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COMPLEX SYMMETRIC TRIANGULAR OPERATORS

SEN ZHU

(Communicated by V. V. Peller)

Abstract. In this paper we explore complex symmetric operators with eigenvalues. We develop
new techniques to give a geometric description of certain complex symmetric triangular oper-
ators. This extends a recent result of L. Balayan and S. Garcia concerning finite-dimensional
complex symmetric operators. On the other hand, using Apostol’s triangular representation for
Hilbert space operators, we give a description of the internal structure of complex symmetric
operators.

1. Introduction

Throughout this paper, we let C , Z and N denote the set of complex numbers,
the set of integers and the set of positive integers respectively. H will always denote a
complex separable Hilbert space endowed with the inner product 〈·, ·〉 . We let B(H )
denote the algebra of all bounded linear operators on H .

DEFINITION 1.1. A map C on H is called an antiunitary operator if C is conju-
gate-linear, invertible and 〈Cx,Cy〉 = 〈y,x〉 for all x,y ∈ H ; if, in addition, C−1 = C ,
then C is called a conjugation on H .

DEFINITION 1.2. An operator T ∈ B(H ) is called a complex symmetric opera-
tor (CSO, for short) if there exists a conjugation C on H so that CTC = T ∗ .

Note that T ∈B(H ) is complex symmetric if and only if T can be represented as
a symmetric matrix relative to some orthonormal basis for H (see [10, Lem. 1]). CSOs
have been studied for many years in the finite-dimensional setting. Garcia and Putinar
[10, 11] initiated the general study of complex symmetric operators, which has many
motivations in function theory, matrix analysis and other areas. In particular, CSOs
are closely related to the study of truncated Toeplitz operators [12, 13], which was
initiated in Sarason’s seminal paper [23]. Some interesting results concerning complex
symmetric operators have been obtained (see [3, 7, 15, 17, 25, 26] for references).

In general, it is difficult to determine whether a given operator is complex sym-
metric even in finite-dimensional case (see [2, 8, 9, 14]). So people pay more attention
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to special classes of operators such as partial isometries [15, 25], weighted shifts [26]
and Foguel operators [6]. In this paper we shall explore complex symmetric operators
with eigenvalues.

The first aim of this paper is to give a geometric description of certain complex
symmetric triangular operators. This is partially inspired by a recent paper of Balayan
and Garcia [2], which provides a geometric characterization for a finite-dimensional
operator with distinct eigenvalues to be complex symmetric. The present aim of this
paper is to extend the preceding result to infinite-dimensionalHilbert space. To proceed,
we first introduce some notation and terminology.

Recall that an operator T ∈ B(H ) is said to be triangular if

∨
λ∈C,n�1

ker(T −λ )n = H ,

where ∨ denotes closed linear span. We remark that T is triangular if and only if T
admits an upper triangular matrix representation

T =

⎡
⎢⎢⎢⎣

λ1 ∗ ∗ · · ·
λ2 ∗ · · ·

λ3 · · ·
. . .

⎤
⎥⎥⎥⎦

with respect to some orthonormal basis of H , where each omitted entry is zero. The
class of triangular operators contain many important operators such as the well-known
Cowen-Douglas operators which are closely related to complex geometry [4].

It is obvious that each operator on finite-dimensional Hilbert space is triangular.
However, this is not the case in infinite-dimensional space since there exists T acting
on infinite-dimensional Hilbert space with σp(T ) = /0 . Here and in what follows σp(T )
denotes the point spectrum of T . For example, the forward unilateral shift has no any
eigenvalue and hence is not triangular. However triangular operators are universal in
the sense of approximation; more precisely, given T ∈ B(H ) and ε > 0, there exist
K ∈ B(H ) with ‖K‖ < ε and triangular operators A,B such that T +K is similar to
A⊕B∗ . The reader is referred to [1] or [21, Thm. 6.1] for more details.

When an operator T and its adjoint are both triangular (in general, with respect to
different orthonormal bases), T is called bitriangular. This class contains all algebraic
operators, diagonal normal operators and block diagonal operators. Obviously, every
operator on finite-dimensional Hilbert space is bitriangular. As indicated in [5, 20, 22],
the class of bitriangular operators provide the best infinite-dimensional analogues of
finite-dimensional operators. There exist triangular operators which are not bitrian-
gular. The adjoint of the forward unilateral shift is such an example. However, each
complex symmetric triangular operator must be bitriangular.

LEMMA 1.3. If T ∈ B(H ) is complex symmetric and triangular, then T is bi-
triangular.
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Proof. Since T is complex symmetric, there is a conjugation C on H such that
T ∗C = CT . Hence (T ∗ −λ)nC = C(T −λ )n and C(ker(T −λ )n) = ker(T ∗ −λ )n for
all λ ∈ C and n � 1.

Note that ∨
λ∈C,n�1

ker(T −λ )n = H .

Since C is a conjugation, it follows that

H = C(H ) =
∨

λ∈C,n�1

C(ker(T −λ )n) =
∨

λ∈C,n�1

ker(T ∗ −λ)n.

Hence T ∗ is triangular. �

REMARK 1.4. Let T ∈B(H ) be complex symmetric. From the proof of Lemma
1.3, one can see that dimker(T −λ ) = dimker(T −λ )∗ for λ ∈ C ; in particular, λ ∈
σp(T ) if and only if λ ∈ σp(T ∗) .

In [5], it is proved that every bitriangular operator is quasisimilar to a direct sum
of Jordan blocks and hence quasisimilar to a CSO [10, Ex. 4]. In this paper, we concen-
trates on those triangular operators T ∈ B(H ) with distinct eigenvalues {λi : i � 1}
satisfying

∨
i�1

ker(T −λi) = H and dimker(T −λi) = 1, ∀i � 1.

By the preceding lemma, if T is complex symmetric, then

∨
i�1

ker(T −λi)∗ = H and dimker(T −λi)∗ = 1, ∀i � 1.

The main result of this paper is the following result.

THEOREM 1.5. Let T ∈B(H ) . Suppose that {λi : 1 � i < ∞} are distinct eigen-
values of T , ui is a normalized eigenvector of T corresponding to λi and vi is a
normalized eigenvector of T ∗ corresponding to λi for i � 1 . If

dimker(T −λi) = 1 = dimker(T −λi)∗, ∀i � 1,

and ∨{ui : i � 1} = H = ∨{vi : i � 1} , then the following are equivalent:

(i) T is complex symmetric;

(ii) there exist unimodular constants {αi : i � 1} such that

αi〈ui,u j〉 = α j〈v j,vi〉, ∀i, j � 1;
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(iii) the condition

〈ui1 ,ui2〉〈ui2 ,ui3〉 · · · 〈uin−1 ,uin〉〈uin ,ui1〉
= 〈vi2 ,vi1〉〈vi3 ,vi2〉 · · · 〈vin ,vin−1〉〈vi1 ,vin〉

holds for any n ∈ N and any n-tuple (i1, i2, · · · , in) in N .

As an application of Theorem 1.5, we obtain the following result.

THEOREM 1.6. Let T ∈B(H ) . Suppose that {λi : 1 � i < ∞} are distinct eigen-
values of T , ui is a normalized eigenvector of T corresponding to λi and vi is a
normalized eigenvector of T ∗ corresponding to λi for i � 1 . If

dimker(T −λi) = 1 = dimker(T −λi)∗, ∀i � 1,

∨{ui : i � 1} = H = ∨{vi : i � 1} and 〈ui,u j〉 
= 0 for all i, j � 1 , then T is complex
symmetric if and only if the condition

〈ui,u j〉〈u j,uk〉〈uk,ui〉 = 〈vi,v j〉〈v j,vk〉〈vk,vi〉 (1.1)

holds for any triad (i, j,k) with i � j � k .

The other aim of this paper is to give Apostol’s triangular representation for CSOs.
First let us give a brief introduction to Apostol’s triangular representation for Hilbert
space operators.

An operator A ∈ B(H ) is called a semi-Fredholm operator, if ran A is closed
and either nul A or nul A∗ is finite, where nul A := dimkerA and nul A∗ := dimkerA∗ ;
in this case, ind A := nul A− nul A∗ is called the index of A . In particular, if −∞ <
ind A < ∞ , then A is called a Fredholm operator. The Wolf spectrum σlre(A) is defined
as

σlre(A) := {λ ∈ C : A−λ is not semi-Fredholm}.
The set ρs−F(A) := C \σlre(A) is called the semi-Fredholm domain of A . For λ ∈
ρs−F(A) , the minimal index of A−λ is defined by

min ·ind (A−λ ) = min{nul (A−λ ),nul (A−λ )∗}.

The function λ �→min ·ind (A−λ ) is constant on every component of ρs−F(A) except
for an at most denumerable subset ρ s

s−F(A) without limits in ρs−F(A) . Each λ ∈
ρ s

s−F(A) is called a singular point of the semi-Fredholm domain of A , and the set
ρ r

s−F(A) = ρs−F(A)\ρ s
s−F(A) is the set of regular points. The reader is referred to [21,

Chap. 1] for more details.
Given T ∈ B(H ) , let

Hr(T ) =
∨
{ker(λ −T ) : λ ∈ ρ r

s−F(T )},

Hl(T ) =
∨
{ker(λ −T )∗ : λ ∈ ρ r

s−F(T )}
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and H0(T ) be the orthogonal complement of Hr(T )+Hl(T ) . Denote the compres-
sions of T to Hr(T ),Hl(T ) and H0(T ) by Tr,Tl and T0 , respectively. As seen in
[21, Thm. 3.38], Hr(T ) is orthogonal to Hl(T ) . Noting that Hr(T ) is hyperinvariant
for T and Hl(T ) is hyperinvariant for T ∗ , T can be written as

T =

⎡
⎣Tr E G

0 T0 F
0 0 Tl

⎤
⎦Hr(T )

H0(T )
Hl(T )

, (1.2)

where Tr and T ∗
l are triangular operators with perfect spectrum. The upper triangular

operator matrix (1.2) is called Apostol’s triangular representation for T , and its basic
properties are established in [21, Thm. 3.38]. This triangular representation, which
describes the internal structure of a general operator, is a very useful tool in operator
theory.

In general, for given T ∈ B(H ) , Tr,T0 and Tl are independent, and each of
them can be absent. For example, if S is the classical forward unilateral shift on l2

and T = (S + 2)∗ ⊕ (S− 2) , then (i) Sr,S0 are absent, Sl = S , and (ii) T0 is absent,
Tr = (S+2)∗ and Tl = (S−2) .

Employing the idea of Apostol’s triangular representation, we shall describe the
upper triangular matrix representation for general CSOs (see Theorem 3.3). As we
shall see later, if T is complex symmetric and admits the representation (1.2), then Tr

is unitarily equivalent to a transpose of Tl (see Definition 3.1); in particular, σ(Tr) =
σ(Tl) .

The rest of this paper is organized as follows. In Section 2, we shall give the
proofs of Theorems 1.5 and 1.6. The proof of Theorem 3.3 shall be provided in Section
3. Also we shall give several concrete examples.

2. Proofs of Theorems 1.5 and 1.6

We first give several auxiliary results.

LEMMA 2.1. Let T ∈ B(H ) . Assume that λ1,λ2 ∈ C with λ1 
= λ2 and u ∈
ker(T −λ1),v ∈ ker(T −λ2)∗ . Then 〈u,v〉 = 0 .

Proof. Compute to see

λ1〈u,v〉 = 〈Tu,v〉 = 〈u,T ∗v〉 = λ2〈u,v〉.

Since λ1 
= λ2 , it follows that 〈u,v〉 = 0. �

THEOREM 2.2. Let T ∈ B(H ) . Suppose that {λi : i � 1} are distinct eigen-
values of T and ui ∈ ker(T −λi) is a unit vector for i � 1 . If ∨{ui : i � 1} = H ,
then T is complex symmetric if and only if there exist unit vectors {vi : i � 1} with
vi ∈ ker(T −λi)∗ for i � 1 such that ∨{vi : i � 1} = H and 〈ui,u j〉 = 〈v j,vi〉 for any
i, j � 1 .
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Proof. “=⇒”. Assume that C is a conjugation on H satisfying CTC = T ∗ . For
each i � 1, set vi = Cui . Note that

T ∗vi = T ∗Cui = CTui = λiCui = λivi.

It follows that each vi is a normalized eigenvector of T ∗ corresponding to λi . More-
over, we have

∨{vi : i � 1} = ∨{Cui : i � 1} = C(∨{ui : i � 1}) = C(H ) = H .

For i, j � 1, since C is a conjugation, it follows that

〈v j,vi〉 = 〈Cuj,Cui〉 = 〈ui,u j〉.
This proves the necessity.

“⇐=”. Assume that vi is a normalized eigenvector of T ∗ corresponding to λi for
i � 1 , ∨{vi : i � 1} = H and

〈ui,u j〉 = 〈v j,vi〉, ∀i, j � 1.

We shall construct a conjugation C on H such that CTC = T ∗ .
Denote by H0 the set of all finite linear combinations of ui ’s, and by H1 the

set of all finite linear combinations of vi ’s. By the hypothesis, Hi is a dense linear
manifold of H , i = 1,2.

For each x ∈ H0 with x = ∑n
i=1 αiui , define Cx = ∑n

i=1 αivi . If y ∈ H0 and y =
∑n

j=1 β ju j , one can check that

〈Cx,Cy〉 =
〈 n

∑
i=1

αivi,
n

∑
j=1

β jv j

〉

=
n

∑
i, j=1

αiβ j〈vi,v j〉

=
n

∑
i, j=1

αiβ j〈u j,ui〉

=
〈 n

∑
j=1

β ju j,
n

∑
i=1

αiui

〉
= 〈y,x〉.

It follows that the map C : H0 → H1 is conjugate-linear, isometric and hence well
defined. Moreover, C admits a continuous extension to H , denoted by C again. It is
obvious that C is surjective and hence invertible. In particular, we have

〈Cx,Cy〉 = 〈y,x〉, ∀x,y ∈ H . (2.1)

We claim that C is a conjugation. Now it suffices to prove that C is involutive,
that is, C2 = I . Since ∨{ui : i � 1} = H , we need only check that C2ui = ui for each
i � 1.
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Now fix an i � 1. Since ∨{v j : j � 1}= H , it follows that dim{v j : j 
= i}⊥ � 1.
By Lemma 1.3, 〈ui,v j〉 = 0 for all j 
= i , we deduce that {v j : j 
= i}⊥ = ∨{ui} . On
the other hand, since 〈vi,u j〉 = 0 for all j 
= i , in view of (2.1), we obtain

〈Cvi,v j〉 = 〈Cvi,Cuj〉 = 〈u j,vi〉 = 0, ∀ j 
= i.

Hence Cvi ∈ ∨{ui} , that is, Cvi = αui for some unimodular constant α . So

〈ui,vi〉 = 〈Cvi,Cui〉 = 〈αui,vi〉.

Noting that ∨{v j : j � 1} = H and 〈ui,v j〉 = 0 for all j 
= i , it follows that 〈ui,vi〉 
=
0. Hence we have α = 1 and C2ui = Cvi = ui . Thus we have proved that C is a
conjugation.

For each i � 1, compute to see that

CTui =C(λiui) = λiCui = λivi = T ∗vi = T ∗Cui,

which implies that CT = T ∗C . Hence T is complex symmetric. �

PROPOSITION 2.3. Let {ui,vi : i � 1} be unit vectors in H . Then there exist
unimodular constants {αi : i � 1} such that αi〈ui,u j〉 = α j〈v j,vi〉 for all i, j � 1 if
and only if the condition

〈ui1 ,ui2〉〈ui2 ,ui3〉 · · · 〈uin−1 ,uin〉〈uin ,ui1〉
= 〈vi2 ,vi1〉〈vi3 ,vi2〉 · · · 〈vin ,vin−1〉〈vi1 ,vin〉

holds for any n ∈ N and any n-tuple (i1, i2, · · · , in) of positive integers.

Proof. The necessity is obvious. We need only prove the sufficiency.
“⇐=”. For i, j ∈ N , we define i ∼ j if there exist i1, i2, · · · , in ∈ N such that

〈ui,ui1〉〈ui1 ,ui2〉 · · · 〈uin−1 ,uin〉〈uin ,u j〉 
= 0.

One can verify that ∼ is an equivalence relation on N . Denote N/ ∼= {Λm : m ∈ Γ} .
Thus Λm1 ∩Λm2 = /0 for all m1,m2 ∈ Γ with m1 
= m2 .

By the hypothesis, we have

|〈ui,u j〉| = |〈vi,v j〉|, ∀i, j � 1. (2.2)

For convenience, we denote

ϒ(i1, i2, · · · , ik) =
〈ui1 ,ui2〉〈ui2 ,ui3〉 · · · 〈uik−1 ,uik〉
〈vi2 ,vi1〉〈vi3 ,vi2〉 · · · 〈vik ,vik−1〉

for k � 2 and k -tuple (i1, i2, · · · , ik) in N . By (2.2), if 〈uil ,uil+1〉 
= 0 for all 1 � l �
k−1, then |ϒ(i1, i2, · · · , ik)| = 1 = ϒ(i1, i2, · · · , ik, i1) .
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Let m ∈ Γ be fixed. Arbitrarily choose an lm ∈ Λm and set αlm = 1. For each
j ∈ Λm , by the hypothesis, there exist i1, i2, · · · , in ∈ Λm such that

〈ulm ,ui1〉〈ui1 ,ui2〉 · · · 〈uin−1 ,uin〉〈uin ,u j〉 
= 0.

By the preceding discussion, ϒ(lm, i1, i2, · · · , in, j) ∈ C with modulus 1. Set

α j = ϒ(lm, i1, i2, · · · , in, j).

We need to prove the definition of α j is unique. Assume that there also exist j1, j2, · · · , jp
∈ Λm such that

〈ulm ,u j1〉〈u j1 ,u j2〉 · · · 〈u jp−1 ,u jp〉〈u jp ,u j〉 
= 0.

Then we have to check that

ϒ(lm, i1, i2, · · · , in, j) = ϒ(lm, j1, j2, · · · , jp, j).

By the hypothesis, we have

ϒ(lm, i1, i2, · · · , in, j)ϒ( j, jp , jp−1, · · · , j1, lm)
= ϒ(lm, i1, i2, · · · , in, j, jp, jp−1, · · · , j1, lm) = 1,

and hence

ϒ(lm, i1, i2, · · · , in, j) = ϒ( j, jp, jp−1, · · · , j1, lm)
= ϒ(lm, j1, j2, · · · , jp, j).

This shows that α j is well defined. Now we have defined αi for all i ∈ N . Also we
note that |αi| = 1 for all i ∈ N .

Arbitrarily choose i, j ∈N . It remains to prove that αi〈ui,u j〉= α j〈v j,vi〉 . In view
of (2.2), we may directly assume that 〈ui,u j〉 
= 0. Thus i ∼ j . We further assume that
i, j ∈ Λm , i 
= j and

αi = ϒ(lm, i1, i2, · · · , in, i),
where

〈ulm ,ui1〉〈ui1 ,ui2〉 · · · 〈uin−1 ,uin〉〈uin ,ui〉 
= 0.

Then
〈ulm ,ui1〉〈ui1 ,ui2〉 · · · 〈uin−1 ,uin〉〈uin ,ui〉〈ui,u j〉 
= 0

and
α j = ϒ(lm, i1, i2, · · · , in, i, j).

A direct calculation shows that

αi〈ui,u j〉 = ϒ(lm, i1, i2, · · · , in, i)〈ui,u j〉

= ϒ(lm, i1, i2, · · · , in, i) 〈ui,u j〉
〈v j,vi〉 〈v j,vi〉

= ϒ(lm, i1, i2, · · · , in, i, j)〈v j ,vi〉
= α j〈v j,vi〉.
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This completes the proof. �
Now we are ready to give the proof of Theorem 1.5.

Proof of Theorem 1.5. The equivalence “(ii)⇐⇒(iii)” follows from Proposition
2.3.

“(i)=⇒(ii)”. Assume that C is a conjugation on H such that CTC = T ∗ . It
follows that C(T −λi)C = T ∗ −λi for i � 1. Since ui ∈ ker(T −λi) and ‖ui‖ = 1, we
have Cui ∈ ker(T −λi)∗ and ‖Cui‖ = 1. For each i � 1, noting that nul (T −λi)∗ =
1, vi ∈ ker(T − λi)∗ and ‖vi‖ = 1, we deduce that Cui = αivi for some unimodular
constant αi . Since C is a conjugation, it is easy to see that

〈ui,u j〉 = 〈Cuj,Cui〉 = 〈α jv j,αivi〉 = αiα j〈v j,vi〉.
This proves “(i)=⇒(ii)”.

“(ii)=⇒(i)”. For each i � 1, set wi = αivi . By the hypothesis, we have

〈wj,wi〉 = 〈α jv j,αivi〉 = αiα j〈v j,vi〉 = 〈ui,u j〉.
By the proof for the sufficiency of Theorem 2.2, one can see that T is complex sym-
metric. �

EXAMPLE 2.4. Choose a bounded sequence {an}∞
n=1 of complex numbers. For

each n � 1, let Tn ∈ B(C2) be the operator induced by the following matrix

Tn =
[1

n an

0 1
n + 1

2n

]

with respect to the canonical orthonormal basis for C
2 . Set T = ⊕∞

n=1Tn . Then one
can check that { 1

n : n � 1}∪{ 1
n + 1

2n : n � 1} are distinct eigenvalues of T . Denote by
λ1,λ2,λ3, · · · these eigenvalues. It is easy to see that nul (T −λi) = 1 = nul (T −λi)∗
for all i � 1 and ∨i�1 ker(T −λi) = ∨i�1 ker(T −λi)∗ equals the underlying space of
T .

By [16, Cor. 1], each Ti is complex symmetric and hence T is also complex sym-
metric. For each i � 1, if ui ∈ ker(T −λi),vi ∈ ker(T −λi)∗ and ‖ui‖= 1 = ‖vi‖ , then,
by Theorem 1.5, the condition

〈ui1 ,ui2〉〈ui2 ,ui3〉 · · · 〈uin−1 ,uin〉〈uin ,ui1〉
= 〈vi2 ,vi1〉〈vi3 ,vi2〉 · · · 〈vin ,vin−1〉〈vi1 ,vin〉.

holds for any n � 2 and any n -tuple (i1, i2, · · · , in) .
Now we can give the proof of Theorem 1.6.

Proof of Theorem 1.6. By Theorem 1.5, we need only prove the sufficiency. For
convenience, we denote

ϒ(i1, i2, · · · , in) =
〈ui1 ,ui2〉〈ui2 ,ui3〉 · · · 〈uin−1 ,uin〉
〈vi2 ,vi1〉〈vi3 ,vi2〉 · · · 〈vin,vin−1

〉
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for n � 2 and n -tuple (i1, i2, · · · , in) . Using Theorem 1.5 again, we need only prove
that ϒ(i1, i2, · · · , in, i1) = 1 for any n � 1 and any n -tuple (i1, i2, · · · , in) in N .

We shall proceed by induction. By (1.1), for i, j with i � j , we have

〈ui,ui〉 = 〈vi,vi〉

and

〈ui,u j〉〈u j,ui〉 = 〈ui,ui〉〈ui,u j〉〈u j,ui〉
= 〈vi,vi〉〈v j,vi〉〈vi,v j〉 = 〈v j,vi〉〈vi,v j〉.

It follows that |〈ui,u j〉| = |〈vi,v j〉| for any i, j . Hence

ϒ(i1, i1) = 1, ϒ(i1, i2, i1) =
〈ui1 ,ui2〉〈ui2 ,ui1〉
〈vi2 ,vi1〉〈vi1 ,vi2〉

= 1

for any i1, i2 ∈ N .
For i, j,k ∈ N with i � j � k , by (1.1), we have ϒ(i, j,k, i) = 1. Noting that

ϒ(k, i, j,k) = ϒ( j,k, i, j) = ϒ(i, j,k, i)

= ϒ(i,k, j, i) = ϒ(k, j, i,k)

= ϒ( j, i,k, j),

this shows that ϒ(i1, i2, i3, i1) = 1 for any triad (i1, i2, i3) .
Now suppose we have proved that a positive integer k � 3 exists so that

ϒ( j1, j2, · · · , jm, j1) = 1

for any 1 � m � k and any m-tuple ( j1, j2, · · · , jm) . Given a (k+1)-tuple (i1, i2, · · · ,
ik+1) , by the induction hypothesis, we have

ϒ(i1, i2, · · · , ik+1, i1) = ϒ(i1, i2, · · · , ik)ϒ(ik, ik+1, i1)

=
ϒ(i1, i2, · · · , ik, i1)ϒ(ik, ik+1, i1, ik)

ϒ(ik, i1, ik)
= 1.

This completes the proof. �

3. Apostol’s triangular representation for CSOs

In this section, we shall describe Apostol’s triangular representation for CSOs.
First we make some preparation.

DEFINITION 3.1. Let T ∈B(H ) . An operator A∈B(H ) is called a transpose
of T , if A = CT ∗C for some conjugation C on H .



COMPLEX SYMMETRIC TRIANGULAR OPERATORS 375

Note that if T ∈ B(H ) is complex symmetric, then T = CT ∗C for some conju-
gation C on H ; so T is a transpose of itself. In general, an operator has more than
one transpose [24, Ex. 2.2]. However, any two transposes of an operator are unitarily
equivalent.

LEMMA 3.2. Let T ∈ B(H ) and A be a transpose of T . Then

(i) σ(A) = σ(T ) , ρs−F(T ) = ρs−F(A) , ind (T −λ ) = −ind (A−λ ) and

min ·ind (T −λ ) = min ·ind (A−λ ), ∀λ ∈ ρs−F(T );

moreover, ρ r
s−F(T ) = ρ r

s−F(A) .

(ii) If B is also a transpose of T , then A∼= B, where ∼= denotes unitary equivalence.

Proof. Since A is a transpose of T , we can choose a conjugations C on H such
that A =CT ∗C .

(i) For λ ∈ C , we have A−λ =C(T −λ )∗C . Note that C is invertible. Then one
can see the desired results from direct verification.

(ii) Since B is a transpose of T , we can choose a conjugation D on H such
that B = DT ∗D . Set U = DC and V = CD . Then UV = VU = I . Since D,C are
conjugate-linear and isometric, we deduce that U ∈ B(H ) is unitary and U−1 = V .
So UA = DT ∗C = (DT ∗D)(DC) = BU , that is, A ∼= B . �

We often write Tt to denote a transpose of T . In general, there is no ambiguity
especially when we write T ∼= Tt .

Given a conjugation C on H , we denote SC(H ) = {X ∈ B(H ) : CXC = X∗} .
The following theorem is the main result of this section.

THEOREM 3.3. Let T ∈ B(H ) and Ω be an open subset of ρ r
s−F(T ) . Denote

Hr(Ω) = ∨{ker(λ −T ) : λ ∈ Ω} and Hl(Ω) = ∨{ker(λ −T )∗ : λ ∈ Ω} . Let H0(Ω)
be the orthogonal complement of Hr(Ω)+Hl(Ω) . Then

H = Hr(Ω)⊕H0(Ω)⊕Hl(Ω),

and with respect to this orthogonal decomposition T can be written as

T =

⎡
⎣Ar E G

0 A0 F
0 0 Al

⎤
⎦ . (3.1)

Furthermore, if T is complex symmetric, then

(i) Al
∼= (Ar)t and ‖E‖ = ‖F‖ ;

(ii) both A0 and the following operator [
Ar G
0 Al

]

are complex symmetric;
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(iii) there is a conjugation C on Hr(Ω) , G1 ∈ SC(Hr(Ω)) and a conjugation D on
H0(Ω) such that A0 ∈ SD(H0(Ω)) and

T ∼=
⎡
⎣Ar E G1

0 A0 DE∗C
0 0 CA∗

rC

⎤
⎦Hr(Ω)

H0(Ω)
Hr(Ω)

.

Proof. Note that Hr(Ω) ⊂ Hr(T ) , Hl(Ω) ⊂ Hl(T ) and, by [21, Thm. 3.38],
Hr(T ) is orthogonal to Hl(T ) . So H = Hr(Ω)⊕H0(Ω)⊕Hl(Ω). It is obvious that
Hr(Ω) is hyperinvariant for T and Hl(Ω) is hyperinvariant for T ∗ . Then we may
assume that T admits the upper triangular matrix (3.1).

Suppose that T is complex symmetric and C0TC0 = T ∗ for some conjugation C0

on H . For λ ∈ Ω , note that C0(T −λ )C0 = (T −λ )∗ . It follows that C0(ker(T −
λ )) ⊂ ker(T −λ )∗ and C0(ker(T −λ )∗) ⊂ ker(T −λ ) . Since C0 is a conjugation, we
have C0(ker(T −λ )) = ker(T −λ )∗ . It follows immediately that

C0(Hr(Ω)) = Hl(Ω), C0(Hl(Ω)) = Hr(Ω) and C0(H0(Ω)) = H0(Ω).

Thus C0 can be written as

C0 =

⎡
⎣ 0 0 C2

0 D 0
C1 0 0

⎤
⎦ . (3.2)

Since C−1
0 = C0 , it follows that D−1 = D and C−1

1 = C2 . Thus D is a conjugation on
H0(Ω) .

Since TC0 =C0T ∗ , a direct matrical calculation shows that

Al = C1A
∗
rC2, DA∗

0 = A0D, F = DE∗C2, C1G = G∗C2.

Thus A0 is complex symmetric. Since D,C2 are antiunitary operators, one can see
‖F‖ = ‖E∗‖ = ‖E‖ . Arbitrarily choose a conjugation C on Hr(Ω) and set U = C1C .
Thus U : Hr(Ω) −→ Hl(Ω) is unitary and U−1 = CC−1

1 = CC2 . Hence

Al = C1A
∗
rC2 = (C1C)(CA∗

rC)(CC2) = U(CA∗
rC)U∗,

that is, Al
∼= CA∗

rC.
On the other hand, one can see that the conjugate-linear operator[

0 C2

C1 0

]

is a conjugation on Hr(Ω)⊕Hl(Ω) and[
0 C2

C1 0

][
Ar G
0 Al

]
=
[

0 C2Al

C1Ar C1G

]
=
[

0 A∗
rC2

A∗
l C1 G∗C2

]

=
[
A∗

r 0
G∗ A∗

l

][
0 C2

C1 0

]
.
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That is, the operator [
Ar G
0 Al

]
is complex symmetric.

Define

V : Hr(Ω)⊕H0(Ω)⊕Hr(Ω) −→ H ,

(x1,x2,x3) �−→ x1 + x2 +Ux3.

Then V is unitary. Now compute to see

V ∗TV =

⎡
⎣Ar E GU

0 A0 FU
0 0 U∗AlU

⎤
⎦=

⎡
⎣Ar E GU

0 A0 DE∗C
0 0 CA∗

rC

⎤
⎦ .

Denote G1 = GU . One can check that

CG1C = CGUC =CGC1 = CC2G
∗ = U∗G∗ = G∗

1,

which shows that G1 ∈ SC(Hr(Ω)) . �

REMARK 3.4. In Theorem 3.3, if we let Ω = ρ r
s−F(T ) , then Ar = Tr,A0 = T0 and

Al = Tl . By Theorem 3.3 (i), Tl is unitarily equivalent to a transpose of Tr ; in particular,
we have ‖Tr‖ = ‖Tl‖ and it follows from Lemma 3.2 that σ(Tr) = σ(Tl) .

Now we give an application of Theorem 3.3.
Let S denote the forward unilateral shift on H given by Sei = ei+1 , i � 1, where

{ei}∞
i=1 is an orthonromal basis of H . We refer to an operator of the form

RT,n =
[
(S∗)n T

0 Sn

]
(3.3)

as a Foguel operator of order n , where T ∈ B(H ) and n ∈ N .

COROLLARY 3.5. A Foguel operator RT,n as above is complex symmetric if and
only if there is a conjugation C on H and T1 ∈ SC(H ) such that

RT,n
∼=
[
(S∗)n T1

0 C(S∗)nC

]
.

Proof. For convenience we denote A = RT,n and write

A =
[
(S∗)n T

0 Sn

]
H1

H2
,

where H1 = H2 = H . Since σp(S) = /0 , it is easy to see that

ρs−F(A) = ρ r
s−F(A) = {z ∈ C : |z| 
= 1}
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and ∨
λ∈C,|λ |
=1

ker(A−λ ) = H1,
∨

λ∈C,|λ |
=1

ker(A−λ )∗ = H2.

It follows that Ar = (S∗)n and Al = Sn . Then the desired result follows readily from
Theorem 3.3. �

In the rest, we consider a class of complex symmetric operators constructed in
terms of Cowen-Douglas operators.

For n ∈ N and a connected open subset Ω of C , let Bn(Ω) denote the set of
operators T ∈ B(H ) satisfying

(i) Ω ⊂ σ(T ) ,

(ii) ran (T −λ ) = H for λ ∈ Ω ,

(iii) ∨λ∈Ω ker(T −λ ) = H , and

(iv) nul (T −λ ) = n for λ ∈ Ω .

Each operator T in Bn(Ω) is called a Cowen-Douglas operator with index n . Note
that (iii) can be replaced by the following condition (see [4]).

(iii)’ ∨k�1 ker(T −λ )k = H for each λ ∈ Ω .
Let T ∈ Bn(Ω) and λ ∈ Ω . Then T can be written as

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ I1 A1 ∗ ∗ · · ·
0 λ I2 A2 ∗ · · ·
0 0 λ I3 A3 · · ·
0 0 0 λ I4

. . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

M1

M2

M3

M4
...

,

where Mk = ker(T −λ )k�ker(T −λ )k−1 and Ik is the identity operator on Mk for k �
1. Also one can check that Ak : Mk+1 −→ Mk is invertible. Moreover, ran (T − μ) =
H and hence nul (T − μ)∗ = 0 for all μ ∈ C . Thus σp(T ∗) = /0 . It follows that
min ·ind (T −μ) = 0 for μ ∈ ρs−F(T ) , and hence ρ r

s−F(T ) = ρs−F(T ) ⊃ Ω . Then, by
statement (iii), T = Tr .

THEOREM 3.6. Let A,B∈B(H ) be two Cowen-Douglas operators and set T =
A⊕B∗ . Then T is complex symmetric if and only if B∗ ∼= At .

Proof. “⇐=”. If B∗ ∼= At , then

T = A⊕B∗ ∼= A⊕At.

By definition, there is a conjugation C on H such that At = CA∗C. Set

D =
[
0 C
C 0

]
.
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Then D is a conjugation on H ⊕H and one can verify that

D

[
A 0
0 CA∗C

]
D =

[
A∗ 0
0 CAC

]
.

This proves the sufficiency.
“=⇒”. For convenience, we write

T =
[
A 0
0 B∗

]
H1

H2
,

where H1 = H2 = H .
Since T is complex symmetric, there is a conjugation C on H ⊕H such that

CTC = T ∗ . Then we have C(T −λ )= (T −λ )∗C for λ ∈C . It follows that C(ker(T −
λ )) = ker(T −λ )∗ . As a result, we obtain

C

(∨
λ∈C

ker(T −λ )

)
=
∨

λ∈C

ker(T −λ )∗.

Since A is a Cowen-Douglas operator and σp(B∗) = /0 , we have

∨
λ∈C

ker(T −λ ) =
∨

λ∈C

ker(A−λ ) = H1.

Likewise, one can check that∨
λ∈C

ker(T −λ )∗ =
∨

λ∈C

ker(B−λ) = H2.

So C(H1) = H2 , C(H2) = H1 and C can be written as

C =
[

0 C2

C1 0

]
H1

H2
.

Since C−1 =C , we have C−1
1 =C2 . It follows from CT ∗ = TC that C1A∗ = B∗C1 , that

is, C1A∗C2 = B∗ .
Choose a conjugation D on H . Compute to see

B∗ =C1A
∗C2 = (C1D)(DA∗D)(DC2).

Noting that U := DC2 is unitary and U−1 =C1D , we have B∗ ∼= DA∗D . This completes
the proof. �

REMARK 3.7. Let A,B ∈ B(H ) be Cowen-Douglas operators and set T = A⊕
B∗ . By the discussion before Theorem 3.6, A = Ar and B∗ = (B∗)l . However, it is
possible that Tr,Tl are absent. Set Ω1 = {z ∈ C : |z + 1| < 1} and Ω2 = {z ∈ C :
|z−1|< 1} . By [19, Thm. 1.2], we can find Cowen-Douglas operators A,B ∈ B(H )
satisfying
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(i) A ∈ B1(Ω1) , σ(A) = Ω1∪Ω2 and σlre(A) = ∂Ω1∪Ω2 ;

(ii) B ∈ B1(Ω2) , σ(B) = Ω1∪Ω2 and σlre(B) = ∂Ω2∪Ω1 .

If T = A⊕ B∗ , then one can verify that σ(T ) = σlre(T ) = Ω1∪Ω2 . So ρs−F(T )
coincides with the resolvent of T . Hence Tr and Tl are both absent. Thus one can not
use Theorem 3.3 to prove Theorem 3.6.

COROLLARY 3.8. Let A ∈ B(H ) be a Cowen-Douglas operator and set T =
A⊕A∗ . Then T is complex symmetric if and only if A∗ ∼= At .

EXAMPLE 3.9. Let A,B ∈ B(H ) be forward unilateral weighted shifts defined
by

Aei = aiei+1, Bei = biei+1, ∀i � 1,

where {ei}∞
i=1 is an orthonormal basis of H . Then A∗,B∗ are triangular operators.

Moreover, we assume that infi |ai|> 0 and infi |bi|> 0. Then one can check that A∗,B∗
are Cowen-Douglas operators of index one ([4]).

Set T = A∗ ⊕B . Then, by Theorem 3.6, T is complex symmetric if and only if
(A∗)t ∼= B , that is, A∗ ∼= Bt .

Note that A is unitarily equivalent to a forward unilateral weighted shift with pos-
itive weights {|ai|} and B is unitarily equivalent to a forward unilateral weighted shift
with positive weights {|bi|} . We may directly assume that ai > 0,bi > 0 for all i � 1.

For x ∈ H with x = ∑∞
i=1 αiei , we define Cx = ∑∞

i=1 αiei . One can verify that C
is a conjugation on H . Moreover,

CBCei = CBei = C(biei+1) = biei+1 = Bei, ∀i � 1.

So B =CBC , that is, B∗ =CB∗C . This shows that B∗ is a transpose of B . Then A∗ ∼= Bt

if and only if A ∼= B . By [18, Prob. 89], A ∼= B if and only if ai = bi for all i . Then T
is complex symmetric if and only if ai = bi for all i .
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