SPECTRALLY TWO-UNIFORM FRAMES FOR ERASURES

Saliha Pehlivan, Deguang Han and Ram Mohapatra

(Communicated by Raúl Curto)

Abstract

We continue to work on the problem of characterizing erasure-optimal frames when spectral radius is used as a measurement of the error operator. Spectrally optimal (N, n) -frames for one erasures are the ones that the minimal spectral error n / N can be achieved. This class of frames was completely characterized in [28] in terms of the connectivity property and the redundancy distributions of the involved frames. We show that the best spectral error for the two erasures is always greater than or equal to $\frac{n}{N}+\left(\frac{N n-n^{2}}{N^{2}(N-1)}\right)^{1 / 2}$. We characterize all the frames such that the above lower bound can be achieved. Different characterizations are also obtained for the case that when $N=n+1$ or $n+2$. We show that in these special cases, spectrally 2 -erasure optimal frames are related to the n-independence property of frames.

1. Introduction

In recent years frame theory has become an active research area because of the redundancy features of frames which are desirable in many applications. For instance, this feature of frames is particularly useful in applications of recovering signals with erasure corrupted data. In a signal transmission process, a signal is encoded with frame coefficients of the signal vector, and then decoded with a dual frame. During the transmission process of the encoded data, some coefficients may get erased. In this case, a full recovering (or even a good approximation) of the original signal is almost impossible if the encoding frame is a basis (i.e., linearly independent frame for the signal space). However, if (carefully chosen) redundant frames are used for encoding and decoding, then we can reduce the approximation errors dramatically and in many cases a perfect reconstruction is possible.

When dealing with signal reconstruction from erasure-corrupted frame coefficients, one of the mostly studied approach is to find optimal frames (c.f. [2, 3, 4, 5, 8, 10, 18, $19,20]$) that minimize the maximal erasure errors occured at all the possible locations. The other method is to find optimal dual frames for a fixed frame that has been selected for encoding (c.f. [22, 23, 24, 25, 26, 27, 28]). Most of the research related to the first approach is based on finding optimal Parseval (or tight) frames. It is known that uniform Parseval frames and equiangular frames are one-erasure and two-erasure optimal, respectively, among all the Parseval frames ([19]). Since these are the frames with nice

[^0]geometric structures, they may not be suitable in some particular applications. This leads to the investigation of optimal dual frames for decoding when a frame is given for encoding ([25] etc.) In all these studies, operator (matrix) norm is commonly used as the measurement of the error operators. However, some other measurements maybe more suitable or accurate when different mechanisms are used in the reconstruction (or approximation) of the signal. For example, if we are allowed to do iterations in the approximation process, spectral radius of the error operator provides more accurate error bound estimate ([28]). Spectral radius measurement was suggested first by Holmes and Paulsen ([19]) where optimal Parseval frames were investigated. The spectral radius measurement is the same as the norm measurement if we only use the standard dual frame. However, the outcomes are quite different if we consider using alternate duals (a key point of using redundant frames instead of using Riesz bases). Here we are interested in the following two natural questions:
(i) Given a frame, what can we say about the spectrally optimal dual frames (see definitions in section 2) of the given frame? What is the maximal spectral radius of all the error operators for a spectrally optimal dual pair?
(ii) For a given pair (N, n) of positive integers with $n<N$, characterize the k erasure spectrally optimal frame of length N for \mathbb{C}^{n}.

In [28] we completely answered these two questions for the one-erasure case. The one-erasure spectrally optimal frames are precisely those frame that admit a dual frame with constant spectral radius for all the (rank-one) error operators. They are completely characterized in terms of the redundance distribution of the frame. With these characterization, one-erasure spectrally optimal frames can be easily constructed. When a frame is not one-erasure spectrally optimal, the minimum of the maximal spectral radius of all the error operators for all possible duals is the largest value of the redundance distribution set. The problems get more complicated and subtle when we deal with higher erasures due to the complexity of spectral radius information for high rank matrices. In this article we are able to characterize a special class of 2-erasure spectral optimal frames (namely, spectrally 2-uniform frames). As a consequence we obtain that all such frames must be linearly connected. We also obtain some alternate necessary and/or sufficient conditions in terms of n-independent property of the frame when N is relatively small. Spectrally 2 -uniform frames may not exist for some choices of N. So characterizing 2 -erasure spectrally optimal frames still remains to be a challenging problem.

2. Preliminaries and the main results

Let H be an n-dimensional (real or complex) Hilbert space. A finite sequence $F=\left\{f_{i}\right\}_{i=1}^{N}$ in H is called a frame for H if there are two constants $0<A \leqslant B$ such that

$$
A\|f\|^{2} \leqslant \sum_{i=1}^{N}\left|\left\langle f, f_{i}\right\rangle\right|^{2} \leqslant B\|f\|^{2}
$$

holds for every $f \in H$. When $A=B, F$ is called a tight frame, and if $A=B=1$, it is called Parseval frame. A frame F consisting of equal norm vectors is called uniform
frame and if additionally this norm is one, it is called a unit norm frame. If every set of k vector in a frame F is linearly independent then we call F as k-independent. The linear map $\Theta_{F}: H \rightarrow \mathbb{C}^{N}$ defined by

$$
\Theta_{F}(f)=\sum_{i=1}^{N}\left\langle f, f_{i}\right\rangle e_{i} \quad \text { for all } \mathrm{f} \in H
$$

is the analysis operator, where $\left\{e_{i}\right\}_{i=1}^{N}$ is the standard orthonormal basis for \mathbb{C}^{N} (or \mathbb{R}^{n}).

The frame operator S is defined by

$$
S f=\Theta_{F}^{*} \Theta_{F} f=\sum_{i}\left\langle f, f_{i}\right\rangle f_{i}
$$

which is a positive invertible operator on H and leads to the reconstruction formula:

$$
f=\sum_{i=1}^{N}\left\langle f, S^{-1} f_{i}\right\rangle f_{i}=\sum_{i=1}^{N}\left\langle f, S^{-1 / 2} f_{i}\right\rangle S^{-1 / 2} f_{i}, \quad \text { for all } f \in H
$$

In this case the frame $\left\{S^{-1} f_{i}\right\}_{i=1}^{N}$ is called the canonical or standard dual frame of F. In addition to the canonical dual frames, when $N>n$ there exist infinitely many frames $G=\left\{g_{i}\right\}_{i=1}^{N}$ that also give us a reconstruction formula

$$
f=\sum_{i=1}^{N}\left\langle f, g_{i}\right\rangle f_{i}=\sum_{i=1}^{N}\left\langle f, f_{i}\right\rangle g_{i} \quad(\text { for all } f \in H), \quad \text { i.e. } \Theta_{G}^{*} \Theta_{F}=I
$$

Here the frame $G=\left\{g_{i}\right\}_{i=1}^{N}$ is called an alternate dual frame or dual frame for F. It is known that $G=\left\{g_{i}\right\}_{i=1}^{N}$ is a dual frame for F if and only if there exists a sequence $U=\left\{u_{i}\right\}_{i=1}^{N}$ such that $\sum_{i=1}^{N}\left\langle f, f_{i}\right\rangle u_{i}=0$ for all $f \in H$ (i.e. $\Theta_{U}^{*} \Theta_{F}=0$) and $\left\{g_{i}\right\}_{i=1}^{N}=$ $\left\{S^{-1} f_{i}+u_{i}\right\}_{i=1}^{N}$. Such a sequence U is called orthogonal or strongly disjoint with F (c.f. $[15,16])$.

In this paper we always assume that a frame F consists of only nonzero vectors and $N>n$. When k-erasures occur during the data transmission, we define the error operator E_{Λ} by

$$
E_{\Lambda} f=\Theta_{G}^{*} D \Theta_{F} f=\sum_{i \in \Lambda}\left\langle f, f_{i}\right\rangle g_{i}
$$

where Λ is the set of indices corresponding to the erased coefficients, D is an $N \times N$ diagonal matrix with $d_{i i}=1$ for $i \in \Lambda$ and zero otherwise. Using the received data we get an estimated reconstruction $\tilde{f}=\sum_{i \notin \Lambda}\left\langle f, f_{i}\right\rangle g_{i}=f-E_{\Lambda} f$. Using spectral radius as a measurement, the maximum error when k-erasures occur is defined by

$$
r_{F, G}^{(k)}=\max \left\{r\left(E_{\Lambda}\right):|\Lambda|=k\right\}
$$

and minimal maximal error is defined by

$$
r_{F}^{(k)}=\min \left\{r_{F, G}^{(k)}: G \text { is a dual frame of } F\right\}
$$

where $|\Lambda|$ denotes the cardinality of Λ and $r\left(E_{\Lambda}\right)$ is the spectral radius of E_{Λ}. A dual frame G of F is called 1 -erasure spectrally optimal if $r_{F, G}^{(1)}=r_{F}^{(1)}$. We say that G is k-erasure spectrally optimal if it is $(k-1)$-erasure spectrally optimal and $r_{F, G}^{(k)}=r_{F}^{(k)}$.

It is true that $r_{F, G}^{(1)} \geqslant \frac{n}{N}$ for any dual frame pair (F, G), and consequently we have $r_{F}^{(1)} \geqslant \frac{n}{N}$. This lower bound can be always achieved if F is a uniform-length Parseval frame. All the frames F with $r_{F}^{(1)}=\frac{n}{N}$ (we say that such a frame is spectrally oneuniform) were characterized in [28] in terms of the redundancy distribution of F.

We say that two vectors f_{i} and f_{j} in a sequence F of vectors are linearly F connected (or simply, connected) if there exist vectors $\left\{f_{k_{1}}, \ldots, f_{k_{\ell}}\right\}$ from F such that $\left\{f_{j}, f_{k_{1}}, \ldots, f_{k_{\ell}}\right\}$ are linearly independent and $f_{i}=c f_{j}+\sum_{m=1}^{\ell} c_{m} f_{k_{m}}$ with c, c_{m} all nonzero.

DEFINITION 2.1. Let $F=\left\{f_{i}\right\}_{i=1}^{N}$ be a sequence of nonzero vectors in H. We say that F
(i) is linearly connected if every two vectors in F are F-connected.
(ii) has the intersection dependent property if $H_{\Lambda} \cap H_{\Lambda^{c}} \neq\{0\}$ holds for every proper subset Λ of $\{1, \ldots, N\}$, where H_{Λ} is the subspace spanned by $\left\{f_{i}: i \in \Lambda\right\}$.
(ii) is k-independent if every k vectors in F are linearly independent.

In [28], we proved that (i) and (ii) are equivalent. This led to the following:

Proposition 2.1. Let $F=\left\{f_{i}\right\}_{i=1}^{N}$ be a frame for H. Then there exists a (unique up to permutations) partition $\left\{\Lambda_{j}\right\}_{j=1}^{J}$ of $\{1,2, \ldots, N\}$ such that each $\left\{f_{i}\right\}_{i \in \Lambda_{j}}$ is linearly connected, and H is the direct sum of the subspaces $H_{j}=\operatorname{span}\left\{f_{i}: i \in \Lambda_{j}\right\}$.

Let H_{j}, Λ_{j} be as in the above proposition. Then the redundancy distribution of F is defined to be $\left\{\frac{\operatorname{dim} H_{j}}{\left|\Lambda_{j}\right|}\right\}_{1 \leqslant j \leqslant J}$. We say that F has the uniform redundancy distribution if $\frac{\operatorname{dim} H_{j}}{\left|\Lambda_{j}\right|}$ is a constant for all j.

It was proved in [28] that a frame F is spectrally one-uniform if and only if it has the uniform redundancy distribution, which is also equivalent to the condition that there exists a dual G such that $\left\langle f_{i}, g_{i}\right\rangle=n / N$ for all $i=1, \ldots, N$. Moreover, for any general frame F we have $r_{F}^{(1)}=\max \left\{\alpha_{j}\right\}_{1 \leqslant j \leqslant J}$, where $\left\{\alpha_{j}\right\}_{1 \leqslant j \leqslant J}$ is the redundancy distribution of F. For a spectrally one-uniform frame F we will show that $r_{F}^{(2)} \geqslant$ $\frac{n}{N}+\sqrt{\frac{N n-n^{2}}{N^{2}(N-1)}}$. Here we are interested in characterizing those frames such that this lower (best) error bound can be achieved. So we propose the following definition:

Definition 2.2. Let F be an (N, n) frame. We say that F is spectrally twouniform if there exists a dual frame G of F such that $r_{F, G}^{(1)}=n / N$ and $r_{F, G}^{(2)}=\frac{n}{N}+$ $\sqrt{\frac{N n-n^{2}}{N^{2}(N-1)}}$.

The following tells us that spectrally 2 -uniform frames are ones that there exists a dual frame with the property that all the 2×2 error operators have the same spectral radius. So this also justifies the use of the terminology of 2 -uniformity.

THEOREM 2.2. Let $F=\left\{f_{i}\right\}_{i=1}^{N}$ be a spectrally one-uniform frame for an n dimensional Hilbert space H. Then the following are equivalent:
(i) F is spectrally 2 -uniform;
(ii) There exists a one-erasure spectrally optimal dual G of F such that $\left\langle g_{j}, f_{i}\right\rangle\left\langle g_{i}, f_{j}\right\rangle$ is constant for all $i \neq j$;
(iii) There exists a one-erasure spectrally optimal dual G of F such that $r\left(E_{\Lambda}\right)=$ $\frac{n}{N}+\sqrt{\frac{N n-n^{2}}{N^{2}(N-1)}}$ for all subset Λ of $\{1, \ldots, N\}$ with $|\Lambda|=2$.

As an application, we get the following necessary condition for spectrally 2 uniform frames. The condition is not sufficient in general (see Example 3.1).

Corollary 2.3. If a frame F is spectrally 2 -uniform, then it is linearly connected.

More can be said in the case that when N is relatively small (comparing to the dimension n). For example, the following theorem gives the characterization of spectrally two-uniform frames when $N=n+1$ and a stronger necessary condition on such frames for $N=n+2$.

THEOREM 2.4. Let $F=\left\{f_{i}\right\}_{i=1}^{N}$ be a spectrally one-uniform frame for an n dimensional H.
(i) If $N=n+1$, then F is a spectrally two-uniform frame if and only if F is n-independent.
(ii) If $N=n+2$ and F is spectrally two-uniform, then F is n-independent.

In order to prove our main results, we need a simple reduction based on the equivalence of frames. Recall that two frames $F=\left\{f_{i}\right\}_{i=1}^{N}$ and $F^{\prime}=\left\{f_{i}^{\prime}\right\}_{i=1}^{N}$ for H are called similar if there exists an invertible operator T such that $T f_{i}=f_{i}^{\prime}$ for all i.

DEFINITION 2.3. Two frames $F=\left\{f_{i}\right\}_{i=1}^{N}$ and $F^{\prime}=\left\{f_{i}^{\prime}\right\}_{i=1}^{N}$ are called equivalent if one of them can be obtained from the other through either the similarity and/or permutation (i.e., there exists a permutation $\sigma:\{1, \ldots, N\} \rightarrow\{1, \ldots, N\}$ such that $\left.f_{i}^{\prime}=f_{\sigma(i)}\right)$.

Proposition 2.5. Let F be a frame and k be a positive integer. Then $r_{F}^{(k)}$ is equivalent invariant.

Proof. The permutation clearly preserves $r_{F}^{(k)}$. Let $F=\left\{f_{i}\right\}_{i=1}^{N}$ and $F^{\prime}=\left\{f_{i}^{\prime}\right\}_{i=1}^{N}$ be similar frames for H and $G=\left\{g_{i}\right\}_{i=1}^{N}$ be a dual frame of F. Let T be the invertible operator such that $f_{i}^{\prime}=T f_{i}$. Let $G^{\prime}=\left\{g_{i}^{\prime}\right\}_{i=1}^{N}$ with $g_{i}^{\prime}=\left(T^{-1}\right)^{*} g_{i}$. Then G^{\prime} is a dual frame of F^{\prime}. Clearly, $\left\langle f_{i}^{\prime}, g_{j}^{\prime}\right\rangle=\left\langle f_{i}, g_{j}\right\rangle$ for all $i . j$. Thus we get $r_{F}^{(k)}=r_{F^{\prime}}^{(k)}$.

3. Proofs of the main results

Let F be a spectrally one-uniform frame and G be a dual frame of F such that $\left\langle g_{i}, f_{i}\right\rangle=n / N$ for all i. Consider the error operator E_{Λ} for $\Lambda=\{i, j\}$. Then the spectral radius of error operator E_{Λ} is

$$
r\left(E_{\Lambda}\right)=r\left(\Theta_{G}^{*} D_{\Lambda} \Theta_{F}\right)=r\left(\Theta_{G}^{*} D_{\Lambda}^{*} D_{\Lambda} \Theta_{F}\right)=r\left(D_{\Lambda} \Theta_{F} \Theta_{G}^{*} D_{\Lambda}^{*}\right)
$$

where Θ_{F} and Θ_{G} are analysis operators of F and G, respectively, and D_{Λ} is an N by N diagonal matrix with $d_{i i}=1$ for $i \in \Lambda$ and zero otherwis. Note that

$$
D_{\Lambda} \Theta_{F} \Theta_{G}^{*} D_{\Lambda}^{*}=\binom{\left\langle g_{i}, f_{i}\right\rangle\left\langle g_{j}, f_{i}\right\rangle}{\left\langle g_{i}, f_{j}\right\rangle\left\langle g_{j}, f_{j}\right\rangle}=\left(\begin{array}{cc}
\frac{n}{N} & \left\langle g_{j}, f_{i}\right\rangle \\
\left\langle g_{i}, f_{j}\right\rangle & \frac{n}{N}
\end{array}\right)
$$

for $i \neq j$ and $i, j \in\{1, \ldots, n\}$. For the spectral radius of E_{Λ}, we consider the characteristic polynomial

$$
\left(\frac{n}{N}-\lambda\right)^{2}-\left\langle g_{j}, f_{i}\right\rangle\left\langle g_{i}, f_{j}\right\rangle
$$

So the eigenvalues are given by

$$
\begin{equation*}
\lambda=\frac{n}{N} \pm \sqrt{\left\langle g_{j}, f_{i}\right\rangle\left\langle g_{i}, f_{j}\right\rangle} . \tag{3.1}
\end{equation*}
$$

Lemma 3.1. Assume that F is one-uniform frame. Then:
(i) $r_{F}^{(2)} \geqslant \frac{n}{N}+\sqrt{\frac{n N-n^{2}}{N^{2}(N-1)}}$.
(ii) $r_{F}^{(2)}=\frac{n}{N}+\sqrt{\frac{n N-n^{2}}{N^{2}(N-1)}}$ if and only if there exists a one-erasure spectrally optimal dual G of F such that $\left\langle g_{j}, f_{i}\right\rangle\left\langle g_{i}, f_{j}\right\rangle=c$ for all $i \neq j$ where c is a constant.

Proof. (i) Let G be a one-erasure spectrally optimal dual G of F. Then we have $\left\langle g_{i}, f_{i}\right\rangle=\frac{n}{N}$ for all i since F is spectrally one-uniform. Note that since $\Theta_{F} \Theta_{G}^{*}=$ $\Theta_{F} \Theta_{G}^{*} \Theta_{F} \Theta_{G}^{*}=\left(\Theta_{F} \Theta_{G}^{*}\right)^{2}$ by $\Theta_{G}^{*} \Theta_{F}=I$, we have

$$
\begin{equation*}
n=\sum_{i=1}^{N}\left\langle g_{i}, f_{i}\right\rangle=\operatorname{tr}\left(\Theta_{F} \Theta_{G}^{*}\right)=\operatorname{tr}\left(\left(\Theta_{F} \Theta_{G}^{*}\right)^{2}\right)=\sum_{i, j=1}^{N}\left\langle g_{i}, f_{j}\right\rangle\left\langle g_{j}, f_{i}\right\rangle \tag{3.2}
\end{equation*}
$$

Note also that since

$$
\sum_{i, j=1}^{N}\left\langle g_{i}, f_{j}\right\rangle\left\langle g_{j}, f_{i}\right\rangle=\sum_{i \neq j}\left\langle g_{i}, f_{j}\right\rangle\left\langle g_{j}, f_{i}\right\rangle+\sum_{i=1}^{N}\left|\left\langle g_{i}, f_{i}\right\rangle\right|^{2}=\sum_{i \neq j}\left\langle g_{i}, f_{j}\right\rangle\left\langle g_{j}, f_{i}\right\rangle+\frac{n^{2}}{N}
$$

by (3.2), we have

$$
\begin{equation*}
\sum_{i \neq j}\left\langle g_{i}, f_{j}\right\rangle\left\langle g_{j}, f_{i}\right\rangle=n-\frac{n^{2}}{N}=\frac{n N-n^{2}}{N} . \tag{3.3}
\end{equation*}
$$

Now set $c_{i j}=\left\langle g_{i}, f_{j}\right\rangle\left\langle g_{j}, f_{i}\right\rangle$ and $c=\frac{n N-n^{2}}{N^{2}(N-1)}$. Then, by (3.3), $\sum_{i \neq j} \operatorname{Re}\left(c_{i j}\right)=\frac{n N-n^{2}}{N}$. Let $\alpha=\left\{(i, j): \operatorname{Re}\left(c_{i j}\right) \in \mathbb{R}^{+}\right\}$. Then $\sum_{(i, j) \in \alpha} \operatorname{Re}\left(c_{i j}\right) \geqslant \frac{n N-n^{2}}{N}$, which implies that there exist $\left(i_{0}, j_{0}\right) \in \alpha$ such that $\operatorname{Re}\left(c_{i_{0} j_{0}}\right) \geqslant c>0$. Write $c_{i_{0} j_{0}}=\left|c_{i_{0} j_{0}}\right| e^{i \theta}=\left|c_{i_{0} j_{0}}\right| \cos \theta$ $+i\left|c_{i_{0} j_{0}}\right| \sin \theta$. Then, $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$ because $\operatorname{Re}\left(c_{i_{0} j_{0}}\right)=\left|c_{i_{0} j_{0}}\right| \cos \theta \in \mathbb{R}^{+}$. Thus,

$$
\begin{aligned}
\max \left\{\left|\frac{n}{N}+\left(c_{i_{0} j_{0}}\right)^{1 / 2}\right|,\left|\frac{n}{N}-\left(c_{i_{0} j_{0}}\right)^{1 / 2}\right|\right\} & \geqslant \frac{n}{N}+\operatorname{Re}\left(c_{i_{0} j_{0}}\right)^{1 / 2}=\frac{n}{N}+\left|c_{i_{0} j_{0}}\right|^{1 / 2} \cos \frac{\theta}{2} \\
& \geqslant \frac{n}{N}+\left|c_{i_{0} j_{0}}\right|^{1 / 2}(\cos \theta)^{1 / 2} \\
& =\frac{n}{N}+\left(\operatorname{Re}\left(c_{i_{0} j_{0}}\right)\right)^{1 / 2} \geqslant \frac{n}{N}+c^{1 / 2}
\end{aligned}
$$

The inequalities follow from the fact that $\cos \frac{\theta}{2} \geqslant(\cos \theta)^{1 / 2}$ and $\operatorname{Re}\left(c_{i_{0} j_{0}}\right)^{1 / 2}>0$ since $\cos ^{2} \frac{\theta}{2}=\frac{1+\cos \theta}{2} \geqslant \frac{\cos \theta+\cos \theta}{2}$ and $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$. Therefore,

$$
r_{F}^{(2)}=\min _{G}\left\{r_{F, G}^{(2)}\right\}=\min _{G} \max _{\Lambda}\left\{r\left(E_{\Lambda}\right):|\Lambda|=2\right\} \geqslant \frac{n}{N}+\sqrt{c}=\frac{n}{N}+\sqrt{\frac{n N-n^{2}}{N^{2}(N-1)}}
$$

(ii) Let G be a dual frame of F with $\left\langle g_{i}, f_{i}\right\rangle=\frac{n}{N}$ for all i. Assume that $c_{i j}=$ $\left\langle g_{i}, f_{j}\right\rangle\left\langle g_{j}, f_{i}\right\rangle=c$ for all $i \neq j$, where c is constant. Then by (3.3), we have $c=$ $\frac{n N-n^{2}}{N^{2}(N-1)}$. Then, by (3.1),

$$
r_{F, G}^{(2)}=\max _{\Lambda}\left\{r\left(E_{\Lambda}\right):|\Lambda|=2\right\}=\frac{n}{N}+\sqrt{\frac{n N-n^{2}}{N^{2}(N-1)}}
$$

Thus, since we have $r_{F}^{(2)} \geqslant \frac{n}{N}+\sqrt{\frac{n N-n^{2}}{N^{2}(N-1)}}$ in part (i), we conclude $r_{F}^{(2)}=\frac{n}{N}+$ $\sqrt{\frac{n N-n^{2}}{N^{2}(N-1)}}$.

For the other direction assume that $r_{F}^{(2)}=\frac{n}{N}+\sqrt{\frac{n N-n^{2}}{N^{2}(N-1)}}$. Let G be a dual such that $r_{F}^{(2)}=r_{F, G}^{(2)}$, and $\left\langle g_{i}, f_{i}\right\rangle=\frac{n}{N}$ for all i. We claim that for all $i \neq j, \operatorname{Re}\left(c_{i, j}\right)=\frac{n N-n^{2}}{N^{2}(N-1)}$ and $\operatorname{Im}\left(c_{i, j}\right)=0$. To prove the first claim, we assume that $\operatorname{Re}\left(c_{i, j}\right) \neq \frac{n N-n^{2}}{N^{2}(N-1)}$ for some $i \neq j$. Then there exist $\left(i_{0}, j_{0}\right)$ such that $\operatorname{Re}\left(c_{i_{0} j_{0}}\right)>\frac{n N-n^{2}}{N^{2}(N-1)}$ since $\sum_{i \neq j} \operatorname{Re}\left(c_{i j}\right)=$ $\frac{n N-n^{2}}{N}$ by (3.3). Using the same argument as in the proof of part (i), we obtain

$$
\max \left\{\left|\frac{n}{N}+\left(c_{j_{0} i_{0}}\right)^{1 / 2}\right|,\left|\frac{n}{N}-\left(c_{j_{0} i_{0}}\right)^{1 / 2}\right|\right\}>\frac{n}{N}+\sqrt{\frac{n N-n^{2}}{N^{2}(N-1)}}
$$

Thus, $r_{F}^{(2)}=r_{F, G}^{(2)}>\frac{n}{N}+\sqrt{\frac{n N-n^{2}}{N^{2}(N-1)}}$. This contradicts to the assumption that $r_{F}^{(2)}=$ $\frac{n}{N}+\sqrt{\frac{n N-n^{2}}{N^{2}(N-1)}}$. Therefore, $\operatorname{Re}\left(c_{i j}\right)$ is constant for all $i \neq j$.

To prove the last claim, we assume that there exist $\left(i_{0}, j_{0}\right)$ such that $\operatorname{Im}\left(c_{i_{0}, j_{0}}\right) \neq 0$. Note that if we write $c_{i_{0}, j_{0}}=\left|c_{i_{0}, j_{0}}\right| e^{i \theta}$, then $\theta \neq 0$ and $\theta \neq \pi$. Then, we have

$$
\begin{aligned}
& \max \left\{\left|\frac{n}{N}+\left(c_{i_{0} j_{0}}\right)^{1 / 2}\right|,\left|\frac{n}{N}-\left(c_{i_{0} j_{0}}\right)^{1 / 2}\right|\right\} \\
= & \left(\left(\frac{n}{N}+\operatorname{Re}\left(c_{i_{0} j_{0}}\right)^{1 / 2}\right)^{2}+\left(\operatorname{Im}\left(c_{i_{0} j_{0}}\right)^{1 / 2}\right)^{2}\right)^{1 / 2} \\
= & \left(\left(\frac{n}{N}+\left|c_{i_{0} j_{0}}\right|^{1 / 2} \cos \frac{\theta}{2}\right)^{2}+\left(\left|c_{i_{0} j_{0}}\right|^{1 / 2} \sin \frac{\theta}{2}\right)^{2}\right)^{1 / 2} \\
\geqslant & \left(\left(\frac{n}{N}+\left|c_{i_{0} j_{0}}\right|^{1 / 2}(\cos \theta)^{1 / 2}\right)^{2}+\left(\left|c_{i_{0} j_{0}}\right|^{1 / 2} \sin \frac{\theta}{2}\right)^{2}\right)^{1 / 2} \\
= & \left(\left(\frac{n}{N}+\sqrt{\frac{n N-n^{2}}{N^{2}(N-1)}}\right)^{2}+\left(\left|c_{i_{0} j_{0}}\right|^{1 / 2} \sin \frac{\theta}{2}\right)^{2}\right)^{1 / 2} \\
> & \frac{n}{N}+\sqrt{\frac{n N-n^{2}}{N^{2}(N-1)}}
\end{aligned}
$$

The inequalities, again, follow from the fact that $\cos \frac{\theta}{2} \geqslant(\cos \theta)^{1 / 2},-\frac{\pi}{2}<\theta<\frac{\pi}{2}$ and $\operatorname{Re}\left(c_{i_{0} j_{0}}\right)=\frac{n N-n^{2}}{N^{2}(N-1)}$. Thus, $r_{F}^{(2)}=r_{F, G}^{(2)}>\frac{n}{N}+\sqrt{\frac{n N-n^{2}}{N^{2}(N-1)}}$ which contradicts to the assumption that $r_{F}^{(2)}=\frac{n}{N}+\sqrt{\frac{n N-n^{2}}{N^{2}(N-1)}}$. Therefore, $\operatorname{Im}\left(c_{i j}\right)=0$ for all $i \neq j$. Thus, $c_{i j}=\frac{n N-n^{2}}{N^{2}(N-1)}$ for all $i \neq j$.

Proof of Theorem 2.2. Clearly, (iii) implies (ii). The equivalence of (i) and (ii) has been established by Lemma 3.1. For $(i i) \Rightarrow(i i i)$, assume that $\left\langle g_{j}, f_{i}\right\rangle\left\langle g_{i}, f_{j}\right\rangle=c$ is constant for all $i \neq j$. Then, by the proof of Lemma 3.1 (i), we have that $c=\frac{n N-n^{2}}{N^{2}(N-1)}$. So $r\left(E_{\Lambda}\right)$ is the largset module of the solutions of $\left(\lambda-\frac{n}{N}\right)^{2}=\left\langle g_{j}, f_{i}\right\rangle\left\langle g_{i}, f_{j}\right\rangle=\frac{n N-n^{2}}{N^{2}(N-1)}$. Hence $r\left(E_{\Lambda}\right)=\frac{n}{N}+\sqrt{\frac{n N-n^{2}}{N^{2}(N-1)}}$ for all subsets Λ of $\{1, \ldots, N\}$ with $|\Lambda|=2$.

Proof of Corollary 2.3. Assume, to the contrary, that F is not linearly connected. Then, by 2.1 , there exists a partition $\left\{I_{j}\right\}_{j=1}^{J}(J>1)$ of $\{1,2, \ldots, N\}$ such that each $\left\{f_{i}\right\}_{i \in \Lambda_{j}}$ is linearly connected, and H is the direct sum of the subspaces $H_{j}=\operatorname{span}\left\{f_{i}\right.$: $\left.i \in \Lambda_{j}\right\}$. Since F is spectrally 2 -uniform, from Theorem 2.2 there exists a dual frame $G=\left\{g_{i}\right\}_{i=1}^{N}$ for F such that $\left\langle f_{i}, g_{i}\right\rangle=\frac{n}{N}$ for all i, and $\left\langle f_{i}, g_{j}\right\rangle \cdot\left\langle f_{j}, g_{i}\right\rangle=c=\frac{n N-n^{2}}{N^{2}(N-1)}$.

From

$$
f_{1}=\sum_{i \in I_{1}}\left\langle f_{1}, g_{i}\right\rangle f_{i}+\sum_{i \notin I_{1}}\left\langle f_{1}, g_{i}\right\rangle f_{i},
$$

and $H=\sum_{j=1}^{J} \oplus H_{j}$, we get that $f_{1}=\sum_{i \in I_{1}}\left\langle f_{1}, g_{i}\right\rangle f_{i}$. Thus we obtain that

$$
\frac{n}{N}=\sum_{i \in I_{1}}\left\langle f_{1}, g_{i}\right\rangle\left\langle f_{i}, g_{1}\right\rangle=\frac{n^{2}}{N^{2}}+c\left(N_{1}-1\right)
$$

where N_{1} is the cardinality of I_{1}. This implies that $c=\frac{n N-n^{2}}{N^{2}\left(N_{1}-1\right)}>\frac{n N-n^{2}}{N^{2}(N-1)}$ since $N_{1}<N$. Therefore F must be linearly conneced.

Proof of Theorem 2.4. (i) First assume that F is an n-independent frame and we will show that F is a spectrally two-uniform frame. By Proposition 2.5, we can assume that $F=\left\{f_{1}, \ldots, f_{n}, f_{n+1}\right\}=\left\{e_{1}, \ldots, e_{n}, \sum_{i=1}^{n} a_{i} e_{i}\right\}$, where $\left\{e_{i}\right\}_{i=1}^{n}$ is an orthonormal basis for H and $a_{i} \neq 0$ for $i=1, \ldots, n$. Because F is spectrally one-uniform frame, it has a dual frame G such that $\left\langle g_{i}, f_{i}\right\rangle=\frac{n}{n+1}$ for $i=1, \ldots, n+1$. Then, by the reconstruction formula for frames, we have

$$
\begin{equation*}
e_{j}=\sum_{i=1}^{n+1}\left\langle e_{j}, f_{i}\right\rangle g_{i}=\left\langle e_{j}, e_{j}\right\rangle g_{j}+\left\langle e_{j}, a_{j} e_{j}\right\rangle g_{n+1}=g_{j}+a_{j} g_{n+1}, \quad \text { for } j=1, \ldots, n \tag{3.4}
\end{equation*}
$$

Then we get

$$
\begin{align*}
& \left\langle e_{j}, e_{j}\right\rangle=\left\langle g_{j}+a_{j} g_{n+1}, e_{j}\right\rangle=\left\langle g_{j}, e_{j}\right\rangle+a_{j}\left\langle g_{n+1}, e_{j}\right\rangle=1 \quad \text { for } j=1, \ldots, n \tag{3.5}\\
& \left\langle e_{j}, e_{i}\right\rangle=\left\langle g_{j}+a_{j} g_{n+1}, e_{i}\right\rangle=\left\langle g_{j}, e_{i}\right\rangle+a_{j}\left\langle g_{n+1}, e_{i}\right\rangle=0 \quad \text { for } i \neq j \tag{3.6}
\end{align*}
$$

Therefore, for $k \neq \ell(k, \ell=1, \ldots, n)$,

$$
\begin{align*}
\left\langle g_{\ell}, f_{k}\right\rangle\left\langle g_{k}, f_{\ell}\right\rangle & =\left\langle g_{\ell}, e_{k}\right\rangle\left\langle g_{k}, e_{\ell}\right\rangle \\
& =-a_{\ell}\left\langle g_{n+1}, e_{k}\right\rangle \cdot-a_{k}\left\langle g_{n+1}, e_{\ell}\right\rangle \\
& =a_{\ell} \frac{1-\left\langle g_{k}, e_{k}\right\rangle}{a_{k}} \cdot a_{k} \frac{1-\left\langle g_{\ell}, e_{\ell}\right\rangle}{a_{\ell}} \\
& \text { by (3.6) } \tag{3.7}\\
& =\left(1-\frac{n}{n+1}\right)\left(1-\frac{n}{n+1}\right)=\frac{1}{(n+1)^{2}} .
\end{align*}
$$

Furthermore, for $k=1, \ldots, n$, we have

$$
\begin{aligned}
\left\langle g_{n+1}, f_{k}\right\rangle\left\langle g_{k}, f_{n+1}\right\rangle & =\left\langle g_{n+1}, e_{k}\right\rangle\left\langle g_{k}, \sum_{i=1}^{n} a_{i} e_{i}\right\rangle \\
& =\left\langle g_{n+1}, e_{k}\right\rangle\left(\sum_{i=1}^{n} a_{i}\left\langle g_{k}, e_{i}\right\rangle\right) \\
& =\frac{1-\left\langle g_{k}, e_{k}\right\rangle}{a_{k}}\left(\sum_{i \neq k} a_{i}\left\langle g_{k}, e_{i}\right\rangle+a_{k}\left\langle g_{k}, e_{k}\right\rangle\right) \quad \text { by (3.5) } \\
& =\frac{1-\left\langle g_{k}, e_{k}\right\rangle}{a_{k}}\left(\sum_{i \neq k}-a_{k} a_{i}\left\langle g_{n+1}, e_{i}\right\rangle+a_{k}\left(1-a_{k}\left\langle g_{n+1}, e_{k}\right\rangle\right)\right)
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1-\left\langle g_{k}, e_{k}\right\rangle}{a_{k}} a_{k}\left(1-\sum_{i=1}^{n} a_{i}\left\langle g_{n+1}, e_{i}\right\rangle\right) \\
& \frac{1}{a_{k}(n+1)} a_{k}\left(1-\frac{n}{n+1}\right)=\frac{1}{(n+1)^{2}} \tag{3.8}
\end{align*}
$$

The last equality follows from the fact that $\sum_{i=1}^{n} a_{i}\left\langle g_{n+1}, e_{i}\right\rangle=\left\langle g_{n+1}, f_{n+1}\right\rangle=n /(n+1)$. Thus, $\left\langle g_{i}, f_{j}\right\rangle\left\langle g_{j}, f_{i}\right\rangle=\frac{1}{(n+1)^{2}}=\frac{n N-n^{2}}{N^{2}(N-1)}$ for all $i \neq j$ by (3.7) and (3.8). Hence, by Theorem 2.2, we conclude that F is spectrally two-uniform.

For the other direction of the proof, assume that F is not n-independent. Again, by Proposition 2.5, we can assume that $F=\left\{f_{1}, \ldots, f_{n}, f_{n+1}\right\}=\left\{e_{1}, \ldots, e_{n}, \sum_{i=1}^{s} a_{i} e_{i}\right\}$ for some s with the property $s<n$, where $\left\{e_{i}\right\}_{i=1}^{n}$ is an orthonormal basis for H and $a_{i} \neq 0$ for $i=1, \ldots, s$. Let G be a dual frame of F such that $\left\langle g_{i}, f_{i}\right\rangle=\frac{n}{n+1}$. Then again by the reconstruction formula for frames, since $s<n$, we have

$$
e_{j}=\sum_{i=1}^{n+1}\left\langle e_{j}, f_{i}\right\rangle g_{i}=\left\langle e_{j}, e_{j}\right\rangle g_{j}=g_{j} \quad \text { for } j=s+1, \ldots, n
$$

So, $\left\langle g_{j}, e_{i}\right\rangle=\left\langle e_{j}, e_{i}\right\rangle=0$ for $j=s+1, \ldots, n, i \neq j$. This implies that $\left\langle g_{n}, e_{j}\right\rangle=0$ for $j \neq n$. Hence, since $s<n$

$$
\left\langle g_{n}, f_{n+1}\right\rangle=\sum_{i=1}^{s} a_{i}\left\langle g_{n}, e_{i}\right\rangle=0
$$

Thus, $\left\langle g_{n+1}, f_{n}\right\rangle\left\langle g_{n}, f_{n+1}\right\rangle=0$. Therefore, by Theorem 2.2, F is not spectrally two-uniform frame.
(ii) Suppose that F is not n-independent. Prom Proposition (2.5), we can assume that $F=\left\{f_{1}, \ldots, f_{n}, f_{n+1}, f_{n+2}\right\}=\left\{e_{1}, \ldots, e_{n}, \sum_{i=1}^{s} a_{i} e_{i}, \sum_{i=1}^{n} b_{i} e_{i}\right\}$ for $s<n$ and $a_{i} \neq 0$ for $i=1, \ldots, s$, where $\left\{e_{i}\right\}_{i=1}^{n}$ is an orthonormal basis for H. Since F is spectrally one-uniform frame, then there is a dual frame G of F such that $\left\langle g_{i}, f_{i}\right\rangle=\frac{n}{n+2}$ for $i=1, \ldots, n+2$. From the frame reconstruction formula, for $i=s+1, \ldots, n$ we have,

$$
e_{i}=\sum_{j=1}^{n+2}\left\langle e_{i}, f_{j}\right\rangle g_{j}=\left\langle e_{i}, e_{i}\right\rangle g_{i}+\left\langle e_{i}, b_{i} e_{i}\right\rangle g_{n+2}=g_{i}+b_{i} g_{n+2}
$$

Moreover, we have

$$
\begin{align*}
& \left\langle e_{i}, e_{i}\right\rangle=\left\langle g_{i}+b_{i} g_{n+2}, e_{i}\right\rangle=\left\langle g_{i}, e_{i}\right\rangle+b_{i}\left\langle g_{n+2}, e_{i}\right\rangle=1 \quad \text { for } i=s+1, \ldots, n . \tag{3.9}\\
& \left\langle e_{i}, e_{j}\right\rangle=\left\langle g_{i}+b_{i} g_{n+2}, e_{j}\right\rangle=\left\langle g_{i}, e_{j}\right\rangle+b_{i}\left\langle g_{n+2}, e_{j}\right\rangle=0 \quad \text { for } i=s+1, \ldots, n, j \neq i . \tag{3.10}
\end{align*}
$$

Note here that $b_{i} \neq 0$ for $i=s+1, \ldots, n$ (Indeed, if $b_{i}=0$ then $\left\langle g_{i}, e_{i}\right\rangle=1$ which contradicts to the assumption that $\left\langle g_{i}, e_{i}\right\rangle=\left\langle g_{i}, f_{i}\right\rangle=\frac{n}{n+2}$ for $\left.i=1, \ldots, n\right)$. Note also that

$$
\begin{equation*}
\left\langle g_{n+2}, f_{n+2}\right\rangle=\sum_{i=1}^{n} b_{i}\left\langle g_{n+2}, e_{i}\right\rangle=\frac{n}{n+2} . \tag{3.11}
\end{equation*}
$$

Thus, by (3.9), we have

$$
\begin{equation*}
\left\langle g_{n+2}, f_{s+1}\right\rangle=\left\langle g_{n+2}, e_{s+1}\right\rangle=\frac{1-n /(n+2)}{b_{s+1}}=\frac{2}{b_{s+1}(n+2)} \tag{3.12}
\end{equation*}
$$

Since $\sum_{i \neq s+1} b_{i}\left\langle g_{n+2}, e_{i}\right\rangle=n /(n+2)-b_{s+1}\left\langle g_{n+2}, e_{s+1}\right\rangle$ by (3.11), we also have

$$
\begin{align*}
\left\langle g_{s+1}, f_{n+2},\right\rangle & =\sum_{i=1}^{n} b_{i}\left\langle g_{s+1}, e_{i}\right\rangle=\sum_{i \neq s+1} b_{i}\left\langle g_{s+1}, e_{i}\right\rangle+b_{s+1}\left\langle g_{s+1}, e_{s+1}\right\rangle \\
& =\sum_{i \neq s+1} b_{i}\left\langle g_{s+1}, e_{i}\right\rangle+b_{s+1} \frac{n}{n+2} \\
& =\sum_{i \neq s+1} b_{i}\left(-b_{s+1}\left\langle g_{n+2}, e_{i}\right\rangle\right)+b_{s+1} \frac{n}{n+2} \quad \text { by (3.10) } \\
& =b_{s+1}\left(n /(n+2)-\sum_{i \neq s+1} b_{i}\left\langle g_{n+2}, e_{i}\right\rangle\right) \\
& =b_{s+1}\left(n /(n+2)-\left(n /(n+2)-b_{s+1}\left\langle g_{n+2}, e_{s+1}\right\rangle\right)\right) \\
& =b_{s+1} \frac{2}{n+2} \quad \text { by }(3.12) . \tag{3.13}
\end{align*}
$$

Combining (3.12) and (3.13), we get

$$
\left\langle g_{n+2}, f_{s+1}\right\rangle\left\langle g_{s+1}, f_{n+2}\right\rangle=\frac{2}{b_{s+1}(n+2)} b_{s+1} \frac{2}{n+2}=\frac{4}{(n+2)^{2}} .
$$

However, if F were a two-uniform frame then we would have $\frac{4}{(n+2)^{2}}=\frac{n(n+2)-n^{2}}{(n+2)^{2}(n+1)}$. But this is impossible since $2 n \neq 4 n+4$. Hence, F is not a two-uniform.

From the proof of Theorem 2.4(i), we have the following:
Corollary 3.2. If F with $n+1$ vectors is n-independent, then every spectrally one-erasure optimal dual is also spectrally two-erasure optimal.

Finally, we remark that it is well known that there is an upper bound for N in order to have an (N, n)-equiangular uniform length Parseval frame: in the complex case $N \leqslant n^{2}$ and in the real case $N \leqslant n(n+1) / 2$ (c.f. [29]). We conjecture that we may have similar restrictions on N for spectrally two-uniform frames. We provide the following example as a supporting evidence

EXAMPLE 3.1. There is no two-uniform frame with 4 vectors in \mathbb{R}^{2}.

Proof. Let F be a one-uniform frame and by Proposition 2.1 we can assume that $F=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}=\left\{e_{1}, e_{2}, a_{1} e_{1}+a_{2} e_{2}, b_{1} e_{1}+b_{2} e_{2}\right\}$, where $\left\{e_{1}, e_{2}\right\}$ is an orthonormal basis for \mathbb{R}^{2}. Note that if one of $a_{i}=0$, then F is not two independent. Indeed, if $a_{1}=0$ then $\left\{f_{2}, f_{3}\right\}=\left\{e_{2}, a_{2} e_{2}\right\}$ is not independent. Thus, by Theorem 2.4(ii), F is
not two uniform. So, we assume that $a_{i}, b_{i} \neq 0$ for $i=1,2$. Since F is one-uniform, we let $G=\left\{g_{1}, g_{2}, g_{3}, g_{4}\right\}$ be a dual frame of F such that $\left\langle g_{i}, f_{i}\right\rangle=\frac{1}{2}$ for $i=1,2,3,4$. In the frame reconstruction formula letting $f_{1}=e_{1}$ and $f_{2}=e_{2}$, we have

$$
e_{1}=\sum_{i=1}^{4}\left\langle e_{1}, f_{i}\right\rangle g_{i}=g_{1}+a_{1} g_{3}+b_{1} g_{4} \quad \text { and } \quad e_{2}=\sum_{i=1}^{4}\left\langle e_{2}, f_{i}\right\rangle g_{i}=g_{2}+a_{2} g_{3}+b_{2} g_{4}
$$

Then we have

$$
\begin{align*}
& \left\langle e_{1}, e_{1}\right\rangle=\left\langle g_{1}+a_{1} g_{3}+b_{1} g_{4}, e_{1}\right\rangle=\left\langle g_{1}, e_{1}\right\rangle+a_{1}\left\langle g_{3}, e_{1}\right\rangle+b_{1}\left\langle g_{4}, e_{1}\right\rangle=1 \tag{3.14}\\
& \left\langle e_{2}, e_{2}\right\rangle=\left\langle g_{2}+a_{2} g_{3}+b_{2} g_{4}, e_{2}\right\rangle=\left\langle g_{2}, e_{2}\right\rangle+a_{2}\left\langle g_{3}, e_{2}\right\rangle+b_{2}\left\langle g_{4}, e_{2}\right\rangle=1 \tag{3.15}\\
& \left\langle e_{1}, e_{2}\right\rangle=\left\langle g_{1}+a_{1} g_{3}+b_{1} g_{4}, e_{2}\right\rangle=\left\langle g_{1}, e_{2}\right\rangle+a_{1}\left\langle g_{3}, e_{2}\right\rangle+b_{1}\left\langle g_{4}, e_{2}\right\rangle=0 \tag{3.16}\\
& \left\langle e_{2}, e_{1}\right\rangle=\left\langle g_{2}+a_{2} g_{3}+b_{2} g_{4}, e_{1}\right\rangle=\left\langle g_{2}, e_{1}\right\rangle+a_{2}\left\langle g_{3}, e_{1}\right\rangle+b_{2}\left\langle g_{4}, e_{1}\right\rangle=0 \tag{3.17}\\
& \left\langle g_{3}, f_{3}\right\rangle=\left\langle g_{3}, a_{1} e_{1}+a_{2} e_{2}\right\rangle=a_{1}\left\langle g_{3}, e_{1}\right\rangle+a_{2}\left\langle g_{3}, e_{2}\right\rangle=\frac{1}{2} \tag{3.18}\\
& \left\langle g_{4}, f_{4}\right\rangle=\left\langle g_{4}, b_{1} e_{1}+b_{2} e_{2}\right\rangle=b_{1}\left\langle g_{4}, e_{1}\right\rangle+b_{2}\left\langle g_{4}, e_{2}\right\rangle=\frac{1}{2} . \tag{3.19}
\end{align*}
$$

Set $\left\langle g_{4}, e_{1}\right\rangle=x$ and $\left\langle g_{4}, e_{2}\right\rangle=y$. Then, by (3.19), we have $x=\frac{1}{2 b_{1}}-\frac{b_{2}}{b_{1}} y$. So,

$$
\begin{equation*}
\left\langle g_{4}, e_{1}\right\rangle=\frac{1}{2 b_{1}}-\frac{b_{2}}{b_{1}} y \tag{3.20}
\end{equation*}
$$

Moreover, by (3.14) and (3.15), we obtain

$$
\begin{align*}
& \left\langle g_{3}, e_{1}\right\rangle=\frac{1}{2 a_{1}}-\frac{b_{1}}{a_{1}} x=\frac{1}{2 a_{1}}-\frac{b_{1}}{a_{1}}\left(\frac{1}{2 b_{1}}-\frac{b_{2}}{b_{1}} y\right)=\frac{b_{2}}{a_{1}} y . \tag{3.21}\\
& \left\langle g_{3}, e_{2}\right\rangle=\frac{1}{2 a_{2}}-\frac{b_{2}}{a_{2}} y . \tag{3.22}
\end{align*}
$$

and by (3.16) and (3.17), we have

$$
\begin{gather*}
\left\langle g_{1}, e_{2}\right\rangle=-a_{1}\left\langle g_{3}, e_{2}\right\rangle-b_{1} y=-a_{1}\left(\frac{1}{2 a_{2}}-\frac{b_{2}}{a_{2}} y\right)-b_{1} y=-\frac{a_{1}}{2 a_{2}}+y\left(\frac{a_{1} b_{2}}{a_{2}}-b_{1}\right) \tag{3.23}\\
\left\langle g_{2}, e_{1}\right\rangle=-b_{2} x-a_{2}\left\langle g_{3}, e_{1}\right\rangle=-b_{2}\left(\frac{1}{2 b_{1}}-\frac{b_{2}}{b_{1}} y\right)-a_{2} \frac{b_{2}}{a_{1}} y=-\frac{b_{2}}{2 b_{1}}+y\left(\frac{b_{2}^{2}}{b_{1}}-\frac{a_{2} b_{2}}{a_{1}}\right) \tag{3.24}
\end{gather*}
$$

Then, (3.23) and (3.24) imply that

$$
\begin{aligned}
\left\langle g_{2}, f_{1}\right\rangle\left\langle g_{1}, f_{2}\right\rangle & =\left\langle g_{2}, e_{1}\right\rangle\left\langle g_{1}, e_{2}\right\rangle \\
& =\left(-\frac{b_{2}}{2 b_{1}}+y\left(\frac{b_{2}^{2}}{b_{1}}-\frac{a_{2} b_{2}}{a_{1}}\right)\right)\left(-\frac{a_{1}}{2 a_{2}}+y\left(\frac{a_{1} b_{2}}{a_{2}}-b_{1}\right)\right)
\end{aligned}
$$

$$
\begin{align*}
= & \frac{-a_{1} b_{2}-2 a_{2} b_{1} b_{2} y+2 a_{1} b_{2}^{2} y}{2 a_{1} b_{1}} \frac{2 a_{1} b_{2} y-2 a_{2} b_{1} y-a_{1}}{2 a_{2}} \\
= & \frac{-2 a_{1}^{2} b_{2}^{2} y+2 a_{1} a_{2} b_{1} b_{2} y+a_{1}^{2} b_{2}-4 a_{1} a_{2} b_{1} b_{2}^{2} y^{2}+4 a_{2}^{2} b_{1}^{2} b_{2} y^{2}}{4 a_{1} a_{2} b_{1}} \\
& +\frac{2 a_{1} a_{2} b_{1} b_{2} y+4 a_{1}^{2} b_{2}^{3} y^{2}-4 a_{1} a_{2} b_{1} b_{2}^{2} y^{2}-2 a_{1}^{2} b_{2}^{2} y}{4 a_{1} a_{2} b_{1}} \\
= & \frac{\left(4 a_{2}^{2} b_{1}^{2} b_{2}+4 a_{1}^{2} b_{2}^{3}-8 a_{1} a_{2} b_{1} b_{2}^{2}\right) y^{2}+\left(4 a_{1} a_{2} b_{1} b_{2}-4 a_{1}^{2} b_{2}^{2}\right) y+a_{1}^{2} b_{2}}{4 a_{1} a_{2} b_{1}} . \tag{3.25}
\end{align*}
$$

Now we continue computing the rest of the pairs $\left\langle g_{j}, f_{i}\right\rangle\left\langle g_{i}, f_{j}\right\rangle, i \neq j$ so that we equate all to get a spectrally two-uniform frame F.

By (3.21) and (3.23), we have

$$
\begin{align*}
\left\langle g_{3}, f_{1}\right\rangle\left\langle g_{1}, f_{3}\right\rangle & =\left\langle g_{3}, e_{1}\right\rangle\left\langle g_{1}, a_{1} e_{1}+a_{2} e_{2}\right\rangle \\
& =\left\langle g_{3}, e_{1}\right\rangle\left(a_{1}\left\langle g_{1}, e_{1}\right\rangle+a_{2}\left\langle g_{1}, e_{2}\right\rangle\right) \\
& =\frac{b_{2}}{a_{1}} y\left(\frac{a_{1}}{2}+a_{2}\left(-\frac{a_{1}}{2 a_{2}}+y\left(\frac{a_{1} b_{2}}{a_{2}}-b_{1}\right)\right)\right) \\
& =\frac{b_{2}}{a_{1}} y y^{2}\left(a_{1} b_{2}-a_{2} b_{1}\right) \tag{3.26}
\end{align*}
$$

By (3.20) and (3.23), we have

$$
\begin{align*}
& \left\langle g_{4}, f_{1}\right\rangle\left\langle g_{1}, f_{4}\right\rangle \\
= & \left\langle g_{4}, e_{1}\right\rangle\left\langle g_{1}, b_{1} e_{1}+b_{2} e_{2}\right\rangle=\left(\frac{1}{2 b_{1}}-\frac{b_{2}}{b_{1}} y\right)\left(b_{1}\left\langle g_{1}, e_{1}\right\rangle+b_{2}\left\langle g_{1}, e_{2}\right\rangle\right) \\
= & \left(\frac{1}{2 b_{1}}-\frac{b_{2}}{b_{1}} y\right)\left(\frac{b_{1}}{2}+b_{2}\left(-\frac{a_{1}}{2 a_{2}}+y\left(\frac{a_{1} b_{2}}{a_{2}}-b_{1}\right)\right)\right) \\
= & \frac{1-2 b_{2} y}{2 b_{1}} \frac{a_{2} b_{1}-a_{1} b_{2}+2 a_{1} b_{2}^{2} y-2 a_{2} b_{1} b_{2} y}{2 a_{2}} \\
= & \frac{a_{2} b_{1}-a_{1} b_{2}+2 a_{1} b_{2}^{2} y-2 a_{2} b_{1} b_{2} y-2 a_{2} b_{1} b_{2} y+2 a_{1} b_{2}^{2} y-4 a_{1} b_{2}^{3} y^{2}+4 a_{2} b_{1} b_{2}^{2} y^{2}}{4 a_{2} b_{1}} \\
= & \frac{\left(4 a_{2} b_{1} b_{2}^{2}-4 a_{1} b_{2}^{3}\right) y^{2}+\left(4 a_{1} b_{2}^{2}-4 a_{2} b_{1} b_{2}\right) y+a_{2} b_{1}-a_{1} b_{2}}{4 a_{2} b_{1}} \tag{3.27}
\end{align*}
$$

By (3.22) and (3.24), we have

$$
\begin{aligned}
& \left\langle g_{3}, f_{2}\right\rangle\left\langle g_{2}, f_{3}\right\rangle \\
= & \left\langle g_{3}, e_{2}\right\rangle\left(a_{1}\left\langle g_{2}, e_{1}\right\rangle+a_{2}\left\langle g_{2}, e_{2}\right\rangle\right) \\
= & \left(\frac{1}{2 a_{2}}-\frac{b_{2}}{a_{2}} y\right)\left(a_{1}\left(-\frac{b_{2}}{2 b_{1}}+y\left(\frac{b_{2}^{2}}{b_{1}}-\frac{a_{2} b_{2}}{a_{1}}\right)\right)+\frac{a_{2}}{2}\right)
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1-2 b_{2} y}{2 a_{2}}\left(-a_{2} b_{2} y-a_{1} b_{2}\left(\frac{1}{2 b_{1}}-\frac{b_{2}}{b_{1}} y\right)+\frac{a_{2}}{2}\right) \\
& =\frac{1-2 b_{2} y}{2 a_{2}} \frac{-2 a_{2} b_{1} b_{2} y-a_{1} b_{2}+2 a_{1} b_{2}^{2} y+a_{2} b_{1}}{2 b_{1}} \\
& =\frac{-2 a_{2} b_{1} b_{2} y-a_{1} b_{2}+2 a_{1} b_{2}^{2} y+a_{2} b_{1}+4 a_{2} b_{1} b_{2}^{2} y^{2}+2 a_{1} b_{2}^{2} y-4 a_{1} b_{2}^{3} y^{2}-2 a_{2} b_{1} b_{2} y}{4 a_{2} b_{1}} \\
& =\frac{\left(4 a_{2} b_{1} b_{2}^{2}-4 a_{1} b_{2}^{3}\right) y^{2}+\left(4 a_{1} b_{2}^{2}-4 a_{2} b_{1} b_{2}\right) y+a_{2} b_{1}-a_{1} b_{2}}{4 a_{2} b_{1}} \tag{3.28}
\end{align*}
$$

By (3.24), we have

$$
\begin{align*}
\left\langle g_{4}, f_{2}\right\rangle\left\langle g_{2}, f_{4}\right\rangle & =\left\langle g_{4}, e_{2}\right\rangle\left(b_{1}\left\langle g_{2}, e_{1}\right\rangle+b_{2}\left\langle g_{2}, e_{2}\right\rangle\right) \\
& =y\left(b_{1}\left(-\frac{b_{2}}{2 b_{1}}+y\left(\frac{b_{2}^{2}}{b_{1}}-\frac{a_{2} b_{2}}{a_{1}}\right)\right)+\frac{b_{2}}{2}\right) \\
& =y\left(-\frac{a_{2} b_{1} b_{2}}{a_{1}} y-b_{1} b_{2}\left(\frac{1}{2 b_{1}}-\frac{b_{2}}{b_{1}} y\right)+\frac{b_{2}}{2}\right) \\
& =y\left(-\frac{a_{2} b_{1} b_{2}}{a_{1}} y+b_{2}^{2} y\right) \\
& =y^{2} \frac{b_{2}}{a_{1}}\left(a_{1} b_{2}-a_{2} b_{1}\right) . \tag{3.29}
\end{align*}
$$

Finally, by (3.20), (3.21) and (3.22), we have

$$
\begin{align*}
& \left\langle g_{4}, f_{3}\right\rangle\left\langle g_{3}, f_{4}\right\rangle \\
= & \left(a_{1}\left\langle g_{4}, e_{1}\right\rangle+a_{2}\left\langle g_{4}, e_{2}\right\rangle\right)\left(b_{1}\left\langle g_{3}, e_{1}\right\rangle+b_{2}\left\langle g_{3}, e_{2}\right\rangle\right) \\
= & \left(a_{1} x+a_{2} y\right)\left(b_{1} \frac{b_{2}}{a_{1}} y+b_{2}\left(\frac{1}{2 a_{2}}-\frac{b_{2}}{a_{2}} y\right)\right) \\
= & \left(\frac{a_{1}}{2 b_{1}}-\frac{a_{1} b_{2}}{b_{1}} y+a_{2} y\right) \frac{a_{1} b_{2}-2 a_{1} b_{2}^{2} y+2 a_{2} b_{1} b_{2} y}{2 a_{1} a_{2}} \\
= & \frac{a_{1}+2 a_{2} b_{1} y-2 a_{1} b_{2} y}{2 b_{1}} \frac{a_{1} b_{2}-2 a_{1} b_{2}^{2} y+2 a_{2} b_{1} b_{2} y}{2 a_{1} a_{2}} \\
= & \frac{a_{1}^{2} b_{2}-2 a_{1}^{2} b_{2}^{2} y+2 a_{1} a_{2} b_{1} b_{2} y-4 a_{1} a_{2} b_{1} b_{2}^{2} y^{2}+2 a_{1} a_{2} b_{1} b_{2} y}{4 a_{1} a_{2} b_{1}} \\
& +\frac{4 a_{2}^{2} b_{1}^{2} b_{2} y^{2}-2 a_{1}^{2} b_{2}^{2} y+4 a_{1}^{2} b_{2}^{3} y^{2}-4 a_{1} a_{2} b_{1} b_{2}^{2} y^{2}}{4 a_{1} a_{2} b_{1}} \\
= & \frac{\left(4 a_{2}^{2} b_{1}^{2} b_{2}+4 a_{1}^{2} b_{2}^{3}-8 a_{1} a_{2} b_{1} b_{2}^{2}\right) y^{2}+\left(4 a_{1} a_{2} b_{1} b_{2}-4 a_{1}^{2} b_{2}^{2}\right) y+a_{1}^{2} b_{2}}{4 a_{1} a_{2} b_{1}} . \tag{3.30}
\end{align*}
$$

We observe that equation in (3.25) is equal to equation in (3.30), equation in (3.26) is equal to equation in (3.29) and equation in (3.27) is equal to equation in (3.28). If
(F, G) is two uniform frame pair, then all these six equations has to equal to $1 / 12$ since $\frac{n N-n^{2}}{N^{2}(N-1)}=\frac{1}{12}$. Now set equation in (3.26) to $1 / 12$ and solve for y^{2}, we get

$$
\begin{equation*}
y^{2}=\frac{a_{1}}{12 b_{2}\left(a_{1} b_{2}-a_{2} b_{1}\right)} . \tag{3.31}
\end{equation*}
$$

We note here that $a_{1} b_{2}-a_{2} b_{1} \neq 0$. If it were then F would be not two-independent; thus, by Theorem 2.4, F would be not two-uniform. Substituting y^{2} to equation in (3.25) and setting equation in (3.25) to $1 / 12$, we have

$$
\frac{\frac{a_{1}}{12 b_{2}\left(a_{1} b_{2}-a_{2} b_{1}\right)} 4 b_{2}\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}+4 a_{1} b_{2}\left(a_{2} b_{1}-a_{1} b_{2}\right) y+a_{1}^{2} b_{2}}{4 a_{1} a_{2} b_{1}}=\frac{1}{12}
$$

After simplification, we get

$$
a_{1} b_{2}-a_{2} b_{1}+12 b_{2} y\left(a_{2} b_{1}-a_{1} b_{2}\right)+a_{1} b_{2}=a_{2} b_{1}
$$

Solving the equation for y, we get

$$
\begin{equation*}
y=\frac{1}{6 b_{2}} . \tag{3.32}
\end{equation*}
$$

By (3.31) and (3.32), we have

$$
\frac{a_{1}}{12 b_{2}\left(a_{1} b_{2}-a_{2} b_{1}\right)}=\frac{1}{36 b_{2}^{2}}, \quad \text { i.e., } \quad a_{2} b_{1}=-2 a_{1} b_{2}
$$

Finally, substituting the values of y^{2}, y and $a_{2} b_{1}$ into the third equation (3.27), we get

$$
\begin{aligned}
\left\langle e_{1}, g_{4}\right\rangle\left\langle f_{4}, g_{1}\right\rangle & =\frac{y^{2}-\frac{a_{1}}{12 b_{2}\left(a_{1} b_{2}-a_{2} b_{1}\right)} 4 b_{2}^{2}\left(a_{2} b_{1}-a_{1} b_{2}\right)+4 b_{2}\left(a_{1} b_{2}-a_{2} b_{1}\right) \frac{1}{6 b_{2}}+a_{2} b_{1}-a_{1} b_{2}}{4 a_{2} b_{1}} \\
& =\frac{-\frac{a_{1} b_{2}}{3}+\frac{2}{3} 3 a_{1} b_{2}-3 a_{1} b_{2}}{-8 a_{1} b_{2}} \\
& =\frac{1}{6} \neq \frac{1}{12} .
\end{aligned}
$$

Hence, we get a contradiction. Therefore, F is not spectrally two uniform.
Conjectures. (i) If there exists a two-uniform frame of length N for an n dimensional Hilbert space H, then $N \leqslant \frac{n(n+1)}{2}$ if H is a real Hilbert space, and $N \leqslant n^{2}$ if H is a complex Hilbert space.
(ii) For any N, there exists an n-independent frame F which is spectrally optimal for k-erasures for all k with $1 \leqslant k \leqslant N-n$.

REFERENCES

[1] J. Benedetto and M. Fickus, Finite normalized tight frames, Adv. Comput. Math., 18 (2003), 357-385.
[2] B. Bodmann, Optimal linear transmission by loss-insensitive packet encoding, Appl. Comput. Harmon. Anal., 22 (2007), 274-285.
[3] B. Bodmann and V. I. Paulsen, Frames, graphs and erasures, Linear Algebra Appl. 404 (2005), 118-146.
[4] B. Bodmann, V. Paulsen and M. Tomforde, Equiangular tight frames from complex Seidel matrices containing cube roots of unity, Linear Algebra Appl., 430 (2009), 396-417.
[5] B. Bodmann and P. Singh, Burst erasures and the mean-square error for cyclic Parseval frames, IEEE Trans. Inform. Theory, 57 (2011), 4622-4635.
[6] J. Cahill, M. Fickus, D. G. Mixon, M. J. Poteet and N. K. Strawn, Constructing finite frames of a given spectrum and set of lengths, Appl. Comput. Harm. Anal., 35 (2013), 52-73.
[7] P. Casazza, A. Heinecke, F. Krahmer, G. Kutyniok, Optimally Sparse Frames, IEEE Trans. Inform. Theory, 57 (2011), 7279-7287.
[8] P. Casazza and J. Kovavcević, Equal-norm tight frames with erasures, Adv. Compt. Math., 18 (2003), 387-430.
[9] O. Christensen, A. M. Powell and X. C. Xiao, A note on finite dual frame pairs, Proc. Amer. Math. Soc., 140 (2012), 3921-3930.
[10] D. M. Duncana, T. R. Hoffman, J. P. Solazzo, Equiangular tight Frames and fourth root Seidel matrices, Linear Algebra and its Applications 432 (2010), 2816-2823.
[11] D. Dutkay, D. Han and D. Larson, A duality principle for groups, J. Funct. Anal., 257 (2009), 1133-1143.
[12] Y. Eldar and H. Bölcskei, Geometrically uniform frames, IEEE Trans. Info. Theory, 49 (2003), 993-10006.
[13] M. Fickus, D. G. Mixon, M. J. Poteet, N. Strawn, Constructing all self-adjoint matrices with prescribed spectrum and diagonal, Advances in Computational Mathematics 39 (2013), 585-609.
[14] V. K. Goyal, J. Kovavcević, and J. A. Kelner, Quantized frame expansions with erasures, Appl. Comput. Harmon. Anal. 10 (2001), 203-233.
[15] D. Han, K. Kornelson, D. Larson, and E. Weber, Frames for Undergraduates, volume 40 of Student Mathematical Library, American Mathematical Society, 2007.
[16] D. Han and D. R. Larson, Frames, Bases and Group Representations, Mem. Amer. Math. Soc., 147 (697): 1-94, 2000.
[17] D. Han, D. Larson, B. Liu and R. Liu, Operator-Valued Measures, Dilations, and the Theory of Frames, Mem. Amer. Math. Soc., Vol. 229, No. 1075 (2014).
[18] T. Hoffman, J. Solazzo, Complex equiangular tight frames and erasures, Linear Algebra and its Applications, 437 (2012), 54-558.
[19] R. Holmes, V. Paulsen, Optimal frames for erasures, Linear Algebra and its Applications, 377 (2004), 31-51.
[20] D. KALRA, Complex equiangular cyclic frames and erasures, Linear Algebra and its Applications, 419 (2006), 373-399.
[21] J. Kovavcević and A. Chebira, Life beyond bases: The advent of frames, IEEE Signal Proc. Mag., 2007.
[22] F. Krahmer, G. Kutyniok, and J. Lemvig, Sparsity and spectral properties of dual frames, Linear Algebra and its Applications, 439 (2013), 982-998.
[23] J. Leng, D. HAN, Optimal dual frames for erasures, Linear Algebra and its Applications, 435 (2011), 1464-1472.
[24] J. Leng, D. Han and T. Huang, Optimal dual frames for communication coding with probabilistic erasures, IEEE Trans. Signal Proceccing, 59 (2011), 5380-5389.
[25] J. LopeZ, D. Han, Optimal dual frames for erasures, Linear Algebra and its Applications, 432 (2010), 471-482.
[26] P. MASSEY, M. RUIZ AND D. STOJANOFF, Optimal dual frames and frame completions for majorization, Appl. Comput. Harmon. Anal., 34 (2013), 201-223.
[27] P. Massey, M. Ruiz, D. Stojanoff, Optimal completions of a frame, submitted, Adv. Comput. Math., 40 (2014), 1011-1042.
[28] S. Pehlivan, D. Han and R. Mohapatra, Linearly Connected Sequences and Spectrally Optimal Dual Frames for Erasures, Journal of Functional Analysis, 265 (2013) 2855-2876.
[29] T. Strohmer and R. W. Heath, Grassmannian frames with applications to coding and communication, Appl. Comp. Harmonic Anal., 14 (2003), 257-275.
(Received May 8, 2014)
Saliha Pehlivan
Department of Biomedical Engineering
Faculty of Engineering and Architecture
Gediz University
Seyrek-Izmir, 35665, Turkey
e-mail: saliha.pehlivan@gediz.edu.tr
Deguang Han
Department of Mathematics
University of Central Florida
Orlando, FL 32816
e-mail: deguang.han@ucf.edu
Ram Mohapatra
Department of Mathematics
University of Central Florida
Orlando, FL 32816
e-mail: ram.mohapatra@ucf.edu

[^0]: Mathematics subject classification (2010): Primary 42C15, 46C05, 47B10.
 Keywords and phrases: Frames, erasures, spectrally optimal dual frames, connected frames, redundancy distribution, k-independent sets.

 This research is supported in part by NSF grants DMS-1403400 and DMS-1 106934.

