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A NOTE ON 2–LOCAL REPRESENTATIONS OF C∗–ALGEBRAS

ANTONIO M. PERALTA

(Communicated by N.-C. Wong)

Abstract. We survey the results on linear local and 2-local homomorphisms and zero products
preserving operators between C ∗ -algebras, and we incorporate some new precise observations
and results to prove that every bounded linear 2-local homomorphism between C ∗ -algebras is a
homomorphism. Consequently, every linear 2-local ∗ -homomorphism between C ∗ -algebras is
a ∗ -homomorphism.

1. Introduction

Most of the authors agree in acknowledging the papers of R. V. Kadison [24] and
D. R. Larson and A. R. Sourour [30] as the pioneering contributions to the theory of
local derivations and local automorphisms on Banach algebras, respectively. We recall
that a linear mapping T from a Banach algebra A into a Banach algebra B is said
to be a local homomorphism if for every a in A there exists a homomorphism Φa :
A → B , depending on a , satisfying T (a) = Φa(a) . When A and B are C∗ -algebras,
and for each a in A there exists a ∗ -homomorphism Φa : A → B , depending on a ,
satisfying T (a) = Φa(a) , the mapping T is called a local ∗ -homomorphism. Local
automorphisms, local ∗ -automorphisms, and local derivations are similarly defined.

R. V. Kadison proved in [24] that every bounded local derivation on a von Neu-
mann algebra (i.e. a C∗ -algebra which is also a dual Banach space) is a derivation.
After Kadison’s contribution, a multitude of researchers explored the same problem
for general C∗ -algebras (see, for example, [1, 4, 21, 31, 44], and [50]). The definitive
answer is due to B. E. Johnson [23], who proved that every local derivation from a C∗ -
algebra A into a Banach A-bimodule is a derivation. Much more recently, local triple
derivations on C∗ -algebras and JB∗ -triples have been studied in [33, 8, 9] and [14].

The knowledge about local homomorphisms and local ∗ -homomorphismsbetween
C∗ -algebras is less conclusive. D.D. Larson and A. R. Sourour proved in [30] that for
an infinite dimensional Banach space X , every surjective local automorphism T on
the Banach algebra B(X), of all bounded linear operators on X , is an automorphism.
When X is a separable Hilbert space M. Brešar and P. Šemrl showed that the hypothe-
sis concerning the surjectivity is superfluous (cf. [5]). A related result was established
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by C. Batty and L. Molnar in [3], where they proved that for a properly infinite von
Neumann algebra M , the group, Aut(M ) , of all ∗ -automorphisms on M is strong
topologically reflexive, i.e. if a bounded linear mapping T : M → M satisfies that for
every a ∈ M , T (a) belongs to the strong-closure of the set {Φ(a) : Φ ∈ Aut(M )} ,
then T lies in Aut(M ) [3, Proposition 2]. Furthermore, for each separable Hilbert
space H of dimension n � 3, the group Aut(B(H)) is strong topologically reflexive [3,
Theorem 3]. In [41, §2], F. Pop provides an example of a local homomorphism from
M2(C) into M4(C) which fails to be multiplicative (cf. Example 3.13).

In 1997, P. Šemrl [43] introduces 2-local derivations and 2-local automorphisms in
the following sense: Let A be a Banach algebra, a mapping T : A → A is a 2-local au-
tomorphism if for every a,b ∈ A there is an automorphism Ta,b : A → A, depending on
a and b , such that Ta,b(a) = T (a) and Ta,b(b) = T (b) (no linearity, surjectivity or con-
tinuity of T is assumed). In the just quoted paper, Šemrl proves that for every infinite-
dimensional separable Hilbert space H , every 2-local automorphism T : B(H)→ B(H)
is an automorphism. In [28], S. O. Kim and J. S. Kim show that every surjective 2-local
∗ -automorphism on a prime C∗ -algebra or on a C∗ -algebra such that the identity ele-
ment is properly infinite is a ∗ -automorphism (see [12, 15, 34, 35, 36, 37] and [27] for
other related results).

A closer look at Šemrl’s paper [43] shows that the connections with the Gleason-
Kahane-Żelazko theorem (cf. [19, 25]) didn’t go unnoticed to him. Borrowing a para-
graph from [43, Introduction], we notice that Gleason-Kahane-Żelazko theorem can be
reformulated in the following sense: every unital linear local homomorphism from a
unital complex Banach algebra A into C is multiplicative (cf. [2]). S. Kowalski and Z.
Slodkowski [29] established a 2-local version of the Gleason-Kahane-Żelazko theorem,
showing that every 2-local homomorphism T : A → C is linear and multiplicative.

In order to keep coherence with the terminology employed by P. Šemrl, a mapping
T between C∗ -algebras A and B is called a 2-local homomorphism (respectively, 2-
local ∗ -homomorphism) if for every a,b ∈ A there exists a bounded homomorphism
(respectively, a ∗ -homomorphism) Φa,b : A → B , depending on a and b , such that
Φa,b(a) = T (a) and Φa,b(b) = T (b) . 2-local Jordan homomorphisms, 2-local Jordan
∗ -homomorphisms and 2-local automorphisms are defined in a similar fashion. We
recall that a linear mapping Φ : A → B is said to be a Jordan homomorphism whenever
Φ(a2) = Φ(a)2 (equivalently, Φ preserves the Jordan products of the form a ◦ b :=
1
2(ab+ba)).

In 2004, new studies on 2-local linear maps between C∗ -algebras were developed
by D. Hadwin and J. Li [21] and F. Pop [41], though these papers seem to be mutually
disconnected at the moment of publication. Hadwin and Li prove that every bounded
linear and unital 2-local homomorphism (respectively, 2-local ∗ -homomorphism) from
a unital C∗ -algebra of real rank zero into itself is a homomorphism (respectively, a
∗ -homomorphism) [21, Theorem 3.6]. As a consequence, every linear and surjective
2-local ∗ -automorphism on a unital C∗ -algebra of real rank zero is a ∗ -automorphism
(cf. [21, Theorem 3.7]). The main contribution of F. Pop in [41] establishes that every
bounded linear 2-local homomorphism (respectively, 2-local ∗ -homomorphism) from
a von Neumann algebra into another C∗ -algebra is a homomorphism (respectively, a
∗ -homomorphism) [41, Corollary 3.6].
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In 2006, J.-H. Liu and N.-C. Wong made their own contribution to the study of not
necessarily continuous nor linear 2-local homomorphisms between standard operator
algebras on locally convex spaces [32]. We recall that a standard operator algebra A
on a locally convex space X , is a subalgebra of B(X) containing the algebra F (X)
of all continuous finite rank operators on X . Liu and Wong prove, without assuming
linearity, surjectivity or continuity, that every 2-local automorphism of F (X) is an
algebra homomorphism. In the case in which X is a Frechet space with a Schauder basis
and A contains all locally compact operators, it can be concluded that every 2-local
automorphismon A is an automorphism. Furthermore, a 2-local automorphism Θ of a
standard operator algebra A on a locally convex space X is an algebra homomorphism
provided that the range of Θ contains F (X) , or Θ is continuous in the weak operator
topology (cf. [32]). In the just quoted paper, the authors study the question of when a
2-local automorphism of a C∗ -algebra is an automorphism, showing that every linear
2-local automorphism T of a C∗ -algebra whose range is a C∗ -algebra is an algebra
homomorphism.

It seems natural to ask whether the above results of Hadwin-Li and Pop remain
true for general C∗ -algebras. This paper, which has an almost expository aim, com-
bined with new research results, we give a positive answer to this question by showing
that every bounded linear 2-local homomorphism between C∗ -algebras is a homomor-
phism, and consequently, every linear 2-local ∗ -homomorphism between C∗ -algebras
is a ∗ -homomorphism (Theorem 3.9). In particular, according to the terminology in
[41], every 2-local (∗ -)representation of a C∗ -algebra is a (∗ -)representation (Corol-
lary 3.10). In Example 3.14 we present an example of a linear local ∗ -automorphism
on M2(C) which is not multiplicative. We survey the connections between this problem
and the theory of linear zero products preservers developed by J. Alaminos, M. Bresar,
J. Extremera and A. Villena in [1]. The novelties in this paper include an independent
proof which is not based on the result in [1] together with the precise observations
to provide a definitive answer to the whole line of problems on linear preservers on
C∗ -algebras presented above. Here we make use of techniques developed in the set-
ting of JB∗ -triples combined with the use of compact-Gδ projections in the bidual of
a C∗ -algebra. We study of the connections between (linear) 2-local homomorphisms
and zero product preserving mappings. Although the results presented here could have
been obtained by combining some of the results that we shall review later, the equiva-
lence between bounded linear 2-local homomorphisms and bounded homomorphisms
between C∗ -algebras has not been explicitly established before.

2. Techniques of Jordan algebras and JB∗ -triples

Every C∗ -algebra A admits a Jordan product defined by a ◦ b = 1
2 (ab+ba) . The

Jordan product is commutative but not necessarily associative. Let B be another C∗ -
algebra. A linear map T : A → B is said to be a Jordan homomorphism whenever it
preserves Jordan products, or equivalently, when T (a2) = T (a)2 , for every a . A Jor-
dan ∗ -homomorphism is a Jordan homomorphism which maps self-adjoint elements
into self-adjoint elements. For each element a in A , the symbol Ua will denote
the linear map Ua : A → A defined by Ua(x) := axa . Since, for every a,x ∈ A we
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have Ua(x) = 2(a ◦ x) ◦ a− a2 ◦ x , every Jordan homomorphism T : A → B satisfies
T (Ua(x)) = UT (a)(T (x)) .

Let T : A → B be a Jordan homomorphism between C∗ -algebras. Since A∗∗ and
B∗∗ are von Neumann algebras, T ∗∗ : A∗∗ → B∗∗ is weak∗ continuous, and the prod-
uct of every von Neumann algebra is separately weak∗ continuous (cf. [42, Theorem
1.7.8]), we deduce, via Goldstine’s theorem, that T ∗∗ : A∗∗ → B∗∗ is a Jordan homo-
morphism. Since the involution of a von Neumann algebra is weak∗ continuous (cf.
[42, Theorem 1.7.8]), T ∗∗ is a Jordan ∗ -homomorphism whenever T is a Jordan ∗ -
homomorphism.

There is some benefit in considering a C∗ -algebra as an element in the wider
class of JB∗ -triples. A JB∗ -triple is a complex Banach space E equipped with a triple
product {·, ·, ·} : E ×E ×E → E which is linear and symmetric in the outer variables,
conjugate linear in the middle variable and satisfies the following conditions:

(a) (Jordan identity)

{a,b,{x,y,z}} = {{a,b,x},y,z}−{x,{b,a,y},z}+{x,y,{a,b,z}},

for a,b,x,y,z in E ;

(b) For each a∈ E , the mapping L(a,a) : E → E, x �→ {a,a,x} is a hermitian (linear)
operator with non-negative spectrum;

(c) ‖{x,x,x}‖ = ‖x‖3 for all x ∈ E .

Every C∗ -algebra is a JB∗ -triple via the triple product given by

{x,y,z} =
1
2
(xy∗z+ zy∗x).

It was shown by Poincaré in the early 1900s, that the Riemann mapping theorem
fails when the complex plane is replaced by a complex Banach space of higher dimen-
sion. Although, a complete holomorphic classification of bounded simply connected
domains in arbitrary complex Banach spaces is unattainable, bounded symmetric do-
mains in finite dimensions were studied and classified by E. Cartan [10]. In the setting
of complex Banach spaces of arbitrary dimension, W. Kaup proved, in [26], that a
complex Banach space is a JB∗ -triple if, and only if, its open unit ball is a bounded
symmetric domain, and every bounded symmetric domain in a complex Banach space
is biholomorphically equivalent to the open unit ball of a JB∗ -triple; showing that the
category of all bounded symmetric domains with base point is equivalent to the cat-
egory of JB∗ -triples. We refer to monographs [46] and [11] for the basic theory of
JB∗ -triples and JB∗ -algebras.

Spectral resolutions of non-normal elements in a C∗ -algebra is a completely hope-
less goal. However, in every JB∗ -triple E , the JB∗ -subtriple Ea generated by a single
element a ∈ E is (isometrically) JB∗ -isomorphic to C0(L) for some locally compact
Hausdorff space L ⊆ (0,‖a‖] , such that L∪{0} is compact. It is also known that there
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exists a JB∗ -triple isomorphism Ψa : Ea →C0(L), satisfying Ψ(a)(t) = t (t ∈ L) (com-

pare [26, Lemma 1.14]). In particular, there exists a unique element a[ 1
3 ] ∈ Ea such that

{a[ 1
3 ],a[ 1

3 ],a[ 1
3 ]} = a. When E = A is a C∗ -algebra,

a[ 1
3 ](a[ 1

3 ])∗a[ 1
3 ] = {a[ 1

3 ],a[ 1
3 ],a[ 1

3 ]} = a.

In order to simplify notation, for each element a in a JB∗ -triple E we write a[1] = a and

a[2n+1] :=
{

a,a[2n−1],a
}

(∀n ∈ N) . It is known that JB∗ -triples are power associative,

that is,
{

a[2k−1],a[2l−1],a[2m−1]
}

= a[2(k+l+m)−3], for every k, l,m ∈N (cf. [11, Lemma

1.2.10]).

3. Local and 2-local representations of C∗ -algebras

Let A and B be C∗ -algebras. Clearly, every local ∗ -homomorphism T : A → B is
automatically continuous and contractive. Indeed, since for each a ∈ A , there exists a
∗ -homomorphism Φa : A→ B satisfying T (a) = Φa(a) , we have ‖T (a)‖= ‖Φa(a)‖�
‖a‖ . Concerning (local) homomorphisms, many basic questions still being open, like
automatic continuity of homomorphisms between C∗ -algebras ([13, Question 5.4.D]
or [47, Question 1]).

The next result summarizes some clear facts about local homomorphisms.

LEMMA 3.1. Let A,B and C denote C∗ -algebras, T : A → B a local homomor-
phism (respectively, a local ∗ -homomorphism) and Φ : B → C a homomorphism (re-
spectively, a ∗ -homomorphism), then ΦT is a local homomorphism (respectively, a
local ∗ -homomorphism). Every local ∗ -homomorphism between C∗ -algebras is posi-
tive.

By Gelfand theory the set of extreme points in the positive part of the unit ball
in the dual, B∗ , of a commutative C∗ -algebra B is precisely the set X of non-zero
multiplicative functionals on B , and thus the identification B = C0(X) was estab-
lished. Therefore, non-zero homomorphisms from C0(L) into C identify with those
functionals δs : C0(L) → C , δs( f ) = f (s), where s runs in L.

The refinement of the Gleason-Kahane-Żelazko theorem established by Żelazko
in [49] asserts that for every complex Banach algebra B (not necessarily unital nor
commutative), every linear selection from the spectrum ϕ : B → C (i.e. ϕ(a) ∈ σ(a) ,
for every a ∈ B ) is multiplicative. Another interesting result, implicitly established by
J. P. Kahane and W. Żelazko in [25, Theorem 3], will be applied in the next proposition.

PROPOSITION 3.2. Let L1 and L2 be locally compact Hausdorff spaces and let
T : C0(L1) → C0(L2) be a local homomorphism. Then, for each s ∈ L2 , the mapping
δsT : C0(L1) → C is a ∗ -homomorphism. In particular, T is a ∗ -homomorphism.

Proof. Let us assume that δsT �= 0. We shall prove that δsT = δt for a unique
t ∈ L1 . Since T is a local homomorphism, δsT is a local homomorphism. So, given
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f ∈ C0(L1) there exists a homomorphism Φ f : C0(L1) → C , and hence an element
t f ∈ L1 , satisfying δsT ( f ) = Φ f ( f ) = f (t f ). Now, Theorem 3 in [25] proves that δsT
is a multiplicative functional. �

COROLLARY 3.3. Let T : A→B be a local homomorphism between C∗ -algebras,
where B is commutative. Then T is a Jordan ∗ -homomorphism and, consequently,
continuous.

Proof. Let a be a self adjoint element in A . Considering the C∗ -subalgebra, C ,
generated by a , the mapping T |C : C → B is a local homomorphism between commu-
tative C∗ -algebras. Proposition 3.2 assures that T |C is a ∗ -homomorphism. Therefore
T (a2) = T (a)2 for every a ∈ Asa , and hence T is a Jordan ∗ -homomorphism. �

When C(K) is replaced with the real C∗ -algebra C(K,R) , of all real-valued con-
tinuous functions on K , the corresponding versions of the above results are not, in

general, true. For example, the linear operator T :C([0,1],R) → R , T (a) :=
∫ 1

0
a(t)dt

is not multiplicative. However, the mean-value theorem implies that T is a local homo-
morphism.

The existence of bounded linear operators between C∗ -algebras which are local
homomorphisms and fail to be multiplicative (cf. [41, example in §2]) led F. Pop to
focus his attention on 2-local homomorphisms (called 2-local representations by Pop).
The just-mentioned counter-example, provided by Pop, is not multiplicative but it is a
Jordan homomorphism (see Example 3.13). The latter property is actually satisfied by
every linear 2-local homomorphism between C∗ -algebras (cf. [32, Lemma 2.1]).

PROPOSITION 3.4. Every linear 2-local homomorphism between C∗ -algebras is
a Jordan homomorphism. Every linear 2-local ∗ -homomorphism between C∗ -algebras
is a Jordan ∗ -homomorphism.

Proof. When T is a linear 2-local homomorphism, for each a ∈ A , there exists
a homomorphism Φa,a2 : A → B such that T (a) = Φa,a2(a) and T (a2) = Φa,a2(a2) .
Then, T (a)2 = Φa,a2(a)2 = Φa,a2(a2) = T (a2), confirming that T is a Jordan homo-
morphism. �

In the setting of von Neumann algebras, the hypothesis in Proposition 3.4 can
be relaxed. Indeed, in [41, Proposition 1.4], F. Pop establishes that every bounded
linear local homomorphism from a commutative von Neumann algebra into B(H) is
multiplicative, and hence a representation. This result applies to get:

COROLLARY 3.5. Let T : M → B be a bounded linear local homomorphism from
a von Neumann algebra into a C∗ -algebra. Then T is a Jordan homomorphism. Con-
sequently, every linear local ∗ -homomorphism from a von Neumann algebra into a
C∗ -algebra is a Jordan ∗ -homomorphism.
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Proof. Let T : M → B be a bounded linear local homomorphism. Making use of
the representation theory and Lemma 3.1, we can assume that B = B(H) for a suitable
complex Hilbert space H . Let a be a self-adjoint element in M , and let C denote the
von Neumann subalgebra of M generated by a and 1. Clearly, T |C : C → B(H) is a
bounded linear local homomorphism. By [41, Proposition 1.4], T |C is multiplicative.
Therefore, T (a2) = T (a)2, for every a∈Msa . This implies that T (a◦b) = T (a)◦T (b)
for every a,b ∈ Msa and hence T ((a+ ib)2) = T (a2−b2 +2ia◦b) = T (a)2−T (b)2 +
2iT (a)◦T(b) = T (a+ ib)2 , for every a,b ∈ Msa , which proves the statement. �

It seems natural to ask whether the above mentioned results of Hadwin-Li and
Pop hold when the domain is a general C∗ -algebra. We shall see that the answer is
intrinsically related to zero-products preserving operators between C∗ -algebras.

Let A and B be C∗ -algebras. A mapping f : A → B is said to be orthogonality
preserving on a subset U ⊆ A when the implication

a ⊥ b ⇒ f (a) ⊥ f (b),

holds for every a,b ∈U . We recall that elements a,b in A are said to be orthogonal
(denoted by a ⊥ b ) whenever ab∗ = b∗a = 0. When the implication

ab = 0 ⇒ f (a) f (b) = 0

holds for every a,b∈U , we shall say that f preserves zero products or is zero products
preserving on U . In the case A = U , we shall simply say that f is orthogonality pre-
serving or that f preserves zero products, respectively. Every homomorphism between
C∗ -algebras preserves zero products and every ∗ -homomorphism is orthogonality pre-
serving.

LEMMA 3.6. (cf. [32, Lemma 2.1]) Let T : A→B be a map between C∗ -algebras.
Suppose T is a 2-local ∗ -homomorphism (respectively, a 2-local homomorphism), then
T is orthogonality preserving (respectively, zero products preserving).

Proof. Given a,b ∈ A with a ⊥ b , we take a ∗ -homomorphism Φa,b : A → B
satisfying T (a) = Φa,b(a) and T (b) = Φa,b(b) . Clearly, T (a) = Φa,b(a) ⊥ Φa,b(b) =
T (b) . The other statement follows similarly. �

Orthogonality preserving bounded linear maps between C∗ -algebras have been
completely described in [6, Theorem 17] (see [7] and [18] for completeness).

Let A be a C∗ -algebra. An element x in the von Neumann algebra A∗∗ is a
multiplier for A if xA ⊆ A and Ax ⊆ A . The symbol M(A) will denote the set of
all multiplier of A in A∗∗. It is known that M(A) is a unital C∗ -subalgebra of A∗∗ .
Multipliers are uninteresting if the algebra A possesses a unit, because in such a case
M(A) = A (see [40, §3.12] for more details).

Let W be a von Neumann algebra. For each normal positive functional ϕ ∈W∗ the
mapping W ×W → C , (x,y)ϕ := 1

2 ϕ(xy∗ + y∗x) defines a semi-positive sesquilinear
form on W . The corresponding prehilbertian seminorm on W is defined by

‖x‖ϕ := (x,x)
1
2
ϕ =

(
1
2

ϕ(xx∗ + x∗x)
) 1

2

.
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The strong∗ topology of W (denoted by s∗(W,W∗)) is the locally convex topology on
W defined by all the seminorms ‖.‖ϕ , where ϕ runs in the set of all positive functionals
in W∗ (cf. [42, Definition 1.8.7]). It is known that the strong* topology of W is
compatible with the duality (W,W∗) , that is, a functional ψ : W → C is s∗(W,W∗)
if and only if it is weak∗ continuous (see [42, Corollary 1.8.10]). It is also known, from
the above fact together with the Grothedieck-Pisier-Haagerup inequality (cf. [20]), that
a linear map between von Neumann algebras is strong∗ continuous if and only if it is
weak∗ continuous. We also recall that the product of every von Neumann algebra is
jointly strong∗ continuous on bounded sets (see [42, Proposition 1.8.12]).

The next result is a subtle variant of [48, Lemma 2.2]. The proof applies techniques
of JB∗ -triples in a similar fashion to the arguments given in the proofs of [7, Proposition
3.1], [16, Proposition 1.3], and [48, Lemma 2.2].

PROPOSITION 3.7. Let T : A→B be a bounded linear map between C∗ -algebras
sending zero products in A to zero products in B. Then the restricted map T ∗∗|M(A) :
M(A) → B∗∗ sends zero products in M(A) to zero products in B∗∗ .

Proof. We fix a,b ∈ M(A) with ab = 0. For each natural, n , the odd triple power
a[3] = aa∗a , a[2n+1] = a(a[2n−1])∗a , satisfies that a[2n−1]b = 0. Thus, we deduce that,
αb = 0, for every α in the JB∗ -subtriple, M(A)a, of M(A) generated by a . The same
argument shows that

αβ = 0 (3.1)

for every α ∈ M(A)a and β ∈ M(A)b . Consequently, we have a[ 1
3 ]b[ 1

3 ] = 0.
Since M(A) is a C∗ -subalgebra of A∗∗ , by Goldstine’s Theorem, we can find

bounded nets (xλ ) and (yμ) in A , converging in the weak∗ topology of A∗∗ to a[ 1
3 ]

and b[ 1
3 ] , respectively. The nets

(
a[ 1

3 ]x∗λ a[ 1
3 ]

)
and

(
b[ 1

3 ]y∗μb[ 1
3 ]

)
lie in A , and

(
a[ 1

3 ]x∗λ a[ 1
3 ]

)(
b[ 1

3 ]y∗μb[ 1
3 ]

)
= 0,

for every λ and μ .
By hypothesis, T is zero products preserving, and hence,

T
(
a[ 1

3 ]x∗λ a[ 1
3 ]

)
T

(
b[ 1

3 ]y∗μb[ 1
3 ]

)
= 0, (3.2)

for every λ and μ . Finally, taking weak∗ -limits in λ and μ , the weak∗ continuity of
T ∗∗ and the separate weak∗ -continuity of the product of A∗∗ , together with (3.2), give

0 = T ∗∗
(
a[ 1

3 ](a[ 1
3 ])∗a[ 1

3 ]
)

T ∗∗
(
b[ 1

3 ](b[ 1
3 ])∗b[ 1

3 ]
)

= T ∗∗(a)T ∗∗(b),

which completes the proof. �
Let A be a C∗ -algebra, a projection p in A∗∗ is called compact-Gδ (relative to

A) whenever there exists a positive, norm-one element a in A such that p coincides
with the weak∗ -limit (in A∗∗ ) of the sequence (an)n . Following standard notation, we
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shall say that p is a range projection when there exists a positive, norm-one element
a ∈ A for which p is the weak∗ -limit of the sequence (a

1
n )n .

Our next result can be derived from [1, Theorem 4.1] (compare Remark 3.11). To
our knowledge, it has never been stated in the form presented here. We also include a
new proof which is independent from the arguments in [1].

THEOREM 3.8. Let A and B be C∗ -algebras with A unital. Let J : A → B be a
bounded Jordan homomorphism preserving zero products. Then J is a homomorphism.

Proof. Since J is a Jordan homomorphism, we deduce that J(1) = e is an idem-
potent in B and

J(a) = J(U1(a)) = UJ(1)(J(a)) = Ue(J(a)) = eJ(a)e,

for every a∈ A . Since J∗∗ : A∗∗ → B∗∗ is a Jordan homomorphism too, we can actually
assure that

J∗∗(a) = eJ∗∗(a)e = eJ∗∗(a) = J∗∗(a)e, (3.3)

for every a ∈ A .
Since J preserves zero products, given a,b ∈ A with ab = 0, we have

J(ba) = J(ab+ba) = J(a)J(b)+ J(b)J(a) = J(b)J(a),

and consequently
J(bza) = J(bz)J(a) = J(b)J(za), (3.4)

for every a,b,z ∈ A with ab = 0.
Let us consider a compact-Gδ projection p ∈ A∗∗ , that is, there exists a positive,

norm-one element a in A such that p = w∗− lim
n

an . We can identify the C∗ -subalgebra

of A generated by 1 and a with C(K), where K ⊆ [0,1] , 1 ∈ K , and a(t) = t in the
corresponding identification. Let us define two sequences (yn) and (zn) in C(K) given
by

yn(t) :=

⎧⎪⎪⎨
⎪⎪⎩

1, if t ∈ K∩ [0,1− 1
n ];

−2nt +2n−1, if t ∈ K∩ [1− 1
n ,1− 1

2n ];

0, if t ∈ K∩ [1− 1
2n ,1],

and

zn(t) :=

{
0, if t ∈ K∩ [0,1− 1

3n ];

3nt−3n+1, if t ∈ K∩ [1− 1
3n ,1]

.

It is easy to check that 0 � yn,zn , (yn) is increasing, (zn) is decreasing, ynzm = zmyn = 0
for every n,m ∈ N , m � n , w∗ − limn yn = 1− p , and w∗ − limn zn = p in A∗∗ .

By hypothesis, for every z in A , and every n,m in N with m � n , we have
J(zzm)J(yn) = 0, and thus

0 = w∗ − lim
m�n

J(zzm)J(yn) = J∗∗(zp)J(yn), for every n ∈ N,
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which implies that

0 = w∗ − lim
n

J∗∗(zp)J(yn) = J∗∗(zp)J(1− p),

and hence
J∗∗(zp)e = J∗∗(zp)J(1) = J∗∗(zp)J(p).

It follows from (3.3) that

J∗∗(zp) = J∗∗(zp)e = J∗∗(zp)J∗∗(p), (3.5)

for every z ∈ A∗∗ .
Applying (3.4) we deduce that

J(yn)J(zzm) = J(ynzzm),

and
J(zm)J(zyn) = J(zmzyn),

for every z ∈ A , n,m ∈ N with m � n . Taking weak∗ -limits in m,n → ∞ , we get

J∗∗(1− p)J∗∗(zp) = J∗∗((1− p)zp), (3.6)

and
J∗∗(p)J∗∗(z(1− p)) = J∗∗(pz(1− p)), (3.7)

for every z in A or in A∗∗. Combining (3.6) with (3.3) we get

J∗∗(zp)− J∗∗(p)J∗∗(zp) = J∗∗(1)J∗∗(zp)− J∗∗(p)J∗∗(zp) = J∗∗(zp)− J∗∗(pzp),

and thus
J∗∗(p)J∗∗(zp) = J∗∗(pzp), (3.8)

for every z in A or in A∗∗.
Now, combining (3.7) and (3.8), we deduce that

J∗∗(p)J∗∗(z) = J∗∗(pz),

for every z ∈ A∗∗. We have therefore proved that

J∗∗(pz) = J∗∗(p)J∗∗(z), (3.9)

for every z ∈ A∗∗ and every compact-Gδ projection p ∈ A∗∗ .
Finally, take an arbitrary self adjoint element b∈A and identify the C∗ -subalgebra

of A generated by 1 and b with a C(K)-space for a suitable K ⊂ [−‖b‖,‖b‖] . The
property proved in (3.9) shows that

J∗∗(pz) = J∗∗(p)J∗∗(z)

for every projection p of the form p = χ[α,β ]∩K
with [α,β ] ⊆ [−‖b‖,‖b‖] . Having in

mind that projections q ∈C(K)∗∗ ⊆ A∗∗ of the form q = χ(α,β)∩K
, with (α,β ) ⊆ K can
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be approximated in the strong∗ topology of A∗∗ by sequences of projections (pn) =(
χ

[α− 1
n ,β+ 1

n ]∩K

)
, we deduce that J∗∗(qz) = J∗∗(q)J∗∗(z) for every such projection q and

every z ∈ A∗∗ . It is well known that b (regarded as an element in C(K) ⊆ A) can be
approximated in norm by a finite linear combinations of mutually orthogonal projec-
tions of the form χ[α,β ]∩K

and χ(α,β)∩K
with [α,β ] ⊆ [−‖b‖,‖b‖] (i.e. steps functions).

Therefore, J(b)J(z) = J(bz) , for every z,b ∈ A with b = b∗ and, by linearity, J is a
homomorphism. �

We can now prove the main result concerning 2-local homomorphisms.

THEOREM 3.9. Every bounded linear 2-local homomorphism between C∗ -alge-
bras is a homomorphism. Every linear 2-local ∗ -homomorphism between C∗ -algebras
is a ∗ -homomorphism.

Proof. Let T : A→ B be a bounded 2-local homomorphismbetween C∗ -algebras.
Proposition 3.4 implies that T is a Jordan homomorphism.

By the 2-local property, we deduce, via Lemma 3.6, that T preserves zero prod-
ucts. Proposition 3.7 implies that T ∗∗|M(A) : M(A) → B∗∗ preserves zero products.

Finally, since T ∗∗|M(A) : M(A) → B∗∗ is a Jordan homomorphism which preserves
zero products and M(A) is unital, the above Theorem 3.8 gives the desired state-
ment. �

Clearly, Theorems 3.6 and 3.7 in [21] are direct consequences of the above Theo-
rem 3.9.

Accordingly to the notation in [41], given a C∗ -algebra A and a complex Hilbert
space H , a bounded linear map T : A → B(H) is called a 2-local representation of A
whenever it is a 2-local homomorphism. The next result generalizes [41, Corollary 3.6]
to the general setting of C∗ -algebras.

COROLLARY 3.10. Let A be a C∗ -algebra. Every 2-local representation of A is
a representation.

REMARK 3.11. It should be noted here that Theorem 3.8 can be derived from [1,
Theorem 4.1]. Indeed, in the just commented result the authors prove that for every
unital C∗ -algebra A , every Banach algebra B , and every bounded linear operator T :
A → B preserving zero products, then

T (1)T (xy) = T (x)T (y),

for all x,y in A . Therefore, if J : A→B is a bounded Jordan homomorphismpreserving
zero products, by the first part of the argument in the proof of Theorem 3.8, J(1) = e
is an idempotent in B and J(a) = eJ(a)e = eJ(a) = J(a)e, for every a ∈ A , and hence
J(xy) = J(1)J(xy) = J(x)J(y), for all x,y in A . That is, Theorem 3.8 holds when B is
a Banach algebra. Proposition 3.7 is needed for the non-unital version of Theorem 3.9
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PROBLEM 3.12. Is every (not necessarily linear) 2-local (∗ -)homomorphism be-
tween C∗ -algebras a (∗ -)homomorphism? Equivalently, determine whether the hypoth-
esis concerning linearity in Theorem 3.9 is superfluous.

As we have commented before, we cannot expect that a local homomorphism
between C∗ -algebras is a homomorphism (see [41, §2]). We shall take a closer look at
the counter-example provided by F. Pop.

EXAMPLE 3.13. We know, from [41, §2], that the mapping T : M2(C)→M4(C) ,

T

((
a b
c d

))
=

⎛
⎜⎜⎝

a 0 b 0
0 a 0 c
c 0 d 0
0 b 0 d

⎞
⎟⎟⎠ ,

is a local homomorphism which is not multiplicative. Is easy to check that the above T
is a unital Jordan ∗ -homomorphism. We claim that T is not a local ∗ -homomorphism.
Otherwise, there exits a ∗ -homomorphism

π = π(
1 1
2 0

) : M2(C) → M4(C)

satisfying

π
(

1 1
2 0

)
= T

(
1 1
2 0

)
=

⎛
⎜⎜⎝

1 0 1 0
0 1 0 2
2 0 0 0
0 1 0 0

⎞
⎟⎟⎠ .

Therefore

π
(

2 2
2 4

)
= π

((
1 1
2 0

)(
1 1
2 0

)∗)

= π
(

1 1
2 0

)
π

(
1 1
2 0

)∗
=

⎛
⎜⎜⎝

2 0 2 0
0 5 0 1
2 0 4 0
0 1 0 1

⎞
⎟⎟⎠ ,

π
(

5 1
1 1

)
= π

((
1 1
2 0

)∗(
1 1
2 0

))
=

⎛
⎜⎜⎝

5 0 1 0
0 2 0 2
1 0 1 0
0 2 0 4

⎞
⎟⎟⎠ ,

π
(

0 0
−2 4

)
=

⎛
⎜⎜⎝

0 0 0 0
0 3 0 −3
−2 0 4 0
0 −1 0 1

⎞
⎟⎟⎠ ,

π
(−8 0

0 2

)
= π

((
2 2
2 4

)
−2

(
5 1
1 1

))
=

⎛
⎜⎜⎝

−8 0 0 0
0 1 0 −3
0 0 2 0
0 −3 0 −7

⎞
⎟⎟⎠ ,
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π
(

0 0
0 20

)
= π

((
0 0
−2 4

)(
0 0
−2 4

)∗)
= 20

⎛
⎜⎜⎝

0 0 0 0
0 9/10 0 −3/10
0 0 1 0
0 −3/10 0 1/10

⎞
⎟⎟⎠ ,

π
(

1 0
0 0

)
=

⎛
⎜⎜⎝

1 0 0 0
0 1/10 0 3/10
0 0 0 0
0 3/10 0 9/10

⎞
⎟⎟⎠ ,

π
(

0 0
1 0

)
=

⎛
⎜⎜⎝

0 0 0 0
0 3/10 0 9/10
1 0 0 0
0 −1/10 0 −3/10

⎞
⎟⎟⎠ ,

and

π
(

0 1
0 0

)
=

⎛
⎜⎜⎝

0 0 1 0
0 3/10 0 −1/10
0 0 0 0
0 9/10 0 −3/10

⎞
⎟⎟⎠ ,

which gives π
((

1 1
0 1

)(
1 1
0 0

))
�= π

((
1 1
0 1

))
π

((
1 1
0 0

))
, contradicting that π

is a homomorphism.

Furthermore, the elements a =
(

1 −1
1 −1

)
and b =

(
1 2
1 2

)
satisfy ab = 0 and

T (a)T (b) �= 0, which shows that T does not preserves zero products.

It seems natural to ask whether every local ∗ -homomorphismbetween C∗ -algebras
is multiplicative. We shall see that the answer to this question is, in general, negative.
The next example illustrates this fact and provides an easier argument to Pop’s coun-
terexample.

EXAMPLE 3.14. A problem posed by P. R. Halmos in [22, Proposition 159] asks
whether every square complex matrix is unitarily equivalent to its transpose. In other
words, given a ∈ Mn(C) , when does there exist a unitary matrix u ∈ Mn(C) satisfying
u∗au = at ?

More generally, the problem of deciding whether two given square matrices a
and b over the field of complex numbers are unitarily equivalent was positively solved
by W. Specht [45] who found a (more or less satisfactory) necessary and sufficient
condition for two complex square matrices to be unitarily equivalent. In the setting of
2× 2 matrices the conditions are much more simple; F. D. Murnaghan [38] showed
that, the traces of a , a2 , and a∗a form a complete set of invariants to determine when
two matrices in M2(C) are unitarily equivalent (i.e. two matrices a,b ∈ M2(C) are
unitarily equivalent if and only if tr(a) = tr(b) , tr(a2) = tr(b2) , and tr(a∗a) = tr(b∗b)).
Some years later, C. Pearcy [39] obtained a list of nine conditions to determine when
a,b∈ M3(C) are unitarily equivalent (see [17] for a recent publication on these topics).
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Murnaghan’s characterization implies that every matrix in M2(C) is unitarily equiv-
alent to its transpose, that is for each a∈M2(C) there exists a unitary matrix u∈M2(C)
(depending on a ) satisfying u∗au = at . Consequently, the mapping

T : M2(C) → M2(C), T (a) = at ,

is a linear local ∗ -homomorphism and a ∗ -anti-homomorphismwhich is not multiplica-
tive.
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