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MORE ON THE MINIMUM SKEW-RANK OF GRAPHS

Hui Qu, GUIHAI YU* AND LIHUA FENG

(Communicated by C.-K. Li)

Abstract. The minimum (maximum) skew-rank of a simple graph G over real field is the small-
est (largest) possible rank among all skew-symmetric matrices over real field whose ij-th entry
is nonzero whenever v;v; is an edge in G and is zero otherwise. In this paper we obtain more
results about the minimum skew-rank of graphs. Further we get a lower (upper) bound for
minimum (maximum) skew-rank of unicyclic graph of order n with girth k, and characterize
unicyclic graphs attaining the extremal values. Moreover, we characterize the unicyclic graphs
with skew-rank 4 or 6, respectively. Finally we consider the non-singularity of skew-symmetric
matrices described by unicyclic graphs.

1. Introduction

An n x n matrix A is symmetric (resp. skew-symmetric) if AT =A (resp. AT =
—A). The minimum (symmetric) rank problem is to determine the minimum possible
rank of all real symmetric matrices that realize a graph G [14]. This problem has been
modified to consider all fields [6, 7, 8, 9, 14, 17], and to consider graphs with loops
and multiple edges [20]. The problem has also been altered to consider positive definite
matrices, Hermitian matrices, Hermitian positive semidefinite matrices and other non-
symmetric matrices that realize a graph G [14, 19]. For other developments in this
direction, one may refer to [2, 3, 4, 5, 10, 18].

The minimum skew rank problem, to calculate the minimum rank of skew-sym-
metric matrices which realize a graph, arose after extensive study of the minimum (sym-
metric) rank problem. This problem attracts much attention recently [11, 12, 13, 19,
21]. In this paper we focus on the problem of determining the minimum rank of real
skew-symmetric matrices described by a unicyclic graph over real field R.

Let G be a simple graph of order n with vertex set V(G) = {v,v,---,v,} and
edge set E(G). An oriented graph G° is a graph with an orientation, which assigns to
each edge of G a direction so that G° becomes a directed graph. A weighted oriented
graph GS is a pair (G°,w) where G° is an oriented graph with arc set E(G°) and w
is a weight function from the arc set E(G®) to the set of positive real numbers. The
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skew-adjacency matrix of the weighted oriented graph GZ of order n is the real matrix
S(GZ) = (Wij)nxn such that

w(v;vj),  if there is an arc from v; to v;;
wij =< —w(vjv;), if thereis an arc fromv; to v;;
0, otherwise.

The rank of S(G9) is called the skew-rank of G, denoted by sr(G?).

For an n x n real skew-symmetric matrix A = (a;;), there exists a graph corre-
sponding to A, denoted by ¢ (A), with vertex set {vi,v,---,v,}, edge set {viv; :a;; #
0,1 <i< j<n}.Infact there exits a bijection between the set of real skew-symmetric
matrices and the set of weighted oriented graphs. The set of skew-symmetric matrices
over real field R described by G is

S(G)={Ac R : AT = A, 9(A) = G}.

It should be mentioned that when calculating the minimum (symmetric) rank, a matrix
can have zero or nonzero diagonal entries; the diagonal is unconstrained. In the skew-
symmetric case, for A € .~ (G) each diagonal entry a;; = —a;;, and thus each diagonal
entry must be zero. The minimum skew-rank of a graph G over R is defined to be

mr~ (G) = min{rank(A) : A € . (G)},
and the maximum skew nullity of G over real field R is defined to be
M (G) =max{null(A): A € . (G)},

where null(A) is the nullity of A. Obviously, mr~ (G) + M~ (G) = n. The maximum
skew-rank of a graph is

MR (G) = max{rank(A) : A € ./ (G)}.

A unicyclic graph is a connected graph with equal vertex number and edge number.
For a vertex v € V(G), G — v denotes the graph obtained from G by deleting vertex
v and all edges incident with v. A vertex of a graph G is called pendant if it is only
adjacent to one vertex, and is called quasi-pendant if it is adjacent to a pendant vertex.
A set M of edges in G is a matching if every vertex of G is incident with at most one
edge in M. Itis perfect matching if every vertex of G is incident with exactly one edge
in M. We denote by B(G) the matching number of G (i.e. the number of edges of a
maximum matching in G). For a graph G on at least two vertices, a vertex v € V(G) is
called mismatched in G if there exists a maximum matching M of G in which no edge
is incident with v; otherwise, v is called matched in G.

The present paper is organized as follows. In Section 2 we further study the skew-
rank of graphs and give several formula for calculating the skew-rank of graphs. In
Section 3, we consider the minimum skew-rank of unicyclic graphs. Firstly get a lower
bound for minimum skew-rank of unicyclic graphs of order n with fixed girth and
characterize unicyclic graphs attaining the minimum value. Then we characterize the
unicyclic graphs with skew-rank 4 or 6, respectively. In Section 4, we consider the
non-singularity of the skew-symmetric matrices described by unicyclic graphs.
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2. Preliminaries

Let G° be an oriented unicyclic graph of order n with skew-adjacency matrix
S(G®) = (ij)nxn- Let C7 = ujuz - - - ugur41 (= uy) be the unique oriented cycle of G°.
The sign of the cycle C? is defined as sgn(CZ) = TT5_ Suu; .1 - The graph G° with an
even oriented cycle C? is called evenly oriented (oddly oriented) if sgn(CY) is positive
(negative). An oriented graph H is called an elementary oriented graph if H® is K
or an oriented cycle with even length.

The weight of a weighted elementary oriented graph H® is defined as the square
of the weight of the unique arc if H® is K3 ; or the product of all weights of those
arcs if H® is an even cycle. An oriented graph H® is called a linear oriented graph
if each component of HC is an elementary oriented graph. The weight of a linear ori-
ented graph H®, denoted by w(H®), is the product of all weights of those elementary
oriented graphs contained in it.

LEMMA 2.1. [16] Let G be a weighted oriented graph of order n with skew
adjacency matrix S(GS) and its characteristic polynomial

¢(Gy,A) = 2(—1)iailn7i A —a A" a2 (1) Ly A+ (= 1) ay.
i=0

Then

a; = 2(—1)“+2"w(H") if i is even,
HO'

where the summation is over all linear oriented subgraphs H° of GS having i vertices,
and c¢T, ¢ are respectively the numbers of evenly oriented even cycles and even cycles
contained in H® . In particular, a; =0 if i is odd.

The IMA-ISU research group [19] obtained the following result by means of the
pfaffian of a matrix. Here we present an alternative and concise proof.

LEMMA 2.2. [19] Let T be a tree with matching number B(T). Then

mr~(T) = MR™(T) = 2B(T).

Proof. Tt is suffices to verify that sr(7,°) = 2(T) for any weighted oriented tree
T,2 . It is natural that any elementary oriented subgraph in 7,7 is Ky . If i > B(T),
there exists no elementary oriented subgraph with 2i vertices and ay; = 0. Therefore
we suppose 0 < i < B(T). From Lemma 2.1, we have ay = Yy [Ty (w(e))?. So
ap(r) is the last nonzero coefficient of ¢(Gy,A), which yields the result. [

LEMMA 2.3. Let G be a graph containing a pendant vertex v with the unique
neighbor u. Then mr~(G) =mr~ (G—u—v)+2, MR~ (G) =MR (G —u—v)+2.
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Proof. We shall verify that sr(GS) = sr(GS —u—v)+2 for any weighted oriented
graph GJ. Assume that V(GS) = {vi,va,---,v,} with vi =v, vp = u. Then the skew-
adjacency matrix of G¢ can be expressed as

0 wp O -+ 0
war 0 waz --- woy,
S(Go) = 0 w2 0 w3,

w )

0 wpwy -+ 0

where the first two rows and columns are labeled by v, v,. Therefore it follows that

w21 0

=sr ( 0 W12) +s7(GS — {v1,m2})
=2+4sr(GS—u—v).
We complete the proof. [J]
Let u,v be two pendant vertices of a weighted graph G,,. u,v are called pendant

twins if they have the same neighborin G.

LEMMA 2.4. Let u,v be pendant twins of a graph G. Then mr— (G) =mr~ (G —
u)=mr (G —v).

Proof. Ttis sufficient to verify that sr(G2) = sr(GS —u) = sr(GS —v). Let ugy be
the unique neighbor of u,v. Then the skew-adjacency matrix of G can be expressed
as

00 | s1
o i _0_0_ ! ;5‘2_:_
SV(GW) _—_Sl_—_52_| _0_|£X_ 3
| |
O s

where B is the adjacency matrix of G —u —v —ug and the first three rows and columns
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are labeled by u, v and ug. So we have

LS
__O_O_LQ_:_O_
(G =r| 5070 e
| |
0" —a'B
05,0
_ —s51' 0 o
r __1_[__|__
Otf o''B
= sr(GS —v).

Similarly, we have sr(GS) = sr(GS —u). O

315

For convenience, we call the transformation in Lemma 2.3 the 0 -transformation.

LEMMA 2.5. [19] Let C, be a cycle of order n. Then

n—2,nis even,
n—1,nis odd.

mr(Gr) = {

LEMMA 2.6. [19] Let H be an induced subgraph of G. Then mr~— (H) < mr— (G).

Let G| be a graph containing a vertex u and G, be a graph of order n disjoint
from G;. For 1 < k < n,a k—joining graph of G| and G, with respect to u, denoted
by Gi(u) ®F G,, is obtained from G, UG, by joining u and certain k vertices of G;

with edges.

LEMMA 2.7. Let T be a tree with u € V(T) and G be a graph different from
T. Let T(u) ©% G be the k—joining graph of T and G with respect to u. Then the

following statements hold:

(1) If u is matched in T, then

mr~ (T (u) O G) = mr~ (G) +mr=(T).

(2) If u is mismatched in T, then

mr~ (T (u) O G) = mr™ (T — u) + mr— (G +u),

where G+ u is the subgraph of T (u) ©% G induced by the vertices of G and u.
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Proof. (1). We shall prove the results by applying induction to the matching num-
ber B(T). If B(T)=1. Then T is star and u is the center of 7. Assume that v is a
pendant vertex in 7. By Lemmas 2.2 and 2.3, we have

mr~ (T (u) & G) = mr~ (T (u) O G —v —u) +2
=mr (G)+2
=mr (G)+mr (T).

If B(T) > 2. Assume that the assertion is true when (7)) <. Now we consider
the case B(T) =1+ 1. Since B(T) >2, T contains a pendant vertex v and its neighbor
w such that v,w are both different to u. It is evident that w is matched in 7. Let
Ty be a new tree by deleting v and w. Hence B(T) = B(T), or B(T) — 1 since v
is a pendant vertex. If B(71) = B(T), then there exists a maximum matching M of
T that does not cover w, which contradicts to the fact that w is matched in 7. So

B(T1) = B(T)—1=t. Therefore by Lemmas 2.3 and 2.2, it follows that
mr~ (T (u) O G) = mr~ (T (u YOG —v— w)+2
= mr (Ty(u) " G) +2
=mr (Ti)+mr (G)+2 by induction
=mr (T—v—w)+mr (G)+2
=mr (T)+mr (G)

(2). Let {uj,us, - ,um} be the neighborhood of u in T. T\,T5,---,T,, are the
components of 7' — u that contain the vertices uy,u,---,u,, respectively. Therefore
each vertex u; is matched in 7;. Then

T(u) oG = Ti(ur) ©' ((T(u) 0" G) - Ty)
= Ti(u1) ©" [ (u2) ©" ((T(u) O G) — UL T}) ]

O T () ©' (T () ©° G) — UL, 1) ]
O [T (um) @' (G+u)]].
Applying formula (x) repeatedly, we have

mr~ (T (u) O G) = mr~ (Tl (u) ©! [Tz(uz) ol M T () O (G—|—u)]]>

mr(Ty) +mr~ (Tz(uz) O O [T () @ (G+u)]>

2 mr~ (T;) +mr™ (T (um) ©' (G +u))

I

Il
—_

mr~ (T;) +mr~ (G +u)

=mr (T —u)+mr (G+u).
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This implies the result. [

Let G be a unicyclic graph and C; be the unique cycle of G. Let G’ be the
graph obtained from G by deleting the two neighbors of v on C; and let G{v} be
the component of G’ containing v. Then G{v} is a tree rooted at v and an induced
subgraph of G.

By Lemma 2.7, we have

COROLLARY 2.8. Let G be a unicyclic graph and Cy be the unique cycle in G.
For each vertex v € V(Cy), let G{v} be the tree rooted at v and containing v. Then
the following statements hold:

(1) If there exists a vertex v € V(Cy) which is matched in G{v}, then

mr— (G) =mr~ (G{v})+mr (G—G{v}).

(2) If there exists a vertex v € V(Cy) which is mismatched in G{v}, then

mr— (G) =mr~ (Cg) +mr (G —Cy).

3. Small minimum skew-rank of unicyclic graphs

In this section, we investigate the lower bound for minimum skew-rank of uni-
cyclic graphs and characterize the unicyclic graphs with minimum skew-rank 4 or 6,
respectively.

3.1. Lower bound for minimum skew-rank of unicyclic graphs

Let H(n,k) be a unicyclic graph obtained from C; by attaching n — k pendant
edges to some vertex on Ci. Let U™ be a unicyclic graph obtained from a cycle Cy and
a star S,_; by inserting an edge between a vertex on C; and the center of S, _;.

THEOREM 3.1. Let G be a unicyclic graph of order n with girth k (n > k+1).

Then
_ k, k is even,
mr~(G) > {k+ 1. k is odd.

The equality holds if and only if the following statements hold:
(1) If there exists a vertex v € V(Cy) which is matched in G{v}, then G{v} is a star,

and B(G—G{v})= {

% , k is even,
KL kis odd.

(2) If there exists a vertex v € V(Cy) which is mismatched in G{v}, then G = U*.
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Proof. Since G must contain H(k+ 1,k) as an induced subgraph, mr~ (H (k +
1,k)) < mr~(G) from Lemma 2.6. According to the definition of H(k + 1,k), there
exists exactly one vertex with degree more than 2, saying u. Let w be a pendant vertex
adjacentto u in H(k+ 1,k). By Lemma 2.3, we have

mr (H(k+1,k)) = mr (H(k+ 1,k) —u—w)+2
= mr_(Pk_l)—i—Z
B {k, k is even,

k+1,kisodd, Py Lemma2.2

Therefore the result follows.

For the equality case, we first consider the necessity.

(1). Assume that there exists a vertex v € V(C) which is matched in G{v}. Note
that G{v} and G — G{v} are two trees. If k is even, by Lemma 2.2 and Corollary 2.8
we have

k=mr (G) = mr (G{v})+mr (G—G{v})
2B(G{v}) +2B(G—G{v}).

Since B(G{v}) > 1, B(G—G{v}) = 552,50 B(G{v}) =1 and B(G—G{v}) =532,
which implies G{v} is a star.

Similarly the result holds for the case when £ is odd.

(2). Suppose that there exists a vertex v € V(Cy) which is mismatched in G{v}.
By Corollary 2.8, we have

mr~ (G) =mr~ (Cr) 4+ 2B(G — Cy).

In view of Lemma 2.5, together with the assumption, we have (G — C;) = 1 which
implies G = U*.
The sufficiency of the equality case is easy to verify. [J

By Theorem 3.1, we have

COROLLARY 3.2. Let G be a unicyclic graph of order n with pendant vertices.
Then mr—(G) = 4.

3.2. Unicyclic graphs with minimum skew-rank 4

As is well known, the rank of a real skew-symmetric matrix is even. So mr~(G)
is even for any oriented graph. It is observed in [19] that mr~(G) = 0 if and only if G
is an empty graph, and mr~(G) = 2 if and only if G is a complete multipartite graph.
The authors [19] posed an open question (Question 5.2) to characterize the graphs G
such that mr~ (G) = 4 over infinite field.

Let U (r,s >0, r+s=n—3), U} (p,q =0, p+q=n—4), Uy, U} be
four graphs as depicted in Fig. 3.1.

As a consequence of Theorem 3.1 and Lemma 2.5, we can characterize the uni-
cyclic graphs G with mr~ (G) = 4 over real field.
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Figure 1: Four unicyclic graphs U}*, Uy, U§174, UZHS

COROLLARY 3.3. Let G be a unicyclic graph of order n with mr— (G) = 4 and
Cy. be the cycle in G. Then

(1) If G=Cy, then G =Cs, or C.
(2) If G # Cy, then the following statements hold:

(a) If there exists a vertex v € V(Cy) which is matched in G{v}, then G = U or
P,

(b) If there exists a vertex v € V(Cy) which is mismatched in G{v}, then G=U}"*
or Up—>.
3.3. Unicyclic graphs with minimum skew-rank 6

Next we shall characterize all unicyclic graphs with minimum skew-rank 6. From
Lemma 2.4, it suffices to characterize the unicyclic graphs among all graphs without
pendant twins. For convenience, we give some notations. Let %7 * be a set of unicyclic
graphs without pendant twins. Let G’ (resp. G”) be the graph obtained from Cg (resp.
C7) by attaching a pendant edge on a vertex of Cg (resp. C7).

THEOREM 3.4. Let G € %™ be a unicyclic graph with girth k and mr~(G) = 6.
Then k < 8 and the following statements hold:

(i). If k=8, then G = Cy.

(ii). If k=1, then G = (5.
(iii). If k=6, then G is one of the graphs G;’s (i =1,2,3,4) (as depicted in Fig.2).
(iv). If k=135, then G is one of the graphs G;’s (i =15,6,---,9) (as depicted in Fig.3).

(v). If k=4, then G is one of the graphs G;’s (i = 10,11,---,26) (as depicted in
Fig.4).

(vi). If k=3, then G is one of the graphs G;’s (i = 43,44,---.57) (as depicted in
Fig.o).
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O O -0

Figure 2: Four graphs with girth 6 in Theorem 3.4

o s S Do

Figure 3: Five graphs with girth 5 in Theorem 3.4

Gl Gllyy Gllyy Gl Glly
Gl Gl Ghn Gl
Gﬂm GQHJ GQUD GBD?EI
'\: he A '\: bl

Gl Gl Gl Gl

Figure 4: Seventeen graphs with girth 4 in Theorem 3.4

Proof. If k > 9, then G must contain Pg as an induced subgraph. From Lemmas
2.2 and 2.6 we have mr~(G) > 8 which is a contradiction.

Next we shall verify the six statements.

(i) and (ii): If G is a cycle, the results are obvious from Lemma 2.5.

If G is not a cycle, then it must contain G’ or G” as an induced subgraph. Hence
mr~(G) = mr~(Gy) = 8 and mr~ (G) = mr~ (G,) = 8 which contradicts the fact that
mr~(G) =6.

(v): It is evident that graphs G; (i =27,29,---,42) have minimum skew-rank
8 and graphs G; (i = 10,---,26) have minimum skew-rank 6. In the following we
consider the following five cases. For convenience, denote by G* = G — Cy.
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Figure 5: Sixteen graphs with girth 4 excluded by mr— (G) = 3 in Theorem 3.4

Figure 6: Fifteen graphs with girth 3 in Theorem 3.4

Gl Gy

Case 1. G* is a set of isolated vertices.

It is obvious that G is Gy or Gy;.

Case 2. G* contains P, but no P3, as an induced subgraph.

If G* = P>, G does not exist.

If G* is the union of an isolated vertex and P>, G is one of graphs Gy, Gi3 and

If G* is the union of two isolated vertices and P>, G is G5 or Gig.
If G* is the union of more than two isolated vertices and P, G does not exist

since it contains Gy7 or Gog as an induced subgraph.

If G* is two copies of P», G is one of G; (i =21,22,23).
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If G* is the union of some isolated vertices and two P5’s, G does not exist since
it contains one of G; (i =27,28,---,31) as an induced subgraph.

If G* contains more than two P, ’s as its induced subgraph, G does not exist since
it must contain one of G; (i =27,28,29) as an induced subgraph.

Case 3. G* contains P;, but no Py, as an induced subgraph.

IfG' =P, G2Gyy.

If G* is the union of one isolated vertex and P3, G is Gig or Gyg.

If G* is the union of two isolated vertices and P3, G = Gy .

If G* is the union of more than two isolated vertices and P;, G does not exist
since it contains G31, G3p or G33 as an induced subgraph.

If G* contains the union of P, and P; as its induced subgraph, G does not exist
since it contains G31, G34 or G3s as an induced subgraph.

Case 4. G* contains Py, but no Ps, as an induced subgraph.

In this case G == G5, Gyg. The minimum skew-rank of any other graph is more
than six since it contains one of G; (i =32,33,---,39) as an induced subgraph.

Case 5. G* contains Ps as an induced subgraph.

In this case G does not exit since it contains one of G; (i = 32,33,---,41) as an
induced subgraph.

(iii), (iv) and (vi) can be similarly verified. O

4. Non-singularity of skew-symmetric matrices described by unicyclic graphs

Let %, be the set of unicyclic graphs of order n with girth k. Let %, be the set
of unicyclic graphs of order n with girth k£ which can be changed to be an empty graph
by finite steps of O -transformation. Let %% be the set of unicyclic graphs of order n
with girth k£ which can be changed to be an cycle C; or the union of isolated vertices
and Cy by finite steps of 6 -transformation. Obviously, %, , = % U % .

In [19], the authors obtained that, for a graph G, mr~(G) = n= MR~ (G) if and
only if G has a unique perfect matching. In this section, we shall consider the case
MR (G) =n.

LEMMA 4.1. [19] Fora graph G, MR~ (G) =2B(G).

The following result is immediate from Lemma 4.1.

LEMMA 4.2. Let C, be a cycle of order n. Then

_ n, nis even,
MR™(Gy) = {n— 1, nis odd.
THEOREM 4.3. Let G be a unicyclic graph of order n with girth k (k <n). Then
we have

n, nis even,

(1) If G € %, then MR~ (G) < {n—l,nisodd.
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n—1, nisoddandk is odd,

n—2, nisevenand k is odd,
n, n is even and k is even,
n—1, nisoddandk is even.

(2) If G € %, then MR~ (G) <

Proof. If G € 7/, then by at most 5] steps of O-transformation G can be
changed to an empty graph. By Lemma 2.3, MR (G) <2-[5].

If G € 7%, then by at most | “5* | steps of §-transformation G can be changed to
be the cycle Cy or the union of isolated vertices and Cy. By Lemma 2.3, MR™(G) <
2. L"Tfkj + MR~ (Cy). The result holds from Lemma 4.2. [J

It is well known that the skew-symmetric matrix must be singular if its order is
odd. Therefore the non-singular skew-symmetric matrices must have even order. By
Theorem 4.3, we have

THEOREM 4.4. Let G be a unicyclic graph with even order n. Then any matrix
A € 7 (G) is nonsingular, i.e. MR~ (G) =n, if and only if G has a perfect matching.
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