COMMUTING TRACES ON INVERTIBLE AND SINGULAR OPERATORS

WILLIAN FRANCA

(Communicated by H. Radjavi)

Abstract. Let $m \ge 1$ be a natural number, and let B(H) be the Banach space of all bounded operators from a infinite dimensional separable complex (real) Hilbert space H to itself. We describe traces of m-additive maps $G: B(H)^m \to B(H)$ such that $[G(T, \ldots, T), T] = 0$ for all invertible or singular $T \in B(H)$.

Let \mathbb{K} be either the field of the real or complex numbers. Denote by H the infinite dimensional separable Hilbert space over \mathbb{K} and by $\{\phi_1, \phi_2, \ldots\}$ a fixed orthonormal system for H, that is, $x = \sum_{i=1}^{\infty} \langle x, \phi_i \rangle \phi_i$ for each $x \in H$, where $\langle . \rangle$ denotes the inner product in H. As usual B(H) stands for the Banach space of all bounded operators from H to itself. Observe that the operator $e_{ij}(x) = \langle x, \phi_i \rangle \phi_j \in B(H)$ for each $i, j \in \mathbb{N}$. The spectrum $\sigma(T)$ of $T \in B(H)$ is defined by

$$\sigma(T) = \{ \lambda \in \mathbb{K} \mid \lambda I - T \text{ is not invertible} \}.$$

The resolvent set v(T) is defined by $v(T) = \mathbb{K} \setminus \sigma(T)$. It is well known that the spectrum $\sigma(T)$ of *T* is a compact set in \mathbb{K} bounded by ||T||. In particular, the resolvent v(T) is an unbounded open set that contains $\{\varepsilon \in \mathbb{K} \mid \varepsilon > ||T||\}$.

Now, let $m \ge 1$ be a natural number. In the following discussion, we fix an *m*-additive map $G: B(H)^m \to B(H)$. This means that G is additive in each component, that is,

$$G(T_1, \ldots, T_i + S_i, \ldots, T_m) = G(T_1, \ldots, T_i, \ldots, T_m) + G(T_1, \ldots, S_i, \ldots, T_m)$$

for all $T_i, S_i \in B(H)$, and $i \in \{1, ..., m\}$. The map $F : B(H)^m \to B(H)$ defined by F(T) = G(T, ..., T) is known as the *trace* of *G*. We call *F* commuting if for each $T \in B(H)$ the equality G(T, ..., T)T = TG(T, ..., T) holds. Using the commutator form we can rewrite the latter as [G(T, ..., T), T] = G(T, ..., T)T - TG(T, ..., T) = 0.

In [1] the author describes all commuting traces of an *m*-additive map $G: B(H)^m \to B(H)$ such that [G(x,...,x),x] = 0 for all invertible or singular $x \in B(H)$ in the finite dimensional setting and $m \ge 2$. The test case for m = 1 has been covered in the author's paper [2]. Recently, Liu [4] characterized centralizing maps on invertible (singular) matrices over division rings. Precisely, Liu proved that if $f: M_n(\mathbb{D}) \to M_n(\mathbb{D})$

© EMN, Zagreb Paper OaM-09-17

Mathematics subject classification (2010): 47A05,.

Keywords and phrases: Hilbert spaces, commuting traces, centralizing maps, invertible operators, singular operators.

Supported by Fapesp: Fundação de Amparo a Pesquisa do estado de São Paulo. Supported by Fapesp Grant 2013/09610-6.

is an additive map satisfying $f(x)x - xf(x) \in Z$ for all invertible $x \in M_n(\mathbb{D})$, where $M_n(\mathbb{D})$ denotes the ring of all $n \times n$ matrices over a division ring D and Z is the center of $M_n(\mathbb{D})$, then there exist $\lambda \in Z$ and an additive map $\mu : M_n(\mathbb{D}) \to Z$ such that $f(x) = \lambda x + \mu(x)$ for all $x \in M_n(\mathbb{D})$ except when $D \cong \mathbb{Z}_2$, the Galois field of two elements. A map $f : M_n(\mathbb{D}) \to M_n(\mathbb{D})$ is called centralizing on a subset $S \subset M_n(\mathbb{D})$ if $f(x)x - xf(x) \in Z$ for all $x \in S$. Centralizing additive maps on the set of singular matrices is also obtained in [4, Theorem 1.2].

The purpose of this article is to characterize commuting traces of an *m*-additive map $G: B(H)^m \to B(H)$ such that [G(x, ..., x), x] = 0 for all invertible or singular $x \in B(H)$, when *H* is an infinite dimensional separable Hilbert space and $m \ge 1$.

In this work we may assume that the *m*-additive map $G: B(H)^m \to B(H)$ is symmetric. For instance, consider $G'(T_1, \ldots, T_m) = \sum_{\sigma \in S_m} G(T_{\sigma(1)}, \ldots, T_{\sigma(m)})$. It is clear that G' is symmetric and $G'(T, \ldots, T) = m!G(T, \ldots, T)$ for all $T \in B(H)$. Clearly, we see that for $T \in B(H)$, $[G'(T, \ldots, T), T] = 0$ if and only if $[G(T, \ldots, T), T] = 0$. Also, we have that *G* is *m*-linear over \mathbb{Q} . This fact will be largely used in this paper.

We start with commuting traces of m-additive maps on the set of invertible operators. First, we need an auxiliary result.

PROPOSITION 1. Let $m \ge 1$ be a natural number. Let $G : B(H)^m \to B(H)$ be a symmetric *m*-additive map such that

$$[G(T,...,T),T] = 0 \quad for \ all \ invertible \ T \in B(H). \tag{1}$$

Then $G(kI, ..., kI) \in Z$ for all $k \in \mathbb{K}$, where $Z = \mathbb{K} \cdot I$.

Proof. First of all observe that the result holds trivially when k = 0. Now, fix $k \in \mathbb{K}^*$, and let e_{ij} , $i \neq j$ the operator $e_{ij}(x) = \langle x, \phi_i \rangle \phi_j \in B(H)$. Let *s* be the smallest even number greater or equal than *m*, that is, s = m if *m* is even, and s = m + 1 if *m* is odd. We will show that $[G(kI, ..., kI), e_{ij}] = 0$.

For each $a \in \mathbb{K}^*$, let $y_a = akI + u$, where $u = (I + e_{ij})$. Note that $y_a = akI + u$ is invertible if and only if $-ak \in v(u) = \mathbb{K} \setminus \{1\}$. Therefore y_a is invertible if $a \neq -\frac{1}{k}$. So, we can find a nonzero rational number *b* such that y_a is invertible for all $a \in \{\pm b, \pm 2b, \dots, \pm \frac{s}{2}b\}$ (take *b* satisfying $|b| > \frac{1}{k}$). It follows from (1) that $0 = [G(u, \dots, u), u] = [G(kI, \dots, kI), kI] = [G(y_a, \dots, y_a), y_a]$, and this last bracket can be written as

$$[G(y_a,\ldots,y_a),u] = 0, \tag{2}$$

since $y_a = akI + u$. For m = 1 we conclude from (2) and [G(u), u] = 0 that $[G(kI), u] = [G(kI), e_{ij}] = 0$ because $u = (I + e_{ij})$. It remains to prove that $[G(kI, ..., kI), e_{ij}] = 0$ for $m \ge 2$. Using (2) one more time, we see that $[G(y_a, ..., y_a) + G(y_{-a}, ..., y_{-a}), u] = 0$ for all $a \in \{b, 2b, ..., \frac{s}{2}b\}$. Now, since *G* is symmetric, *m*-additive, and $y_a = akI + u$ we can obtain for each $a \in \{b, 2b, ..., \frac{s}{2}b\}$ that:

$$G(y_a, \dots, y_a) = \sum_{\zeta=0}^{m} a^{m-\zeta} \binom{m}{\zeta} G(kI, \dots, kI, \underbrace{u, \dots, u}_{\zeta}),$$
(3)

and

$$G(y_{-a},\ldots,y_{-a}) = \sum_{\zeta=0}^{m} (-1)^{m-\zeta} a^{m-\zeta} \binom{m}{\zeta} G(kI,\ldots,kI,\underbrace{u,\ldots,u}_{\zeta}).$$
(4)

By keeping in mind the equations (3), (4), and the relation [G(u, ..., u), u] = 0 we see that $[G(y_a, ..., y_a) + G(y_{-a}, ..., y_{-a}), u] = 0$ becomes:

$$\sum_{\zeta=0}^{\frac{s-2}{2}} a^{m-2\zeta} \binom{m}{2\zeta} [G(kI,\dots,kI,\underbrace{u,\dots,u}_{2\zeta}),u] = 0, \quad \text{when } m \text{ is even}, \tag{5}$$

and

$$\sum_{\zeta=0}^{\frac{s-4}{2}} a^{m-(2\zeta+1)} \binom{m}{2\zeta+1} [G(kI,\dots,kI,\underbrace{u,\dots,u}_{2\zeta+1}),u] = 0, \quad \text{when } m \text{ is odd.}$$
(6)

With (6), the identity $[G(y_a, \ldots, y_a), u] = 0$ becomes:

$$\sum_{\zeta=0}^{\frac{s-2}{2}} a^{m-2\zeta} \binom{m}{2\zeta} [G(kI,\ldots,kI,\underbrace{u,\ldots,u}_{2\zeta}),u] = 0, \text{ when } m \text{ is odd.}$$

Therefore, for each $a \in \{b, 2b, ..., \frac{s}{2}b\}$ we have obtained an equation of the form (5) when *m* is either even or odd. It means that we got $\frac{s}{2}$ equations in $\frac{s}{2}$ unknowns, namely $\binom{m}{2\zeta} [G(kI, ..., kI, u, ..., u), u]$, where *u* appears exactly in 2ζ components of *G*, and $\zeta \in \{0, 1, ..., \frac{s-2}{2}\}$. Using matrix notation we can rewrite these systems in the following way:

$$\begin{pmatrix} b^{m} & b^{m-2} & b^{m-4} & \dots & b^{m-(s-2)} \\ (2b)^{m} & (2b)^{m-2} & (2b)^{m-4} & \dots & (2b)^{m-(s-2)} \\ (3b)^{m} & (3b)^{m-2} & (3b)^{m-4} & \dots & (3b)^{m-(s-2)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (\frac{s}{2}b)^{m} & (\frac{s}{2}b)^{m-2} & (\frac{s}{2}b)^{m-4} & \dots & (\frac{s}{2}b)^{m-(s-2)} \end{pmatrix} \begin{pmatrix} \binom{m}{0} [G(kI, \dots, kI), u] \\ \vdots \\ \binom{m}{2\zeta} [G(kI, \dots, kI, u, \dots, u), u] \\ \vdots \\ \binom{m}{s-2} [G(kI, u, \dots, u), u] \end{pmatrix} = 0.$$

Because the determinant of the Vandermonde matrix formed by the coefficients of the system is not zero, we get that [G(kI,...,kI),u] = 0. As $u = (I + e_{ij})$, we conclude that $[G(kI,...,kI),e_{ij}] = 0$, when $i \neq j$. Finally, we see that

$$[G(kI,...,kI),e_{ii}] = [G(kI,...,kI),e_{ij}e_{ji}] = = [G(kI,...,kI),e_{ij}]e_{ji} + e_{ij}[G(kI,...,kI),e_{ji}] = 0.$$

It means that G(kI, ..., kI) commutes with all finite rank operators of the form $e_{ij} = \langle x, \phi_i > \phi_j$. Therefore, $G(kI, ..., kI) \in Z$ for all $k \in \mathbb{K}$. \Box

THEOREM 2. Let $m \ge 1$ be a natural number. Let $G : B(H)^m \to B(H)$ be an *m*-additive map such that

$$[G(T,...,T),T] = 0 \quad for \ all \ invertible \ T \in B(H).$$
(7)

Then, there exist $\mu_0 \in Z$ and maps $\mu_i : B(H) \to Z$, $i \in \{1, ..., m\}$, such that each μ_i is the trace of an *i*-additive map and $G(T, ..., T) = \mu_0 T^m + \mu_1(T)T^{m-1} + ... + \mu_{m-1}(T)T + \mu_m(T)$ for all $T \in B(H)$, where $Z = \mathbb{K} \cdot I$.

Proof. Without loss of generality, we may assume that *G* is symmetric. Once again, let *s* be the smallest even number greater or equal than *m*, that is, s = m if *m* is even, and s = m + 1 if *m* is odd. Our goal is to show that [G(T, ..., T), T] = 0 for all $T \in B(H)$. Fix $T \in B(H)$. Since $\{\varepsilon \in \mathbb{K} \mid \varepsilon > ||T||\} \subset v(T)$, we can find a nonzero number $\lambda \in \mathbb{K}$ such that $y_a = T + a\lambda I$ is invertible for all $a \in \{\pm 1, ..., \pm \frac{s}{2}\}$. For m = 1 we obtain after employing the Proposition 1 in the identity $[G(T + \lambda I), T] = [G(T + \lambda I), T + \lambda I] = 0$ (equation (7)) that [G(T), T] = 0. From now on, we may take $m \ge 2$. It follows from (7) and $y_a = T + a\lambda I$ that $[G(y_a, ..., y_a), T] = [G(y_a, ..., y_a), y_a] = 0$ for all $a \in \{\pm 1, ..., \pm \frac{s}{2}\}$. Consequently,

$$[G(y_a, \dots, y_a) + G(y_{-a}, \dots, y_{-a}), T] = 0 \quad \text{for all} \quad a \in \{1, \dots, \frac{s}{2}\}.$$
 (8)

Now, since G is symmetric, m-additive and $y_a = T + a\lambda I$, we conclude that

$$G(y_a, \dots, y_a) = \sum_{r=0}^{m} a^r \binom{m}{r} G(\underbrace{\lambda I, \dots, \lambda I}_{r}, T, \dots, T),$$
(9)

for each $a \in \{\pm 1, ..., \pm \frac{s}{2}\}$. Thus, if we take into the account that $G(\lambda I, ..., \lambda I) \in \mathbb{Z}$ (Proposition 1) and the equation (9) we can derive from (8) that:

$$[G(T,T),T] = 0 \quad \text{if} \quad m = 2,$$

and

$$\sum_{r=0}^{\frac{s-2}{2}} a^{2r} \binom{m}{2r} [G(\underbrace{\lambda I, \dots, \lambda I}_{2r}, T, \dots, T), T] = 0 \quad \text{if} \quad m \ge 3.$$

As in the proof of the Proposition 1, for each $m \ge 3$ we have:

Therefore, [G(T,...,T),T] = 0 for all $T \in B(H)$. With this in hand, the desired result now follows from [3, Theorem 3.1]. \Box

Our next goal is to study commuting traces of m-additive maps on the set of singular operators.

THEOREM 3. Let $m \ge 1$ be a natural number. Let $G : B(H)^m \to B(H)$ be a symmetric *m*-additive map such that

$$[G(T,...,T),T] = 0 \quad for \ all \ singular \ T \in B(H). \tag{10}$$

Then, there exist $\mu_0 \in Z$ and maps $\mu_i : B(H) \to Z$, $i \in \{1, ..., m\}$, such that each μ_i is the trace of an *i*-additive map and $G(T, ..., T) = \mu_0 T^m + \mu_1(T)T^{m-1} + ... + \mu_{m-1}(T)T + \mu_m(T)$ for all $T \in B(H)$, where $Z = \mathbb{K} \cdot I$.

Proof. We shall proceed as we did in the proof of the Theorem 2, that is, we will show that [G(T,...,T),T] = 0 for all $T \in B(H)$. Fix $T \in B(H)$. Let us define the finite rank operator $S \in B(H)$ as the following:

$$S = \sum_{n=1}^{m+2} -\left(\frac{1}{n}\right) < x, \phi_n > T(\phi_n).$$
(11)

By construction, we see that T + jS is singular for all $j \in \{1, ..., m+2\}$, because $(T + jS)(\phi_j) = 0$. Thus, [G(T + jS, ..., T + jS), T + jS] = 0 (equation 10) for all $j \in \{1, ..., m+2\}$. Using the symmetricity and the *m*-additivity of *G*, we arrive at

$$\sum_{h=0}^{m} j^{h} \binom{m}{h} [G(\underbrace{S, \dots, S}_{h}, T, \dots, T), T] + \sum_{h=0}^{m} j^{h+1} \binom{m}{h} [G(\underbrace{S, \dots, S}_{h}, T, \dots, T), S] = 0.$$
(12)

For convenience let us set:

$$\alpha(h) = \binom{m}{h} [G(\underbrace{S, \dots, S}_{h}, T, \dots, T), T], \text{ where } h \in \{0, \dots, m\},$$

and

$$\gamma(h) = \binom{m}{h} [G(\underbrace{S, \dots, S}_{h}, T, \dots, T), S], \text{ where } h \in \{0, \dots, m\}.$$

Observe that for each $j \in \{1, ..., m+2\}$ we have obtained an equation of the form

(12). Thus, using matrix notation we have the following:

$$\begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 2^1 & 2^2 & \dots & 2^{m+1} \\ 1 & 3^1 & 3^2 & \dots & 3^{m+1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & (m+2)^1 & (m+2)^2 & \dots & (m+2)^{m+1} \end{pmatrix} \begin{pmatrix} \alpha(0) \\ \alpha(1) + \gamma(0) \\ \alpha(2) + \gamma(1) \\ \vdots \\ \alpha(m) + \gamma(m-1) \\ \gamma(m) \end{pmatrix} = 0.$$

Therefore, $\alpha(0) = [G(T, ..., T), T] = 0$, and this is true for all $T \in B(H)$ since T is arbitrary. The result follows now from [3, Theorem 3.1]. \Box

REFERENCES

- W. FRANCA, Commuting traces of multiadditive maps on invertible and singular matrices, Linear and Multilinear Algebra, accepted.
- [2] W. FRANCA, Commuting maps on some subsets of matrices that are not closed under addition, Linear Algebra Appl., 437 (2012), 388–391.
- [3] P.-H. LEE, T.-L. WONG, J.-S. LIN, R.-J. WANG, Commuting trace of multiadditive mappings, J. Algebra, 193 (1997), 709–723.
- [4] C.-K. LIU, Centralizing maps on invertible or singular matrices over division rings, Linear Algebra Appl., to appear.

(Received October 31, 2013)

Willian Franca Instituto de Matemática e Estatística Universidade de São Paulo São Paulo-SP, 05508-090 Brazil e-mail: wfranca39@yahoo.com