MORE ON THE MINIMUM SKEW-RANK OF GRAPHS

HUI QU, GUIHAI YU* AND LIHUA FENG

(Communicated by C.-K. Li)

Abstract. The minimum (maximum) skew-rank of a simple graph G over real field is the smallest (largest) possible rank among all skew-symmetric matrices over real field whose *ij*-th entry is nonzero whenever $v_i v_i$ is an edge in G and is zero otherwise. In this paper we obtain more results about the minimum skew-rank of graphs. Further we get a lower (upper) bound for minimum (maximum) skew-rank of unicyclic graph of order n with girth k, and characterize unicyclic graphs attaining the extremal values. Moreover, we characterize the unicyclic graphs with skew-rank 4 or 6, respectively. Finally we consider the non-singularity of skew-symmetric matrices described by unicyclic graphs.

1. Introduction

An $n \times n$ matrix A is symmetric (resp. skew-symmetric) if $A^T = A$ (resp. $A^T =$ (-A). The minimum (symmetric) rank problem is to determine the minimum possible rank of all real symmetric matrices that realize a graph G [14]. This problem has been modified to consider all fields [6, 7, 8, 9, 14, 17], and to consider graphs with loops and multiple edges [20]. The problem has also been altered to consider positive definite matrices, Hermitian matrices, Hermitian positive semidefinite matrices and other nonsymmetric matrices that realize a graph G [14, 19]. For other developments in this direction, one may refer to [2, 3, 4, 5, 10, 18].

The minimum skew rank problem, to calculate the minimum rank of skew-symmetric matrices which realize a graph, arose after extensive study of the minimum (symmetric) rank problem. This problem attracts much attention recently [11, 12, 13, 19, 21]. In this paper we focus on the problem of determining the minimum rank of real skew-symmetric matrices described by a unicyclic graph over real field **R**.

Let G be a simple graph of order n with vertex set $V(G) = \{v_1, v_2, \dots, v_n\}$ and edge set E(G). An oriented graph G^{σ} is a graph with an orientation, which assigns to each edge of G a direction so that G^{σ} becomes a directed graph. A weighted oriented graph G_w^{σ} is a pair (G^{σ}, w) where G^{σ} is an oriented graph with arc set $E(G^{\sigma})$ and w is a weight function from the arc set $E(G^{\sigma})$ to the set of positive real numbers. The

Mathematics subject classification (2010): 05C50, 15A18.

Keywords and phrases: Minimum skew-rank, skew-symmetric matrix, graph.

Supported by the Natural Science Foundation of China (Nos. 11301302, 11101245, 61202362), China Postdoctoral Science Foundation (Nos. 2013M530869, 2014T70210), the Natural Science Foundation of Shandong (No. BS2013SF009). * Corresponding author.

skew-adjacency matrix of the weighted oriented graph G_w^{σ} of order *n* is the real matrix $S(G_w^{\sigma}) = (w_{ij})_{n \times n}$ such that

$$w_{ij} = \begin{cases} w(v_i v_j), & \text{if there is an arc from } v_i \text{ to } v_j; \\ -w(v_i v_j), & \text{if there is an arc from } v_j \text{ to } v_i; \\ 0, & \text{otherwise.} \end{cases}$$

The rank of $S(G_w^{\sigma})$ is called the *skew-rank* of G_w^{σ} , denoted by $sr(G_w^{\sigma})$.

For an $n \times n$ real skew-symmetric matrix $A = (a_{ij})$, there exists a graph corresponding to A, denoted by $\mathscr{G}(A)$, with vertex set $\{v_1, v_2, \dots, v_n\}$, edge set $\{v_i v_j : a_{ij} \neq 0, 1 \leq i < j \leq n\}$. In fact there exits a bijection between the set of real skew-symmetric matrices and the set of weighted oriented graphs. The set of skew-symmetric matrices over real field **R** described by *G* is

$$\mathscr{S}^{-}(G) = \{A \in \mathbf{R}^{n \times n} : A^{T} = -A, \mathscr{G}(A) = G\}$$

It should be mentioned that when calculating the minimum (symmetric) rank, a matrix can have zero or nonzero diagonal entries; the diagonal is unconstrained. In the skew-symmetric case, for $A \in \mathscr{S}^{-}(G)$ each diagonal entry $a_{ii} = -a_{ii}$, and thus each diagonal entry must be zero. The minimum skew-rank of a graph G over **R** is defined to be

$$mr^{-}(G) = \min\{rank(A) : A \in \mathscr{S}^{-}(G)\},\$$

and the maximum skew nullity of G over real field **R** is defined to be

$$M^{-}(G) = \max\{null(A) : A \in \mathscr{S}^{-}(G)\},\$$

where null(A) is the nullity of A. Obviously, $mr^{-}(G) + M^{-}(G) = n$. The maximum skew-rank of a graph is

$$MR^{-}(G) = \max\{rank(A) : A \in \mathscr{S}^{-}(G)\}.$$

A unicyclic graph is a connected graph with equal vertex number and edge number. For a vertex $v \in V(G)$, G - v denotes the graph obtained from G by deleting vertex v and all edges incident with v. A vertex of a graph G is called *pendant* if it is only adjacent to one vertex, and is called *quasi-pendant* if it is adjacent to a pendant vertex. A set M of edges in G is a *matching* if every vertex of G is incident with at most one edge in M. It is *perfect matching* if every vertex of G is incident with exactly one edge in M. We denote by $\beta(G)$ the *matching number* of G (i.e. the number of edges of a maximum matching in G). For a graph G on at least two vertices, a vertex $v \in V(G)$ is called *mismatched* in G if there exists a maximum matching M of G in which no edge is incident with v; otherwise, v is called *matched* in G.

The present paper is organized as follows. In Section 2 we further study the skewrank of graphs and give several formula for calculating the skew-rank of graphs. In Section 3, we consider the minimum skew-rank of unicyclic graphs. Firstly get a lower bound for minimum skew-rank of unicyclic graphs of order n with fixed girth and characterize unicyclic graphs attaining the minimum value. Then we characterize the unicyclic graphs with skew-rank 4 or 6, respectively. In Section 4, we consider the non-singularity of the skew-symmetric matrices described by unicyclic graphs.

2. Preliminaries

Let G^{σ} be an oriented unicyclic graph of order *n* with skew-adjacency matrix $S(G^{\sigma}) = (s_{ij})_{n \times n}$. Let $C_k^{\sigma} = u_1 u_2 \cdots u_k u_{k+1} (= u_1)$ be the unique oriented cycle of G^{σ} . The sign of the cycle C_k^{σ} is defined as $sgn(C_k^{\sigma}) = \prod_{i=1}^k s_{u_i u_{i+1}}$. The graph G^{σ} with an even oriented cycle C_k^{σ} is called evenly oriented (oddly oriented) if $sgn(C_k^{\sigma})$ is positive (negative). An oriented graph H^{σ} is called an *elementary oriented graph* if H^{σ} is K_2^{σ} or an oriented cycle with even length.

The weight of a weighted elementary oriented graph H^{σ} is defined as the square of the weight of the unique arc if H^{σ} is K_2^{σ} ; or the product of all weights of those arcs if H^{σ} is an even cycle. An oriented graph H^{σ} is called a *linear oriented graph* if each component of H^{σ} is an elementary oriented graph. The weight of a linear oriented graph H^{σ} , denoted by $w(H^{\sigma})$, is the product of all weights of those elementary oriented graphs contained in it.

LEMMA 2.1. [16] Let G_w^{σ} be a weighted oriented graph of order n with skew adjacency matrix $S(G_w^{\sigma})$ and its characteristic polynomial

$$\phi(G_w^{\sigma},\lambda) = \sum_{i=0}^n (-1)^i a_i \lambda^{n-i} = \lambda^n - a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + \dots + (-1)^{n-1} a_{n-1} \lambda + (-1)^n a_n.$$

Then

$$a_i = \sum_{H^{\sigma}} (-1)^{c^+} 2^c w(H^{\sigma})$$
 if *i* is even,

where the summation is over all linear oriented subgraphs H^{σ} of G_w^{σ} having *i* vertices, and c^+ , *c* are respectively the numbers of evenly oriented even cycles and even cycles contained in H^{σ} . In particular, $a_i = 0$ if *i* is odd.

The IMA-ISU research group [19] obtained the following result by means of the pfaffian of a matrix. Here we present an alternative and concise proof.

LEMMA 2.2. [19] Let T be a tree with matching number $\beta(T)$. Then

$$mr^{-}(T) = MR^{-}(T) = 2\beta(T).$$

Proof. It is suffices to verify that $sr(T_w^{\sigma}) = 2\beta(T)$ for any weighted oriented tree T_w^{σ} . It is natural that any elementary oriented subgraph in T_w^{σ} is K_2^{σ} . If $i > \beta(T)$, there exists no elementary oriented subgraph with 2i vertices and $a_{2i} = 0$. Therefore we suppose $0 \le i \le \beta(T)$. From Lemma 2.1, we have $a_{2i} = \sum_{H} \prod_{e \in H} (w(e))^2$. So $a_{2\beta(T)}$ is the last nonzero coefficient of $\phi(G_w^{\sigma}, \lambda)$, which yields the result. \Box

LEMMA 2.3. Let G be a graph containing a pendant vertex v with the unique neighbor u. Then $mr^{-}(G) = mr^{-}(G-u-v)+2$, $MR^{-}(G) = MR^{-}(G-u-v)+2$.

Proof. We shall verify that $sr(G_w^{\sigma}) = sr(G_w^{\sigma} - u - v) + 2$ for any weighted oriented graph G_w^{σ} . Assume that $V(G_w^{\sigma}) = \{v_1, v_2, \dots, v_n\}$ with $v_1 = v$, $v_2 = u$. Then the skew-adjacency matrix of G_w^{σ} can be expressed as

$$S(G_w^{\sigma}) = \begin{pmatrix} 0 & w_{12} & 0 & \cdots & 0 \\ w_{21} & 0 & w_{23} & \cdots & w_{2n} \\ 0 & w_{32} & 0 & \cdots & w_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & w_{n2} & w_{n3} & \cdots & 0 \end{pmatrix},$$

where the first two rows and columns are labeled by v_1 , v_2 . Therefore it follows that

$$sr(G_w^{\sigma}) = sr\begin{pmatrix} 0 & w_{12} & 0 & \cdots & 0 \\ w_{21} & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & w_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & w_{n3} & \cdots & 0 \end{pmatrix}$$
$$= sr\begin{pmatrix} 0 & w_{12} \\ w_{21} & 0 \end{pmatrix} + sr\begin{pmatrix} 0 & \cdots & w_{3n} \\ \vdots & \ddots & \vdots \\ w_{n3} & \cdots & 0 \end{pmatrix}$$
$$= sr\begin{pmatrix} 0 & w_{12} \\ w_{21} & 0 \end{pmatrix} + sr(G_w^{\sigma} - \{v_1, v_2\})$$
$$= 2 + sr(G_w^{\sigma} - u - v).$$

We complete the proof. \Box

Let u, v be two pendant vertices of a weighted graph G_w . u, v are called pendant twins if they have the same neighbor in G.

LEMMA 2.4. Let u, v be pendant twins of a graph G. Then $mr^{-}(G) = mr^{-}(G - u) = mr^{-}(G - v)$.

Proof. It is sufficient to verify that $sr(G_w^{\sigma}) = sr(G_w^{\sigma} - u) = sr(G_w^{\sigma} - v)$. Let u_0 be the unique neighbor of u, v. Then the skew-adjacency matrix of G_w^{σ} can be expressed as

$$sr(G_w^{\sigma}) = \begin{pmatrix} 0 & 0 & | & s_1 & | & 0 \\ 0 & 0 & | & s_2 & | & 0 \\ -s_1 & -s_2 & 0 & | & \alpha \\ \hline -s_1 & -s_2 & 0 & | & \alpha \\ 0^t & | & -\alpha^t | & B \end{pmatrix},$$

where B is the adjacency matrix of $G_w^{\sigma} - u - v - u_0$ and the first three rows and columns

are labeled by u, v and u_0 . So we have

$$sr(G_{w}^{\sigma}) = r \begin{pmatrix} 0 & 0 & | & s_{1} & | & 0 \\ 0 & 0 & | & 0 & | & 0 \\ -s_{1} & 0 & | & 0 & | & 0 \\ 0^{t} & | & -\alpha^{t} & B \end{pmatrix}$$
$$= r \begin{pmatrix} 0 & | & s_{1} & | & 0 \\ -s_{1} & 0 & | & \alpha^{t} & B \end{pmatrix}$$
$$= sr(G_{w}^{\sigma} - v).$$

Similarly, we have $sr(G_w^{\sigma}) = sr(G_w^{\sigma} - u)$. \Box

For convenience, we call the transformation in Lemma 2.3 the δ -transformation.

LEMMA 2.5. [19] Let C_n be a cycle of order n. Then

$$mr^{-}(C_n) = \begin{cases} n-2, n \text{ is even,} \\ n-1, n \text{ is odd.} \end{cases}$$

LEMMA 2.6. [19] Let H be an induced subgraph of G. Then $mr^{-}(H) \leq mr^{-}(G)$.

Let G_1 be a graph containing a vertex u and G_2 be a graph of order n disjoint from G_1 . For $1 \le k \le n$, a k-joining graph of G_1 and G_2 with respect to u, denoted by $G_1(u) \odot^k G_2$, is obtained from $G_1 \cup G_2$ by joining u and certain k vertices of G_2 with edges.

LEMMA 2.7. Let T be a tree with $u \in V(T)$ and G be a graph different from T. Let $T(u) \odot^k G$ be the k-joining graph of T and G with respect to u. Then the following statements hold:

(1) If u is matched in T, then

$$mr^{-}(T(u) \odot^{k} G) = mr^{-}(G) + mr^{-}(T).$$
 (*)

(2) If u is mismatched in T, then

$$mr^{-}(T(u) \odot^{k} G) = mr^{-}(T-u) + mr^{-}(G+u),$$

where G + u is the subgraph of $T(u) \odot^k G$ induced by the vertices of G and u.

Proof. (1). We shall prove the results by applying induction to the matching number $\beta(T)$. If $\beta(T) = 1$. Then T is star and u is the center of T. Assume that v is a pendant vertex in T. By Lemmas 2.2 and 2.3, we have

$$mr^{-}(T(u) \odot^{k} G) = mr^{-}(T(u) \odot^{k} G - v - u) + 2$$

= $mr^{-}(G) + 2$
= $mr^{-}(G) + mr^{-}(T).$

If $\beta(T) \ge 2$. Assume that the assertion is true when $\beta(T) \le t$. Now we consider the case $\beta(T) = t + 1$. Since $\beta(T) \ge 2$, *T* contains a pendant vertex *v* and its neighbor *w* such that *v*, *w* are both different to *u*. It is evident that *w* is matched in *T*. Let T_1 be a new tree by deleting *v* and *w*. Hence $\beta(T_1) = \beta(T)$, or $\beta(T) - 1$ since *v* is a pendant vertex. If $\beta(T_1) = \beta(T)$, then there exists a maximum matching *M* of *T* that does not cover *w*, which contradicts to the fact that *w* is matched in *T*. So $\beta(T_1) = \beta(T) - 1 = t$. Therefore by Lemmas 2.3 and 2.2, it follows that

$$mr^{-}(T(u) \odot^{k} G) = mr^{-}(T(u) \odot^{k} G - v - w) + 2$$

= $mr^{-}(T_{1}(u) \odot^{k} G) + 2$
= $mr^{-}(T_{1}) + mr^{-}(G) + 2$ by induction
= $mr^{-}(T - v - w) + mr^{-}(G) + 2$
= $mr^{-}(T) + mr^{-}(G).$

(2). Let $\{u_1, u_2, \dots, u_m\}$ be the neighborhood of u in T. T_1, T_2, \dots, T_m are the components of T - u that contain the vertices u_1, u_2, \dots, u_m , respectively. Therefore each vertex u_i is matched in T_i . Then

$$T(u) \odot^{k} G = T_{1}(u_{1}) \odot^{1} ((T(u) \odot^{k} G) - T_{1})$$

$$= T_{1}(u_{1}) \odot^{1} [T_{2}(u_{2}) \odot^{1} ((T(u) \odot^{k} G) - \cup_{i=1}^{2} T_{i})]$$

$$= \cdots$$

$$= T_{1}(u_{1}) \odot^{1} [T_{2}(u_{2}) \odot^{1} \cdots \odot^{1} [T_{m}(u_{m}) \odot^{1} ((T(u) \odot^{k} G) - \cup_{i=1}^{m} T_{i})]]$$

$$= T_{1}(u_{1}) \odot^{1} [T_{2}(u_{2}) \odot^{1} \cdots \odot^{1} [T_{m}(u_{m}) \odot^{1} (G + u)]].$$

Applying formula (*) repeatedly, we have

$$\begin{split} mr^{-}(T(u) \odot^{k} G) &= mr^{-} \left(T_{1}(u_{1}) \odot^{1} \left[T_{2}(u_{2}) \odot^{1} \cdots \odot^{1} \left[T_{m}(u_{m}) \odot^{1} (G+u) \right] \right] \right) \\ &= mr^{-}(T_{1}) + mr^{-} \left(T_{2}(u_{2}) \odot^{1} \cdots \odot^{1} \left[T_{m}(u_{m}) \odot^{1} (G+u) \right] \right) \\ &= \cdots \\ &= \sum_{i=1}^{m-1} mr^{-}(T_{i}) + mr^{-}(T_{m}(u_{m}) \odot^{1} (G+u)) \\ &= \sum_{i=1}^{m} mr^{-}(T_{i}) + mr^{-}(G+u) \\ &= mr^{-}(T-u) + mr^{-}(G+u). \end{split}$$

This implies the result. \Box

Let G be a unicyclic graph and C_k be the unique cycle of G. Let G' be the graph obtained from G by deleting the two neighbors of v on C_k and let $G\{v\}$ be the component of G' containing v. Then $G\{v\}$ is a tree rooted at v and an induced subgraph of G.

By Lemma 2.7, we have

COROLLARY 2.8. Let G be a unicyclic graph and C_k be the unique cycle in G. For each vertex $v \in V(C_k)$, let $G\{v\}$ be the tree rooted at v and containing v. Then the following statements hold:

(1) If there exists a vertex $v \in V(C_k)$ which is matched in $G\{v\}$, then

$$mr^{-}(G) = mr^{-}(G\{v\}) + mr^{-}(G - G\{v\}).$$

(2) If there exists a vertex $v \in V(C_k)$ which is mismatched in $G\{v\}$, then

$$mr^{-}(G) = mr^{-}(C_k) + mr^{-}(G - C_k).$$

3. Small minimum skew-rank of unicyclic graphs

In this section, we investigate the lower bound for minimum skew-rank of unicyclic graphs and characterize the unicyclic graphs with minimum skew-rank 4 or 6, respectively.

3.1. Lower bound for minimum skew-rank of unicyclic graphs

Let H(n,k) be a unicyclic graph obtained from C_k by attaching n-k pendant edges to some vertex on C_k . Let U^* be a unicyclic graph obtained from a cycle C_k and a star S_{n-k} by inserting an edge between a vertex on C_k and the center of S_{n-k} .

THEOREM 3.1. Let G be a unicyclic graph of order n with girth k $(n \ge k+1)$. Then

$$mr^{-}(G) \ge \begin{cases} k, & k \text{ is even,} \\ k+1, & k \text{ is odd.} \end{cases}$$

The equality holds if and only if the following statements hold:

- (1) If there exists a vertex $v \in V(C_k)$ which is matched in $G\{v\}$, then $G\{v\}$ is a star, and $\beta(G - G\{v\}) = \begin{cases} \frac{k-2}{2}, k \text{ is even,} \\ \frac{k-1}{2}, k \text{ is odd.} \end{cases}$
- (2) If there exists a vertex $v \in V(C_k)$ which is mismatched in $G\{v\}$, then $G \cong U^*$.

Proof. Since G must contain H(k+1,k) as an induced subgraph, $mr^-(H(k+1,k)) \leq mr^-(G)$ from Lemma 2.6. According to the definition of H(k+1,k), there exists exactly one vertex with degree more than 2, saying u. Let w be a pendant vertex adjacent to u in H(k+1,k). By Lemma 2.3, we have

$$mr^{-}(H(k+1,k)) = mr^{-}(H(k+1,k) - u - w) + 2$$

= $mr^{-}(P_{k-1}) + 2$
= $\begin{cases} k, & k \text{ is even,} \\ k+1, & k \text{ is odd.} \end{cases}$ by Lemma 2.2

Therefore the result follows.

For the equality case, we first consider the necessity.

(1). Assume that there exists a vertex $v \in V(C_k)$ which is matched in $G\{v\}$. Note that $G\{v\}$ and $G - G\{v\}$ are two trees. If k is even, by Lemma 2.2 and Corollary 2.8 we have

$$k = mr^{-}(G) = mr^{-}(G\{v\}) + mr^{-}(G - G\{v\})$$

= $2\beta(G\{v\}) + 2\beta(G - G\{v\}).$

Since $\beta(G\{v\}) \ge 1$, $\beta(G - G\{v\}) \ge \frac{k-2}{2}$, so $\beta(G\{v\}) = 1$ and $\beta(G - G\{v\}) = \frac{k-2}{2}$, which implies $G\{v\}$ is a star.

Similarly the result holds for the case when k is odd.

(2). Suppose that there exists a vertex $v \in V(C_k)$ which is mismatched in $G\{v\}$. By Corollary 2.8, we have

$$mr^{-}(G) = mr^{-}(C_k) + 2\beta(G - C_k).$$

In view of Lemma 2.5, together with the assumption, we have $\beta(G - C_k) = 1$ which implies $G \cong U^*$.

The sufficiency of the equality case is easy to verify. \Box

By Theorem 3.1, we have

COROLLARY 3.2. Let G be a unicyclic graph of order n with pendant vertices. Then $mr^{-}(G) \ge 4$.

3.2. Unicyclic graphs with minimum skew-rank 4

As is well known, the rank of a real skew-symmetric matrix is even. So $mr^{-}(G)$ is even for any oriented graph. It is observed in [19] that $mr^{-}(G) = 0$ if and only if G is an empty graph, and $mr^{-}(G) = 2$ if and only if G is a complete multipartite graph. The authors [19] posed an open question (Question 5.2) to characterize the graphs G such that $mr^{-}(G) = 4$ over infinite field.

Let $U_1^{r,s}$ $(r,s \ge 0, r+s=n-3), U_2^{p,q}$ $(p,q \ge 0, p+q=n-4), U_3^{n-4}, U_4^{n-5}$ be four graphs as depicted in Fig. 3.1.

As a consequence of Theorem 3.1 and Lemma 2.5, we can characterize the unicyclic graphs G with $mr^{-}(G) = 4$ over real field.

Figure 1: Four unicyclic graphs $U_1^{r,s}$, $U_2^{p,q}$, U_3^{n-4} , U_4^{n-5}

COROLLARY 3.3. Let G be a unicyclic graph of order n with $mr^{-}(G) = 4$ and C_k be the cycle in G. Then

- (1) If $G = C_k$, then $G = C_5$, or C_6 .
- (2) If $G \neq C_k$, then the following statements hold:
 - (a) If there exists a vertex $v \in V(C_k)$ which is matched in $G\{v\}$, then $G \cong U_1^{r,s}$ or $U_2^{p,q}$.
 - (b) If there exists a vertex $v \in V(C_k)$ which is mismatched in $G\{v\}$, then $G \cong U_3^{n-4}$ or U_4^{n-5} .

3.3. Unicyclic graphs with minimum skew-rank 6

Next we shall characterize all unicyclic graphs with minimum skew-rank 6. From Lemma 2.4, it suffices to characterize the unicyclic graphs among all graphs without pendant twins. For convenience, we give some notations. Let \mathscr{U}^* be a set of unicyclic graphs without pendant twins. Let G' (resp. G'') be the graph obtained from C_8 (resp. C_7) by attaching a pendant edge on a vertex of C_8 (resp. C_7).

THEOREM 3.4. Let $G \in \mathcal{U}^*$ be a unicyclic graph with girth k and $mr^-(G) = 6$. Then $k \leq 8$ and the following statements hold:

- (i). If k = 8, then $G \cong C_8$.
- (*ii*). If k = 7, then $G \cong C_7$.
- (iii). If k = 6, then G is one of the graphs G_i 's (i = 1, 2, 3, 4) (as depicted in Fig.2).
- (iv). If k = 5, then G is one of the graphs G_i 's ($i = 5, 6, \dots, 9$) (as depicted in Fig.3).
- (v). If k = 4, then G is one of the graphs G_i 's ($i = 10, 11, \dots, 26$) (as depicted in Fig.4).
- (vi). If k = 3, then G is one of the graphs G_i 's $(i = 43, 44, \dots, 57)$ (as depicted in Fig.6).

Figure 2: Four graphs with girth 6 in Theorem 3.4

Figure 3: Five graphs with girth 5 in Theorem 3.4

Figure 4: Seventeen graphs with girth 4 in Theorem 3.4

Proof. If $k \ge 9$, then G must contain P_8 as an induced subgraph. From Lemmas 2.2 and 2.6 we have $mr^-(G) \ge 8$ which is a contradiction.

Next we shall verify the six statements.

(i) and (ii): If G is a cycle, the results are obvious from Lemma 2.5.

If G is not a cycle, then it must contain G' or G'' as an induced subgraph. Hence $mr^{-}(G) \ge mr^{-}(G_1) = 8$ and $mr^{-}(G) \ge mr^{-}(G_2) = 8$ which contradicts the fact that $mr^{-}(G) = 6$.

(v): It is evident that graphs G_i $(i = 27, 29, \dots, 42)$ have minimum skew-rank 8 and graphs G_i $(i = 10, \dots, 26)$ have minimum skew-rank 6. In the following we consider the following five cases. For convenience, denote by $G^* = G - C_4$.

Figure 5: Sixteen graphs with girth 4 excluded by $mr^{-}(G) = 3$ in Theorem 3.4

Figure 6: Fifteen graphs with girth 3 in Theorem 3.4

Case 1. G^* is a set of isolated vertices.

It is obvious that G is G_{10} or G_{11} .

Case 2. G^* contains P_2 , but no P_3 , as an induced subgraph.

If $G^* = P_2$, G does not exist.

If G^* is the union of an isolated vertex and P_2 , G is one of graphs G_{12} , G_{13} and G_{14} .

If G^* is the union of two isolated vertices and P_2 , G is G_{15} or G_{16} .

If G^* is the union of more than two isolated vertices and P_2 , G does not exist since it contains G_{27} or G_{28} as an induced subgraph.

If G^* is two copies of P_2 , G is one of G_i (i = 21, 22, 23).

If G^* is the union of some isolated vertices and two P_2 's, G does not exist since it contains one of G_i ($i = 27, 28, \dots, 31$) as an induced subgraph.

If G^* contains more than two P_2 's as its induced subgraph, G does not exist since it must contain one of G_i (i = 27, 28, 29) as an induced subgraph.

Case 3. G^* contains P_3 , but no P_4 , as an induced subgraph.

If $G^* = P_3$, $G \cong G_{17}$.

If G^* is the union of one isolated vertex and P_3 , G is G_{18} or G_{19} .

If G^* is the union of two isolated vertices and P_3 , $G \cong G_{20}$.

If G^* is the union of more than two isolated vertices and P_3 , G does not exist since it contains G_{31} , G_{32} or G_{33} as an induced subgraph.

If G^* contains the union of P_2 and P_3 as its induced subgraph, G does not exist since it contains G_{31} , G_{34} or G_{35} as an induced subgraph.

Case 4. G^* contains P_4 , but no P_5 , as an induced subgraph.

In this case $G \cong G_{25}$, G_{26} . The minimum skew-rank of any other graph is more than six since it contains one of G_i $(i = 32, 33, \dots, 39)$ as an induced subgraph.

Case 5. G^* contains P_5 as an induced subgraph.

In this case G does not exit since it contains one of G_i $(i = 32, 33, \dots, 41)$ as an induced subgraph.

(iii), (iv) and (vi) can be similarly verified. \Box

4. Non-singularity of skew-symmetric matrices described by unicyclic graphs

Let $\mathscr{U}_{n,k}$ be the set of unicyclic graphs of order *n* with girth *k*. Let \mathscr{U}_1 be the set of unicyclic graphs of order *n* with girth *k* which can be changed to be an empty graph by finite steps of δ -transformation. Let \mathscr{U}_2 be the set of unicyclic graphs of order *n* with girth *k* which can be changed to be an cycle C_k or the union of isolated vertices and C_k by finite steps of δ -transformation. Obviously, $\mathscr{U}_{n,k} = \mathscr{U}_1 \cup \mathscr{U}_2$.

In [19], the authors obtained that, for a graph G, $mr^{-}(G) = n = MR^{-}(G)$ if and only if G has a unique perfect matching. In this section, we shall consider the case $MR^{-}(G) = n$.

LEMMA 4.1. [19] For a graph G, $MR^{-}(G) = 2\beta(G)$.

The following result is immediate from Lemma 4.1.

LEMMA 4.2. Let C_n be a cycle of order n. Then

$$MR^{-}(C_n) = \begin{cases} n, & n \text{ is even,} \\ n-1, & n \text{ is odd.} \end{cases}$$

THEOREM 4.3. Let G be a unicyclic graph of order n with girth k (k < n). Then we have

(1) If $G \in \mathscr{U}_1$, then $MR^-(G) \leq \begin{cases} n, & n \text{ is even,} \\ n-1, & n \text{ is odd.} \end{cases}$

(2) If
$$G \in \mathscr{U}_2$$
, then $MR^-(G) \leq \begin{cases} n-1, n \text{ is odd and } k \text{ is odd,} \\ n-2, n \text{ is even and } k \text{ is odd,} \\ n, n \text{ is even and } k \text{ is even,} \\ n-1, n \text{ is odd and } k \text{ is even.} \end{cases}$

Proof. If $G \in \mathcal{U}_1$, then by at most $\lfloor \frac{n}{2} \rfloor$ steps of δ -transformation G can be changed to an empty graph. By Lemma 2.3, $MR^-(G) \leq 2 \cdot \lfloor \frac{n}{2} \rfloor$.

If $G \in \mathscr{U}_2$, then by at most $\lfloor \frac{n-k}{2} \rfloor$ steps of δ -transformation G can be changed to be the cycle C_k or the union of isolated vertices and C_k . By Lemma 2.3, $MR^-(G) \leq 2 \cdot \lfloor \frac{n-k}{2} \rfloor + MR^-(C_k)$. The result holds from Lemma 4.2. \Box

It is well known that the skew-symmetric matrix must be singular if its order is odd. Therefore the non-singular skew-symmetric matrices must have even order. By Theorem 4.3, we have

THEOREM 4.4. Let G be a unicyclic graph with even order n. Then any matrix $A \in \mathscr{S}^{-}(G)$ is nonsingular, i.e. $MR^{-}(G) = n$, if and only if G has a perfect matching.

Acknowledgement. The authors are grateful to an anonymous referee for many helpful comments to an earlier version of this paper.

REFERENCES

- C. ADIGA, R. BALAKRISHNAN, WASIN SO, *The skew-energy of a digraph*, Linear Algebra Appl., 432: 1825–1835, 2010.
- [2] F. BARIOLI, S. M. FALLAT, L. HOGBEN, Computation of minimal rank and path cover number for graphs, Linear Algebra Appl., 392: 289–303, 2004.
- [3] F. BARIOLI, S. M. FALLAT, D. HERSHKOWITZ, H. T. HALL, L. HOGBEN, H. VAN DER HOLST, B. SHADER, On the minimum rank of not necessarily symmetric matrices: a preliminary study, Electro. J. Linear Algebra, 18: 126–145, 2009.
- [4] F. BARIOLI, S. M. FALLAT, R. L. SMITH, On acyclic and unicyclic graphs whose minimum rank equals the diameter, Linear Algebra Appl., 429: 1568–1578, 2008.
- [5] W. BARRETT, M. KEMPTON, N. MALLOY, C. NELSON, W. SEXTON, J. SINKOVIC, Decompositions of minimum rank matrices, Linear Algebra Appl., 438: 3913–3948, 2013.
- [6] W. BARRETT, H. VAN DER HOLST, R. LOEWY, Graphs whose minimal rank is two, Electro. J. Linear Algebra, 11: 258–280, 2004.
- [7] W. BARRETT, H. VAN DER HOLST, R. LOEWY, Graphs whose minimal rank is two: the finite fields case, Electro. J. Linear Algebra, 14: 32–42, 2005.
- [8] W. BARRETT, J. GROUT, R. LOEWY, The minimum rank problem over the finite field of order 2: minimum rank 3, Linear Algebra Appl., 430: 890–923, 2009.
- [9] N. L. CHENETTE, S. V. DROMS, L. HOGBEN, R. MIKKELSON, O. PRYPOROVA, *Minimum rank of a graph over an arbitrary field*, Electro. J. Linear Algebra, 16: 183–186, 2007.
- [10] L. M. DEALBA, J. GROUT, L. HOGBEN, R. MIKKELSON, K. RASMUSSEN, Universally optimal matrices and field independence of the minimum rank of a graph, Electro. J. Linear Algebra, 18: 403–419, 2009.
- [11] L. M. DEALBA, Acyclic and unicyclic graphs whose minimum skew rank is equal to the minimum skew rank of a diametrical path, arXiv:1107.2170v1.
- [12] L. M. DEALBA, E. KERZNER, S. TUCKER, A note on the minimum skew rank of powers of graphs, arXiv:1107.2450v1.

- [13] L. DELOSS, *Results on minimum skew rank of matrices described by a graph*, MS Thesis. Iowa State University, May 2009.
- [14] S. FALLAT AND L. HOGBEN, The minimum rank of symmetric matrices described by a graph: A survey, Linear Algebra Appl., 426/2-3: 558–582, 2007.
- [15] S. GONG, Y. FAN, Z. YIN, On the nullity of graphs with pendant trees, Linear Algebra Appl., 433: 1374–1380, 2010.
- [16] S. GONG, G. XU, The characteristic polynomial and the matching polynomial of a weighted oriented graph, Linear Algebra Appl., 436: 3597–3607, 2012.
- [17] J. GROUT, *The minimum rank problem over finite fields*, Electro. J. Linear Algebra, **20**: 673–698, 2010.
- [18] L. HOGBEN, Minimum rank problems, Linear Algebra Appl., 432: 1961–1974, 2010.
- [19] IMA-ISU research group on minimum rank, *Minimum rank of skew-symmetric matrices described by a graph*, Linear Algebra Appl., **432**: 2457-2472, 2010.
- [20] R. MIKKELSON, *Minimum rank of graphs that allow loops*, Ph. D. Thesis, Iowa State University, 2008.
- [21] Y. WANG, B. ZHOU, A note on the minimum skew rank of a graph, arXiv:1206.3409v1.

(Received December 10, 2013)

Hui Qu School of Mathematics Shandong Institute of Business and Technology Yantai, Shandong, China, 264005 e-mail: guhui781111026.com

Guihai Yu Center for Combinatorics, Nankai University Tianjin, China, 300071 e-mail: yuquihai@126.com

Lihua Feng

Department of Mathematics, Central South University Railway Campus, Changsha, Hunan, China, 410075 e-mail: feng1h@163.com

Operators and Matrices www.ele-math.com oam@ele-math.com