oerators
nd
atrices

Volume 9, Number 2 (2015), 305-310 doi:10.7153/0am-09-17

COMMUTING TRACES ON INVERTIBLE AND SINGULAR OPERATORS
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Abstract. Let m > 1 be a natural number, and let B(H) be the Banach space of all bounded
operators from a infinite dimensional separable complex (real) Hilbert space H to itself. We
describe traces of m-additive maps G : B(H)" — B(H) such that [G(T,...,T),T] =0 for all
invertible or singular T € B(H).

Let K be either the field of the real or complex numbers. Denote by H the infinite
dimensional separable Hilbert space over K and by {¢;,¢,,...} a fixed orthonormal
system for H, thatis, x =Y < x,¢; > ¢; for each x € H, where < . > denotes
the inner product in H. As usual B(H) stands for the Banach space of all bounded
operators from H to itself. Observe that the operator e;;(x) =< x,¢; > ¢; € B(H) for
each i, j € N. The spectrum o (T) of T € B(H) is defined by

o(T)={A€K|AI—T isnotinvertible}.

The resolvent set v(7T') is defined by v(T) =K\ o(T). It is well known that the spec-
trum o(7T) of T is a compact set in K bounded by ||T||. In particular, the resolvent
v(T) is an unbounded open set that contains {e € K| & > ||T||}.

Now, let m > 1 be a natural number. In the following discussion, we fix an m-
additive map G : B(H)™ — B(H). This means that G is additive in each component,
that is,

G(Ti,....,Ti+Sis....T) =G(Ty,....Ty,....Ty) + G(Ti,...,Si,-... T)

for all 7;,S; € B(H), and i € {1,...,m}. The map F : B(H)" — B(H) defined by
F(T) =G(T,...,T) is known as the trace of G. We call F commuting if for each
T € B(H) the equality G(T,...,T)T = TG(T,...,T) holds. Using the commutator
form we can rewrite the latter as [G(T,...,T),T]| =G(T,...,T)T —TG(T,...,T) =0.

In [1] the author describes all commuting traces of an m-additive map G : B(H)™ —
B(H) such that [G(x,...,x),x] = 0 for all invertible or singular x € B(H) in the finite
dimensional setting and m > 2. The test case for m = 1 has been covered in the au-
thor’s paper [2]. Recently, Liu [4] characterized centralizing maps on invertible (sin-
gular) matrices over division rings. Precisely, Liu proved that if f : M, (D) — M, (D)
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is an additive map satisfying f(x)x —xf(x) € Z for all invertible x € M,(ID), where
M, (D) denotes the ring of all n x n matrices over a division ring D and Z is the cen-
ter of M, (D)), then there exist A € Z and an additive map u : M, (D) — Z such that
f(x) = Ax+ u(x) for all x € M,(D) except when D = Z,, the Galois field of two
elements. A map f : M,(D) — M, (D) is called centralizing on a subset S C M,(D)
if f(x)x—xf(x) € Z for all x € S. Centralizing additive maps on the set of singular
matrices is also obtained in [4, Theorem 1.2].

The purpose of this article is to characterize commuting traces of an m-additive
map G : B(H)" — B(H) such that [G(x,...,x),x] =0 for all invertible or singular
x € B(H), when H is an infinite dimensional separable Hilbert space and m > 1.

In this work we may assume that the m-additive map G : B(H)"™ — B(H) is sym-
metric. For instance, consider G (T1,...,T,) = Yoesn G(To(1ys -+ Tom)) - Itis clear
that G is symmetric and G (T,...,T) = m!G(T,...,T) forall T € B(H). Clearly, we
see that for T € B(H), [G (T,...,T),T] =0 if and only if [G(T,...,T),T] = 0. Also,
we have that G is m-linear over Q. This fact will be largely used in this paper.

We start with commuting traces of m-additive maps on the set of invertible oper-
ators. First, we need an auxiliary result.

PROPOSITION 1. Let m > 1 be a natural number. Let G : B(H)™ — B(H) be a
symmetric m-additive map such that

[G(T,...,T),T] =0 forall invertible T € B(H). (1)

Then G(kI,... ,kI) € Z forall k € K, where Z=K-1.

Proof. First of all observe that the result holds trivially when k£ = 0. Now, fix
k € K*, and let e;;, i # j the operator ¢;j(x) =< x,¢; > ¢; € B(H). Let s be the
smallest even number greater or equal than m, thatis, s =m if m is even, and s =m+ 1
if m is odd. We will show that [G(kI,... ,kI),e;;] = 0.

For each a € K*, let y, = akl +u, where u = (I +¢;;). Note that y, = akl +u
is invertible if and only if —ak € v(u) = K\ {1}. Therefore y, is invertible if a #
So, we can find a nonzero rational number b such that y, is invertible for all
a € {£b,£2b,...,£5b} (take b satisfying |b| > ). It follows from (1) that 0 =
G(u,...,u),u] = [G(kI,...,kI),kI] = [G(Ya,---,Ya),ya], and this last bracket can be
written as

1
T
€

[G(yth'"aya)?u} :()7 (2)

since y, = akl +u. For m =1 we conclude from (2) and [G(u),u] = 0 that [G(kI),u] =
[G(kI),e;j] =0 because u = (I +e¢;;). It remains to prove that [G(kI,... ,kI),e;;] =0
for m > 2. Using (2) one more time, we see that [G(Ya,...,Ya) +G(V—a,---,y—a) ] =0
forall a € {b,2b,...,5b}. Now, since G is symmetric, m-additive, and y, = akl +u
we can obtain for each a € {b,2D,...,5b} that:

Garrya) = 3 "¢ <m> G(kL,... .KLu,....u), 3)
=0 C N——
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and

G(as. Vo) = i (—1)m=Sgm=¢ <m> G(KL,... .k, u,....u). 4)
o C ——

By keeping in mind the equations (3), (4), and the relation [G(u,...,u),u] =0 we
see that [G(va,.--,Ya) + G(V—ay---,Y—a),u] = 0 becomes:

—2
=
Y a" ( ) G(kI,... .kl u,...,u),ul =0, when m is even, Q)
£=0 2C SN——
2¢
and
%
zam<2€+1>< " )[G(kl,...,kl,u,...,u),u]:O, when m isodd.  (6)
¢=0 20+1 —

28+1

With (6), the identity [G(ya,.--,Ya),u] = 0 becomes:

s—2

7

Z a2 (m)[G(kL...,kI,u,...,u)m} =0, when m is odd.
=0 ZC N——

28

Therefore, for each a € {b,2b, ..., %b} we have obtained an equation of the form
(5) when m is either even or odd. It means that we got 5 equations in 5 unknowns,

namely (;Z:)[G(kl yooo kI u, ... u),u], where u appears exactly in 2§ components of
G,and { €{0,1,..., %} Using matrix notation we can rewrite these systems in the
following way:

b pn—2 pr—4 bm—(s—Z) (rg) [G(kL . ,k]) R I/L]

(2b)" (2b)"2 (2b)"* ... (2b)"~ 172 :
(3b)™ (3b)™2 (3b)"* ... (3b)"(=2) (VG (KL,... .kLu,....u).u] | =o0.

(35" ($b)"2 (3" ... (3b)m—(=2) (" )Gk, u),u]

Because the determinant of the Vandermonde matrix formed by the coefficients of
the system is not zero, we get that [G(kI, ... ,kI),u] =0. As u= (I +e¢;;), we conclude
that [G(kI, ... kI),e;j] =0, when i # j. Finally, we see that

[G(kl,...,k]),e,‘,'] = [G(k],...,kl),e,-jeﬂ,',-] =
= [G(kl,...,kI),e,-i,']ej,-—l—e,-j[G(kI,...,kI),ej,-} =0.

It means that G(kI,...,kI) commutes with all finite rank operators of the form e;; =<
x,¢; > ¢;. Therefore, G(kI,...,kI) € Z forall ke K. O
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THEOREM 2. Let m > 1 be a natural number. Let G : B(H)" — B(H) be an
m-additive map such that

[G(T,...,T), T]=0 forall invertible T € B(H). @)

Then, there exist Uy € Z and maps I : B(H) — Z, i € {1,...,m}, such that each
W; is the trace of an i-additive map and G(T,...,T) = puoT™ + uy (T)T" ' +... +
Um—1(T)T + n(T) forall T € B(H), where Z=K-1I.

Proof. Without loss of generality, we may assume that G is symmetric. Once
again, let s be the smallest even number greater or equal than m, that is, s = m if m is
even, and s = m—+ 1 if m is odd. Our goal is to show that [G(T,...,T),T] =0 for all
T € B(H). Fix T € B(H). Since {e € K| e > ||T||} € v(T), we can find a nonzero
number A € K such that y, = T +aAl isinvertible forall a € {£1,...,+5}. Form =1
we obtain after employing the Proposition 1 in the identity [G(T + AI),T| = [G(T +
AI), T + Al =0 (equation (7)) that [G(T'),T]| = 0. From now on, we may take m > 2.
It follows from (7) and y, = T + aAl that [G(va,...,Y4),T] = [GOas---,Ya);va] =0
forall a € {£1,...,+5}. Consequently,

[GOas- V) + G—arer s y—a),T] =0 forall ac {1,...,%}. (8)

Now, since G is symmetric, m-additive and y, = T + aAl, we conclude that

Gar- - Va) = ia’<m> G(AL,..., ALT,...,T), 9)
——

r=0 r
M

for each a € {£1,...,+5}. Thus, if we take into the account that G(AI,...,Al) € Z
(Proposition 1) and the equation (9) we can derive from (8) that:

[G(T,T),T]=0 if m=2,
and

s—2
2
2a2’<m)[G(/IL...,M,T,...,T),T}:0 it m>3.
= \2r —

2r

As in the proof of the Proposition 1, for each m > 3 we have:

(G(T,...,T),T)]
11 1 ... 1
L 22 b e (';) (G(ALALT,....T),T]
132 3+ . 32 : —o.

i (%)2 (%)4 (%)'5—2 <s_2) [G(AIL,...,ALT,...,T),T|
m—(s—2)
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Therefore, [G(T,...,T),T] =0 for all T € B(H). With this in hand, the desired
result now follows from [3, Theorem 3.1]. [

Our next goal is to study commuting traces of m-additive maps on the set of sin-

gular operators.

THEOREM 3. Let m > 1 be a natural number. Let G : B(H)" — B(H) be a sym-
metric m-additive map such that

[G(T,...,T), T] =0 forall singular T € B(H). (10)

Then, there exist Uy € Z and maps l; : B(H) — Z, i € {1,...,m}, such that each
U; is the trace of an i-additive map and G(T,...,T) = uoT™" + u (T)T" ' +... +
Um—1(T)T + n(T) forall T € B(H), where Z=K-1I.

Proof. We shall proceed as we did in the proof of the Theorem 2, that is, we will
show that [G(T,...,T),T] =0 forall T € B(H). Fix T € B(H). Let us define the
finite rank operator S € B(H) as the following:

m+2
S= 2—(%) <x, 0, > T(). (11)

n=1

By construction, we see that T + jS is singular for all j € {1,...,m+ 2}, because
(T +jS)(¢;) =0. Thus, [G(T + jS,...,T + jS),T + jS] = 0 (equation 10) for all
Jj€{l,...,m+2}. Using the symmetricity and the m-additivity of G, we arrive at

3 VG, ST, T, T] +
h=0 h N——
h

ijh-H (ZZ) [G(S7>S7T77T)7S] =0. (12)
h=0
h

For convenience let us set:

(x(h):<m>[G(S,...,S,T,...,T),T}, where h € {0,...,m},

and

y(h):<m>[G(S7...,S,T7...,T),S], where h e {0,...,m}.

Observe that for each j € {1,...,m+2} we have obtained an equation of the form
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(12). Thus, using matrix notation we have the following:

1 T @(0)
1 21 22 2m+l (X(l)—FY(O)
1 31 32 3m+1 (X(Z)—F’Y(l)

PR IR Syt | | olm) +y(m—1)
1 (m+2) (m+2)" ... (m+2) y(m)

Therefore, 0.(0) = [G(T,...,T),T] =0, and this is true for all T € B(H) since T
is arbitrary. The result follows now from [3, Theorem 3.1]. [
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