MORE ON THE MINIMUM SKEW-RANK OF GRAPHS

Hui Qu, Guihai Yu* and Lihua Feng

(Communicated by C.-K. Li)

Abstract

The minimum (maximum) skew-rank of a simple graph G over real field is the smallest (largest) possible rank among all skew-symmetric matrices over real field whose $i j$-th entry is nonzero whenever $v_{i} v_{j}$ is an edge in G and is zero otherwise. In this paper we obtain more results about the minimum skew-rank of graphs. Further we get a lower (upper) bound for minimum (maximum) skew-rank of unicyclic graph of order n with girth k, and characterize unicyclic graphs attaining the extremal values. Moreover, we characterize the unicyclic graphs with skew-rank 4 or 6 , respectively. Finally we consider the non-singularity of skew-symmetric matrices described by unicyclic graphs.

1. Introduction

An $n \times n$ matrix A is symmetric (resp. skew-symmetric) if $A^{T}=A\left(\right.$ resp. $A^{T}=$ $-A$). The minimum (symmetric) rank problem is to determine the minimum possible rank of all real symmetric matrices that realize a graph G [14]. This problem has been modified to consider all fields $[6,7,8,9,14,17]$, and to consider graphs with loops and multiple edges [20]. The problem has also been altered to consider positive definite matrices, Hermitian matrices, Hermitian positive semidefinite matrices and other nonsymmetric matrices that realize a graph $G[14,19]$. For other developments in this direction, one may refer to $[2,3,4,5,10,18]$.

The minimum skew rank problem, to calculate the minimum rank of skew-symmetric matrices which realize a graph, arose after extensive study of the minimum (symmetric) rank problem. This problem attracts much attention recently [11, 12, 13, 19, 21]. In this paper we focus on the problem of determining the minimum rank of real skew-symmetric matrices described by a unicyclic graph over real field \mathbf{R}.

Let G be a simple graph of order n with vertex set $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and edge set $E(G)$. An oriented graph G^{σ} is a graph with an orientation, which assigns to each edge of G a direction so that G^{σ} becomes a directed graph. A weighted oriented graph G_{w}^{σ} is a pair $\left(G^{\sigma}, w\right)$ where G^{σ} is an oriented graph with arc set $E\left(G^{\sigma}\right)$ and w is a weight function from the arc set $E\left(G^{\sigma}\right)$ to the set of positive real numbers. The

[^0]skew-adjacency matrix of the weighted oriented graph G_{w}^{σ} of order n is the real matrix $S\left(G_{w}^{\sigma}\right)=\left(w_{i j}\right)_{n \times n}$ such that
\[

w_{i j}=\left\{$$
\begin{array}{lc}
w\left(v_{i} v_{j}\right), & \text { if there is an arc from } v_{i} \text { to } v_{j} \\
-w\left(v_{i} v_{j}\right), & \text { if there is an arc from } v_{j} \text { to } v_{i} \\
0, & \text { otherwise }
\end{array}
$$\right.
\]

The rank of $S\left(G_{w}^{\sigma}\right)$ is called the skew-rank of G_{w}^{σ}, denoted by $\operatorname{sr}\left(G_{w}^{\sigma}\right)$.
For an $n \times n$ real skew-symmetric matrix $A=\left(a_{i j}\right)$, there exists a graph corresponding to A, denoted by $\mathscr{G}(A)$, with vertex set $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$, edge set $\left\{v_{i} v_{j}: a_{i j} \neq\right.$ $0,1 \leqslant i<j \leqslant n\}$. In fact there exits a bijection between the set of real skew-symmetric matrices and the set of weighted oriented graphs. The set of skew-symmetric matrices over real field \mathbf{R} described by G is

$$
\mathscr{S}^{-}(G)=\left\{A \in \mathbf{R}^{n \times n}: A^{T}=-A, \mathscr{G}(A)=G\right\} .
$$

It should be mentioned that when calculating the minimum (symmetric) rank, a matrix can have zero or nonzero diagonal entries; the diagonal is unconstrained. In the skewsymmetric case, for $A \in \mathscr{S}^{-}(G)$ each diagonal entry $a_{i i}=-a_{i i}$, and thus each diagonal entry must be zero. The minimum skew-rank of a graph G over \mathbf{R} is defined to be

$$
m r^{-}(G)=\min \left\{\operatorname{rank}(A): A \in \mathscr{S}^{-}(G)\right\}
$$

and the maximum skew nullity of G over real field \mathbf{R} is defined to be

$$
M^{-}(G)=\max \left\{\operatorname{null}(A): A \in \mathscr{S}^{-}(G)\right\}
$$

where $\operatorname{null}(A)$ is the nullity of A. Obviously, $m r^{-}(G)+M^{-}(G)=n$. The maximum skew-rank of a graph is

$$
M R^{-}(G)=\max \left\{\operatorname{rank}(A): A \in \mathscr{S}^{-}(G)\right\}
$$

A unicyclic graph is a connected graph with equal vertex number and edge number. For a vertex $v \in V(G), G-v$ denotes the graph obtained from G by deleting vertex v and all edges incident with v. A vertex of a graph G is called pendant if it is only adjacent to one vertex, and is called quasi-pendant if it is adjacent to a pendant vertex. A set M of edges in G is a matching if every vertex of G is incident with at most one edge in M. It is perfect matching if every vertex of G is incident with exactly one edge in M. We denote by $\beta(G)$ the matching number of G (i.e. the number of edges of a maximum matching in G). For a graph G on at least two vertices, a vertex $v \in V(G)$ is called mismatched in G if there exists a maximum matching M of G in which no edge is incident with v; otherwise, v is called matched in G.

The present paper is organized as follows. In Section 2 we further study the skewrank of graphs and give several formula for calculating the skew-rank of graphs. In Section 3, we consider the minimum skew-rank of unicyclic graphs. Firstly get a lower bound for minimum skew-rank of unicyclic graphs of order n with fixed girth and characterize unicyclic graphs attaining the minimum value. Then we characterize the unicyclic graphs with skew-rank 4 or 6, respectively. In Section 4, we consider the non-singularity of the skew-symmetric matrices described by unicyclic graphs.

2. Preliminaries

Let G^{σ} be an oriented unicyclic graph of order n with skew-adjacency matrix $S\left(G^{\sigma}\right)=\left(s_{i j}\right)_{n \times n}$. Let $C_{k}^{\sigma}=u_{1} u_{2} \cdots u_{k} u_{k+1}\left(=u_{1}\right)$ be the unique oriented cycle of G^{σ}. The sign of the cycle C_{k}^{σ} is defined as $\operatorname{sgn}\left(C_{k}^{\sigma}\right)=\prod_{i=1}^{k} s_{u_{i} u_{i+1}}$. The graph G^{σ} with an even oriented cycle C_{k}^{σ} is called evenly oriented (oddly oriented) if $\operatorname{sgn}\left(C_{k}^{\sigma}\right)$ is positive (negative). An oriented graph H^{σ} is called an elementary oriented graph if H^{σ} is K_{2}^{σ} or an oriented cycle with even length.

The weight of a weighted elementary oriented graph H^{σ} is defined as the square of the weight of the unique arc if H^{σ} is K_{2}^{σ}; or the product of all weights of those arcs if H^{σ} is an even cycle. An oriented graph H^{σ} is called a linear oriented graph if each component of H^{σ} is an elementary oriented graph. The weight of a linear oriented graph H^{σ}, denoted by $w\left(H^{\sigma}\right)$, is the product of all weights of those elementary oriented graphs contained in it.

LEMMA 2.1. [16] Let G_{w}^{σ} be a weighted oriented graph of order n with skew adjacency matrix $S\left(G_{w}^{\sigma}\right)$ and its characteristic polynomial
$\phi\left(G_{w}^{\sigma}, \lambda\right)=\sum_{i=0}^{n}(-1)^{i} a_{i} \lambda^{n-i}=\lambda^{n}-a_{1} \lambda^{n-1}+a_{2} \lambda^{n-2}+\cdots+(-1)^{n-1} a_{n-1} \lambda+(-1)^{n} a_{n}$.
Then

$$
a_{i}=\sum_{H^{\sigma}}(-1)^{c^{+}} 2^{c} w\left(H^{\sigma}\right) \quad \text { if } i \text { is even },
$$

where the summation is over all linear oriented subgraphs H^{σ} of G_{w}^{σ} having i vertices, and c^{+}, c are respectively the numbers of evenly oriented even cycles and even cycles contained in H^{σ}. In particular, $a_{i}=0$ if i is odd.

The IMA-ISU research group [19] obtained the following result by means of the pfaffian of a matrix. Here we present an alternative and concise proof.

Lemma 2.2. [19] Let T be a tree with matching number $\beta(T)$. Then

$$
m r^{-}(T)=M R^{-}(T)=2 \beta(T)
$$

Proof. It is suffices to verify that $\operatorname{sr}\left(T_{w}^{\sigma}\right)=2 \beta(T)$ for any weighted oriented tree T_{w}^{σ}. It is natural that any elementary oriented subgraph in T_{w}^{σ} is K_{2}^{σ}. If $i>\beta(T)$, there exists no elementary oriented subgraph with $2 i$ vertices and $a_{2 i}=0$. Therefore we suppose $0 \leqslant i \leqslant \beta(T)$. From Lemma 2.1, we have $a_{2 i}=\sum_{H} \prod_{e \in H}(w(e))^{2}$. So $a_{2 \beta(T)}$ is the last nonzero coefficient of $\phi\left(G_{w}^{\sigma}, \lambda\right)$, which yields the result.

LEMMA 2.3. Let G be a graph containing a pendant vertex v with the unique neighbor u. Then $m r^{-}(G)=m r^{-}(G-u-v)+2, M R^{-}(G)=M R^{-}(G-u-v)+2$.

Proof. We shall verify that $\operatorname{sr}\left(G_{w}^{\sigma}\right)=\operatorname{sr}\left(G_{w}^{\sigma}-u-v\right)+2$ for any weighted oriented graph G_{w}^{σ}. Assume that $V\left(G_{w}^{\sigma}\right)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ with $v_{1}=v, v_{2}=u$. Then the skewadjacency matrix of G_{w}^{σ} can be expressed as

$$
S\left(G_{w}^{\sigma}\right)=\left(\begin{array}{ccccc}
0 & w_{12} & 0 & \cdots & 0 \\
w_{21} & 0 & w_{23} & \cdots & w_{2 n} \\
0 & w_{32} & 0 & \cdots & w_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & w_{n 2} & w_{n 3} & \cdots & 0
\end{array}\right),
$$

where the first two rows and columns are labeled by v_{1}, v_{2}. Therefore it follows that

$$
\begin{aligned}
\operatorname{sr}\left(G_{w}^{\sigma}\right) & =\operatorname{sr}\left(\begin{array}{ccccc}
0 & w_{12} & 0 & \cdots & 0 \\
w_{21} & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & w_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & w_{n 3} & \cdots & 0
\end{array}\right) \\
& =\operatorname{sr}\left(\begin{array}{cc}
0 & w_{12} \\
w_{21} & 0
\end{array}\right)+\operatorname{sr}\left(\begin{array}{ccc}
0 & \cdots & w_{3 n} \\
\vdots & \ddots & \vdots \\
w_{n 3} & \cdots & 0
\end{array}\right) \\
& =\operatorname{sr}\left(\begin{array}{cc}
0 & w_{12} \\
w_{21} & 0
\end{array}\right)+\operatorname{sr}\left(G_{w}^{\sigma}-\left\{v_{1}, v_{2}\right\}\right) \\
& =2+\operatorname{sr}\left(G_{w}^{\sigma}-u-v\right) .
\end{aligned}
$$

We complete the proof.
Let u, v be two pendant vertices of a weighted graph $G_{w} . u, v$ are called pendant twins if they have the same neighbor in G.

LEMMA 2.4. Let u, v be pendant twins of a graph G. Then $m r^{-}(G)=m r^{-}(G-$ $u)=m r^{-}(G-v)$.

Proof. It is sufficient to verify that $\operatorname{sr}\left(G_{w}^{\sigma}\right)=\operatorname{sr}\left(G_{w}^{\sigma}-u\right)=\operatorname{sr}\left(G_{w}^{\sigma}-v\right)$. Let u_{0} be the unique neighbor of u, v. Then the skew-adjacency matrix of G_{w}^{σ} can be expressed as

$$
\operatorname{sr}\left(G_{w}^{\sigma}\right)=\left(\begin{array}{cc:c:c}
0 & 0 & s_{1} & 0 \\
0 & 0 & s_{2} & 0 \\
\hdashline-s_{1}-s_{2} & 0 & \alpha \\
\hdashline 0^{t} & - & -\alpha^{t} & B
\end{array}\right),
$$

where B is the adjacency matrix of $G_{w}^{\sigma}-u-v-u_{0}$ and the first three rows and columns
are labeled by u, v and u_{0}. So we have

$$
\begin{aligned}
\operatorname{sr}\left(G_{w}^{\sigma}\right) & =r\left(\begin{array}{cc:c:c}
0 & 0 & s_{1} & 0 \\
0 & 0 & 0 & 0 \\
\hdashline-s_{1} & 0 & 0 & \alpha \\
\hdashline 0 & - & - \\
0 & -\alpha^{t}: B
\end{array}\right) \\
& =r\left(\begin{array}{c:c:c}
0 & s_{1} & 0 \\
\hdashline-s_{1} & 0 & \alpha \\
\hdashline-7 & -1- \\
0^{t} & -\alpha^{t!} & B
\end{array}\right) \\
& =\operatorname{sr}\left(G_{w}^{\sigma}-v\right) .
\end{aligned}
$$

Similarly, we have $\operatorname{sr}\left(G_{w}^{\sigma}\right)=\operatorname{sr}\left(G_{w}^{\sigma}-u\right)$.
For convenience, we call the transformation in Lemma 2.3 the δ-transformation.

Lemma 2.5. [19] Let C_{n} be a cycle of order n. Then

$$
m r^{-}\left(C_{n}\right)=\left\{\begin{array}{l}
n-2, n \text { is even } \\
n-1, n \text { is odd }
\end{array}\right.
$$

Lemma 2.6. [19] Let H be an induced subgraph of G. Then $m r^{-}(H) \leqslant m r^{-}(G)$.
Let G_{1} be a graph containing a vertex u and G_{2} be a graph of order n disjoint from G_{1}. For $1 \leqslant k \leqslant n$, a k-joining graph of G_{1} and G_{2} with respect to u, denoted by $G_{1}(u) \odot{ }^{k} G_{2}$, is obtained from $G_{1} \cup G_{2}$ by joining u and certain k vertices of G_{2} with edges.

LEMMA 2.7. Let T be a tree with $u \in V(T)$ and G be a graph different from T. Let $T(u) \odot{ }^{k} G$ be the k-joining graph of T and G with respect to u. Then the following statements hold:
(1) If u is matched in T, then

$$
\begin{equation*}
m r^{-}\left(T(u) \odot^{k} G\right)=m r^{-}(G)+m r^{-}(T) \tag{*}
\end{equation*}
$$

(2) If u is mismatched in T, then

$$
m r^{-}\left(T(u) \odot^{k} G\right)=m r^{-}(T-u)+m r^{-}(G+u)
$$

where $G+u$ is the subgraph of $T(u) \odot \odot^{k} G$ induced by the vertices of G and u.

Proof. (1). We shall prove the results by applying induction to the matching number $\beta(T)$. If $\beta(T)=1$. Then T is star and u is the center of T. Assume that v is a pendant vertex in T. By Lemmas 2.2 and 2.3, we have

$$
\begin{aligned}
m r^{-}\left(T(u) \odot^{k} G\right) & =m r^{-}\left(T(u) \odot^{k} G-v-u\right)+2 \\
& =m r^{-}(G)+2 \\
& =m r^{-}(G)+m r^{-}(T)
\end{aligned}
$$

If $\beta(T) \geqslant 2$. Assume that the assertion is true when $\beta(T) \leqslant t$. Now we consider the case $\beta(T)=t+1$. Since $\beta(T) \geqslant 2, T$ contains a pendant vertex v and its neighbor w such that v, w are both different to u. It is evident that w is matched in T. Let T_{1} be a new tree by deleting v and w. Hence $\beta\left(T_{1}\right)=\beta(T)$, or $\beta(T)-1$ since v is a pendant vertex. If $\beta\left(T_{1}\right)=\beta(T)$, then there exists a maximum matching M of T that does not cover w, which contradicts to the fact that w is matched in T. So $\beta\left(T_{1}\right)=\beta(T)-1=t$. Therefore by Lemmas 2.3 and 2.2, it follows that

$$
\begin{aligned}
m r^{-}\left(T(u) \odot^{k} G\right) & =m r^{-}\left(T(u) \odot^{k} G-v-w\right)+2 \\
& =m r^{-}\left(T_{1}(u) \odot^{k} G\right)+2 \\
& =m r^{-}\left(T_{1}\right)+m r^{-}(G)+2 \quad \text { by induction } \\
& =m r^{-}(T-v-w)+m r^{-}(G)+2 \\
& =m r^{-}(T)+m r^{-}(G)
\end{aligned}
$$

(2). Let $\left\{u_{1}, u_{2}, \cdots, u_{m}\right\}$ be the neighborhood of u in $T . T_{1}, T_{2}, \cdots, T_{m}$ are the components of $T-u$ that contain the vertices $u_{1}, u_{2}, \cdots, u_{m}$, respectively. Therefore each vertex u_{i} is matched in T_{i}. Then

$$
\begin{aligned}
T(u) \odot^{k} G & =T_{1}\left(u_{1}\right) \odot^{1}\left(\left(T(u) \odot^{k} G\right)-T_{1}\right) \\
& =T_{1}\left(u_{1}\right) \odot^{1}\left[T_{2}\left(u_{2}\right) \odot^{1}\left(\left(T(u) \odot^{k} G\right)-\cup_{i=1}^{2} T_{i}\right)\right] \\
& =\cdots \\
& =T_{1}\left(u_{1}\right) \odot^{1}\left[T_{2}\left(u_{2}\right) \odot^{1} \cdots \odot^{1}\left[T_{m}\left(u_{m}\right) \odot^{1}\left(\left(T(u) \odot^{k} G\right)-\cup_{i=1}^{m} T_{i}\right)\right]\right] \\
& =T_{1}\left(u_{1}\right) \odot^{1}\left[T_{2}\left(u_{2}\right) \odot^{1} \cdots \odot^{1}\left[T_{m}\left(u_{m}\right) \odot^{1}(G+u)\right]\right]
\end{aligned}
$$

Applying formula $(*)$ repeatedly, we have

$$
\begin{aligned}
m r^{-}\left(T(u) \odot^{k} G\right) & =m r^{-}\left(T_{1}\left(u_{1}\right) \odot^{1}\left[T_{2}\left(u_{2}\right) \odot^{1} \cdots \odot^{1}\left[T_{m}\left(u_{m}\right) \odot^{1}(G+u)\right]\right]\right) \\
& =m r^{-}\left(T_{1}\right)+m r^{-}\left(T_{2}\left(u_{2}\right) \odot^{1} \cdots \odot^{1}\left[T_{m}\left(u_{m}\right) \odot^{1}(G+u)\right]\right) \\
& =\cdots \\
& =\sum_{i=1}^{m-1} m r^{-}\left(T_{i}\right)+m r^{-}\left(T_{m}\left(u_{m}\right) \odot^{1}(G+u)\right) \\
& =\sum_{i=1}^{m} m r^{-}\left(T_{i}\right)+m r^{-}(G+u) \\
& =m r^{-}(T-u)+m r^{-}(G+u) .
\end{aligned}
$$

This implies the result.
Let G be a unicyclic graph and C_{k} be the unique cycle of G. Let G^{\prime} be the graph obtained from G by deleting the two neighbors of v on C_{k} and let $G\{v\}$ be the component of G^{\prime} containing v. Then $G\{v\}$ is a tree rooted at v and an induced subgraph of G.

By Lemma 2.7, we have

Corollary 2.8. Let G be a unicyclic graph and C_{k} be the unique cycle in G. For each vertex $v \in V\left(C_{k}\right)$, let $G\{v\}$ be the tree rooted at v and containing v. Then the following statements hold:
(1) If there exists a vertex $v \in V\left(C_{k}\right)$ which is matched in $G\{v\}$, then

$$
m r^{-}(G)=m r^{-}(G\{v\})+m r^{-}(G-G\{v\}) .
$$

(2) If there exists a vertex $v \in V\left(C_{k}\right)$ which is mismatched in $G\{v\}$, then

$$
m r^{-}(G)=m r^{-}\left(C_{k}\right)+m r^{-}\left(G-C_{k}\right)
$$

3. Small minimum skew-rank of unicyclic graphs

In this section, we investigate the lower bound for minimum skew-rank of unicyclic graphs and characterize the unicyclic graphs with minimum skew-rank 4 or 6 , respectively.

3.1. Lower bound for minimum skew-rank of unicyclic graphs

Let $H(n, k)$ be a unicyclic graph obtained from C_{k} by attaching $n-k$ pendant edges to some vertex on C_{k}. Let U^{*} be a unicyclic graph obtained from a cycle C_{k} and a star S_{n-k} by inserting an edge between a vertex on C_{k} and the center of S_{n-k}.

THEOREM 3.1. Let G be a unicyclic graph of order n with girth $k(n \geqslant k+1)$. Then

$$
m r^{-}(G) \geqslant \begin{cases}k, & k \text { is even } \\ k+1, & k \text { is odd }\end{cases}
$$

The equality holds if and only if the following statements hold:
(1) If there exists a vertex $v \in V\left(C_{k}\right)$ which is matched in $G\{v\}$, then $G\{v\}$ is a star, and $\beta(G-G\{v\})=\left\{\begin{array}{l}\frac{k-2}{2}, k \text { is even, } \\ \frac{k-1}{2}, k \text { is odd. }\end{array}\right.$
(2) If there exists a vertex $v \in V\left(C_{k}\right)$ which is mismatched in $G\{v\}$, then $G \cong U^{*}$.

Proof. Since G must contain $H(k+1, k)$ as an induced subgraph, $m r^{-}(H(k+$ $1, k)) \leqslant m r^{-}(G)$ from Lemma 2.6. According to the definition of $H(k+1, k)$, there exists exactly one vertex with degree more than 2 , saying u. Let w be a pendant vertex adjacent to u in $H(k+1, k)$. By Lemma 2.3, we have

$$
\begin{aligned}
m r^{-}(H(k+1, k)) & =m r^{-}(H(k+1, k)-u-w)+2 \\
& =m r^{-}\left(P_{k-1}\right)+2 \\
& =\left\{\begin{array}{ll}
k, & k \text { is even, } \\
k+1, & k \text { is odd. }
\end{array} \text { by Lemma } 2.2\right.
\end{aligned}
$$

Therefore the result follows.
For the equality case, we first consider the necessity.
(1). Assume that there exists a vertex $v \in V\left(C_{k}\right)$ which is matched in $G\{v\}$. Note that $G\{v\}$ and $G-G\{v\}$ are two trees. If k is even, by Lemma 2.2 and Corollary 2.8 we have

$$
\begin{aligned}
k=m r^{-}(G) & =m r^{-}(G\{v\})+m r^{-}(G-G\{v\}) \\
& =2 \beta(G\{v\})+2 \beta(G-G\{v\})
\end{aligned}
$$

Since $\beta(G\{v\}) \geqslant 1, \beta(G-G\{v\}) \geqslant \frac{k-2}{2}$, so $\beta(G\{v\})=1$ and $\beta(G-G\{v\})=\frac{k-2}{2}$, which implies $G\{v\}$ is a star.

Similarly the result holds for the case when k is odd.
(2). Suppose that there exists a vertex $v \in V\left(C_{k}\right)$ which is mismatched in $G\{v\}$. By Corollary 2.8, we have

$$
m r^{-}(G)=m r^{-}\left(C_{k}\right)+2 \beta\left(G-C_{k}\right)
$$

In view of Lemma 2.5, together with the assumption, we have $\beta\left(G-C_{k}\right)=1$ which implies $G \cong U^{*}$.

The sufficiency of the equality case is easy to verify.
By Theorem 3.1, we have
Corollary 3.2. Let G be a unicyclic graph of order n with pendant vertices. Then $m r^{-}(G) \geqslant 4$.

3.2. Unicyclic graphs with minimum skew-rank 4

As is well known, the rank of a real skew-symmetric matrix is even. So $\mathrm{mr}^{-}(G)$ is even for any oriented graph. It is observed in [19] that $m r^{-}(G)=0$ if and only if G is an empty graph, and $m r^{-}(G)=2$ if and only if G is a complete multipartite graph. The authors [19] posed an open question (Question 5.2) to characterize the graphs G such that $m r^{-}(G)=4$ over infinite field.

Let $U_{1}^{r, s}(r, s \geqslant 0, r+s=n-3), U_{2}^{p, q}(p, q \geqslant 0, p+q=n-4), U_{3}^{n-4}, U_{4}^{n-5}$ be four graphs as depicted in Fig. 3.1.

As a consequence of Theorem 3.1 and Lemma 2.5, we can characterize the unicyclic graphs G with $m r^{-}(G)=4$ over real field.

Figure 1: Four unicyclic graphs $U_{1}^{r, s}, U_{2}^{p, q}, U_{3}^{n-4}, U_{4}^{n-5}$

COROLLARY 3.3. Let G be a unicyclic graph of order n with $m r^{-}(G)=4$ and C_{k} be the cycle in G. Then
(1) If $G=C_{k}$, then $G=C_{5}$, or C_{6}.
(2) If $G \neq C_{k}$, then the following statements hold:
(a) If there exists a vertex $v \in V\left(C_{k}\right)$ which is matched in $G\{v\}$, then $G \cong U_{1}^{r, s}$ or $U_{2}^{p, q}$.
(b) If there exists a vertex $v \in V\left(C_{k}\right)$ which is mismatched in $G\{v\}$, then $G \cong U_{3}^{n-4}$ or U_{4}^{n-5}.

3.3. Unicyclic graphs with minimum skew-rank 6

Next we shall characterize all unicyclic graphs with minimum skew-rank 6. From Lemma 2.4, it suffices to characterize the unicyclic graphs among all graphs without pendant twins. For convenience, we give some notations. Let \mathscr{U}^{*} be a set of unicyclic graphs without pendant twins. Let G^{\prime} (resp. $G^{\prime \prime}$) be the graph obtained from C_{8} (resp. C_{7}) by attaching a pendant edge on a vertex of C_{8} (resp. C_{7}).

THEOREM 3.4. Let $G \in \mathscr{U}^{*}$ be a unicyclic graph with girth k and $m r^{-}(G)=6$. Then $k \leqslant 8$ and the following statements hold:
(i). If $k=8$, then $G \cong C_{8}$.
(ii). If $k=7$, then $G \cong C_{7}$.
(iii). If $k=6$, then G is one of the graphs G_{i} 's $(i=1,2,3,4)$ (as depicted in Fig.2).
(iv). If $k=5$, then G is one of the graphs G_{i} 's $(i=5,6, \cdots, 9)$ (as depicted in Fig.3).
(v). If $k=4$, then G is one of the graphs G_{i} 's $(i=10,11, \cdots, 26)$ (as depicted in Fig.4).
(vi). If $k=3$, then G is one of the graphs G_{i} 's $(i=43,44, \cdots, 57)$ (as depicted in Fig.6).

G_{l}

G_{2}

Figure 2: Four graphs with girth 6 in Theorem 3.4

Figure 3: Five graphs with girth 5 in Theorem 3.4

Figure 4: Seventeen graphs with girth 4 in Theorem 3.4

Proof. If $k \geqslant 9$, then G must contain P_{8} as an induced subgraph. From Lemmas 2.2 and 2.6 we have $\mathrm{mr}^{-}(G) \geqslant 8$ which is a contradiction.

Next we shall verify the six statements.
(i) and (ii): If G is a cycle, the results are obvious from Lemma 2.5.

If G is not a cycle, then it must contain G^{\prime} or $G^{\prime \prime}$ as an induced subgraph. Hence $m r^{-}(G) \geqslant m r^{-}\left(G_{1}\right)=8$ and $m r^{-}(G) \geqslant m r^{-}\left(G_{2}\right)=8$ which contradicts the fact that $m r^{-}(G)=6$.
(v): It is evident that graphs $G_{i}(i=27,29, \cdots, 42)$ have minimum skew-rank 8 and graphs $G_{i}(i=10, \cdots, 26)$ have minimum skew-rank 6 . In the following we consider the following five cases. For convenience, denote by $G^{*}=G-C_{4}$.

Figure 5: Sixteen graphs with girth 4 excluded by $\mathrm{mr}^{-}(G)=3$ in Theorem 3.4

Figure 6: Fifteen graphs with girth 3 in Theorem 3.4
Case 1. G^{*} is a set of isolated vertices.
It is obvious that G is G_{10} or G_{11}.
Case 2. G^{*} contains P_{2}, but no P_{3}, as an induced subgraph.
If $G^{*}=P_{2}, G$ does not exist.
If G^{*} is the union of an isolated vertex and P_{2}, G is one of graphs G_{12}, G_{13} and G_{14}.

If G^{*} is the union of two isolated vertices and P_{2}, G is G_{15} or G_{16}.
If G^{*} is the union of more than two isolated vertices and P_{2}, G does not exist since it contains G_{27} or G_{28} as an induced subgraph.

If G^{*} is two copies of P_{2}, G is one of $G_{i}(i=21,22,23)$.

If G^{*} is the union of some isolated vertices and two P_{2} 's, G does not exist since it contains one of $G_{i}(i=27,28, \cdots, 31)$ as an induced subgraph.

If G^{*} contains more than two P_{2} 's as its induced subgraph, G does not exist since it must contain one of $G_{i}(i=27,28,29)$ as an induced subgraph.

Case 3. G^{*} contains P_{3}, but no P_{4}, as an induced subgraph.
If $G^{*}=P_{3}, G \cong G_{17}$.
If G^{*} is the union of one isolated vertex and P_{3}, G is G_{18} or G_{19}.
If G^{*} is the union of two isolated vertices and $P_{3}, G \cong G_{20}$.
If G^{*} is the union of more than two isolated vertices and P_{3}, G does not exist since it contains G_{31}, G_{32} or G_{33} as an induced subgraph.

If G^{*} contains the union of P_{2} and P_{3} as its induced subgraph, G does not exist since it contains G_{31}, G_{34} or G_{35} as an induced subgraph.

Case 4. G^{*} contains P_{4}, but no P_{5}, as an induced subgraph.
In this case $G \cong G_{25}, G_{26}$. The minimum skew-rank of any other graph is more than six since it contains one of $G_{i}(i=32,33, \cdots, 39)$ as an induced subgraph.

Case 5. G^{*} contains P_{5} as an induced subgraph.
In this case G does not exit since it contains one of $G_{i}(i=32,33, \cdots, 41)$ as an induced subgraph.
(iii), (iv) and (vi) can be similarly verified.

4. Non-singularity of skew-symmetric matrices described by unicyclic graphs

Let $\mathscr{U}_{n, k}$ be the set of unicyclic graphs of order n with girth k. Let \mathscr{U}_{1} be the set of unicyclic graphs of order n with girth k which can be changed to be an empty graph by finite steps of δ-transformation. Let \mathscr{U}_{2} be the set of unicyclic graphs of order n with girth k which can be changed to be an cycle C_{k} or the union of isolated vertices and C_{k} by finite steps of δ-transformation. Obviously, $\mathscr{U}_{n, k}=\mathscr{U}_{1} \cup \mathscr{U}_{2}$.

In [19], the authors obtained that, for a graph $G, m r^{-}(G)=n=M R^{-}(G)$ if and only if G has a unique perfect matching. In this section, we shall consider the case $M R^{-}(G)=n$.

Lemma 4.1. [19] For a graph $G, \operatorname{MR}^{-}(G)=2 \beta(G)$.
The following result is immediate from Lemma 4.1.

LEMMA 4.2. Let C_{n} be a cycle of order n. Then

$$
M R^{-}\left(C_{n}\right)=\left\{\begin{array}{l}
n, \quad n \text { is even } \\
n-1, n \text { is odd }
\end{array}\right.
$$

THEOREM 4.3. Let G be a unicyclic graph of order n with girth $k(k<n)$. Then we have
(1) If $G \in \mathscr{U}_{1}$, then $M R^{-}(G) \leqslant \begin{cases}n, & n \text { is even, } \\ n-1, & n \text { is odd. }\end{cases}$
(2) If $G \in \mathscr{U}_{2}$, then $M R^{-}(G) \leqslant \begin{cases}n-1, & n \text { is odd and } k \text { is odd, } \\ n-2, & n \text { is even and } k \text { is odd, } \\ n, & n \text { is even and } k \text { is even, } \\ n-1, & n \text { is odd and } k \text { is even. }\end{cases}$

Proof. If $G \in \mathscr{U}_{1}$, then by at most $\left\lfloor\frac{n}{2}\right\rfloor$ steps of δ-transformation G can be changed to an empty graph. By Lemma 2.3, $M R^{-}(G) \leqslant 2 \cdot\left\lfloor\frac{n}{2}\right\rfloor$.

If $G \in \mathscr{U}_{2}$, then by at most $\left\lfloor\frac{n-k}{2}\right\rfloor$ steps of δ-transformation G can be changed to be the cycle C_{k} or the union of isolated vertices and C_{k}. By Lemma 2.3, $M R^{-}(G) \leqslant$ $2 \cdot\left\lfloor\frac{n-k}{2}\right\rfloor+M R^{-}\left(C_{k}\right)$. The result holds from Lemma 4.2.

It is well known that the skew-symmetric matrix must be singular if its order is odd. Therefore the non-singular skew-symmetric matrices must have even order. By Theorem 4.3, we have

THEOREM 4.4. Let G be a unicyclic graph with even order n. Then any matrix $A \in \mathscr{S}^{-}(G)$ is nonsingular, i.e. $M R^{-}(G)=n$, if and only if G has a perfect matching.

Acknowledgement. The authors are grateful to an anonymous referee for many helpful comments to an earlier version of this paper.

REFERENCES

[1] C. Adiga, R. Balakrishnan, Wasin So, The skew-energy of a digraph, Linear Algebra Appl., 432: 1825-1835, 2010.
[2] F. Barioli, S. M. Fallat, L. Hogben, Computation of minimal rank and path cover number for graphs, Linear Algebra Appl., 392: 289-303, 2004.
[3] F. Barioli, S. M. Fallat, D. Hershkowitz, H. T. Hall, L. Hogben, H. van der Holst, B. SHADER, On the minimum rank of not necessarily symmetric matrices: a preliminary study, Electro. J. Linear Algebra, 18: 126-145, 2009.
[4] F. Barioli, S. M. Fallat, R. L. Smith, On acyclic and unicyclic graphs whose minimum rank equals the diameter, Linear Algebra Appl., 429: 1568-1578, 2008.
[5] W. Barrett, M. Kempton, N. Malloy, C. Nelson, W. Sexton, J. Sinkovic, Decompositions of minimum rank matrices, Linear Algebra Appl., 438: 3913-3948, 2013.
[6] W. Barrett, H. van der Holst, R. Loewy, Graphs whose minimal rank is two, Electro. J. Linear Algebra, 11: 258-280, 2004.
[7] W. Barrett, H. van der Holst, R. Loewy, Graphs whose minimal rank is two: the finite fields case, Electro. J. Linear Algebra, 14: 32-42, 2005.
[8] W. Barrett, J. Grout, R. Loewy, The minimum rank problem over the finite field of order 2: minimum rank 3, Linear Algebra Appl., 430: 890-923, 2009.
[9] N. L. Chenette, S. V. Droms, L. Hogben, R. Mikkelson, O. Pryporova, Minimum rank of a graph over an arbitrary field, Electro. J. Linear Algebra, 16: 183-186, 2007.
[10] L. M. DeAlba, J. Grout, L. Hogben, R. Mikkelson, K. Rasmussen, Universally optimal matrices and field independence of the minimum rank of a graph, Electro. J. Linear Algebra, 18: 403-419, 2009.
[11] L. M. DEALBA, Acyclic and unicyclic graphs whose minimum skew rank is equal to the minimum skew rank of a diametrical path, arXiv:1107.2170v1.
[12] L. M. DeAlba, E. Kerzner, S. Tucker, A note on the minimum skew rank of powers of graphs, arXiv:1107.2450v1.
[13] L. DELoss, Results on minimum skew rank of matrices described by a graph, MS Thesis. Iowa State University, May 2009.
[14] S. Fallat and L. Hogben, The minimum rank of symmetric matrices described by a graph: A survey, Linear Algebra Appl., 426/2-3: 558-582, 2007.
[15] S. Gong, Y. Fan, Z. Yin, On the nullity of graphs with pendant trees, Linear Algebra Appl., 433: 1374-1380, 2010.
[16] S. Gong, G. Xu, The characteristic polynomial and the matching polynomial of a weighted oriented graph, Linear Algebra Appl., 436: 3597-3607, 2012.
[17] J. Grout, The minimum rank problem over finite fields, Electro. J. Linear Algebra, 20: 673-698, 2010.
[18] L. Hogben, Minimum rank problems, Linear Algebra Appl., 432: 1961-1974, 2010.
[19] IMA-ISU research group on minimum rank, Minimum rank of skew-symmetric matrices described by a graph, Linear Algebra Appl., 432: 2457-2472, 2010.
[20] R. Mikkelson, Minimum rank of graphs that allow loops, Ph. D. Thesis, Iowa State University, 2008.
[21] Y. WANG, B. ZHOU, A note on the minimum skew rank of a graph, arXiv:1206.3409v1.

Hui Qu
School of Mathematics
Shandong Institute of Business and Technology
Yantai, Shandong, China, 264005
e-mail: guhui781111@126.com
Guihai Yu
Center for Combinatorics, Nankai University
Tianjin, China, 300071
e-mail: yuquihai@126.com
Lihua Feng
Department of Mathematics, Central South University
Railway Campus, Changsha, Hunan, China, 410075
e-mail: fenglh@163.com

[^0]: Mathematics subject classification (2010): 05C50, 15A18.
 Keywords and phrases: Minimum skew-rank, skew-symmetric matrix, graph.
 Supported by the Natural Science Foundation of China (Nos. 11301302, 11101245, 61202362), China Postdoctoral Science Foundation (Nos. 2013M530869, 2014T70210), the Natural Science Foundation of Shandong (No. BS2013SF009).

 * Corresponding author.

