COMMUTING TRACES ON INVERTIBLE AND SINGULAR OPERATORS

Willian Franca

(Communicated by H. Radjavi)

Abstract

Let $m \geqslant 1$ be a natural number, and let $B(H)$ be the Banach space of all bounded operators from a infinite dimensional separable complex (real) Hilbert space H to itself. We describe traces of m-additive maps $G: B(H)^{m} \rightarrow B(H)$ such that $[G(T, \ldots, T), T]=0$ for all invertible or singular $T \in B(H)$.

Let \mathbb{K} be either the field of the real or complex numbers. Denote by H the infinite dimensional separable Hilbert space over \mathbb{K} and by $\left\{\phi_{1}, \phi_{2}, \ldots\right\}$ a fixed orthonormal system for H, that is, $x=\sum_{i=1}^{\infty}<x, \phi_{i}>\phi_{i}$ for each $x \in H$, where $<.>$ denotes the inner product in H. As usual $B(H)$ stands for the Banach space of all bounded operators from H to itself. Observe that the operator $e_{i j}(x)=<x, \phi_{i}>\phi_{j} \in B(H)$ for each $i, j \in \mathbb{N}$. The spectrum $\sigma(T)$ of $T \in B(H)$ is defined by

$$
\sigma(T)=\{\lambda \in \mathbb{K} \mid \lambda I-T \quad \text { is not invertible }\} .
$$

The resolvent set $v(T)$ is defined by $v(T)=\mathbb{K} \backslash \sigma(T)$. It is well known that the spectrum $\sigma(T)$ of T is a compact set in \mathbb{K} bounded by $\|T\|$. In particular, the resolvent $v(T)$ is an unbounded open set that contains $\{\varepsilon \in \mathbb{K} \mid \varepsilon>\|T\|\}$.

Now, let $m \geqslant 1$ be a natural number. In the following discussion, we fix an m additive map $G: B(H)^{m} \rightarrow B(H)$. This means that G is additive in each component, that is,

$$
G\left(T_{1}, \ldots, T_{i}+S_{i}, \ldots, T_{m}\right)=G\left(T_{1}, \ldots, T_{i}, \ldots, T_{m}\right)+G\left(T_{1}, \ldots, S_{i}, \ldots, T_{m}\right)
$$

for all $T_{i}, S_{i} \in B(H)$, and $i \in\{1, \ldots, m\}$. The map $F: B(H)^{m} \rightarrow B(H)$ defined by $F(T)=G(T, \ldots, T)$ is known as the trace of G. We call F commuting if for each $T \in B(H)$ the equality $G(T, \ldots, T) T=T G(T, \ldots, T)$ holds. Using the commutator form we can rewrite the latter as $[G(T, \ldots, T), T]=G(T, \ldots, T) T-T G(T, \ldots, T)=0$.

In [1] the author describes all commuting traces of an m-additive map $G: B(H)^{m} \rightarrow$ $B(H)$ such that $[G(x, \ldots, x), x]=0$ for all invertible or singular $x \in B(H)$ in the finite dimensional setting and $m \geqslant 2$. The test case for $m=1$ has been covered in the author's paper [2]. Recently, Liu [4] characterized centralizing maps on invertible (singular) matrices over division rings. Precisely, Liu proved that if $f: M_{n}(\mathbb{D}) \rightarrow M_{n}(\mathbb{D})$

[^0]is an additive map satisfying $f(x) x-x f(x) \in Z$ for all invertible $x \in M_{n}(\mathbb{D})$, where $M_{n}(\mathbb{D})$ denotes the ring of all $n \times n$ matrices over a division ring D and Z is the center of $M_{n}(\mathbb{D})$, then there exist $\lambda \in Z$ and an additive map $\mu: M_{n}(\mathbb{D}) \rightarrow Z$ such that $f(x)=\lambda x+\mu(x)$ for all $x \in M_{n}(\mathbb{D})$ except when $D \cong \mathbb{Z}_{2}$, the Galois field of two elements. A map $f: M_{n}(\mathbb{D}) \rightarrow M_{n}(\mathbb{D})$ is called centralizing on a subset $S \subset M_{n}(\mathbb{D})$ if $f(x) x-x f(x) \in Z$ for all $x \in S$. Centralizing additive maps on the set of singular matrices is also obtained in [4, Theorem 1.2].

The purpose of this article is to characterize commuting traces of an m-additive map $G: B(H)^{m} \rightarrow B(H)$ such that $[G(x, \ldots, x), x]=0$ for all invertible or singular $x \in B(H)$, when H is an infinite dimensional separable Hilbert space and $m \geqslant 1$.

In this work we may assume that the m-additive map $G: B(H)^{m} \rightarrow B(H)$ is symmetric. For instance, consider $G^{\prime}\left(T_{1}, \ldots, T_{m}\right)=\sum_{\sigma \in S_{m}} G\left(T_{\sigma(1)}, \ldots, T_{\sigma(m)}\right)$. It is clear that G^{\prime} is symmetric and $G^{\prime}(T, \ldots, T)=m!G(T, \ldots, T)$ for all $T \in B(H)$. Clearly, we see that for $T \in B(H),\left[G^{\prime}(T, \ldots, T), T\right]=0$ if and only if $[G(T, \ldots, T), T]=0$. Also, we have that G is m-linear over \mathbb{Q}. This fact will be largely used in this paper.

We start with commuting traces of m-additive maps on the set of invertible operators. First, we need an auxiliary result.

Proposition 1. Let $m \geqslant 1$ be a natural number. Let $G: B(H)^{m} \rightarrow B(H)$ be a symmetric m-additive map such that

$$
\begin{equation*}
[G(T, \ldots, T), T]=0 \quad \text { for all invertible } T \in B(H) \tag{1}
\end{equation*}
$$

Then $G(k I, \ldots, k I) \in Z$ for all $k \in \mathbb{K}$, where $Z=\mathbb{K} \cdot I$.

Proof. First of all observe that the result holds trivially when $k=0$. Now, fix $k \in \mathbb{K}^{*}$, and let $e_{i j}, i \neq j$ the operator $e_{i j}(x)=<x, \phi_{i}>\phi_{j} \in B(H)$. Let s be the smallest even number greater or equal than m, that is, $s=m$ if m is even, and $s=m+1$ if m is odd. We will show that $\left[G(k I, \ldots, k I), e_{i j}\right]=0$.

For each $a \in \mathbb{K}^{*}$, let $y_{a}=a k I+u$, where $u=\left(I+e_{i j}\right)$. Note that $y_{a}=a k I+u$ is invertible if and only if $-a k \in v(u)=\mathbb{K} \backslash\{1\}$. Therefore y_{a} is invertible if $a \neq$ $-\frac{1}{k}$. So, we can find a nonzero rational number b such that y_{a} is invertible for all $a \in\left\{ \pm b, \pm 2 b, \ldots, \pm \frac{s}{2} b\right\}$ (take b satisfying $|b|>\frac{1}{k}$). It follows from (1) that $0=$ $[G(u, \ldots, u), u]=[G(k I, \ldots, k I), k I]=\left[G\left(y_{a}, \ldots, y_{a}\right), y_{a}\right]$, and this last bracket can be written as

$$
\begin{equation*}
\left[G\left(y_{a}, \ldots, y_{a}\right), u\right]=0 \tag{2}
\end{equation*}
$$

since $y_{a}=a k I+u$. For $m=1$ we conclude from (2) and $[G(u), u]=0$ that $[G(k I), u]=$ $\left[G(k I), e_{i j}\right]=0$ because $u=\left(I+e_{i j}\right)$. It remains to prove that $\left[G(k I, \ldots, k I), e_{i j}\right]=0$ for $m \geqslant 2$. Using (2) one more time, we see that $\left[G\left(y_{a}, \ldots, y_{a}\right)+G\left(y_{-a}, \ldots, y_{-a}\right), u\right]=0$ for all $a \in\left\{b, 2 b, \ldots, \frac{s}{2} b\right\}$. Now, since G is symmetric, m-additive, and $y_{a}=a k I+u$ we can obtain for each $a \in\left\{b, 2 b, \ldots, \frac{s}{2} b\right\}$ that:

$$
\begin{equation*}
G\left(y_{a}, \ldots, y_{a}\right)=\sum_{\zeta=0}^{m} a^{m-\zeta}\binom{m}{\zeta} G(k I, \ldots, k I, \underbrace{u, \ldots, u}_{\zeta}) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
G\left(y_{-a}, \ldots, y_{-a}\right)=\sum_{\zeta=0}^{m}(-1)^{m-\zeta} a^{m-\zeta}\binom{m}{\zeta} G(k I, \ldots, k I, \underbrace{u, \ldots, u}_{\zeta}) . \tag{4}
\end{equation*}
$$

By keeping in mind the equations (3), (4), and the relation $[G(u, \ldots, u), u]=0$ we see that $\left[G\left(y_{a}, \ldots, y_{a}\right)+G\left(y_{-a}, \ldots, y_{-a}\right), u\right]=0$ becomes:

$$
\begin{equation*}
\sum_{\zeta=0}^{\frac{s-2}{2}} a^{m-2 \zeta}\binom{m}{2 \zeta}[G(k I, \ldots, k I, \underbrace{u, \ldots, u}_{2 \zeta}), u]=0, \quad \text { when } m \text { is even } \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\zeta=0}^{\frac{s-4}{2}} a^{m-(2 \zeta+1)}\binom{m}{2 \zeta+1}[G(k I, \ldots, k I, \underbrace{u, \ldots, u}_{2 \zeta+1}), u]=0, \quad \text { when } m \text { is odd. } \tag{6}
\end{equation*}
$$

With (6), the identity $\left[G\left(y_{a}, \ldots, y_{a}\right), u\right]=0$ becomes:

$$
\sum_{\zeta=0}^{\frac{s-2}{2}} a^{m-2 \zeta}\binom{m}{2 \zeta}[G(k I, \ldots, k I, \underbrace{u, \ldots, u}_{2 \zeta}), u]=0, \quad \text { when } m \text { is odd. }
$$

Therefore, for each $a \in\left\{b, 2 b, \ldots, \frac{s}{2} b\right\}$ we have obtained an equation of the form (5) when m is either even or odd. It means that we got $\frac{s}{2}$ equations in $\frac{s}{2}$ unknowns, namely $\binom{m}{2 \zeta}[G(k I, \ldots, k I, u, \ldots, u), u]$, where u appears exactly in 2ζ components of G, and $\zeta \in\left\{0,1, \ldots, \frac{s-2}{2}\right\}$. Using matrix notation we can rewrite these systems in the following way:

$$
\left(\begin{array}{ccccc}
b^{m} & b^{m-2} & b^{m-4} & \ldots & b^{m-(s-2)} \\
(2 b)^{m} & (2 b)^{m-2} & (2 b)^{m-4} & \ldots & (2 b)^{m-(s-2)} \\
(3 b)^{m} & (3 b)^{m-2} & (3 b)^{m-4} & \ldots & (3 b)^{m-(s-2)} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\left(\frac{s}{2} b\right)^{m} & \left(\frac{s}{2} b\right)^{m-2} & \left(\frac{s}{2} b\right)^{m-4} & \ldots & \left(\frac{s}{2} b\right)^{m-(s-2)}
\end{array}\right)\left(\begin{array}{c}
\binom{m}{0}[G(k I, \ldots, k I), u] \\
\vdots \\
\binom{m}{2 \zeta}[G(k I, \ldots, k I, u, \ldots, u), u] \\
\vdots \\
\binom{m}{s-2}[G(k I, u, \ldots, u), u]
\end{array}\right)=0
$$

Because the determinant of the Vandermonde matrix formed by the coefficients of the system is not zero, we get that $[G(k I, \ldots, k I), u]=0$. As $u=\left(I+e_{i j}\right)$, we conclude that $\left[G(k I, \ldots, k I), e_{i j}\right]=0$, when $i \neq j$. Finally, we see that

$$
\begin{aligned}
{\left[G(k I, \ldots, k I), e_{i i}\right] } & =\left[G(k I, \ldots, k I), e_{i j} e_{j i}\right]= \\
& =\left[G(k I, \ldots, k I), e_{i j}\right] e_{j i}+e_{i j}\left[G(k I, \ldots, k I), e_{j i}\right]=0
\end{aligned}
$$

It means that $G(k I, \ldots, k I)$ commutes with all finite rank operators of the form $e_{i j}=<$ $x, \phi_{i}>\phi_{j}$. Therefore, $G(k I, \ldots, k I) \in Z$ for all $k \in \mathbb{K}$.

THEOREM 2. Let $m \geqslant 1$ be a natural number. Let $G: B(H)^{m} \rightarrow B(H)$ be an m-additive map such that

$$
\begin{equation*}
[G(T, \ldots, T), T]=0 \quad \text { for all invertible } T \in B(H) \tag{7}
\end{equation*}
$$

Then, there exist $\mu_{0} \in Z$ and maps $\mu_{i}: B(H) \rightarrow Z, i \in\{1, \ldots, m\}$, such that each μ_{i} is the trace of an i-additive map and $G(T, \ldots, T)=\mu_{0} T^{m}+\mu_{1}(T) T^{m-1}+\ldots+$ $\mu_{m-1}(T) T+\mu_{m}(T)$ for all $T \in B(H)$, where $Z=\mathbb{K} \cdot I$.

Proof. Without loss of generality, we may assume that G is symmetric. Once again, let s be the smallest even number greater or equal than m, that is, $s=m$ if m is even, and $s=m+1$ if m is odd. Our goal is to show that $[G(T, \ldots, T), T]=0$ for all $T \in B(H)$. Fix $T \in B(H)$. Since $\{\varepsilon \in \mathbb{K} \mid \varepsilon>\|T\|\} \subset v(T)$, we can find a nonzero number $\lambda \in \mathbb{K}$ such that $y_{a}=T+a \lambda I$ is invertible for all $a \in\left\{ \pm 1, \ldots, \pm \frac{s}{2}\right\}$. For $m=1$ we obtain after employing the Proposition 1 in the identity $[G(T+\lambda I), T]=[G(T+$ $\lambda I), T+\lambda I]=0$ (equation (7)) that $[G(T), T]=0$. From now on, we may take $m \geqslant 2$. It follows from (7) and $y_{a}=T+a \lambda I$ that $\left[G\left(y_{a}, \ldots, y_{a}\right), T\right]=\left[G\left(y_{a}, \ldots, y_{a}\right), y_{a}\right]=0$ for all $a \in\left\{ \pm 1, \ldots, \pm \frac{s}{2}\right\}$. Consequently,

$$
\begin{equation*}
\left[G\left(y_{a}, \ldots, y_{a}\right)+G\left(y_{-a}, \ldots, y_{-a}\right), T\right]=0 \quad \text { for all } \quad a \in\left\{1, \ldots, \frac{s}{2}\right\} \tag{8}
\end{equation*}
$$

Now, since G is symmetric, m-additive and $y_{a}=T+a \lambda I$, we conclude that

$$
\begin{equation*}
G\left(y_{a}, \ldots, y_{a}\right)=\sum_{r=0}^{m} a^{r}\binom{m}{r} G(\underbrace{\lambda I, \ldots, \lambda I}_{r}, T, \ldots, T), \tag{9}
\end{equation*}
$$

for each $a \in\left\{ \pm 1, \ldots, \pm \frac{s}{2}\right\}$. Thus, if we take into the account that $G(\lambda I, \ldots, \lambda I) \in Z$ (Proposition 1) and the equation (9) we can derive from (8) that:

$$
[G(T, T), T]=0 \quad \text { if } \quad m=2
$$

and

$$
\sum_{r=0}^{\frac{s-2}{2}} a^{2 r}\binom{m}{2 r}[G(\underbrace{\lambda I, \ldots, \lambda I}_{2 r}, T, \ldots, T), T]=0 \quad \text { if } \quad m \geqslant 3 .
$$

As in the proof of the Proposition 1, for each $m \geqslant 3$ we have:

$$
\left(\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & 2^{2} & 2^{4} & \ldots & 2^{s-2} \\
1 & 3^{2} & 3^{4} & \ldots & 3^{s-2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \left(\frac{s}{2}\right)^{2} & \left(\frac{s}{2}\right)^{4} & \ldots & \left(\frac{s}{2}\right)^{s-2}
\end{array}\right)\left(\begin{array}{c}
{[G(T, \ldots, T), T]} \\
\binom{m}{2}[G(\lambda I, \lambda I, T, \ldots, T), T] \\
\vdots \\
\binom{m}{s-2}[G(\lambda I, \ldots, \lambda I, \underbrace{T, \ldots, T}_{m-(s-2)}), T]
\end{array}\right)=0 .
$$

Therefore, $[G(T, \ldots, T), T]=0$ for all $T \in B(H)$. With this in hand, the desired result now follows from [3, Theorem 3.1].

Our next goal is to study commuting traces of m-additive maps on the set of singular operators.

THEOREM 3. Let $m \geqslant 1$ be a natural number. Let $G: B(H)^{m} \rightarrow B(H)$ be a symmetric m-additive map such that

$$
\begin{equation*}
[G(T, \ldots, T), T]=0 \quad \text { for all singular } T \in B(H) \tag{10}
\end{equation*}
$$

Then, there exist $\mu_{0} \in Z$ and maps $\mu_{i}: B(H) \rightarrow Z, i \in\{1, \ldots, m\}$, such that each μ_{i} is the trace of an i-additive map and $G(T, \ldots, T)=\mu_{0} T^{m}+\mu_{1}(T) T^{m-1}+\ldots+$ $\mu_{m-1}(T) T+\mu_{m}(T)$ for all $T \in B(H)$, where $Z=\mathbb{K} \cdot I$.

Proof. We shall proceed as we did in the proof of the Theorem 2, that is, we will show that $[G(T, \ldots, T), T]=0$ for all $T \in B(H)$. Fix $T \in B(H)$. Let us define the finite rank operator $S \in B(H)$ as the following:

$$
\begin{equation*}
S=\sum_{n=1}^{m+2}-\left(\frac{1}{n}\right)<x, \phi_{n}>T\left(\phi_{n}\right) \tag{11}
\end{equation*}
$$

By construction, we see that $T+j S$ is singular for all $j \in\{1, \ldots, m+2\}$, because $(T+j S)\left(\phi_{j}\right)=0$. Thus, $[G(T+j S, \ldots, T+j S), T+j S]=0$ (equation 10) for all $j \in\{1, \ldots, m+2\}$. Using the symmetricity and the m-additivity of G, we arrive at

$$
\begin{align*}
& \sum_{h=0}^{m} j^{h}\binom{m}{h}[G(\underbrace{S, \ldots, S}_{h}, T, \ldots, T), T]+ \\
& \sum_{h=0}^{m} j^{h+1}\binom{m}{h}[G(\underbrace{S, \ldots, S}_{h}, T, \ldots, T), S]=0 . \tag{12}
\end{align*}
$$

For convenience let us set:

$$
\alpha(h)=\binom{m}{h}[G(\underbrace{S, \ldots, S}_{h}, T, \ldots, T), T], \quad \text { where } \quad h \in\{0, \ldots, m\},
$$

and

$$
\gamma(h)=\binom{m}{h}[G(\underbrace{S, \ldots, S}_{h}, T, \ldots, T), S], \quad \text { where } \quad h \in\{0, \ldots, m\} .
$$

Observe that for each $j \in\{1, \ldots, m+2\}$ we have obtained an equation of the form
(12). Thus, using matrix notation we have the following:

$$
\left(\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & 2^{1} & 2^{2} & \ldots & 2^{m+1} \\
1 & 3^{1} & 3^{2} & \ldots & 3^{m+1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & (m+2)^{1} & (m+2)^{2} & \ldots & (m+2)^{m+1}
\end{array}\right)\left(\begin{array}{c}
\alpha(0) \\
\alpha(1)+\gamma(0) \\
\alpha(2)+\gamma(1) \\
\vdots \\
\alpha(m)+\gamma(m-1) \\
\gamma(m)
\end{array}\right)=0
$$

Therefore, $\alpha(0)=[G(T, \ldots, T), T]=0$, and this is true for all $T \in B(H)$ since T is arbitrary. The result follows now from [3, Theorem 3.1].

REFERENCES

[1] W. FRANCA, Commuting traces of multiadditive maps on invertible and singular matrices, Linear and Multilinear Algebra, accepted.
[2] W. Franca, Commuting maps on some subsets of matrices that are not closed under addition, Linear Algebra Appl., 437 (2012), 388-391.
[3] P.-H. Lee, T.-L. Wong, J.-S. Lin, R.-J. WAng, Commuting trace of multiadditive mappings, J. Algebra, 193 (1997), 709-723.
[4] C.-K. Liu, Centralizing maps on invertible or singular matrices over division rings, Linear Algebra Appl., to appear.

[^0]: Mathematics subject classification (2010): 47A05,.
 Keywords and phrases: Hilbert spaces, commuting traces, centralizing maps, invertible operators, singular operators.

 Supported by Fapesp: Fundação de Amparo a Pesquisa do estado de São Paulo. Supported by Fapesp Grant 2013/09610-6.

