larger sample scales.

Thus, efficient estimates on spectral gaps (or derivatives of eigenvalues) are not
allowed to depend on the system size – expressed in the dimension of the matrix or the
number of eigenvalues n . We will pay special attention to this issue in the following.

(II) Due to the fact that one wants to model a disordered system, with a large
number of degrees of freedom, there is in fact not just one coupling constant ∈ R ,
but rather a whole collection (t j) j∈Z of them. Thus the considered operator pencil is
originally of the form

A+∑
j

t j B j .

A one-parameter family arises if one freezes all coupling constants except for one. As a
consequence, one is not dealing with one fixed unperturbed operator A , but rather with
a whole collection of them, depending on the background configuration of the (other)
coupling constants (t j, j �= 0) . For this reason it would be desirable to obtain estimates
on the spectral gap which do not depend on specific features of A .

The plan of the paper is as follows. In the next section we provide certain basic
preliminary estimates for quasi-semidefinite matrices. In Section 3 the main results
concerning the spectral gap size of such matrices are stated. These results are formu-
lated for finite matrices. In Section 4 we explain which results carry immediately over
to the setting of (possibly unbounded) operators defined as quadratic forms. This in-
cludes the mentioned generalisation of an estimate from [12], as well as a comparison
with bounds obtained in [21]. In Section 5 we consider Stokes matrices. By reduction
to a quadratic eigenvalue problem we (i) prove monotonicity properties of the eigen-
values (but not as it would be naively expected from cases (A) and (B) above), then (ii)
give a tight bound for the two eigenvalues closest to zero. The last section considers
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a special class of finite difference matrices, not necessarily quasi-definite, studied in
[4]. Here we show that a stable spectral gap at zero can be achieved by an appropriate
tuning of boundary conditions. Similar phenomena, yet without rigorous proofs, are
numerically observed on related models with random diagonal entries.

2. Some preliminary results

To set the stage we collect some rather elementary statements and estimates.

PROPOSITION 2.1. A quasi-semidefinite matrix

H =
[

A B
B∗ −C

]
.

is singular if and only if at least one of the subspaces

N (A)∩N (B∗), N (C)∩N (B)

(N denoting the null-space) is non-trivial. Moreover, in the obvious notation,

N (H) =
[

N (A)∩N (B∗)
N (C)∩N (B)

]
. (3)

The value min(σ(A)) is an eigenvalue of H if and only if N (B∗) = {0} (and similarly
for min(−σ(C))).

Proof. The equations

Ax+By = 0, B∗x−Cy = 0

imply
x∗Ax+ x∗By = 0, y∗B∗x− y∗Cy = 0.

Since both x∗Ax and y∗Cy are real and non-negative, the same is true of ±x∗By such
that, in fact, all three expressions vanish. Since A,C are Hermitian positive semidefinite
this implies Ax = 0 and Cy = 0, then also B∗x = 0 and By = 0. This proves (3); for
the last assertion apply (3) to the matrix H−min(σ(A))I . The other assertions follow
trivially. �

COROLLARY 2.2. The matrix H is nonsingular if and only if the matrices

A+
√

BB∗, C+
√

B∗B

are positive definite.

COROLLARY 2.3. The null-space of the matrix H from (1) does not change if A
is replaced by tA, t > 0 and similarly with B,C.
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To quantify the influence of B in (1) on the spectral gap in the quasi-definite case
we proceed as follows. First note the fundamental equality, valid for all selfadjoint
operators, saying that

‖(H−λ I)−1‖ = dist(λ ,σ(H)). (4)

Taking any λ from the open interval (−minσ(C),minσ(A)) we have

H−λ I =
[

(A−λ I)1/2 0
0 (C+ λ I)1/2

]
W

[
(A−λ I)1/2 0
0 (C+ λ I)1/2

]
with

W =
[

I Z
Z∗ −I

]
, Z = (A−λ I)−1/2B(C+ λ I)−1/2.

As it is readily seen, the eigenvalues of the matrix W are ±
√

1+ σ2
i , where σi are the

singular values of Z (cf. [15]). Thus,

‖W‖ =
√
‖I +Z∗Z‖, ‖W−1‖ =

√
‖(I +Z∗Z)−1‖.

This gives the estimate

‖(H−λ I)−1‖ �
√‖(I +Z∗Z)−1‖

min{min(σ(A)−λ ),min(σ(C)+ λ )
. (5)

Therefore by taking e.g. λ = λ0 = 1
2 (min(σ(A)−min(σ(C)) we obtain

‖(H−λ0I)−1‖ � 2
√‖(I +Z∗Z)−1‖

min(σ(A)+min(σ(C)
. (6)

We see that the gap is stretched at least by the factor

‖(I +Z∗Z)−1‖−1/2 =
√

1+min
i

σ2
i .

3. Spectral bounds for quasi-semidefinite matrices.

We will particularly be interested in how the appearance of the block B can create
a spectral gap at zero if A,C alone are unable to do so. The size of this gap is bounded
from below by the quantity 2/‖H−1‖ , cf. (4).

As a preparation we will consider the matrices of the form I +AC with A,C posi-
tive semidefinite. These will play a key role in our estimates and may have an indepen-
dent interest of their own. Note that they are generally not Hermitian.

THEOREM 3.1. Let A,C be Hermitian positive semidefinite. Then
(i)

σ(AC) = σ(CA) ⊆ [0,∞), (7)
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(ii)

‖(I +AC)−1‖ � 1+
min{‖A‖1/2‖L∗C‖, ‖C‖1/2‖‖AM‖}

1+minσ(AC)
(8)

where
A = LL∗, C = MM∗, (9)

(iii) the matrix AC is diagonalisable.

Proof. The statements (i), (iii) above are not new (see [7], [8], respectively). To
prove (ii) note that

(λ I +AC)−1 =
1
λ

I− 1
λ

(λ I +AC)−1AC =
1
λ

I− 1
λ

(λ I +LL∗C)−1LL∗C

=
1
λ

I− 1
λ

L(λ I +L∗CL)−1L∗C, (10)

So the spectra of CA and L∗CL coincide - up to possibly the point zero. Now, L∗CL is
Hermitian positive semidefinite, hence

‖(I +L∗CL)−1‖ =
1

1+minσ(L∗CL)
=

1
1+minσ(AC)

and therefore

‖(I +AC)−1‖ � 1+
‖L‖‖L∗C‖

1+minσ(AC)
.

The second half of (8) is similar. �

From (8) it immediately follows that

‖(I +AC)−1‖ � 1+
‖A‖1/2‖C‖1/2‖L∗M‖

1+minσ(AC)
� 1+‖A‖‖C‖. (11)

PROPOSITION 3.2. Let A,C be Hermitian positive semidefinite. Then

‖I +AC‖ � 1 (12)

and equality is attained if and only if AC = 0 .

Proof. Since the norm dominates the spectral radius, and by (7) the latter is not
less than one, (12) follows.

In the case of equality, the whole spectrum consists of the single point 1 , that is,
the spectrum of AC = A1/2A1/2C is {0} . Then the spectrum of the Hermitian matrix
A1/2CA1/2 also equals {0} . Hence A1/2CA1/2 = (C1/2A1/2)∗C1/2A1/2 = 0 and then
also AC = (CA)∗ = 0. �
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THEOREM 3.3. Let in (1) the matrix B be square and invertible and let

α = sup
x�=0

x∗Ax

x∗
√

BB∗x
, γ = sup

x�=0

x∗Cx

x∗
√

B∗Bx
. (13)

Then
‖H−1‖ � ‖B−1‖(1+max{α,γ}+ αγ) . (14)

Proof. Using the polar decomposition B =U
√

B∗B =
√

BB∗U we get the factori-
sation

H =
[

(BB∗)1/4 0
0 (B∗B)1/4

][
Ã U

U∗ −C̃

][
(BB∗)1/4 0

0 (B∗B)1/4

]
(15)

with
Ã = (BB∗)−1/4A(BB∗)−1/4, C̃ = (B∗B)−1/4C(B∗B)−1/4.

Also, [
Ã U

U∗ −C̃

]−1

=
[

(I + ĈÃ)−1Ĉ U(I + C̃Â)−1

(I + ÂC̃)−1U∗ −Â(I + C̃Â)−1

]
(16)

where
Â = U∗ÃU, Ĉ = UC̃U∗

are again Hermitian positive semidefinite. This is immediately verified taking into ac-
count the identity

(I + ÂC̃)−1U∗ = U∗(I + ÃĈ)−1. (17)

This, together with the identities of the type

(I + ĈÃ)−1Ĉ = Ĉ1/2(I + Ĉ1/2ÃĈ1/2)−1Ĉ1/2 (18)

and the obvious inequality∣∣∣∣∣∣∣∣[E F
G K

]∣∣∣∣∣∣∣∣� max{‖E‖,‖K‖}+max{‖F‖,‖G‖},

permits the use of (11) and the factorisation (15) to obtain (14). Here we have used the
obvious identities

α = ‖Ã‖ = ‖Â‖, γ = ‖C̃‖ = ‖Ĉ‖
and the fact that U is unitary. �

If B is replaced by tB , t > 0 then (14) goes over into

‖H−1‖ � ‖B−1‖
t

(
1+

max{α,γ}
t

+
αγ
t2

)
. (19)

Note that here the right-hand side is monotonically decreasing in t .
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The proof of Theorem 3.3 may appear odd: the estimate for the inverse of a Her-
mitian matrix H relies heavily on the estimate for the inverse of some non-Hermitian
matrices of the type I + AC . But this is the price for halving the dimension of the
problem in working with ’non-symmetric’ Schur complements.

On the other hand, if both A , C are positive definite then setting C̃ = Ĉ = C, Ã =
Â = A, U = I in (16), the inclusion (2) yields

‖(I +AC)−1‖ � max{‖A−1‖,‖C−1‖}. (20)

REMARK 3.4. By (7) the spectrum of I +AC is uniformly bounded away from
zero, so one may ask whether there is a uniform bound for the norm of its inverse. The
answer is negative as shows the following example which is due to M. Omladič (private
communication). Set

A =
[
t 0
0 1/t

]
, C =

[
1/t 1
1 t

]
.

Then

I +AC =
[

2 t
1/t 2

]
, (I +AC)−1 =

1
3

[
2 −t

−1/t 2

]
, (21)

and this is not bounded as t varies over the positive reals.

Numerous numerical experiments with random matrices led us to conjecture the
bound

‖(I +AC)−1‖ � ‖I +AC‖. (22)

This conjecture is true (i) in dimension two, (ii) if one of the matrices A,C has rank one
and (iii) if A,C commute; in the last case with the trivial bound

‖(I +AC)−1 ‖ � 1. (23)

However, the estimate (22) is in general false. A nice counterexample, communicated
to us by A. Böttcher, is as follows. Set⎡⎣ 1 0 0

−20 1.1 0
0 −20 1.2

⎤⎦ .

A numerical calculation gives

‖I +M‖ = 21.177 < 22, ‖(I +M)−1‖ = 43.774 > 42.

Now, (cf. eg. [2]) any diagonalisable matrix M with non-negative eigenvalues (our M
is such) is a product of two Hermitian positive semidefinite matrices. Indeed, if

M = UΛU−1

with Λ � 0 diagonal then

M = (UΛ1/2U∗)(U−∗Λ1/2U−1),
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thus yielding a counterexample to the conjecture.
We now turn to the more complicated case in which A,C may have null-spaces and

the invertibility of H is due to the conspiring of all three blocks A,B,C . As an addi-
tional information we will need lower bounds for the non-vanishing part of σ(A),σ(C) .
Thus, it will be technically convenient to represent H in a block form which explicitly
displays these null-spaces:

H =

⎡⎢⎢⎣
A 0 B11 B12

0 0 B21 B22

B∗
11 B∗

21 −C 0
B∗

12 B∗
22 0 0

⎤⎥⎥⎦ . (24)

Here, for the notational simplicity, the new blocks A,C are the ‘positive definite restric-
tions’ of the original blocks A,C in (1). In view of Proposition 2.1, H is nonsingular if
and only if both matrices [

B∗
21 B∗

22

]
,

[
B12

B22

]
have full rank. The following theorem gives a new sufficient condition for invertibility
and subsequently a gap estimate.

THEOREM 3.5. Suppose that

H =
[

A B
B∗ −C

]
is quasi-semidefinite. Assume, in addition,

1. dim(N (A)) = dim(N (C))

2. B is a one-to-one map from N (C) onto N (A) .

That is, the block B22 in (24) is square and nonsingular. Then

(−ε,ε)∩σ(H) = /0

with

ε =
1

(1+max{‖B12B
−1
22 ‖,‖B∗

21B
−∗
22 ‖})2 max{‖A−1‖,‖C−1‖,‖B−1

22 ‖}
.

Proof. We represent H in the unitarily equivalent, permuted form⎡⎢⎢⎣
A B11 0 B12

B∗
11 −C B∗

21 0
0 B21 0 B22

B∗
12 0 B∗

22 0

⎤⎥⎥⎦=
[

Â B̂
B̂∗ Ĝ

]
. (25)
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By renaming this matrix again into H we now perform the decomposition

H =
[

I B̂Ĝ−1

0 I

][
Â− B̂Ĝ−1B̂∗ 0
0 Ĝ

][
I 0
Ĝ−1B̂∗ I

]
.

This yields the simple estimate

‖H−1‖ � (1+‖B̂Ĝ−1‖)2 max{‖(Â− B̂Ĝ−1B̂∗)−1‖,‖Ĝ−1‖}.
We now bound the single factors above:

Â− B̂Ĝ−1B̂∗ = Â−
[

0 B12

B∗
21 0

][
0 B−∗

22
B−1

22 0

][
0 B21

B∗
12 0

]
=
[

A B11−B12B
−1
22 B21

B∗
11−B∗

21B
−∗
22 B∗

12 −C

]
.

This matrix is quasi-definite, hence the interval (−minσ(C),minσ(A)) contains none
of its eigenvalues. Thus, Â− B̂Ĝ−1B̂∗ is invertible and

‖(Â− B̂Ĝ−1B̂∗)−1‖ � max{‖A−1‖,‖C−1‖}.
Furthermore,

‖Ĝ−1‖ = ‖B−1
22 ‖

and

B̂Ĝ−1 =
[

B12B
−1
22 0

0 B∗
21B

−∗
22

]
,

whence

‖H−1‖ � (1+max{‖B12B
−1
22 ‖,‖B∗

21B
−∗
22 ‖})2 max{‖A−1‖,‖C−1‖,‖B−1

22 ‖}. �

Note that the radius of the resolvent interval guaranteed in the previous theorem
depends on the spectra of some operators obtained from the original blocks A,B,C .

If in the preceding theorem we replace B by tB and t is sufficiently large then we
obtain

ε =
t

(1+max{‖B12B
−1
22 ‖,‖B∗

21B
−∗
22 ‖})2‖B−1

22 ‖
. (26)

Another relevant special case has A = C and B∗ = B , both positive definite. Then, as
was shown in [12], we have

ρ(H) ⊇ (−
√

minσ(A)2 +minσ(B)2,
√

minσ(A)2 +minσ(B)2 ). (27)

REMARK 3.6. The technique used in the proof of Theorem 3.1 is related to the
more general functional calculus for products AC with A,C bounded and selfadjoint
and C positive semidefinite in a general Hilbert space. It reads

f 
→ f (AC) = f (0)I +AC1/2 f1(C1/2AC1/2)C1/2 (28)
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with

f1(λ ) =
{ f (λ )− f (0)

λ , λ �= 0,
f ′(0), λ = 0,

By the property
f (XY )X = X f (YX), (29)

valid for any matrix analytic function f , this obviously extends the standard analytic
functional calculus and requires f to be differentiable at zero and otherwise just to be
bounded and measurable; then f1 will again be bounded and measurable and is applied
to a selfadjoint operator C1/2AC1/2 .1 This calculus is a Hilbert-space generalisation of
the assertions of Theorem 3.1 (i), (ii), only here the point zero may remain a sort of a
‘spectral singularity’.

The linearity and multiplicativity of the map f 
→ f (AC) is verified by straight-
forward algebraic manipulations. Also, if the functions f in (28) are endowed with the
norm

‖ f‖ = | f (0)|+‖ f1‖∞ (30)

then the map f 
→ f (AC) is obviously continuous. This admits estimating some other
interesting functions of AC , for instance, the group e−ACt , if both A and C are positive
semidefinite and t > 0. In this case f (λ ) = e−tλ and it is immediately verified that
| f1|, λ � 0, is bounded by t , whence

‖e−ACt‖ � 1+ t‖AC1/2‖‖C1/2‖ (31)

and similarly
‖e−ACt‖ � 1+ t‖CA1/2‖‖A1/2‖. (32)

REMARK 3.7. Extending monotonicity properties? In the introduction we have
stated two known monotonicity properties of the eigenvalues for some affine quasi-
definite pencils. It is natural to try to extend this monotonicity to some neighbouring
classes of matrix families. Some of our examples will be of the form

H =
[

A B
B∗ −A

]
(33)

with 2×2-matrices A∗ = A and B∗ = ±B and no (semi)definiteness assumption what-
soever. Here a straightforward calculation shows that the characteristic polynomial is

λ 4−2(‖A‖2
F +‖B‖2

F)λ 2 +
∣∣∣det(A−√∓1B)

∣∣∣2 (34)

where ‖ · ‖F means the Frobenius or Hilbert-Schmidt norm. This can be used to give a
general formula for the roots explicitly, see the Appendix.

1 This functional calculus, probably well-known by now, was communicated to the second author by the
late C. Apostol, Bucharest, more than forty years ago.
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If in a quasi-definite matrix (1) the matrices A and C increase (in the sense of
forms), then the estimate (2) certainly improves, but does the gap at zero also neces-
sarily increase? The answer is no as the following example due to W. Kirsch (private
communication) shows. Set

H =
[

A Bt

Bt −A

]
(35)

with

A =
[

2 −1
−1 2

]
, Bt =

[
1 0
0 t

]
.

The matrix is quasi-definite. By (34) the characteristic equation is readily found to be

λ 4− (11+ t2)λ 2 +13+5t2+2t = 0 (36)

and the absolutely smallest eigenvalue is given in Figure 1 as function of t , 5 < t < 20,
(conveniently scaled) and it shows a non-monotonic behaviour. Thus, there does not
seem to be a simple generalisation of the monotonicity property (A). On the other hand,
by the unitary similarity[

A Bt

Bt −A

]
=

1
2

[
I I
I −I

][
Bt A
A −Bt

][
I I
I −I

]
(37)

the same holds for the property (B).

5 10 15 20
5

5.5

6

6.5

7

7.5

Figure 1: Lack of monotonicity

Another likely generalisation of (B), namely to have monotone eigenvalues if in
(33) the matrix A is replaced by tA is also false. The counterexample is a numerical
one:

A =
[

1.24 0.81
0.81 0.53

]
, B =

[
0.30 −0.27

−0.31 −0.48

]
.
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Here both A and B are positive definite. The absolutely smallest eigenvalues for 5 <
t < 20 are shown in the Figure 2.

5 10 15 20 25 30
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Figure 2: Lack of monotonicity

Finally, a yet simpler quasi-semidefinite example is given by

H =
[

At B
−B −At

]
(38)

with

At =
[

0 0
0 t

]
, B =

[
0 1

−1 0

]
.

Note that det(H) = 1 for all t and that the spectrum −λ1,−λ2,λ2,λ1 is symmetric
w.r.t. zero. Thus if |λ1| increases, |λ2| has to decrease with growing t > 0. This

already shows that property (B) in the introduction cannot hold for t 
→ A+ t

[
0 0
0 1

]
.

Moreover, it turns out that the spectral gap of (38) shrinks to zero as t → ∞ .
At the end of this remark, let us formulate certain monotonicity properties of one-

parameter families of quasi-definite matrices which are possibly true, but we cannot
prove them at the moment. The open questions are:

• If A and C in

Ht =
[

A tB
tB∗ −C

]
, t > 0 (39)

are positive semidefinite, are all positive eigenvalues of Ht isotone functions of
t , and all negative eigenvalues of Ht antitone functions of t ? This would be an
extension of property (A) mentioned in the introduction.
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• Are, in this situation, the positive eigenvalues of Ht strictly increasing in t ?
Under which conditions on A , B , and C?

• Does this properties carry over to the infinite dimensional case, e. g. when Ht in
(39) is defined on �2(Z)× �2(Z) and A,B,C are bounded operators on �2(Z)?

• A particularly interesting special class of operators of this type is

Ht =
[−Δ tB

tB∗ −Δ

]
, t > 0 (40)

where Δ is the finite-difference Laplacian on �2(Z) , i.e.

Δφ(x) = ∑
y∈Z,y∼x

(
φ(y)−φ(x)

)
, x ∈ Z, φ ∈ �2(Z)

and where y ∼ x denotes the neighbours of x .

4. Unbounded operator matrices

Most of the results obtained above immediately extend to infinite dimensional
Hilbert space. Theorem 3.1 (except (iii)) and Proposition 3.2, together with their
proofs, apply literally to any bounded selfadjoint positive semidefinite operators A,C .
Theorem 3.3 even allows B,A,C to be unbounded. In fact, the last two may be just
quadratic forms, requiring, of course, that the quantities α,γ in (13), reformulated in
the quadratic form context, be finite, whereas B needs to have a bounded, everywhere
defined inverse. More precisely, in this setting, the operator H is defined by the form
block matrix [

a B
B∗ −c

]
(41)

where the symmetric sesquilinear forms a,c have to be defined on the form domains of√
BB∗,

√
B∗B , respectively, and the relative form bounds

α = sup
x�=0

a(x,x)
‖(B∗B)1/4x‖2

, γ = sup
x�=0

c(x,x)
‖(BB∗)1/4x‖2

(42)

need to be finite. So, the operators Ã,C̃, Â,Ĉ appearing in the proof of Theorem 3.3
will again be bounded and positive semidefinite whereas the formula (15) now serves
as a natural definition of the operator H itself. Indeed, H is given as a product of
three selfadjoint operators, each having a bounded, selfadjoint inverse. The bounded
invertibility of the first and the third factor in (15) is trivial, whereas for the second it
follows from the formula (16) (cf. also [19]). Similar remarks hold for Theorem 3.5 as
well. (Proposition 2.1 could also be reformulated in infinite dimension, but this will not
interest us here.)

We will now compare our bound with a bound obtained in [21]. This bound (with
our notation) requires that A,C be relatively bounded with respect to B,B∗ , respec-
tively. According to [10], Ch. VI, Th. 1.38, the operator boundedness implies the form
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boundedness with the same bound; so our setting is more general. In addition [21]
gives an eigenvalue bound under the condition that at least one of the operators A,C
is bounded. The estimate obtained there is rather complicated; but if both A,C are
bounded then [21] gives the somewhat simpler bound

dist(σ(H),0) � −1
2

(‖A‖+‖C‖)+
(

1
4

(‖A‖−‖C‖)2 +
(‖B−1‖−2))1/2

, (43)

which is still not easily compared with our estimate (14). Anyhow, if ‖A‖ = ‖C‖ and
the relative bound ‖A‖‖B−1‖ is larger than one, then the right-hand side of (43) be-
comes negative and the estimate is void whereas the bound (14) always makes sense.
In fact, our relative bounds α and γ may be arbitrary. In particular, they need not to
be less than one, which is a usual requirement in operator perturbation theory. It is a
general feature with quasi-definite matrices that perturbations, as long as they respect,
in an appropriate sense, the block structure, need to be relatively bounded, but not nec-
essarily with the relative bound less than one, in order to yield an effective perturbation
theory. Such a phenomenon was already encountered in [19], for example.

The selfadjointness of the operator H from (41) immediately applies to various
kinds of Dirac operators with supersymmetry (see [17], Sect. 5.4.2 and 5.5) under the
appropriate definiteness assumption for the diagonal blocks.

An analogous construction of a selfadjoint block operator matrix H was made in
[19] in the ‘dual’ case in which B is dominated by A,C in the sense that A−1/2BC−1/2

is bounded. Estimate (6) extends to this more general situation, where A,B,C need not
be bounded.

Finally we come back to the estimate (27). The proof given in [12] went through
squaring the matrix

H =
[

A B
B −A

]
, (44)

which is inconvenient if A,B are unbounded. We provide an alternate proof under a
weaker assumption, namely that instead of operators A,B we have symmetric positive
semidefinite (not necessarily closed) sesquilinear forms a,b defined on a dense domain
D = D(a) = D(b) . The obvious generalisation of the block operator matrix (44) is the
symmetric sesquilinear form h defined as

h(x,y) = a(x1,y1)+b(x2,y1)+b(x1,y2)−a(x2,y2), x =
[

x1

x2

]
, y =

[
y1

y2

]
(45)

for
x,y ∈ D ⊕D .

Neither of the forms a, b need to be closed but their sum shall be assumed as closed.
Here we have, in fact, first to construct the operator H . To this end we use the ‘off-
diagonalizing’ transformation given by the unitary matrix

U =
1√
2

[
I I
iI −iI

]
(46)
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(cf. [17]). Obviously U(D ⊕D) = D ⊕D , whereas a direct calculation leads to

ĥ(x,y) = h(Ux,Uy) = ia(x1,y2)+b(x1,y2)+b(x2,y1)− ia(x2,y1)
= τ(x2,y1)+ τ∗(x1,y2) (47)

where the forms
τ = a− ib, τ∗ = a+ ib (48)

are sectorial and mutually adjoint. Obviously the range of the form τ lies in the lower
right quadrant of the complex plane.

The form τ is closed. This is readily seen from the equivalence of the correspond-
ing norms:

|τ(x,x)| =
√

a(x,x)2 +b(x,x)2 � a(x,x)+b(x,x)

�
√

2(a(x,x)2 +b(x,x)2) =
√

2|τ(x,x)|,
so that the closedness of a + b is, in fact, equivalent to that of τ . Thus τ,τ∗ gener-
ate mutually adjoint maximal sectorial operators T,T ∗ , respectively (see [10], Ch. VI,
Theorem 2.1). Now, for x2 ∈ D(T ),x1 ∈ D(T ∗) and y1,y2 ∈ D we have

ĥ(x,y) = (Ĥx,y) (49)

where the operator

Ĥ =
[

0 T
T ∗ 0

]
(50)

is obviously selfadjoint with the domain D(T ∗)⊕D(T ) . Also selfadjoint is its inverse
conjugate

H = UĤU∗

with
h(x,y) = (Hx,y), D(H) ⊆ D(τ)⊕D(τ). (51)

The operator H is uniquely determined by (51) as is shown in [19], Proposition 2.3.
To estimate the inverse note that

‖Tz‖‖z‖ � |(Tz,z)| =
√

a(z,z)2 +b(z,z)2 �
√

α2 + β 2 ‖z‖2

where α, β � 0 is the lower bound of a, b , respectively. The above ‘Lax-Milgram
inequalities’ are, in fact, the key argument in this matter. They are non-trivial if any
of α, β is different from zero. In this case, by the maximality of T , its inverse is
everywhere defined and

‖T−1‖ = ‖T−∗‖ � 1√
α2 + β 2

,

From the obvious formula

Ĥ−1 =
[

0 T−∗
T−1 0

]
(52)
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we finally obtain

‖Ĥ−1‖ = ‖H−1‖ = ‖T−1‖ � 1√
α2 + β 2

, (53)

which obviously reduces to (27) if a,b are bounded. Thus, we have proved the follow-
ing theorem.

THEOREM 4.1. Let a,b be positive semidefinite symmetric sesquilinear forms
with the common dense domain D and respective lower bounds α,β and such that
a + b is closed. Then the form h from (45) defines a unique selfadjoint operator H
with D(H) ⊆ D ⊕D and h(x,y) = (Hx,y) for x ∈ D(H), y ∈ D ⊕D . Moreover, if
any of α,β is non-zero then H has a bounded inverse with

‖H−1‖ � 1√
α2 + β 2

.

REMARK 4.2. (i) The conditions of the preceding theorem are obviously fulfilled
if one of the forms a, b is closed and the other is relatively bounded with respect to the
first. Moreover, if, say, b is relatively bounded with respect to a then b need not to
be semidefinite; indeed the whole construction of H,Ĥ,T in the proof of the preceding
theorem goes through and we have

‖Ĥ−1‖ = ‖H−1‖ = ‖T−1‖ � 1
α

, (54)

provided that a is positive definite.
(ii) The form τ constructed in the proof of the preceding theorem is not sectorial

in the strict sense as defined in [10] because its range does not lie symmetrically with
respect to the positive real axis. But, of course, the whole theory developed in [10]
naturally and trivially extends to all kinds of numerical ranges having semi-angle less
than π/2. The standard form can be achieved simply by multiplying τ with a phase
factor

e
π
4 iτ =

1√
2
((a+b)+ i(a−b)).

The symmetric part of this form is closed, whereas the skew-symmetric part is relatively
bounded with respect to the symmetric one, so it is sectorial in the strict sense of [10].

(iii) The obvious fact that the eigenvalues (whenever existing) of H are ± sin-
gular values of T may have advantage in numerical computations with finite matrices.
Firstly, the size of T is half the size of H and, secondly, there is plenty of reliable com-
putational software to compute the singular values (and vectors) of arbitrary matrices.

(iv) If a + b is only closable then its closure is again of the form ã + b̃ where
ã, b̃ are obtained by the usual limiting process and Theorem 4.1 applies. We omit the
details.
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5. Stokes matrices

If we set C = 0 in (1), we obtain a Stokes matrix. Stokes matrices have been
extensively studied, see [14], [1] and the literature cited there. For C = 0, we obviously
have AC = CA . Consequently by (23) the estimate (14) becomes

‖H−1‖ � ‖B−1‖(1+ α). (55)

A more careful inspection of formula (16) gives a tighter bound

‖H−1‖ � ‖B−1‖α +
√

α2 +4
2

. (56)

In [14] the following spectral inclusion was proved.

THEOREM 5.1. ([14]) For positive definite A and B of full column rank,

σ(H) ⊆ I+∪ I−, (57)

I+ =

(
α1,

αm +
√

α2
m +4β 2

m

2

)
, (58)

I− =

⎛⎝α1 +
√

α2
1 +4β 2

m

2
,

αm +
√

α2
m +4β 2

1

2

⎞⎠ , (59)

where 0 < α1 � · · · � αm are the eigenvalues of A whereas 0 < β1 � . . . � βm are the
singular values of B.

Under the same assumptions [1] establishes the inclusion (57) with the intervals
I± given by

I− =

⎛⎝ −2σmαm

α1 +
√

α2
1 +4σ2

m

,
σ1α1

σ1 + α1

⎞⎠ , (60)

I+ =

(
α1,

αm +
√

α2
m +4σ2

m

2

)
, (61)

where 0 < σ1 � · · · � σm are the eigenvalues of B∗A−1B .
In the following we partly improve and generalise the foregoing results. For illus-

tration purposes let us start with the 2×2-case, i. e.

H =
[

a b
b 0

]
, min{a, |b|}> 0. (62)

The eigenvalues of H are

λ± = f±(a,t) =
a±√

a2 + t2

2
, where t = 2|b|. (63)

The functions f−, f+ have the following properties:
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1. f−(a, t) < 0 < f+(a′,t ′) for all a,t,a′,t ′ ∈ R ,

2. f+ is increasing in both variables a,t ,

3. f− is increasing in a and decreasing in t .

Herewith a result for n×n matrices.

THEOREM 5.2. Let

H =
[

A B
B∗ 0

]
(64)

be an n×n Hermitian matrix over the field K∈ {R,C} such that A is positive semidef-
inite of order m and

N (A)∩N (B∗) = {0}. (65)

Define p+, p− : S
m−1 → R , where S

m−1 is the unit sphere in K
m , by

p±(x) =
x∗Ax±√Δ(x)

2
, Δ(x) = (x∗Ax)2 +4x∗BB∗x, ‖x‖ = 1 (66)

and
p+

+ = max
‖x‖=1

p+(x), p−+ = min
‖x‖=1

p+(x),

p+
− = max

‖x‖=1
p+(x), p−− = min

‖x‖=1
p−(x).

Then the following hold.

Extremal eigenvalues: The points p+
+, p−+, p+

−, p−− are eigenvalues of H .

Spectral inclusion:
σ(H) ⊆ I−∪ I+∪{0} (67)

where
I− = [p−−, p+

−] and I+ = [p−+, p+
+] (68)

and
p+
− = max I− � 0 � p−+ = min I+, (69)

p+
− < p−+. (70)

Monotonicity: Consider the eigenvalues of H as functions of the submatrices A,B.
Then all eigenvalues are non-decreasing with A, whereas the non-positive eigen-
values are non-increasing and the non-negative ones non-decreasing with BB∗ .2

2The terms in(de)creasing for A and B mean the quadratic forms x∗Ax and x∗BB∗x = ‖B∗x‖2 , respec-
tively.
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Proof. The eigenvalue equation for H is written as

Ax+By = λx, (71)

B∗x = λy. (72)

For λ �= 0 these equations are equivalent to

(λ 2I−λA−BB∗)x = 0, x �= 0, y = B∗x/λ . (73)

By assumption (65), for x �= 0 we have Δ(x) > 0 and from (73) and ‖x‖ = 1 it follows

λ 2x∗x−λx∗Ax− x∗BB∗x = 0. (74)

Therefore λ ∈ {p+(x), p−(x)} and p± are real-valued. Obviously

p±(x) = f±(x∗Ax,x∗BB∗x) (75)

with f± from (63); then the properties (69), (70) immediately follow from the prop-
erty 1 of the functions f± from (63). With the property Δ(x) > 0 the matrix pencil
λ 2I − λA−BB∗ is called overdamped. In [5] a minimax theory for the eigenvalues
of overdamped pencils was established. According to this theory there are minimax
formulae for the eigenvalues

λ−
1 � · · · � λ−

m ∈ I− λ +
m � · · · � λ m

1 ∈ I+

reading
λ +

k = max
Sk

min
x∈Sk
‖x‖=1

p+(x), (76)

λ−
k = min

Sk

max
x∈Sk
‖x‖=1

p−(x) (77)

where Sk varies over all k -dimensional subspaces of Km . In particular,

λ +
1 = max

‖x‖=1
p+(x), λ +

m = min
‖x‖=1

p+(x),

λ−
1 = min

‖x‖=1
p−(x), λ−

m = max
‖x‖=1

p+(x).

Thus, the boundary points of the two intervals I− and I+ are eigenvalues, given by
p+

+, p−+ , p+
−, p−− . All other eigenvalues are in the specified range. It remains to prove

the monotonicity statement. It is an immediate consequence of the formulae (75), (76)
and (77) and the monotonicity properties of the functions f± in (63). �

By its very construction the interval I+ is minimal among those which contain all
positive eigenvalues λ +

m � · · · � λ m
1 of H . In an analogous sense I− is minimal, as

well. So they are included in those from (57) as well as in those from (60).
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On the other hand our intervals can be used as a source for new estimates. Assume
that B∗ has full column rank (in which case

√
BB∗ is positive definite) and take α as

in (13). Then ( −2β1

α +
√

α2 +4
,β1

)
\ {0} ⊆ ρ(H) (78)

where β1 = min‖x‖=1 ‖B∗x‖ . Indeed, the inequality p+ � β1 is trivial. Using again the
monotonicity properties of the function f− from (63) and taking ‖x‖ = 1 we obtain

p−(x) =
x∗Ax−√(x∗Ax)2 +4x∗BB∗x

2

� αx∗(BB∗)1/2x−
√

(αx∗(BB∗)1/2x)2 +4x∗BB∗x
2

� αx∗(BB∗)1/2x−
√

(αx∗(BB∗)1/2x)2 +4(x∗(BB∗)1/2x)2

2

= x∗(BB∗)1/2x
α −√

α2 +4
2

� − 2β1

α +
√

α2 +4
,

where we have first used (13), then the obvious inequality

x∗BB∗x � (x∗(BB∗)1/2x)2

and finally the identity

min
‖x‖=1

x∗(BB∗)1/2x = minσ((BB∗)1/2) = min(σ(BB∗))1/2 = min
‖x‖=1

‖B∗x‖ = β1.

This proves (78). Note that (56) exactly reproduces the lower edge of the spectral gap
(78) while the upper edge of the gap is not described correctly by (56).

Another immediate consequence of the monotonicity properties of the functionals
p± are perturbation bounds for the eigenvalues of the perturbed matrix

Ĥ = H + H̃

with

H̃ =
[

Ã B̃
B̃∗ 0

]
where

|x∗Ãx| � ηx∗Ax, ‖B̃x‖ � η‖Bx‖, η < 1.

Then, as was shown in [20], the eigenvalues λ̂−
1 , . . . , λ̂−

m , λ̂ +
1 , . . . , λ̂ +

m of the perturbed
matrix Ĥ satisfy

(1−η)λ +
k � λ̂ +

k � (1+ η)λ +
k , (79)

1+ η
1−η

λ−
k � λ̂−

k � 1−η
1+ η

λ−
k . (80)
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REMARK 5.3. The interest in Stokes matrices stems form the fact that they are
discrete analogs of Stokes operators. A Stokes operator has the form

HS =
[−divagrad −grad

div 0

]
.

Here a : Ω→ (0,∞) is a positive function on some domain Ω⊆Rn such that the inverse
of −divagrad in L2(Ω) is compact. Operator-theoretical facts about Stokes operators
are given e.g. in [16].

Without having checked the details of proofs we intutively expect that for such
operators the monotonicity as well as the continuity bounds (79) for the positive eigen-
values as functions of a(·) should hold as well. Thus, a perturbation â(·) = a(·)+ ã(·)
of a(·) satisfying

|ã(x)| � ηa(x), η < 1

would imply (79).

6. Boundary conditions and invertibility – a case study

The most prominent example of an operator whose invertibility depends on bound-
ary conditions is the Laplacian on an interval with Dirichlet and Neumann bound-
ary conditions. A deeper manifestation of this phenomenon is encountered in the
spectral analysis of Schrödinger operators with periodic potential. Such operators ex-
hibit a spectrum consisting of intervals, so-called spectral bands. If one restricts the
Schrödinger operator originally defined on R or Rd to a finite interval or cube, re-
spectively, it is desirable to preserve the periodic structure of the original, unrestricted
operator as much as possible. A restriction to a finite cube with Dirichlet boundary
conditions leads to spurious eigenvalues located in the spectral gaps of the original
operator. A consistent way to avoid these boundary-induced eigenvalues is to impose
periodic or, more generally, quasi-periodic boundary conditions. For such restrictions,
the arising spectrum is contained in the spectrum of the original operator; see [13] for
an exposition for operators on L2(R) . In the context of periodic Schrödinger operators,
spectral pollution in gaps is a well studied subject, see e. g. [3].

In this section we want to explore these ideas applied to a block-operator investi-
gated in the recent paper [4]. There the following matrix of order n = 2m is considered:

Hc = Hc(n) =
[

A+2cI B
−B −A−2cI

]
(81)

with the m×m-blocks

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0

1 0 1 . . .
...

0 1
. . .

...
... 0 1
0 . . . . . . 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0

−1 0 1 . . .
...

0 −1
. . .

...
... 0 1
0 . . . . . . −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(82)
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where c is any real number (the factor 2 is set by convenience) and n = 2m .
We will analyse the spectrum of Hc and see that it exhibits two spurious eigenval-

ues. To remove these, we will introduce a low-rankmodification H̃c concentrated on the
“boundary”. This results in a circulant-type matrix. The circulant structure can be un-
derstood as an analogy to periodic boundary conditions used in the context of periodic
Schrödinger operators. The specific type of the circulant matrix shows that the operator
considered in [4] lives on the two-fold covering space {1, . . . ,2m}→ {1, . . . ,m} .

Of course, the spectrum of Hc = Hc(n) will depend on the dimension n , so we
will say that an interval I around zero is a (maximal) stable spectral gap of Hc if
I ∩σ(Hc) = /0 for all n and I is the largest interval with this property.

We perform the off-diagonalisation by taking the unitary matrix

U =
1√
2

[
I I
I −I

]
(83)

and obtaining

Kc = U−1HcU = UHcU =
[

0 Ac −B
Ac +B 0

]
= 2

[
0 Tc

T ∗
c 0

]
(84)

with

Tc =

⎡⎢⎢⎢⎢⎢⎢⎣

c
1 c

1
. . .
. . . c

1 c

⎤⎥⎥⎥⎥⎥⎥⎦ (85)

(all void places are zeros). As is well known, the eigenvalues of Kc , including multi-
plicities, are ± the singular values of Tc . Now, the latter are of some importance in
Matrix Numerical Analysis, see [6], where it was shown that the smallest singular value
of Tc tends to zero for m → ∞ and any fixed c with |c| < 1. In any case the singular
values of Tc are independent of the sign of c as is seen from the property

U0TcU0 = T−c, [U0]i j = (−1) jδi j.

We will now study these singular values in some detail. We shall distinguish the cases

(i) c = 0, (ii) 0 < c < 1, (iii) c = 1, (iv) c > 1.

For c = 0, the matrices Tc,T ∗
c are partial isometries with all singular values equal

to 1, except for the non-degenerate eigenvalue zero corresponding to

N (Tc) = span {em}, N (T ∗
c ) = span {e1}

where e1, . . . ,em is the canonical basis in Rm . Hence Kc has the eigenvalues ±2 each
with multiplicity n−1 and the double eigenvalue zero with

N (Kc) = span

{[
0

em

][
e1

0

]}
. (86)
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The case c > 1 is easily accessible based on the representation (81), because then the
matrix

Ac := A+2cI =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 . . . 0

1 2 1 . . .
...

0 1
. . .

...
... 2 1
0 . . . . . . 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+(2c−2)I

is positive definite, being a sum of two obviously positive definite matrices, so σ(Ac) �
2c−2. Therefore Hc is quasidefinite and by (2) the interval

(−2c+2,2c−2)

is contained in the stable spectral gap of Hc (and of Kc ). For further investigation we
use the fact that the singular values of Tc are the square roots of the eigenvalues of T ∗

c Tc

or, equivalently, of

Wc = T ∗
−cT−c =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c2 +1 −c 0 . . . 0

−c c2 +1 −c . . .
...

0 −c
. . .

...
... c2 +1 −c
0 . . . . . . −c c2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (87)

Now Wcx = λx is componentwise written as

(c2 +1)x1− cx2 = λx1

−cx j−1 +(c2 +1)x j − cx j+1 = λx j, j = 2, . . . ,m−1,

−cxm−1 + c2xm = λxm

or as a standard second order difference equation

− cx j−1 +(c2 +1−λ )x j− cx j+1 = 0, j = 1, . . . ,m (88)

with the boundary conditions

x0 = 0, xm − cxm+1 = 0. (89)

The solutions
x j = sin jα, with λ = c2 +1−2ccosα (90)

and
x j = sinh jα, with λ = c2 +1−2ccoshα (91)

automatically satisfy x0 = 0. The second boundary condition from (89) will determine
the values of α . This gives

(1− ccosα)sinmα − ccosmα sinα = 0, (92)
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(1− ccoshα)sinhmα − ccoshmα sinhα = 0, (93)

respectively. In the easiest case c = 1, the substitution (90) immediately leads to

α = αk =
2k−1
2m+1

π , k = 1, . . . ,m,

giving rise to the eigenvalues

λ = λk = 4sin2 2k−1
2m+1

π , k = 1, . . . ,m.

In this case the lowest eigenvalue λ1 = 4sin2 2
2m+1 π ≈ (2m+1)−2 tends to zero as m

tends to infinity, so the stable spectral gap of Hc is empty.
In the case c > 1, equation (92) can be written as

f (α) = tanmα
1− ccosα

sinα
− c = 0, 0 < α < π . (94)

The localisation of these roots is a bit involved, because there are several different
cases to be distinguished. A generic situation is shown on Figure 3, which displays

0 0.5 1 1.5 2 2.5 3 3.5
−3

−2

−1

0

1

2

3

4

Figure 3: Functions f and λ for n = 7 and c = 2

• the function f (α) (blue) with its poles and roots,

• the function λ = λ = c2 +1−2ccosα (red), which, taken at the roots, gives the
eigenvalues,

• the point α̂ = arccos 1
c on the α -axis on which f is generically negative.
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Thus, between each two poles there is a root, except for the two poles enclosing α̂ ;
these two poles enclose two roots, altogether n of them. The case in which α̂ coincides
with one of the poles must be treated separately. But to determine the exact position of
the stable spectral gap, it is enough to notice that in any case, for m large enough, the
interval

0 < α < α̂,

on which the factor 1− ccosα is positive, will contain several of the singularities

(2k−1)π
2m

, k = 1,2, . . .m

of the function f in (94), see Figure 3. Each two of these singularities enclose a root α
of (94), and since each of them tends to zero for m → ∞, the lowest root tends to zero
as well. Hence the corresponding eigenvalue λ from (90) tends to (c−1)2 . Since we
already know that the interval (−2(c−1),2(c−1)) is contained in the stable spectral
gap of Kc (and Hc ), this interval is, in fact, equal to this gap.

In the case c < 1, the factor 1− ccosα in (94) is globally positive, so the m
singularities

(2k−1)π
2m

, k = 1,2, . . . ,m

will enclose m−1 roots of the equation (94) and the lowest of them will again approach
zero with growing m . That is, the corresponding m− 1 eigenvalues λ from (90) will
be larger than (c−1)2 and the lowest of them will approach (c−1)2 . Thus, we would
have a stable spectral gap (−2(1− c),2(1− c)) , but for one eigenvalue which is still
to be determined. However, as we know from [6], the smallest eigenvalue tends to zero
with growing m . This completes the picture. Thus, for 0 � c < ∞ the interval

(−2|c−1|,2|c−1|)

is the stable spectral gap for Kc (and Hc ), except that for 0 < c < 1 there are two
‘spurious eigenvalues’ tending to zero with growing m .

There is some interest in obtaining an asymptotic estimate of the small eigenval-
ues. In [6] it was shown that the smallest singular value of Tc is bounded from above
by O( 1

m ) . Numerical experiments indicate that the decay is, in fact, much faster. The
setting of difference equations makes it possible to determine the decay accurately, and
this is what we shall do now.

This solution is obtained by the ansatz x j = sinh jα and the fact that (93) can be
written as

g(α) = tanhmα
1− ccoshα

sinhα
− c = 0, 0 < α < ∞. (95)

Since
g(0+) = m(1− c)− c, g(∞) = −2c

and 0 < c < 1, for large m the equation (95) has a positive root α = α1 which com-
pletes the m−1 roots previously found, whereas the corresponding eigenvalue λ = λ1
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is given by (91). As an approximation to α1 we propose the value

α0 = arcosh
c2 +1

2c
. (96)

Then a straightforward calculation gives

g(α0) =
−2ce−2mα0

1+ e−2mα0
= −2ce−2mα0 +O(e−2mα0)

and

g′(α0) =
mc

cosh2 mα0
− tanhmα0

−2c
1− c2 = − 2c

1− c2 +O(e−2mα0)

Thus, the difference δα = α1 −α0 is given by

δα = − g(α0)
g′(α0)

+O(e−2mα0) = O(e−2mα0)

whereas the corresponding eigenvalue λ1 of Wc = Wc(m) is given by

O(e−2mα0)+ λ1 = δα(−2sinhα0) = − 4cδα
1− c2 = 4ce−2mα0 ,

where we have used the fact that the function c2 + 1− 2ccoshα vanishes at α = α0 .
Hence the small eigenvalues of Kc (and Hc ) are asymptotically absolutely bounded by

O(e−mα0).

We summarize the main findings in the following.

THEOREM 6.1. The spectrum of Hc is symmetric w.r.t. zero, i.e. if λ is an eigen-
value, then −λ is also an eigenvalue, with the same multiplicity.

If c � 1 , the interval (−2|c− 1|,2|c− 1|) is a stable spectral gap, i.e. (−2|c−
1|,2|c−1|)∩σ(Hc(m)) = /0 for all m ∈ N .

For c∈ [0,1] and each m∈N , (−2|c−1|,2|c−1|)∩σ(Hc(m)) consists of exactly
two eigenvalues with absolute value of order O(e−mα0) , with α0 as in (96).

In both cases, (−2|c− 1|,2|c− 1|) is the maximal interval with the above prop-
erties. More precisely, for any ε > 0 and N ∈ N , there exists an M ∈ N such that
(−2|c−1|− ε,2|c−1|+ ε) contains 2N eigenvalues of Hc(m) for all m � M.

The spurious eigenvalues can be computed with high relative accuracy by itera-
tively solving the equation (95). By high relative accuracy we mean to obtain a signifi-
cant number of correct digits independently of the size of the computed quantity. Note
that the usual matrix computing software computes a singular value of a matrix A with
the error of the order ε‖A‖ (ε the machine precision) which may yield no significant
digits, if the singular value itself is very small. A notable exception are bidiagonal
matrices, which is the case with our Tc . Then there exists an algorithm (and it is im-
plemented in LAPACK and MATLAB packages) which computes each singular value
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with about the same number of significant digits, no matter how small or how large it
may be (barring underflow).3

It is also worthwhile to note that the components x j = sinh jα1 of the correspond-
ing eigenvector always agglomerate on one side of the sequence 1, . . . ,m , that is, on
the boundary, while all other eigenvectors exhibit standard oscillatory behaviour.

Removing spurious eigenvalues. The form of the null-space of K0 suggests to
introduce the matrix

K̃c = Kc +
[

em 0
0 e1

][−2 0
0 2

][
eT
m 0
0 eT

1

]
= 2

[
emeT

m Tc

T ∗
c −e1eT

1

]
. (97)

For c = 0 this leaves all eigenvectors of K0 unchanged and raises the zero eigenvalues
to ±2, respectively, thus ‘purging’ the spurious eigenvalues. The spectrum of K̃0 is
{±2} with the multiplicity m . In particular,

K̃2
0 = 4I. (98)

It is a remarkable fact that for c �= 0 the eigenvalues of the matrix K̃c still come in
plus/minus pairs, including multiplicity. To see this we take

J =

⎡⎢⎢⎢⎣
0 · · · 0 1
0 · · · 1 0
...

...
1 0 · · · 0

⎤⎥⎥⎥⎦ (99)

and set

P =
[

I 0
0 J

]
and note that Je1 = em , Jem = e1 and that the matrix Sc = TcJ is symmetric. Then

P
−1K̃cP = PK̃cP =

[
e1eT

1 Sc

Sc −e1eT
1

]
.

This matrix is of the form (44), and such matrices have the eigenvalues in plus/minus
pairs when A and B are allowed to be any symmetric matrices ([12]). It remains to
determine the stable spectral gap of K̃c . In order to do this it is convenient to turn back
to the original representation (81) and to form the matrix

H̃c =UK̃cU =
[

Ã+2cI B̃
B̃∗ Â−2cI

]
(100)

3In fact, in order to perform the computation with high relative accuracy, MATLAB will need the input
matrix to be upper bidiagonal, so the MATLAB function svd should be applied not to Tc but to its transpose.
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with

Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0
1 0 1

1
. . .

. . .
. . .

. . .
. . .

. . . 0 1
1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0
−1 0 1

−1
. . .

. . .
. . .

. . .
. . .

. . . 0 1
−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Â =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0
−1 0 −1

−1
. . .

. . .
. . .

. . .
. . .

. . . 0 −1
−1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By (98) we have H̃2
0 = 4I , which implies

Ã2 + B̃B̃∗ = 4I, ÃB̃+ B̃Â = 0, B̃∗B̃+ Â2 = 4I.

Using this4 we obtain that

H̃2
c =

[
(4+4c2)I +4cÃ 0

0 (4+4c2)I−4cÂ

]
. (101)

Noting the identity
JÂJ = −Ã

we obtain that the eigenvalues of H̃2
c are

4+4c2−4cκ j, j = 1, . . . ,r

(with the multiplicity two) where κ j are the eigenvalues of Â . These are obtained from
the difference equation

x j−1 + κx j + x j+1 = 0, j = 1, . . . ,m (102)

with the boundary conditions

x0 = −x1, xm+1 = xm. (103)

The substitution
x j = Acos jα +Bsin jα

solves (102) with
κ = −2cosα,

4Of course, these three identities could be proved directly.
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whereas the boundary conditions (103) yield after some computation

α = αk =
2k−1
2m

π , k = 1, . . . ,m

and hence (cf. the Appendix)

κ = κk = −2cos
2k−1
2m

π , k = 1, . . . ,m. (104)

Thus the eigenvalues of H̃2
c are

4+4c2 +2ccos
2k−1
2m

π , k = 1, . . . ,m

(each taken twice), which is always larger than 4(1− c)2 , and for m large the set of
these eigenvalues comes arbitrarily close to 4(1−c)2 . Again we conclude the following

THEOREM 6.2. The stable spectral gap of H̃c is

(−2|c−1|,2|c−1|).

More precisely, for all m ∈ N and c � 0 , the eigenvalues of H̃c(m) come in plus/minus
pairs and (−2|c− 1|,2|c− 1|)∩σ(H̃c(m)) = /0 . This interval is the largest with this
property.

In particular, (−2|c−1|,2|c−1|) contains no spurious eigenvalues whatsoever.
Finally, we consider the ‘infinite dimensional limits’, that is, the matrices Hc,A,B,

Tc,Wc , obtained from H,A,B,Tc,Wc by stretching to infinity in both directions. Thus
A = A∗ , B =−B∗ , Tc , and Wc = T∗−cT−c = W∗

c are bounded operators on the Hilbert
space �2(Z) , while Hc and Kc are selfadjoint operators on �2(Z)

⊕
�2(Z) . The oper-

ator

U =
1√
2

[
I I
I −I

]
is unitary on �2(Z)

⊕
�2(Z) , where now I denotes the identity on �2(Z) . The operators

keep their algebraic relations

Kc = U−1HcU = UHcU =
[

0 Ac −B
Ac +B 0

]
= 2

[
0 Tc

T∗
c 0

]
.

Formula Wc = T∗−cT−c gives us

(Wcx) j = −cx j−1 +(c2 +1)x j − cx j+1.

Now using the isometric isomorphism �2(Z) → L2(0,2π) given by

ψ(λ ) =
1√
2

∞

∑
k=−∞

ei jλ x j,
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the operator Wc goes over into

(Xcψ)(λ ) =
1√
2

∞

∑
j=−∞

ei jλ (−cx j−1 +(c2 +1)x j − cx j+1)

=
1√
2

∞

∑
j=−∞

ei jλ (c2 +1−2ccosλ )x j = (c2 +1−2ccosλ )ψ(λ ),

which is a multiplication operator with the spectrum

[−(1+ c)2,−(1− c)2]∪ [(1− c)2,(1+ c)2],

thus creating the spectral gap (|1− c|, |1 + c|) of Hc . Thus, the obvious approxima-
tion Hc obtained by cutting a ‘window’ out of Hc gives rise to spectral pollution in
the spectral gap of Hc . By adding convenient boundary conditions Hc we obtain the
modification H̃c . This new approximation to Hc

(i) has no spectral pollution and

(ii) keeps the symmetry of the spectrum with respect to zero.

Some numerical experiments. Here we would like to report some interesting ob-
servations based on numerical experiments. They are motivated by physical mod-
els of disordered systems. In this context the matrix A in (81) is replaced by Vω =
A+ diag(ω1, . . . ,ωn) , where ωi are independent random variables. Here we will con-
sider a uniform distribution on the interval [a,b] . Then, as expected, the multiple eigen-

values ±2 of the matrix Hω = H

[
Aω B
−B −Aω

]
smear into uniformly distributed inter-

vals, but the double small eigenvalue is only slightly perturbed in the sense that for n
large these two eigenvalues tend to zero. We illustrate this by exhibiting those eigen-
values of the matrix Hω which are close to zero by taking a = −3, b = 3.

m = 20 m = 50 m = 100

-7.2091e-01 -3.5965e-01 -0.170365
-5.4659e-01 -1.4649e-01 -0.098804
-5.4215e-04 -4.5522e-10 -9.819153e-31
5.4215e-04 4.5522e-10 9.819153e-31
5.4659e-01 1.4649e-01 0.098804
7.2091e-01 3.5965e-01 0.170365

We emphasize that the exhibited digits of 9.819153e-31 are accurate. The phe-
nomenon of two very small eigenvalues is independent of the choice of a,b . Note that
the spurious eigenvalues are not only small but about exponentially small as in the case
of the constant diagonal, i.e. ω1 = . . . = ωm = 2c , studied above.
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Next we produce a series of graphically represented numerical results with

[a,b] = [M− δ ,M + δ ],

n = 100, δ = 0.5, and M taking the values 0.1, 1, 1.5, 1.8, 2.5, 3. They are contained
in Figure 4.

M = 0

M = 1

M = 1.5

M = 1.8

M = 2.5

M = 3

Figure 4: Spectral gaps

The upper line (blue) in a pair shows the spectrum of Hω and the lower (red) the
one of H̃ω , obtained from Hω as in (100).

Summarising we may say: For M ≈ 2 or so the punctured spectral gap shrinks to
zero; then it starts growing again, but small eigenvalues are no more present, because
the matrix Hω has now become quasi-definite.5 No theoretical explanation for the

5 Note that M as the mean value of ωi corresponds to the value 2c with Hc in (81).
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spurious small eigenvalues in this case seems to be available as yet. On the other hand,
as expected, the matrix H̃ω lacks the spurious small eigenvalues altogether. With H̃ω
there is no more symmetry of the spectrum with respect to zero.
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A. Some auxiliary computations

Proof of equation (34)

Since the matrices of the type (33) appear to be the source of many illustra-
tive examples we here give an explicit formula for their eigenvalues (which come in
plus/minus pairs). We put

A =
[

a+ a
a a−

]
, B =

[
b+ b
±b b−

]
,

so that in the case of the minus sign in B the diagonal elements b± are purely imaginary.
A straightforward calculation gives(

λ 2)
1,2 =

s
2
±
√

s2 −|a+a−−b+b−− |a|2 + |b|2|2−|a+b−−b+a−−2ℜ ab|2.

with

s =
a2

+ +a2−+ |b+|2 + |b−|2
2

+ |a|2 + |b|2.

Proof of equation (104)

We derive the formula (104). Substituting x j = Acos jα +Bsin jα in (102) we
get

Acos jα cosα + Asin jα sinαBsin jα cosα −Bcos jα sinα
+ κ(Acos jα +Bsin jα)

+Acos jα cosα − Asin jα sinαBsin jα cosα +Bcos jα sinα
= 0

or
(Acos jα +Bsin jα)(cosα + cosα + κ) = 0

thus implying
κ = −2cosα.

The boundary conditions (103) yield

A = −Acosα −Bsinα,

Acos(m+1)α +Bsin(m+1)α = Acosmα +Bsinmα,

which is a homogeneous linear system

(1+ cosα)A+Bsinα = 0,

A(cos(m+1)α − cosmα)+B(sin(m+1)α − sinmα) = 0,

so its determinant must vanish:

(1+ cosα)2cos
(2m+1)α

2
sin

α
2

+2sinα sin
(2m+1)α

2
sin

α
2

= 0,
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or equivalently,

0 = cos
α
2

cos
(2m+1)α

2
+ sin

α
2

sin
(2m+1)α

2
= cos

(
α
2
− (2m+1)α

2

)
= cosmα.

Hence

α = αk =
2k+1
2m

π

and (104) follows.
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