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MORE ON THE MINIMUM SKEW–RANK OF GRAPHS
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(Communicated by C.-K. Li)

Abstract. The minimum (maximum) skew-rank of a simple graph G over real field is the small-
est (largest) possible rank among all skew-symmetric matrices over real field whose i j -th entry
is nonzero whenever viv j is an edge in G and is zero otherwise. In this paper we obtain more
results about the minimum skew-rank of graphs. Further we get a lower (upper) bound for
minimum (maximum) skew-rank of unicyclic graph of order n with girth k , and characterize
unicyclic graphs attaining the extremal values. Moreover, we characterize the unicyclic graphs
with skew-rank 4 or 6, respectively. Finally we consider the non-singularity of skew-symmetric
matrices described by unicyclic graphs.

1. Introduction

An n× n matrix A is symmetric (resp. skew-symmetric) if AT = A (resp. AT =
−A) . The minimum (symmetric) rank problem is to determine the minimum possible
rank of all real symmetric matrices that realize a graph G [14]. This problem has been
modified to consider all fields [6, 7, 8, 9, 14, 17], and to consider graphs with loops
and multiple edges [20]. The problem has also been altered to consider positive definite
matrices, Hermitian matrices, Hermitian positive semidefinite matrices and other non-
symmetric matrices that realize a graph G [14, 19]. For other developments in this
direction, one may refer to [2, 3, 4, 5, 10, 18].

The minimum skew rank problem, to calculate the minimum rank of skew-sym-
metric matrices which realize a graph, arose after extensive study of the minimum (sym-
metric) rank problem. This problem attracts much attention recently [11, 12, 13, 19,
21]. In this paper we focus on the problem of determining the minimum rank of real
skew-symmetric matrices described by a unicyclic graph over real field R .

Let G be a simple graph of order n with vertex set V (G) = {v1,v2, · · · ,vn} and
edge set E(G) . An oriented graph Gσ is a graph with an orientation, which assigns to
each edge of G a direction so that Gσ becomes a directed graph. A weighted oriented
graph Gσ

w is a pair (Gσ ,w) where Gσ is an oriented graph with arc set E(Gσ ) and w
is a weight function from the arc set E(Gσ ) to the set of positive real numbers. The
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skew-adjacency matrix of the weighted oriented graph Gσ
w of order n is the real matrix

S(Gσ
w) = (wi j)n×n such that

wi j =

⎧⎨
⎩

w(viv j), if there is an arc from vi to v j;
−w(viv j), if there is an arc from v j to vi;
0, otherwise.

The rank of S(Gσ
w) is called the skew-rank of Gσ

w , denoted by sr(Gσ
w) .

For an n× n real skew-symmetric matrix A = (ai j) , there exists a graph corre-
sponding to A , denoted by G (A) , with vertex set {v1,v2, · · · ,vn} , edge set {viv j : ai j �=
0,1 � i < j � n} . In fact there exits a bijection between the set of real skew-symmetric
matrices and the set of weighted oriented graphs. The set of skew-symmetric matrices
over real field R described by G is

S −(G) = {A ∈ Rn×n : AT = −A,G (A) = G}.
It should be mentioned that when calculating the minimum (symmetric) rank, a matrix
can have zero or nonzero diagonal entries; the diagonal is unconstrained. In the skew-
symmetric case, for A∈S −(G) each diagonal entry aii =−aii , and thus each diagonal
entry must be zero. The minimum skew-rank of a graph G over R is defined to be

mr−(G) = min{rank(A) : A ∈ S −(G)},
and the maximum skew nullity of G over real field R is defined to be

M−(G) = max{null(A) : A ∈ S −(G)},
where null(A) is the nullity of A . Obviously, mr−(G)+M−(G) = n . The maximum
skew-rank of a graph is

MR−(G) = max{rank(A) : A ∈ S −(G)}.
A unicyclic graph is a connected graph with equal vertex number and edge number.

For a vertex v ∈ V (G) , G− v denotes the graph obtained from G by deleting vertex
v and all edges incident with v . A vertex of a graph G is called pendant if it is only
adjacent to one vertex, and is called quasi-pendant if it is adjacent to a pendant vertex.
A set M of edges in G is a matching if every vertex of G is incident with at most one
edge in M . It is perfect matching if every vertex of G is incident with exactly one edge
in M . We denote by β (G) the matching number of G (i.e. the number of edges of a
maximum matching in G). For a graph G on at least two vertices, a vertex v ∈V (G) is
called mismatched in G if there exists a maximum matching M of G in which no edge
is incident with v ; otherwise, v is called matched in G .

The present paper is organized as follows. In Section 2 we further study the skew-
rank of graphs and give several formula for calculating the skew-rank of graphs. In
Section 3, we consider the minimum skew-rank of unicyclic graphs. Firstly get a lower
bound for minimum skew-rank of unicyclic graphs of order n with fixed girth and
characterize unicyclic graphs attaining the minimum value. Then we characterize the
unicyclic graphs with skew-rank 4 or 6, respectively. In Section 4, we consider the
non-singularity of the skew-symmetric matrices described by unicyclic graphs.
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2. Preliminaries

Let Gσ be an oriented unicyclic graph of order n with skew-adjacency matrix
S(Gσ ) = (si j)n×n . Let Cσ

k = u1u2 · · ·ukuk+1(= u1) be the unique oriented cycle of Gσ .
The sign of the cycle Cσ

k is defined as sgn(Cσ
k ) = ∏k

i=1 suiui+1 . The graph Gσ with an
even oriented cycle Cσ

k is called evenly oriented (oddly oriented) if sgn(Cσ
k ) is positive

(negative). An oriented graph Hσ is called an elementary oriented graph if Hσ is Kσ
2

or an oriented cycle with even length.
The weight of a weighted elementary oriented graph Hσ is defined as the square

of the weight of the unique arc if Hσ is Kσ
2 ; or the product of all weights of those

arcs if Hσ is an even cycle. An oriented graph Hσ is called a linear oriented graph
if each component of Hσ is an elementary oriented graph. The weight of a linear ori-
ented graph Hσ , denoted by w(Hσ ) , is the product of all weights of those elementary
oriented graphs contained in it.

LEMMA 2.1. [16] Let Gσ
w be a weighted oriented graph of order n with skew

adjacency matrix S(Gσ
w) and its characteristic polynomial

φ(Gσ
w ,λ ) =

n

∑
i=0

(−1)iaiλ n−i = λ n−a1λ n−1 +a2λ n−2+ · · ·+(−1)n−1an−1λ +(−1)nan.

Then

ai = ∑
Hσ

(−1)c+
2cw(Hσ ) if i is even,

where the summation is over all linear oriented subgraphs Hσ of Gσ
w having i vertices,

and c+ , c are respectively the numbers of evenly oriented even cycles and even cycles
contained in Hσ . In particular, ai = 0 if i is odd.

The IMA-ISU research group [19] obtained the following result by means of the
pfaffian of a matrix. Here we present an alternative and concise proof.

LEMMA 2.2. [19] Let T be a tree with matching number β (T ) . Then

mr−(T ) = MR−(T ) = 2β (T ).

Proof. It is suffices to verify that sr(T σ
w ) = 2β (T ) for any weighted oriented tree

Tσ
w . It is natural that any elementary oriented subgraph in T σ

w is Kσ
2 . If i > β (T ) ,

there exists no elementary oriented subgraph with 2i vertices and a2i = 0. Therefore
we suppose 0 � i � β (T ) . From Lemma 2.1, we have a2i = ∑H ∏e∈H(w(e))2 . So
a2β (T) is the last nonzero coefficient of φ(Gσ

w ,λ ) , which yields the result. �

LEMMA 2.3. Let G be a graph containing a pendant vertex v with the unique
neighbor u. Then mr−(G) = mr−(G−u− v)+2 , MR−(G) = MR−(G−u− v)+2 .
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Proof. We shall verify that sr(Gσ
w) = sr(Gσ

w −u−v)+2 for any weighted oriented
graph Gσ

w . Assume that V (Gσ
w) = {v1,v2, · · · ,vn} with v1 = v , v2 = u . Then the skew-

adjacency matrix of Gσ
w can be expressed as

S(Gσ
w) =

⎛
⎜⎜⎜⎜⎜⎝

0 w12 0 · · · 0
w21 0 w23 · · · w2n

0 w32 0 · · · w3n
...

...
...

. . .
...

0 wn2 wn3 · · · 0

⎞
⎟⎟⎟⎟⎟⎠ ,

where the first two rows and columns are labeled by v1 , v2 . Therefore it follows that

sr(Gσ
w) = sr

⎛
⎜⎜⎜⎜⎜⎝

0 w12 0 · · · 0
w21 0 0 · · · 0
0 0 0 · · · w3n
...

...
...

. . .
...

0 0 wn3 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

= sr

(
0 w12

w21 0

)
+ sr

⎛
⎜⎝

0 · · · w3n
...

. . .
...

wn3 · · · 0

⎞
⎟⎠

= sr

(
0 w12

w21 0

)
+ sr(Gσ

w −{v1,v2})
= 2+ sr(Gσ

w −u− v).

We complete the proof. �

Let u,v be two pendant vertices of a weighted graph Gw . u,v are called pendant
twins if they have the same neighbor in G .

LEMMA 2.4. Let u,v be pendant twins of a graph G. Then mr−(G) = mr−(G−
u) = mr−(G− v) .

Proof. It is sufficient to verify that sr(Gσ
w) = sr(Gσ

w −u) = sr(Gσ
w − v) . Let u0 be

the unique neighbor of u,v . Then the skew-adjacency matrix of Gσ
w can be expressed

as

sr(Gσ
w) =

⎛
⎜⎜⎜⎝

0 0
0 0

s1

s2
0

−s1 −s2 0 α

0t −αt B

⎞
⎟⎟⎟⎠ ,

where B is the adjacency matrix of Gσ
w−u−v−u0 and the first three rows and columns
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are labeled by u , v and u0 . So we have

sr(Gσ
w) = r

⎛
⎜⎜⎜⎝

0 0
0 0

s1

0
0

−s1 0 0 α

0t −αt B

⎞
⎟⎟⎟⎠

= r

⎛
⎜⎜⎝

0 s1 0
−s1 0 α

0t −αt B

⎞
⎟⎟⎠

= sr(Gσ
w − v).

Similarly, we have sr(Gσ
w) = sr(Gσ

w −u) . �

For convenience, we call the transformation in Lemma 2.3 the δ -transformation.

LEMMA 2.5. [19] Let Cn be a cycle of order n. Then

mr−(Cn) =
{

n−2, n is even,
n−1, n is odd.

LEMMA 2.6. [19] Let H be an induced subgraph of G. Then mr−(H)� mr−(G) .

Let G1 be a graph containing a vertex u and G2 be a graph of order n disjoint
from G1 . For 1 � k � n , a k–joining graph of G1 and G2 with respect to u , denoted
by G1(u)�k G2 , is obtained from G1 ∪G2 by joining u and certain k vertices of G2

with edges.

LEMMA 2.7. Let T be a tree with u ∈ V (T ) and G be a graph different from
T . Let T (u)�k G be the k–joining graph of T and G with respect to u. Then the
following statements hold:

(1) If u is matched in T , then

mr−(T (u)�k G) = mr−(G)+mr−(T ). (∗)

(2) If u is mismatched in T , then

mr−(T (u)�k G) = mr−(T −u)+mr−(G+u),

where G+u is the subgraph of T (u)�k G induced by the vertices of G and u.



316 H. QU, G. YU AND L. FENG

Proof. (1). We shall prove the results by applying induction to the matching num-
ber β (T ) . If β (T ) = 1. Then T is star and u is the center of T . Assume that v is a
pendant vertex in T . By Lemmas 2.2 and 2.3, we have

mr−(T (u)�k G) = mr−(T (u)�k G− v−u)+2

= mr−(G)+2

= mr−(G)+mr−(T ).

If β (T ) � 2. Assume that the assertion is true when β (T ) � t . Now we consider
the case β (T ) = t +1. Since β (T ) � 2, T contains a pendant vertex v and its neighbor
w such that v,w are both different to u . It is evident that w is matched in T . Let
T1 be a new tree by deleting v and w . Hence β (T1) = β (T ) , or β (T )− 1 since v
is a pendant vertex. If β (T1) = β (T ) , then there exists a maximum matching M of
T that does not cover w , which contradicts to the fact that w is matched in T . So
β (T1) = β (T )−1 = t . Therefore by Lemmas 2.3 and 2.2, it follows that

mr−(T (u)�k G) = mr−
(
T (u)�k G− v−w

)
+2

= mr−(T1(u)�k G)+2

= mr−(T1)+mr−(G)+2 by induction

= mr−(T − v−w)+mr−(G)+2

= mr−(T )+mr−(G).

(2). Let {u1,u2, · · · ,um} be the neighborhood of u in T . T1,T2, · · · ,Tm are the
components of T − u that contain the vertices u1,u2, · · · ,um , respectively. Therefore
each vertex ui is matched in Ti . Then

T (u)�k G = T1(u1)�1 (
(T (u)�k G)−T1

)
= T1(u1)�1 [

T2(u2)�1 (
(T (u)�k G)−∪2

i=1Ti
)]

= · · ·
= T1(u1)�1 [

T2(u2)�1 · · ·�1 [Tm(um)�1 (
(T (u)�k G)−∪m

i=1Ti
)
]
]

= T1(u1)�1 [
T2(u2)�1 · · ·�1 [Tm(um)�1 (G+u)]

]
.

Applying formula (∗) repeatedly, we have

mr−(T (u)�k G) = mr−
(
T1(u1)�1 [

T2(u2)�1 · · ·�1 [Tm(um)�1 (G+u)]
])

= mr−(T1)+mr−
(
T2(u2)�1 · · ·�1 [Tm(um)�1 (G+u)]

)
= · · ·
=

m−1

∑
i=1

mr−(Ti)+mr−(Tm(um)�1 (G+u))

=
m

∑
i=1

mr−(Ti)+mr−(G+u)

= mr−(T −u)+mr−(G+u).
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This implies the result. �

Let G be a unicyclic graph and Ck be the unique cycle of G . Let G′ be the
graph obtained from G by deleting the two neighbors of v on Ck and let G{v} be
the component of G′ containing v . Then G{v} is a tree rooted at v and an induced
subgraph of G .

By Lemma 2.7, we have

COROLLARY 2.8. Let G be a unicyclic graph and Ck be the unique cycle in G.
For each vertex v ∈ V (Ck) , let G{v} be the tree rooted at v and containing v. Then
the following statements hold:

(1) If there exists a vertex v ∈V (Ck) which is matched in G{v} , then

mr−(G) = mr−(G{v})+mr−(G−G{v}).

(2) If there exists a vertex v ∈V (Ck) which is mismatched in G{v} , then

mr−(G) = mr−(Ck)+mr−(G−Ck).

3. Small minimum skew-rank of unicyclic graphs

In this section, we investigate the lower bound for minimum skew-rank of uni-
cyclic graphs and characterize the unicyclic graphs with minimum skew-rank 4 or 6,
respectively.

3.1. Lower bound for minimum skew-rank of unicyclic graphs

Let H(n,k) be a unicyclic graph obtained from Ck by attaching n− k pendant
edges to some vertex on Ck . Let U∗ be a unicyclic graph obtained from a cycle Ck and
a star Sn−k by inserting an edge between a vertex on Ck and the center of Sn−k .

THEOREM 3.1. Let G be a unicyclic graph of order n with girth k (n � k +1) .
Then

mr−(G) �
{

k, k is even,
k+1, k is odd.

The equality holds if and only if the following statements hold:

(1) If there exists a vertex v ∈ V (Ck) which is matched in G{v} , then G{v} is a star,

and β (G−G{v}) =

{
k−2
2 , k is even,

k−1
2 , k is odd.

(2) If there exists a vertex v ∈V (Ck) which is mismatched in G{v} , then G ∼= U∗ .
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Proof. Since G must contain H(k + 1,k) as an induced subgraph, mr−(H(k +
1,k)) � mr−(G) from Lemma 2.6. According to the definition of H(k + 1,k) , there
exists exactly one vertex with degree more than 2, saying u . Let w be a pendant vertex
adjacent to u in H(k+1,k) . By Lemma 2.3, we have

mr−(H(k+1,k)) = mr−(H(k+1,k)−u−w)+2

= mr−(Pk−1)+2

=
{

k, k is even,
k+1, k is odd.

by Lemma 2.2

Therefore the result follows.
For the equality case, we first consider the necessity.
(1). Assume that there exists a vertex v ∈V (Ck) which is matched in G{v} . Note

that G{v} and G−G{v} are two trees. If k is even, by Lemma 2.2 and Corollary 2.8
we have

k = mr−(G) = mr−(G{v})+mr−(G−G{v})
= 2β (G{v})+2β (G−G{v}).

Since β (G{v}) � 1, β (G−G{v}) � k−2
2 , so β (G{v}) = 1 and β (G−G{v}) = k−2

2 ,
which implies G{v} is a star.

Similarly the result holds for the case when k is odd.
(2). Suppose that there exists a vertex v ∈ V (Ck) which is mismatched in G{v} .

By Corollary 2.8, we have

mr−(G) = mr−(Ck)+2β (G−Ck).

In view of Lemma 2.5, together with the assumption, we have β (G−Ck) = 1 which
implies G ∼= U∗ .

The sufficiency of the equality case is easy to verify. �
By Theorem 3.1, we have

COROLLARY 3.2. Let G be a unicyclic graph of order n with pendant vertices.
Then mr−(G) � 4.

3.2. Unicyclic graphs with minimum skew-rank 4

As is well known, the rank of a real skew-symmetric matrix is even. So mr−(G)
is even for any oriented graph. It is observed in [19] that mr−(G) = 0 if and only if G
is an empty graph, and mr−(G) = 2 if and only if G is a complete multipartite graph.
The authors [19] posed an open question (Question 5.2) to characterize the graphs G
such that mr−(G) = 4 over infinite field.

Let Ur,s
1 (r,s � 0, r+ s = n−3), U p,q

2 ( p,q � 0, p+q = n−4), Un−4
3 , Un−5

4 be
four graphs as depicted in Fig. 3.1.

As a consequence of Theorem 3.1 and Lemma 2.5, we can characterize the uni-
cyclic graphs G with mr−(G) = 4 over real field.
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Figure 1: Four unicyclic graphs Ur,s
1 , U p,q

2 , Un−4
3 , Un−5

4

COROLLARY 3.3. Let G be a unicyclic graph of order n with mr−(G) = 4 and
Ck be the cycle in G. Then

(1) If G = Ck , then G = C5 , or C6 .

(2) If G �= Ck , then the following statements hold:

(a) If there exists a vertex v ∈V (Ck) which is matched in G{v} , then G ∼= Ur,s
1 or

U p,q
2 .

(b) If there exists a vertex v∈V (Ck) which is mismatched in G{v} , then G∼=Un−4
3

or Un−5
4 .

3.3. Unicyclic graphs with minimum skew-rank 6

Next we shall characterize all unicyclic graphs with minimum skew-rank 6. From
Lemma 2.4, it suffices to characterize the unicyclic graphs among all graphs without
pendant twins. For convenience, we give some notations. Let U ∗ be a set of unicyclic
graphs without pendant twins. Let G′ (resp. G′′ ) be the graph obtained from C8 (resp.
C7 ) by attaching a pendant edge on a vertex of C8 (resp. C7 ).

THEOREM 3.4. Let G ∈ U ∗ be a unicyclic graph with girth k and mr−(G) = 6 .
Then k � 8 and the following statements hold:

(i). If k = 8 , then G ∼= C8 .

(ii). If k = 7 , then G ∼= C7 .

(iii). If k = 6 , then G is one of the graphs Gi ’s ( i = 1,2,3,4 ) (as depicted in Fig.2).

(iv). If k = 5 , then G is one of the graphs Gi ’s ( i = 5,6, · · · ,9 ) (as depicted in Fig.3).

(v). If k = 4 , then G is one of the graphs Gi ’s ( i = 10,11, · · · ,26 ) (as depicted in
Fig.4).

(vi). If k = 3 , then G is one of the graphs Gi ’s ( i = 43,44, · · · ,57 ) (as depicted in
Fig.6).
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G�1� G�2� G�3� G�4�

Figure 2: Four graphs with girth 6 in Theorem 3.4

G�5� G�6� G�7� G�8�
G�9�

Figure 3: Five graphs with girth 5 in Theorem 3.4

G�1�0� G�1�1� G�1�2�
G�1�3�

G�1�5� G�1�7�

G�1�9� G�2�0�

G�2�5�G�2�4�

G�2�1�

G�2�3�

G�1�6�

G�1�4�

G�1�8�

G�2�2�

G�2�6�

Figure 4: Seventeen graphs with girth 4 in Theorem 3.4

Proof. If k � 9, then G must contain P8 as an induced subgraph. From Lemmas
2.2 and 2.6 we have mr−(G) � 8 which is a contradiction.

Next we shall verify the six statements.
(i) and (ii) : If G is a cycle, the results are obvious from Lemma 2.5.
If G is not a cycle, then it must contain G′ or G′′ as an induced subgraph. Hence

mr−(G) � mr−(G1) = 8 and mr−(G) � mr−(G2) = 8 which contradicts the fact that
mr−(G) = 6.

(v) : It is evident that graphs Gi ( i = 27,29, · · · ,42) have minimum skew-rank
8 and graphs Gi ( i = 10, · · · ,26) have minimum skew-rank 6. In the following we
consider the following five cases. For convenience, denote by G∗ = G−C4 .
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G�2�7� G�2�8� G�2�9� G�3�0� G�3�1�

G�3�2�
G�3�3� G�3�4�

G�3�9� G�4�0�

G�3�7� G�3�8�

G�3�5�

G�3�6�

G�4�1�
G�4�2�

Figure 5: Sixteen graphs with girth 4 excluded by mr−(G) = 3 in Theorem 3.4

G�4�4� G�4�6� G�4�7� G�4�8� G�4�9�

G�5�0� G�5�1� G�5�2� G�5�3� G�5�4�

G�4�5�G�4�3�

G�5�5� G�5�6� G�5�7�

Figure 6: Fifteen graphs with girth 3 in Theorem 3.4

Case 1. G∗ is a set of isolated vertices.
It is obvious that G is G10 or G11 .
Case 2. G∗ contains P2 , but no P3 , as an induced subgraph.
If G∗ = P2 , G does not exist.
If G∗ is the union of an isolated vertex and P2 , G is one of graphs G12 , G13 and

G14 .
If G∗ is the union of two isolated vertices and P2 , G is G15 or G16 .
If G∗ is the union of more than two isolated vertices and P2 , G does not exist

since it contains G27 or G28 as an induced subgraph.
If G∗ is two copies of P2 , G is one of Gi ( i = 21,22,23).
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If G∗ is the union of some isolated vertices and two P2 ’s, G does not exist since
it contains one of Gi ( i = 27,28, · · · ,31) as an induced subgraph.

If G∗ contains more than two P2 ’s as its induced subgraph, G does not exist since
it must contain one of Gi ( i = 27,28,29) as an induced subgraph.

Case 3. G∗ contains P3 , but no P4 , as an induced subgraph.
If G∗ = P3 , G ∼= G17 .
If G∗ is the union of one isolated vertex and P3 , G is G18 or G19 .
If G∗ is the union of two isolated vertices and P3 , G ∼= G20 .
If G∗ is the union of more than two isolated vertices and P3 , G does not exist

since it contains G31 , G32 or G33 as an induced subgraph.
If G∗ contains the union of P2 and P3 as its induced subgraph, G does not exist

since it contains G31 , G34 or G35 as an induced subgraph.
Case 4. G∗ contains P4 , but no P5 , as an induced subgraph.
In this case G ∼= G25 , G26 . The minimum skew-rank of any other graph is more

than six since it contains one of Gi ( i = 32,33, · · · ,39) as an induced subgraph.
Case 5. G∗ contains P5 as an induced subgraph.
In this case G does not exit since it contains one of Gi ( i = 32,33, · · · ,41) as an

induced subgraph.
(iii) , (iv) and (vi) can be similarly verified. �

4. Non-singularity of skew-symmetric matrices described by unicyclic graphs

Let Un,k be the set of unicyclic graphs of order n with girth k . Let U1 be the set
of unicyclic graphs of order n with girth k which can be changed to be an empty graph
by finite steps of δ -transformation. Let U2 be the set of unicyclic graphs of order n
with girth k which can be changed to be an cycle Ck or the union of isolated vertices
and Ck by finite steps of δ -transformation. Obviously, Un,k = U1 ∪U2 .

In [19], the authors obtained that, for a graph G , mr−(G) = n = MR−(G) if and
only if G has a unique perfect matching. In this section, we shall consider the case
MR−(G) = n .

LEMMA 4.1. [19] For a graph G, MR−(G) = 2β (G) .

The following result is immediate from Lemma 4.1.

LEMMA 4.2. Let Cn be a cycle of order n. Then

MR−(Cn) =
{

n, n is even,
n−1, n is odd.

THEOREM 4.3. Let G be a unicyclic graph of order n with girth k (k < n) . Then
we have

(1) If G ∈ U1 , then MR−(G) �
{

n, n is even,
n−1, n is odd.



MORE ON THE MINIMUM SKEW-RANK OF GRAPHS 323

(2) If G ∈ U2 , then MR−(G) �

⎧⎪⎪⎨
⎪⎪⎩

n−1, n is odd and k is odd,
n−2, n is even and k is odd,
n, n is even and k is even,
n−1, n is odd and k is even.

Proof. If G ∈ U1 , then by at most 	 n
2
 steps of δ -transformation G can be

changed to an empty graph. By Lemma 2.3, MR−(G) � 2 · 	 n
2
 .

If G ∈ U2 , then by at most 	 n−k
2 
 steps of δ -transformation G can be changed to

be the cycle Ck or the union of isolated vertices and Ck . By Lemma 2.3, MR−(G) �
2 · 	 n−k

2 
+MR−(Ck) . The result holds from Lemma 4.2. �

It is well known that the skew-symmetric matrix must be singular if its order is
odd. Therefore the non-singular skew-symmetric matrices must have even order. By
Theorem 4.3, we have

THEOREM 4.4. Let G be a unicyclic graph with even order n. Then any matrix
A ∈ S −(G) is nonsingular, i.e. MR−(G) = n, if and only if G has a perfect matching.
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