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Abstract. Let m � 1 be a natural number, and let B(H) be the Banach space of all bounded
operators from a infinite dimensional separable complex (real) Hilbert space H to itself. We
describe traces of m -additive maps G : B(H)m → B(H) such that [G(T, . . . ,T ),T ] = 0 for all
invertible or singular T ∈ B(H) .

Let K be either the field of the real or complex numbers. Denote by H the infinite
dimensional separable Hilbert space over K and by {φ1,φ2, . . .} a fixed orthonormal
system for H , that is, x = ∑∞

i=1 < x,φi > φi for each x ∈ H , where < . > denotes
the inner product in H . As usual B(H) stands for the Banach space of all bounded
operators from H to itself. Observe that the operator ei j(x) =< x,φi > φ j ∈ B(H) for
each i, j ∈ N . The spectrum σ(T ) of T ∈ B(H) is defined by

σ(T ) = {λ ∈ K | λ I−T is not invertible}.
The resolvent set ν(T ) is defined by ν(T ) = K\σ(T ) . It is well known that the spec-
trum σ(T ) of T is a compact set in K bounded by ||T || . In particular, the resolvent
ν(T ) is an unbounded open set that contains {ε ∈ K | ε > ||T ||} .

Now, let m � 1 be a natural number. In the following discussion, we fix an m-
additive map G : B(H)m → B(H) . This means that G is additive in each component,
that is,

G(T1, . . . ,Ti +Si, . . . ,Tm) = G(T1, . . . ,Ti, . . . ,Tm)+G(T1, . . . ,Si, . . . ,Tm)

for all Ti,Si ∈ B(H) , and i ∈ {1, . . . ,m} . The map F : B(H)m → B(H) defined by
F(T ) = G(T, . . . ,T ) is known as the trace of G . We call F commuting if for each
T ∈ B(H) the equality G(T, . . . ,T )T = TG(T, . . . ,T ) holds. Using the commutator
form we can rewrite the latter as [G(T, . . . ,T ),T ] = G(T, . . . ,T )T −TG(T, . . . ,T ) = 0.

In [1] the author describes all commuting traces of an m-additive map G : B(H)m →
B(H) such that [G(x, . . . ,x),x] = 0 for all invertible or singular x ∈ B(H) in the finite
dimensional setting and m � 2. The test case for m = 1 has been covered in the au-
thor’s paper [2]. Recently, Liu [4] characterized centralizing maps on invertible (sin-
gular) matrices over division rings. Precisely, Liu proved that if f : Mn(D) → Mn(D)
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is an additive map satisfying f (x)x− x f (x) ∈ Z for all invertible x ∈ Mn(D) , where
Mn(D) denotes the ring of all n×n matrices over a division ring D and Z is the cen-
ter of Mn(D) , then there exist λ ∈ Z and an additive map μ : Mn(D) → Z such that
f (x) = λx + μ(x) for all x ∈ Mn(D) except when D ∼= Z2 , the Galois field of two
elements. A map f : Mn(D) → Mn(D) is called centralizing on a subset S ⊂ Mn(D)
if f (x)x− x f (x) ∈ Z for all x ∈ S . Centralizing additive maps on the set of singular
matrices is also obtained in [4, Theorem 1.2].

The purpose of this article is to characterize commuting traces of an m-additive
map G : B(H)m → B(H) such that [G(x, . . . ,x),x] = 0 for all invertible or singular
x ∈ B(H) , when H is an infinite dimensional separable Hilbert space and m � 1.

In this work we may assume that the m-additive map G : B(H)m → B(H) is sym-
metric. For instance, consider G

′
(T1, . . . ,Tm) = ∑σ∈Sm G(Tσ(1), . . . ,Tσ(m)) . It is clear

that G
′
is symmetric and G

′
(T, . . . ,T ) = m!G(T, . . . ,T ) for all T ∈ B(H) . Clearly, we

see that for T ∈ B(H) , [G
′
(T, . . . ,T ),T ] = 0 if and only if [G(T, . . . ,T ),T ] = 0. Also,

we have that G is m-linear over Q . This fact will be largely used in this paper.
We start with commuting traces of m-additive maps on the set of invertible oper-

ators. First, we need an auxiliary result.

PROPOSITION 1. Let m � 1 be a natural number. Let G : B(H)m → B(H) be a
symmetric m-additive map such that

[G(T, . . . ,T ),T ] = 0 for all invertible T ∈ B(H) . (1)

Then G(kI, . . . ,kI) ∈ Z for all k ∈ K , where Z = K · I .

Proof. First of all observe that the result holds trivially when k = 0. Now, fix
k ∈ K∗ , and let ei j , i �= j the operator ei j(x) =< x,φi > φ j ∈ B(H) . Let s be the
smallest even number greater or equal than m , that is, s = m if m is even, and s = m+1
if m is odd. We will show that [G(kI, . . . ,kI),ei j] = 0.

For each a ∈ K∗ , let ya = akI + u , where u = (I + ei j) . Note that ya = akI + u
is invertible if and only if −ak ∈ ν(u) = K \ {1} . Therefore ya is invertible if a �=
− 1

k . So, we can find a nonzero rational number b such that ya is invertible for all
a ∈ {±b,±2b, . . . ,± s

2b} (take b satisfying |b| > 1
k ). It follows from (1) that 0 =

[G(u, . . . ,u),u] = [G(kI, . . . ,kI),kI] = [G(ya, . . . ,ya),ya] , and this last bracket can be
written as

[G(ya, . . . ,ya),u] = 0, (2)

since ya = akI+u . For m = 1 we conclude from (2) and [G(u),u] = 0 that [G(kI),u] =
[G(kI),ei j] = 0 because u = (I + ei j) . It remains to prove that [G(kI, . . . ,kI),ei j] = 0
for m � 2. Using (2) one more time, we see that [G(ya, . . . ,ya)+G(y−a, . . . ,y−a),u] = 0
for all a ∈ {b,2b, . . . , s

2b} . Now, since G is symmetric, m-additive, and ya = akI + u
we can obtain for each a ∈ {b,2b, . . . , s

2b} that:

G(ya, . . . ,ya) =
m

∑
ζ=0

am−ζ
(

m
ζ

)
G(kI, . . . ,kI,u, . . . ,u︸ ︷︷ ︸

ζ

), (3)
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and

G(y−a, . . . ,y−a) =
m

∑
ζ=0

(−1)m−ζ am−ζ
(

m
ζ

)
G(kI, . . . ,kI,u, . . . ,u︸ ︷︷ ︸

ζ

). (4)

By keeping in mind the equations (3), (4), and the relation [G(u, . . . ,u),u] = 0 we
see that [G(ya, . . . ,ya)+G(y−a, . . . ,y−a),u] = 0 becomes:

s−2
2

∑
ζ=0

am−2ζ
(

m
2ζ

)
[G(kI, . . . ,kI,u, . . . ,u︸ ︷︷ ︸

2ζ

),u] = 0, when m is even, (5)

and

s−4
2

∑
ζ=0

am−(2ζ+1)
(

m
2ζ +1

)
[G(kI, . . . ,kI, u, . . . ,u︸ ︷︷ ︸

2ζ +1

),u] = 0, when m is odd. (6)

With (6), the identity [G(ya, . . . ,ya),u] = 0 becomes:

s−2
2

∑
ζ=0

am−2ζ
(

m
2ζ

)
[G(kI, . . . ,kI,u, . . . ,u︸ ︷︷ ︸

2ζ

),u] = 0, when m is odd.

Therefore, for each a ∈ {b,2b, . . . , s
2b} we have obtained an equation of the form

(5) when m is either even or odd. It means that we got s
2 equations in s

2 unknowns,
namely

( m
2ζ

)
[G(kI, . . . ,kI,u, . . . ,u),u] , where u appears exactly in 2ζ components of

G , and ζ ∈ {0,1, . . . , s−2
2 } . Using matrix notation we can rewrite these systems in the

following way:

⎛
⎜⎜⎜⎜⎜⎝

bm bm−2 bm−4 . . . bm−(s−2)

(2b)m (2b)m−2 (2b)m−4 . . . (2b)m−(s−2)

(3b)m (3b)m−2 (3b)m−4 . . . (3b)m−(s−2)

...
...

...
...

...
( s

2b)m ( s
2b)m−2 ( s

2b)m−4 . . . ( s
2b)m−(s−2)

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

(m
0

)
[G(kI, . . . ,kI),u]

...( m
2ζ

)
[G(kI, . . . ,kI,u, . . . ,u),u]

...( m
s−2

)
[G(kI,u, . . . ,u),u]

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0.

Because the determinant of the Vandermonde matrix formed by the coefficients of
the system is not zero, we get that [G(kI, . . . ,kI),u] = 0. As u = (I +ei j) , we conclude
that [G(kI, . . . ,kI),ei j] = 0, when i �= j . Finally, we see that

[G(kI, . . . ,kI),eii] = [G(kI, . . . ,kI),ei je ji] =
= [G(kI, . . . ,kI),ei j]e ji + ei j[G(kI, . . . ,kI),e ji] = 0.

It means that G(kI, . . . ,kI) commutes with all finite rank operators of the form ei j =<
x,φi > φ j . Therefore, G(kI, . . . ,kI) ∈ Z for all k ∈ K . �
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THEOREM 2. Let m � 1 be a natural number. Let G : B(H)m → B(H) be an
m-additive map such that

[G(T, . . . ,T ),T ] = 0 for all invertible T ∈ B(H) . (7)

Then, there exist μ0 ∈ Z and maps μi : B(H) → Z , i ∈ {1, . . . ,m} , such that each
μi is the trace of an i-additive map and G(T, . . . ,T ) = μ0Tm + μ1(T )Tm−1 + . . . +
μm−1(T )T + μm(T ) for all T ∈ B(H) , where Z = K · I .

Proof. Without loss of generality, we may assume that G is symmetric. Once
again, let s be the smallest even number greater or equal than m , that is, s = m if m is
even, and s = m+1 if m is odd. Our goal is to show that [G(T, . . . ,T ),T ] = 0 for all
T ∈ B(H) . Fix T ∈ B(H) . Since {ε ∈ K | ε > ||T ||} ⊂ ν(T ) , we can find a nonzero
number λ ∈K such that ya = T +aλ I is invertible for all a∈{±1, . . . ,± s

2} . For m = 1
we obtain after employing the Proposition 1 in the identity [G(T + λ I),T ] = [G(T +
λ I),T +λ I] = 0 (equation (7)) that [G(T ),T ] = 0. From now on, we may take m � 2.
It follows from (7) and ya = T + aλ I that [G(ya, . . . ,ya),T ] = [G(ya, . . . ,ya),ya] = 0
for all a ∈ {±1, . . . ,± s

2} . Consequently,

[G(ya, . . . ,ya)+G(y−a, . . . ,y−a),T ] = 0 for all a ∈ {1, . . . ,
s
2
}. (8)

Now, since G is symmetric, m-additive and ya = T +aλ I , we conclude that

G(ya, . . . ,ya) =
m

∑
r=0

ar
(

m
r

)
G(λ I, . . . ,λ I︸ ︷︷ ︸

r

,T, . . . ,T ), (9)

for each a ∈ {±1, . . . ,± s
2} . Thus, if we take into the account that G(λ I, . . . ,λ I) ∈ Z

(Proposition 1) and the equation (9) we can derive from (8) that:

[G(T,T ),T ] = 0 if m = 2,

and
s−2
2

∑
r=0

a2r
(

m
2r

)
[G(λ I, . . . ,λ I︸ ︷︷ ︸

2r

,T, . . . ,T ),T ] = 0 if m � 3.

As in the proof of the Proposition 1, for each m � 3 we have:

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
1 22 24 . . . 2s−2

1 32 34 . . . 3s−2

...
...

...
...

...
1 ( s

2 )2 ( s
2)4 . . . ( s

2 )s−2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

[G(T, . . . ,T ),T ](
m
2

)
[G(λ I,λ I,T, . . . ,T ),T ]

...(
m

s−2

)
[G(λ I, . . . ,λ I,T, . . . ,T︸ ︷︷ ︸

m−(s−2)

),T ]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.
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Therefore, [G(T, . . . ,T ),T ] = 0 for all T ∈ B(H) . With this in hand, the desired
result now follows from [3, Theorem 3.1]. �

Our next goal is to study commuting traces of m-additive maps on the set of sin-
gular operators.

THEOREM 3. Let m � 1 be a natural number. Let G : B(H)m → B(H) be a sym-
metric m-additive map such that

[G(T, . . . ,T ),T ] = 0 for all singular T ∈ B(H) . (10)

Then, there exist μ0 ∈ Z and maps μi : B(H) → Z , i ∈ {1, . . . ,m} , such that each
μi is the trace of an i-additive map and G(T, . . . ,T ) = μ0Tm + μ1(T )Tm−1 + . . . +
μm−1(T )T + μm(T ) for all T ∈ B(H) , where Z = K · I .

Proof. We shall proceed as we did in the proof of the Theorem 2, that is, we will
show that [G(T, . . . ,T ),T ] = 0 for all T ∈ B(H) . Fix T ∈ B(H) . Let us define the
finite rank operator S ∈ B(H) as the following:

S =
m+2

∑
n=1

−
(

1
n

)
< x,φn > T (φn). (11)

By construction, we see that T + jS is singular for all j ∈ {1, . . . ,m+2} , because
(T + jS)(φ j) = 0. Thus, [G(T + jS, . . . ,T + jS),T + jS] = 0 (equation 10) for all
j ∈ {1, . . . ,m+2} . Using the symmetricity and the m-additivity of G , we arrive at

m

∑
h=0

jh
(

m
h

)
[G(S, . . . ,S︸ ︷︷ ︸

h

,T, . . . ,T ),T ] +

m

∑
h=0

jh+1
(

m
h

)
[G(S, . . . ,S︸ ︷︷ ︸

h

,T, . . . ,T ),S] = 0. (12)

For convenience let us set:

α(h) =
(

m
h

)
[G(S, . . . ,S︸ ︷︷ ︸

h

,T, . . . ,T ),T ], where h ∈ {0, . . . ,m},

and

γ(h) =
(

m
h

)
[G(S, . . . ,S︸ ︷︷ ︸

h

,T, . . . ,T ),S], where h ∈ {0, . . . ,m}.

Observe that for each j ∈ {1, . . . ,m+2} we have obtained an equation of the form
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(12). Thus, using matrix notation we have the following:

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
1 21 22 . . . 2m+1

1 31 32 . . . 3m+1

...
...

...
...

...
1 (m+2)1 (m+2)2 . . . (m+2)m+1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α(0)
α(1)+ γ(0)
α(2)+ γ(1)

...
α(m)+ γ(m−1)

γ(m)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

Therefore, α(0) = [G(T, . . . ,T ),T ] = 0, and this is true for all T ∈ B(H) since T
is arbitrary. The result follows now from [3, Theorem 3.1]. �
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