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Abstract. We continue to work on the problem of characterizing erasure-optimal frames when
spectral radius is used as a measurement of the error operator. Spectrally optimal (N,n) -frames
for one erasures are the ones that the minimal spectral error n/N can be achieved. This class
of frames was completely characterized in [28] in terms of the connectivity property and the
redundancy distributions of the involved frames. We show that the best spectral error for the two

erasures is always greater than or equal to n
N + ( Nn−n2

N2(N−1) )
1/2 . We characterize all the frames

such that the above lower bound can be achieved. Different characterizations are also obtained
for the case that when N = n + 1 or n + 2 . We show that in these special cases, spectrally
2-erasure optimal frames are related to the n -independence property of frames.

1. Introduction

In recent years frame theory has become an active research area because of the
redundancy features of frames which are desirable in many applications. For instance,
this feature of frames is particularly useful in applications of recovering signals with
erasure corrupted data. In a signal transmission process, a signal is encoded with frame
coefficients of the signal vector, and then decoded with a dual frame. During the trans-
mission process of the encoded data, some coefficients may get erased. In this case,
a full recovering (or even a good approximation) of the original signal is almost im-
possible if the encoding frame is a basis (i.e., linearly independent frame for the signal
space). However, if (carefully chosen) redundant frames are used for encoding and de-
coding, then we can reduce the approximation errors dramatically and in many cases a
perfect reconstruction is possible.

When dealing with signal reconstruction from erasure-corrupted frame coefficients,
one of the mostly studied approach is to find optimal frames (c.f. [2, 3, 4, 5, 8, 10, 18,
19, 20]) that minimize the maximal erasure errors occured at all the possible locations.
The other method is to find optimal dual frames for a fixed frame that has been selected
for encoding (c.f. [22, 23, 24, 25, 26, 27, 28]). Most of the research related to the first
approach is based on finding optimal Parseval (or tight) frames. It is known that uni-
form Parseval frames and equiangular frames are one-erasure and two-erasure optimal,
respectively, among all the Parseval frames ([19]). Since these are the frames with nice
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geometric structures, they may not be suitable in some particular applications. This
leads to the investigation of optimal dual frames for decoding when a frame is given
for encoding ([25] etc.) In all these studies, operator (matrix) norm is commonly used
as the measurement of the error operators. However, some other measurements maybe
more suitable or accurate when different mechanisms are used in the reconstruction (or
approximation ) of the signal. For example, if we are allowed to do iterations in the
approximation process, spectral radius of the error operator provides more accurate er-
ror bound estimate ([28]). Spectral radius measurement was suggested first by Holmes
and Paulsen ([19]) where optimal Parseval frames were investigated. The spectral ra-
dius measurement is the same as the norm measurement if we only use the standard
dual frame. However, the outcomes are quite different if we consider using alternate
duals (a key point of using redundant frames instead of using Riesz bases). Here we are
interested in the following two natural questions:

(i) Given a frame, what can we say about the spectrally optimal dual frames (see
definitions in section 2) of the given frame? What is the maximal spectral radius of all
the error operators for a spectrally optimal dual pair?

(ii) For a given pair (N,n) of positive integers with n < N , characterize the k -
erasure spectrally optimal frame of length N for C

n .
In [28] we completely answered these two questions for the one-erasure case. The

one-erasure spectrally optimal frames are precisely those frame that admit a dual frame
with constant spectral radius for all the (rank-one) error operators. They are completely
characterized in terms of the redundance distribution of the frame. With these char-
acterization, one-erasure spectrally optimal frames can be easily constructed. When
a frame is not one-erasure spectrally optimal, the minimum of the maximal spectral
radius of all the error operators for all possible duals is the largest value of the redun-
dance distribution set. The problems get more complicated and subtle when we deal
with higher erasures due to the complexity of spectral radius information for high rank
matrices. In this article we are able to characterize a special class of 2-erasure spectral
optimal frames (namely, spectrally 2-uniform frames). As a consequence we obtain that
all such frames must be linearly connected. We also obtain some alternate necessary
and/or sufficient conditions in terms of n -independent property of the frame when N
is relatively small. Spectrally 2-uniform frames may not exist for some choices of N .
So characterizing 2-erasure spectrally optimal frames still remains to be a challenging
problem.

2. Preliminaries and the main results

Let H be an n -dimensional (real or complex) Hilbert space. A finite sequence
F = { fi}N

i=1 in H is called a frame for H if there are two constants 0 < A � B such
that

A‖ f‖2 �
N

∑
i=1

|〈 f , fi〉|2 � B‖ f‖2

holds for every f ∈ H . When A = B , F is called a tight frame, and if A = B = 1, it is
called Parseval frame. A frame F consisting of equal norm vectors is called uniform
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frame and if additionally this norm is one, it is called a unit norm frame. If every set
of k vector in a frame F is linearly independent then we call F as k -independent. The
linear map ΘF : H → CN defined by

ΘF( f ) =
N

∑
i=1

〈 f , fi〉ei for all f ∈ H,

is the analysis operator, where {ei}N
i=1 is the standard orthonormal basis for CN (or

R
n ).

The frame operator S is defined by

S f = Θ∗
FΘF f = ∑

i

〈 f , fi〉 fi

which is a positive invertible operator on H and leads to the reconstruction formula:

f =
N

∑
i=1

〈 f ,S−1 fi〉 fi =
N

∑
i=1

〈 f ,S−1/2 fi〉S−1/2 fi, for all f ∈ H.

In this case the frame {S−1 fi}N
i=1 is called the canonical or standard dual frame of F .

In addition to the canonical dual frames, when N > n there exist infinitely many frames
G = {gi}N

i=1 that also give us a reconstruction formula

f =
N

∑
i=1

〈 f ,gi〉 fi =
N

∑
i=1

〈 f , fi〉gi (for all f ∈ H), i.e.Θ∗
GΘF = I.

Here the frame G = {gi}N
i=1 is called an alternate dual frame or dual frame for F . It

is known that G = {gi}N
i=1 is a dual frame for F if and only if there exists a sequence

U = {ui}N
i=1 such that ∑N

i=1〈 f , fi〉ui = 0 for all f ∈ H (i.e. Θ∗
UΘF = 0) and {gi}N

i=1 =
{S−1 fi + ui}N

i=1 . Such a sequence U is called orthogonal or strongly disjoint with F
(c.f. [15, 16]).

In this paper we always assume that a frame F consists of only nonzero vectors
and N > n . When k -erasures occur during the data transmission, we define the error
operator EΛ by

EΛ f = Θ∗
GDΘF f = ∑

i∈Λ
〈 f , fi〉gi,

where Λ is the set of indices corresponding to the erased coefficients, D is an N ×N
diagonal matrix with dii = 1 for i ∈ Λ and zero otherwise. Using the received data we
get an estimated reconstruction f̃ = ∑i/∈Λ〈 f , fi〉gi = f −EΛ f . Using spectral radius as
a measurement, the maximum error when k -erasures occur is defined by

r(k)
F,G = max{r(EΛ) : |Λ| = k}

and minimal maximal error is defined by

r(k)
F = min{r(k)

F,G : G is a dual frame of F},
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where |Λ| denotes the cardinality of Λ and r(EΛ) is the spectral radius of EΛ . A dual

frame G of F is called 1 -erasure spectrally optimal if r(1)
F,G = r(1)

F . We say that G is

k -erasure spectrally optimal if it is (k−1)-erasure spectrally optimal and r(k)
F,G = r(k)

F .

It is true that r(1)
F,G � n

N for any dual frame pair (F,G), and consequently we have

r(1)
F � n

N . This lower bound can be always achieved if F is a uniform-length Parseval

frame. All the frames F with r(1)
F = n

N (we say that such a frame is spectrally one-
uniform) were characterized in [28] in terms of the redundancy distribution of F .

We say that two vectors fi and f j in a sequence F of vectors are linearly F -
connected (or simply, connected) if there exist vectors { fk1 , . . . , fk�

} from F such
that { f j, fk1 , . . . , fk�

} are linearly independent and fi = c f j +∑�
m=1 cm fkm with c,cm all

nonzero.

DEFINITION 2.1. Let F = { fi}N
i=1 be a sequence of nonzero vectors in H . We

say that F
(i) is linearly connected if every two vectors in F are F -connected.
(ii) has the intersection dependent property if HΛ ∩HΛc 	= {0} holds for every

proper subset Λ of {1, . . . ,N} , where HΛ is the subspace spanned by { fi : i ∈ Λ} .
(ii) is k -independent if every k vectors in F are linearly independent.

In [28], we proved that (i) and (ii) are equivalent. This led to the following:

PROPOSITION 2.1. Let F = { fi}N
i=1 be a frame for H . Then there exists a (unique

up to permutations) partition {Λ j}J
j=1 of {1,2, . . . ,N} such that each { fi}i∈Λ j is lin-

early connected, and H is the direct sum of the subspaces Hj = span{ fi : i ∈ Λ j} .

Let Hj , Λ j be as in the above proposition. Then the redundancy distribution of F

is defined to be
{

dimHj
|Λ j |

}
1� j�J

. We say that F has the uniform redundancy distribution

if
dimHj
|Λ j | is a constant for all j .

It was proved in [28] that a frame F is spectrally one-uniform if and only if it
has the uniform redundancy distribution, which is also equivalent to the condition that
there exists a dual G such that 〈 fi,gi〉 = n/N for all i = 1, . . . ,N . Moreover, for any

general frame F we have r(1)
F = max{α j}1� j�J , where {α j}1� j�J is the redundancy

distribution of F . For a spectrally one-uniform frame F we will show that r(2)
F �

n
N +

√
Nn−n2

N2(N−1) . Here we are interested in characterizing those frames such that this

lower (best) error bound can be achieved. So we propose the following definition:

DEFINITION 2.2. Let F be an (N,n) frame. We say that F is spectrally two-

uniform if there exists a dual frame G of F such that r(1)
F,G = n/N and r(2)

F,G = n
N +√

Nn−n2

N2(N−1) .
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The following tells us that spectrally 2-uniform frames are ones that there exists
a dual frame with the property that all the 2×2 error operators have the same spectral
radius. So this also justifies the use of the terminology of 2-uniformity.

THEOREM 2.2. Let F = { fi}N
i=1 be a spectrally one-uniform frame for an n -

dimensional Hilbert space H . Then the following are equivalent:
(i) F is spectrally 2-uniform;
(ii) There exists a one-erasure spectrally optimal dual G of F such that 〈g j, fi〉〈gi, f j〉

is constant for all i 	= j ;
(iii) There exists a one-erasure spectrally optimal dual G of F such that r(EΛ) =

n
N +

√
Nn−n2

N2(N−1) for all subset Λ of {1, . . . ,N} with |Λ| = 2.

As an application, we get the following necessary condition for spectrally 2-
uniform frames. The condition is not sufficient in general (see Example 3.1).

COROLLARY 2.3. If a frame F is spectrally 2-uniform, then it is linearly con-
nected.

More can be said in the case that when N is relatively small (comparing to the
dimension n ). For example, the following theorem gives the characterization of spec-
trally two-uniform frames when N = n+1 and a stronger necessary condition on such
frames for N = n+2.

THEOREM 2.4. Let F = { fi}N
i=1 be a spectrally one-uniform frame for an n -

dimensional H .
(i) If N = n + 1, then F is a spectrally two-uniform frame if and only if F is

n -independent.
(ii) If N = n+2 and F is spectrally two-uniform, then F is n -independent.

In order to prove our main results, we need a simple reduction based on the equiv-
alence of frames. Recall that two frames F = { fi}N

i=1 and F ′ = { f ′i }N
i=1 for H are

called similar if there exists an invertible operator T such that T fi = f ′i for all i .

DEFINITION 2.3. Two frames F = { fi}N
i=1 and F ′ = { f ′i }N

i=1 are called equiva-
lent if one of them can be obtained from the other through either the similarity and/or
permutation (i.e., there exists a permutation σ : {1, . . . ,N} → {1, . . . ,N} such that
f ′i = fσ(i) ).

PROPOSITION 2.5. Let F be a frame and k be a positive integer. Then r(k)
F is

equivalent invariant.

Proof. The permutation clearly preserves r(k)
F . Let F = { fi}N

i=1 and F ′ = { f ′i }N
i=1

be similar frames for H and G = {gi}N
i=1 be a dual frame of F . Let T be the invertible

operator such that f ′i = T fi . Let G′ = {g′i}N
i=1 with g′i = (T−1)∗gi . Then G′ is a dual

frame of F ′ . Clearly, 〈 f ′i ,g′j〉 = 〈 fi,g j〉 for all i. j . Thus we get r(k)
F = r(k)

F ′ . �
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3. Proofs of the main results

Let F be a spectrally one-uniform frame and G be a dual frame of F such that
〈gi, fi〉= n/N for all i . Consider the error operator EΛ for Λ = {i, j} . Then the spectral
radius of error operator EΛ is

r(EΛ) = r(Θ∗
GDΛΘF) = r(Θ∗

GD∗
ΛDΛΘF) = r(DΛΘFΘ∗

GD∗
Λ).

where ΘF and ΘG are analysis operators of F and G , respectively, and DΛ is an N
by N diagonal matrix with dii = 1 for i ∈ Λ and zero otherwis. Note that

DΛΘFΘ∗
GD∗

Λ =
(〈gi, fi〉 〈g j, fi〉
〈gi, f j〉 〈g j, f j〉

)
=
(

n
N 〈g j, fi〉

〈gi, f j〉 n
N

)
,

for i 	= j and i, j ∈ {1, . . . ,n} . For the spectral radius of EΛ , we consider the charac-
teristic polynomial ( n

N
−λ

)2−〈g j, fi〉〈gi, f j〉.

So the eigenvalues are given by

λ =
n
N
±
√
〈g j, fi〉〈gi, f j〉. (3.1)

LEMMA 3.1. Assume that F is one-uniform frame. Then:

(i) r(2)
F � n

N +
√

nN−n2

N2(N−1) .

(ii) r(2)
F = n

N +
√

nN−n2

N2(N−1) if and only if there exists a one-erasure spectrally opti-

mal dual G of F such that 〈g j, fi〉〈gi, f j〉 = c for all i 	= j where c is a constant.

Proof. (i) Let G be a one-erasure spectrally optimal dual G of F . Then we have
〈gi, fi〉 = n

N for all i since F is spectrally one-uniform. Note that since ΘFΘ∗
G =

ΘFΘ∗
GΘFΘ∗

G = (ΘFΘ∗
G)2 by Θ∗

GΘF = I , we have

n =
N

∑
i=1

〈gi, fi〉 = tr(ΘFΘ∗
G) = tr

(
(ΘFΘ∗

G)2)=
N

∑
i, j=1

〈gi, f j〉〈g j, fi〉. (3.2)

Note also that since

N

∑
i, j=1

〈gi, f j〉〈g j, fi〉 = ∑
i	= j

〈gi, f j〉〈g j, fi〉+
N

∑
i=1

|〈gi, fi〉|2 = ∑
i	= j

〈gi, f j〉〈g j, fi〉+ n2

N
,

by (3.2), we have

∑
i	= j

〈gi, f j〉〈g j, fi〉 = n− n2

N
=

nN−n2

N
. (3.3)



SPECTRALLY TWO-UNIFORM FRAMES FOR ERASURES 389

Now set ci j = 〈gi, f j〉〈g j, fi〉 and c = nN−n2

N2(N−1) . Then, by (3.3), ∑i	= j Re(ci j) = nN−n2

N .

Let α = {(i, j) : Re(ci j) ∈ R+} . Then ∑(i, j)∈α Re(ci j) � nN−n2

N , which implies that
there exist (i0, j0)∈α such that Re(ci0 j0) � c > 0. Write ci0 j0 = |ci0 j0 |eiθ = |ci0 j0 |cosθ
+ i|ci0 j0 |sinθ . Then, − π

2 < θ < π
2 because Re(ci0 j0) = |ci0 j0 |cosθ ∈ R

+ . Thus,

max

{∣∣∣ n
N

+(ci0 j0)
1/2
∣∣∣, ∣∣∣ n

N
− (ci0 j0)

1/2
∣∣∣
}

� n
N

+Re(ci0 j0)
1/2 =

n
N

+ |ci0 j0 |1/2 cos
θ
2

� n
N

+ |ci0 j0 |1/2(cosθ )1/2

=
n
N

+
(
Re(ci0 j0)

)1/2 � n
N

+ c1/2.

The inequalities follow from the fact that cos θ
2 � (cosθ )1/2 and Re(ci0 j0)

1/2 > 0 since
cos2 θ

2 = 1+cosθ
2 � cosθ+cosθ

2 and − π
2 < θ < π

2 . Therefore,

r(2)
F = min

G
{r(2)

F,G} = min
G

max
Λ

{r(EΛ) : |Λ| = 2} � n
N

+
√

c =
n
N

+

√
nN−n2

N2(N−1)
.

(ii) Let G be a dual frame of F with 〈gi, fi〉 = n
N for all i . Assume that ci j =

〈gi, f j〉〈g j, fi〉 = c for all i 	= j , where c is constant. Then by (3.3), we have c =
nN−n2

N2(N−1) . Then, by (3.1),

r(2)
F,G = max

Λ
{r(EΛ) : |Λ| = 2} =

n
N

+

√
nN−n2

N2(N−1)
.

Thus, since we have r(2)
F � n

N +
√

nN−n2

N2(N−1) in part (i), we conclude r(2)
F = n

N +√
nN−n2

N2(N−1) .

For the other direction assume that r(2)
F = n

N +
√

nN−n2

N2(N−1) . Let G be a dual such

that r(2)
F = r(2)

F,G , and 〈gi, fi〉= n
N for all i . We claim that for all i 	= j , Re(ci, j)= nN−n2

N2(N−1)

and Im(ci, j) = 0. To prove the first claim, we assume that Re(ci, j) 	= nN−n2

N2(N−1) for some

i 	= j . Then there exist (i0, j0) such that Re(ci0 j0) > nN−n2

N2(N−1) since ∑i	= j Re(ci j) =
nN−n2

N by (3.3). Using the same argument as in the proof of part (i), we obtain

max

{∣∣∣ n
N

+(c j0i0)
1/2
∣∣∣, ∣∣∣ n

N
− (c j0i0)

1/2
∣∣∣
}

>
n
N

+

√
nN−n2

N2(N−1)
.

Thus, r(2)
F = r(2)

F,G > n
N +

√
nN−n2

N2(N−1) . This contradicts to the assumption that r(2)
F =

n
N +

√
nN−n2

N2(N−1) . Therefore, Re(ci j) is constant for all i 	= j .
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To prove the last claim, we assume that there exist (i0, j0) such that Im(ci0, j0) 	= 0.
Note that if we write ci0, j0 = |ci0, j0 |eiθ , then θ 	= 0 and θ 	= π . Then, we have

max

{∣∣∣ n
N

+(ci0 j0)
1/2
∣∣∣, ∣∣∣ n

N
− (ci0 j0)

1/2
∣∣∣
}

=

(( n
N

+Re(ci0 j0)
1/2
)2

+
(
Im(ci0 j0)

1/2)2)1/2

=

(( n
N

+ |ci0 j0 |1/2 cos
θ
2

)2
+

(
|ci0 j0 |1/2 sin

θ
2

)2)1/2

�
((

n
N

+ |ci0 j0 |1/2(cosθ )1/2

)2

+

(
|ci0 j0 |1/2 sin

θ
2

)2)1/2

=

((
n
N

+

√
nN−n2

N2(N−1)

)2

+

(
|ci0 j0 |1/2 sin

θ
2

)2)1/2

>
n
N

+

√
nN−n2

N2(N−1)

The inequalities, again, follow from the fact that cos θ
2 � (cosθ )1/2 , − π

2 < θ < π
2

and Re(ci0 j0) = nN−n2

N2(N−1) . Thus, r(2)
F = r(2)

F,G > n
N +

√
nN−n2

N2(N−1) which contradicts to the

assumption that r(2)
F = n

N +
√

nN−n2

N2(N−1) . Therefore, Im(ci j) = 0 for all i 	= j . Thus,

ci j = nN−n2

N2(N−1) for all i 	= j . �

Proof of Theorem 2.2. Clearly, (iii) implies (ii) . The equivalence of (i) and (ii)
has been established by Lemma 3.1. For (ii) ⇒ (iii) , assume that 〈g j, fi〉〈gi, f j〉 = c is

constant for all i 	= j . Then, by the proof of Lemma 3.1 (i), we have that c = nN−n2

N2(N−1) .

So r(EΛ) is the largset module of the solutions of (λ − n
N )2 = 〈g j, fi〉〈gi, f j〉= nN−n2

N2(N−1) .

Hence r(EΛ) = n
N +

√
nN−n2

N2(N−1) for all subsets Λ of {1, . . . ,N} with |Λ| = 2. �

Proof of Corollary 2.3. Assume, to the contrary, that F is not linearly connected.
Then, by 2.1, there exists a partition {I j}J

j=1 (J > 1) of {1,2, . . . ,N} such that each
{ fi}i∈Λ j is linearly connected, and H is the direct sum of the subspaces Hj = span{ fi :
i ∈ Λ j} . Since F is spectrally 2-uniform, from Theorem 2.2 there exists a dual frame

G = {gi}N
i=1 for F such that 〈 fi,gi〉 = n

N for all i , and 〈 fi,g j〉 · 〈 f j ,gi〉 = c = nN−n2

N2(N−1) .

From

f1 = ∑
i∈I1

〈 f1,gi〉 fi + ∑
i/∈I1

〈 f1,gi〉 fi,
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and H = ∑J
j=1⊕Hj , we get that f1 = ∑i∈I1〈 f1,gi〉 fi . Thus we obtain that

n
N

= ∑
i∈I1

〈 f1,gi〉〈 fi,g1〉 =
n2

N2 + c(N1−1),

where N1 is the cardinality of I1 . This implies that c = nN−n2

N2(N1−1) > nN−n2

N2(N−1) since

N1 < N . Therefore F must be linearly conneced. �

Proof of Theorem 2.4. (i) First assume that F is an n -independent frame and we
will show that F is a spectrally two-uniform frame. By Proposition 2.5, we can assume
that F = { f1, . . . , fn, fn+1} =

{
e1, . . . ,en,∑n

i=1 aiei
}

, where {ei}n
i=1 is an orthonormal

basis for H and ai 	= 0 for i = 1, . . . ,n . Because F is spectrally one-uniform frame, it
has a dual frame G such that 〈gi, fi〉 = n

n+1 for i = 1, . . . ,n+ 1. Then, by the recon-
struction formula for frames, we have

e j =
n+1

∑
i=1

〈e j, fi〉gi = 〈e j,e j〉g j + 〈e j,a je j〉gn+1 = g j +a jgn+1, for j = 1, . . . ,n.

(3.4)

Then we get

〈e j,e j〉 = 〈g j +a jgn+1,e j〉 = 〈g j,e j〉+a j〈gn+1,e j〉 = 1 for j = 1, . . . ,n, (3.5)

〈e j,ei〉 = 〈g j +a jgn+1,ei〉 = 〈g j,ei〉+a j〈gn+1,ei〉 = 0 for i 	= j. (3.6)

Therefore, for k 	= � (k, � = 1, . . . ,n ),

〈g�, fk〉〈gk, f�〉 = 〈g�,ek〉〈gk,e�〉
= −a�〈gn+1,ek〉 ·−ak〈gn+1,e�〉 by (3.6)

= a�
1−〈gk,ek〉

ak
·ak

1−〈g�,e�〉
a�

by (3.5)

=
(
1− n

n+1

)(
1− n

n+1

)
=

1
(n+1)2 . (3.7)

Furthermore, for k = 1, . . . ,n , we have

〈gn+1, fk〉〈gk, fn+1〉 = 〈gn+1,ek〉〈gk,
n

∑
i=1

aiei〉

= 〈gn+1,ek〉
( n

∑
i=1

ai〈gk,ei〉
)

=
1−〈gk,ek〉

ak

(
∑
i	=k

ai〈gk,ei〉+ak〈gk,ek〉
)

by (3.5)

=
1−〈gk,ek〉

ak

(
∑
i	=k

−akai〈gn+1,ei〉+ak(1−ak〈gn+1,ek〉)
)

by (3.5) and (3.6)
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=
1−〈gk,ek〉

ak
ak

(
1−

n

∑
i=1

ai〈gn+1,ei〉
)

1
ak(n+1)

ak

(
1− n

n+1

)
=

1
(n+1)2 . (3.8)

The last equality follows from the fact that ∑n
i=1 ai〈gn+1,ei〉= 〈gn+1, fn+1〉= n/(n+1) .

Thus, 〈gi, f j〉〈g j, fi〉 = 1
(n+1)2 = nN−n2

N2(N−1) for all i 	= j by (3.7) and (3.8). Hence, by
Theorem 2.2, we conclude that F is spectrally two-uniform.

For the other direction of the proof, assume that F is not n -independent. Again,
by Proposition 2.5, we can assume that F = { f1, . . . , fn, fn+1} = {e1, . . . ,en,∑s

i=1 aiei}
for some s with the property s < n , where {ei}n

i=1 is an orthonormal basis for H and
ai 	= 0 for i = 1, . . . ,s . Let G be a dual frame of F such that 〈gi, fi〉= n

n+1 . Then again
by the reconstruction formula for frames, since s < n , we have

e j =
n+1

∑
i=1

〈e j, fi〉gi = 〈e j,e j〉g j = g j for j = s+1, . . . ,n.

So, 〈g j,ei〉 = 〈e j,ei〉 = 0 for j = s+ 1, . . . ,n, i 	= j. This implies that 〈gn,e j〉 = 0 for
j 	= n . Hence, since s < n

〈gn, fn+1〉 =
s

∑
i=1

ai〈gn,ei〉 = 0.

Thus, 〈gn+1, fn〉〈gn, fn+1〉 = 0. Therefore, by Theorem 2.2, F is not spectrally
two-uniform frame.

(ii) Suppose that F is not n -independent. Prom Proposition (2.5), we can assume
that F = { f1, . . . , fn, fn+1, fn+2}= {e1, . . . ,en,∑s

i=1 aiei,∑n
i=1 biei} for s < n and ai 	= 0

for i = 1, . . . ,s , where {ei}n
i=1 is an orthonormal basis for H . Since F is spectrally

one-uniform frame, then there is a dual frame G of F such that 〈gi, fi〉 = n
n+2 for

i = 1, . . . ,n+2. From the frame reconstruction formula, for i = s+1, . . . ,n we have,

ei =
n+2

∑
j=1

〈ei, f j〉g j = 〈ei,ei〉gi + 〈ei,biei〉gn+2 = gi +bign+2.

Moreover, we have

〈ei,ei〉 = 〈gi +bign+2,ei〉 = 〈gi,ei〉+bi〈gn+2,ei〉 = 1 for i = s+1, . . . ,n. (3.9)

〈ei,e j〉 = 〈gi +bign+2,e j〉 = 〈gi,e j〉+bi〈gn+2,e j〉 = 0 for i = s+1, . . . ,n, j 	= i.
(3.10)

Note here that bi 	= 0 for i = s + 1, . . . ,n (Indeed, if bi = 0 then 〈gi,ei〉 = 1 which
contradicts to the assumption that 〈gi,ei〉 = 〈gi, fi〉 = n

n+2 for i = 1, . . . ,n ). Note also
that

〈gn+2, fn+2〉 =
n

∑
i=1

bi〈gn+2,ei〉 =
n

n+2
. (3.11)
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Thus, by (3.9), we have

〈gn+2, fs+1〉 = 〈gn+2,es+1〉 =
1−n/(n+2)

bs+1
=

2
bs+1(n+2)

. (3.12)

Since ∑i	=s+1 bi〈gn+2,ei〉 = n/(n+2)−bs+1〈gn+2,es+1〉 by (3.11), we also have

〈gs+1, fn+2,〉 =
n

∑
i=1

bi〈gs+1,ei〉 = ∑
i	=s+1

bi〈gs+1,ei〉+bs+1〈gs+1,es+1〉

= ∑
i	=s+1

bi〈gs+1,ei〉+bs+1
n

n+2

= ∑
i	=s+1

bi(−bs+1〈gn+2,ei〉)+bs+1
n

n+2
by (3.10)

= bs+1

(
n/(n+2)− ∑

i	=s+1

bi〈gn+2,ei〉
)

= bs+1

(
n/(n+2)− (n/(n+2)−bs+1〈gn+2,es+1〉)

)
= bs+1

2
n+2

by (3.12). (3.13)

Combining (3.12) and (3.13), we get

〈gn+2, fs+1〉〈gs+1, fn+2〉 =
2

bs+1(n+2)
bs+1

2
n+2

=
4

(n+2)2 .

However, if F were a two-uniform frame then we would have 4
(n+2)2 = n(n+2)−n2

(n+2)2(n+1) .

But this is impossible since 2n 	= 4n+4. Hence, F is not a two-uniform. �
From the proof of Theorem 2.4(i), we have the following:

COROLLARY 3.2. If F with n+1 vectors is n -independent, then every spectrally
one-erasure optimal dual is also spectrally two-erasure optimal.

Finally, we remark that it is well known that there is an upper bound for N in
order to have an (N,n)-equiangular uniform length Parseval frame: in the complex
case N � n2 and in the real case N � n(n + 1)/2 (c.f. [29]). We conjecture that we
may have similar restrictions on N for spectrally two-uniform frames. We provide the
following example as a supporting evidence

EXAMPLE 3.1. There is no two-uniform frame with 4 vectors in R2 .

Proof. Let F be a one-uniform frame and by Proposition 2.1 we can assume that
F = { f1, f2, f3, f4} = {e1,e2,a1e1 +a2e2,b1e1 +b2e2} , where {e1,e2} is an orthonor-
mal basis for R2 . Note that if one of ai = 0, then F is not two independent. Indeed, if
a1 = 0 then { f2, f3} = {e2,a2e2} is not independent. Thus, by Theorem 2.4(ii), F is
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not two uniform. So, we assume that ai,bi 	= 0 for i = 1,2. Since F is one-uniform,
we let G = {g1,g2,g3,g4} be a dual frame of F such that 〈gi, fi〉 = 1

2 for i = 1,2,3,4.
In the frame reconstruction formula letting f1 = e1 and f2 = e2 , we have

e1 =
4

∑
i=1

〈e1, fi〉gi = g1 +a1g3 +b1g4 and e2 =
4

∑
i=1

〈e2, fi〉gi = g2 +a2g3 +b2g4.

Then we have

〈e1,e1〉 = 〈g1 +a1g3 +b1g4,e1〉 = 〈g1,e1〉+a1〈g3,e1〉+b1〈g4,e1〉 = 1 (3.14)

〈e2,e2〉 = 〈g2 +a2g3 +b2g4,e2〉 = 〈g2,e2〉+a2〈g3,e2〉+b2〈g4,e2〉 = 1 (3.15)

〈e1,e2〉 = 〈g1 +a1g3 +b1g4,e2〉 = 〈g1,e2〉+a1〈g3,e2〉+b1〈g4,e2〉 = 0 (3.16)

〈e2,e1〉 = 〈g2 +a2g3 +b2g4,e1〉 = 〈g2,e1〉+a2〈g3,e1〉+b2〈g4,e1〉 = 0 (3.17)

〈g3, f3〉 = 〈g3,a1e1 +a2e2〉 = a1〈g3,e1〉+a2〈g3,e2〉 =
1
2

(3.18)

〈g4, f4〉 = 〈g4,b1e1 +b2e2〉 = b1〈g4,e1〉+b2〈g4,e2〉 =
1
2
. (3.19)

Set 〈g4,e1〉 = x and 〈g4,e2〉 = y . Then, by (3.19), we have x = 1
2b1

− b2
b1

y . So,

〈g4,e1〉 =
1

2b1
− b2

b1
y (3.20)

Moreover, by (3.14) and (3.15), we obtain

〈g3,e1〉 =
1

2a1
− b1

a1
x =

1
2a1

− b1

a1

( 1
2b1

− b2

b1
y
)

=
b2

a1
y. (3.21)

〈g3,e2〉 =
1

2a2
− b2

a2
y. (3.22)

and by (3.16) and (3.17), we have

〈g1,e2〉 = −a1〈g3,e2〉−b1y = −a1

( 1
2a2

− b2

a2
y
)
−b1y = − a1

2a2
+ y
(a1b2

a2
−b1

)
(3.23)

〈g2,e1〉 = −b2x−a2〈g3,e1〉 = −b2

( 1
2b1

− b2

b1
y
)
−a2

b2

a1
y = − b2

2b1
+ y
(b2

2

b1
− a2b2

a1

)
(3.24)

Then, (3.23) and (3.24) imply that

〈g2, f1〉〈g1, f2〉 =〈g2,e1〉〈g1,e2〉

=

(
− b2

2b1
+ y
(b2

2

b1
− a2b2

a1

))(
− a1

2a2
+ y
(a1b2

a2
−b1

))
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=
−a1b2−2a2b1b2y+2a1b2

2y
2a1b1

2a1b2y−2a2b1y−a1

2a2

=
−2a2

1b
2
2y+2a1a2b1b2y+a2

1b2−4a1a2b1b2
2y

2 +4a2
2b

2
1b2y2

4a1a2b1

+
2a1a2b1b2y+4a2

1b
3
2y

2−4a1a2b1b2
2y

2 −2a2
1b

2
2y

4a1a2b1

=
(4a2

2b
2
1b2 +4a2

1b
3
2−8a1a2b1b2

2)y
2 +(4a1a2b1b2−4a2

1b
2
2)y+a2

1b2

4a1a2b1
.

(3.25)

Now we continue computing the rest of the pairs 〈g j, fi〉〈gi, f j〉 , i 	= j so that we equate
all to get a spectrally two-uniform frame F .

By (3.21) and (3.23), we have

〈g3, f1〉〈g1, f3〉 =〈g3,e1〉〈g1,a1e1 +a2e2〉
=〈g3,e1〉(a1〈g1,e1〉+a2〈g1,e2〉)

=
b2

a1
y

(
a1

2
+a2

(
− a1

2a2
+ y
(a1b2

a2
−b1

)))

=
b2

a1
y2(a1b2−a2b1). (3.26)

By (3.20) and (3.23), we have

〈g4, f1〉〈g1, f4〉
=〈g4,e1〉〈g1,b1e1 +b2e2〉 =

( 1
2b1

− b2

b1
y
)
(b1〈g1,e1〉+b2〈g1,e2〉)

=
( 1

2b1
− b2

b1
y
)(b1

2
+b2

(
− a1

2a2
+ y
(a1b2

a2
−b1

)))

=
1−2b2y

2b1

a2b1−a1b2 +2a1b2
2y−2a2b1b2y

2a2

=
a2b1−a1b2 +2a1b2

2y−2a2b1b2y−2a2b1b2y+2a1b2
2y−4a1b3

2y
2 +4a2b1b2

2y
2

4a2b1

=
(4a2b1b2

2−4a1b3
2)y

2 +(4a1b2
2−4a2b1b2)y+a2b1−a1b2

4a2b1
. (3.27)

By (3.22) and (3.24), we have

〈g3, f2〉〈g2, f3〉
=〈g3,e2〉(a1〈g2,e1〉+a2〈g2,e2〉)

=
( 1

2a2
− b2

a2
y
)(

a1

(
− b2

2b1
+ y
(b2

2

b1
− a2b2

a1

))
+

a2

2

)
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=
1−2b2y

2a2

(
−a2b2y−a1b2

( 1
2b1

− b2

b1
y
)

+
a2

2

)

=
1−2b2y

2a2

−2a2b1b2y−a1b2 +2a1b2
2y+a2b1

2b1

=
−2a2b1b2y−a1b2 +2a1b2

2y+a2b1 +4a2b1b2
2y

2 +2a1b2
2y−4a1b3

2y
2−2a2b1b2y

4a2b1

=
(4a2b1b2

2−4a1b3
2)y

2 +(4a1b2
2−4a2b1b2)y+a2b1−a1b2

4a2b1
. (3.28)

By (3.24), we have

〈g4, f2〉〈g2, f4〉 =〈g4,e2〉(b1〈g2,e1〉+b2〈g2,e2〉)

=y

(
b1

(
− b2

2b1
+ y
(b2

2

b1
− a2b2

a1

))
+

b2

2

)

=y

(
− a2b1b2

a1
y−b1b2

( 1
2b1

− b2

b1
y
)

+
b2

2

)

=y
(
− a2b1b2

a1
y+b2

2y
)

=y2 b2

a1
(a1b2−a2b1). (3.29)

Finally, by (3.20), (3.21) and (3.22), we have

〈g4, f3〉〈g3, f4〉
=(a1〈g4,e1〉+a2〈g4,e2〉)(b1〈g3,e1〉+b2〈g3,e2〉)

=(a1x+a2y)

(
b1

b2

a1
y+b2

( 1
2a2

− b2

a2
y
))

=
( a1

2b1
− a1b2

b1
y+a2y

)a1b2−2a1b2
2y+2a2b1b2y

2a1a2

=
a1 +2a2b1y−2a1b2y

2b1

a1b2−2a1b2
2y+2a2b1b2y

2a1a2

=
a2

1b2−2a2
1b

2
2y+2a1a2b1b2y−4a1a2b1b2

2y
2 +2a1a2b1b2y

4a1a2b1

+
4a2

2b
2
1b2y2−2a2

1b
2
2y+4a2

1b
3
2y

2−4a1a2b1b2
2y

2

4a1a2b1

=
(4a2

2b
2
1b2 +4a2

1b
3
2−8a1a2b1b2

2)y
2 +(4a1a2b1b2−4a2

1b
2
2)y+a2

1b2

4a1a2b1
. (3.30)

We observe that equation in (3.25) is equal to equation in (3.30), equation in (3.26)
is equal to equation in (3.29) and equation in (3.27) is equal to equation in (3.28). If
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(F,G) is two uniform frame pair, then all these six equations has to equal to 1/12 since
nN−n2

N2(N−1) = 1
12 . Now set equation in (3.26) to 1/12 and solve for y2 , we get

y2 =
a1

12b2(a1b2−a2b1)
. (3.31)

We note here that a1b2 − a2b1 	= 0. If it were then F would be not two-independent;
thus, by Theorem 2.4, F would be not two-uniform. Substituting y2 to equation in
(3.25) and setting equation in (3.25) to 1/12, we have

a1
12b2(a1b2−a2b1)

4b2(a1b2−a2b1)2 +4a1b2(a2b1−a1b2)y+a2
1b2

4a1a2b1
=

1
12

.

After simplification, we get

a1b2−a2b1 +12b2y(a2b1−a1b2)+a1b2 = a2b1.

Solving the equation for y , we get

y =
1

6b2
. (3.32)

By (3.31) and (3.32), we have

a1

12b2(a1b2−a2b1)
=

1

36b2
2

, i.e., a2b1 = −2a1b2.

Finally, substituting the values of y2 , y and a2b1 into the third equation (3.27), we get

〈e1,g4〉〈 f4,g1〉 =
y2− a1

12b2(a1b2−a2b1)
4b2

2(a2b1−a1b2)+4b2(a1b2−a2b1) 1
6b2

+a2b1−a1b2

4a2b1

=
− a1b2

3 + 2
33a1b2−3a1b2

−8a1b2

=
1
6
	= 1

12
.

Hence, we get a contradiction. Therefore, F is not spectrally two uniform. �

CONJECTURES. (i) If there exists a two-uniform frame of length N for an n -
dimensional Hilbert space H , then N � n(n+1)

2 if H is a real Hilbert space, and N � n2

if H is a complex Hilbert space.
(ii) For any N , there exists an n -independent frame F which is spectrally optimal

for k -erasures for all k with 1 � k � N−n .



398 S. PEHLIVAN, D. HAN AND R. MOHAPATRA

RE F ER EN C ES

[1] J. BENEDETTO AND M. FICKUS, Finite normalized tight frames, Adv. Comput. Math., 18 (2003),
357–385.

[2] B. BODMANN, Optimal linear transmission by loss-insensitive packet encoding, Appl. Comput. Har-
mon. Anal., 22 (2007), 274–285.

[3] B. BODMANN AND V. I. PAULSEN, Frames, graphs and erasures, Linear Algebra Appl. 404 (2005),
118–146.

[4] B. BODMANN, V. PAULSEN AND M. TOMFORDE, Equiangular tight frames from complex Seidel
matrices containing cube roots of unity, Linear Algebra Appl., 430 (2009), 396–417.

[5] B. BODMANN AND P. SINGH, Burst erasures and the mean-square error for cyclic Parseval frames,
IEEE Trans. Inform. Theory, 57 (2011), 4622–4635.

[6] J. CAHILL, M. FICKUS, D. G. MIXON, M. J. POTEET AND N. K. STRAWN, Constructing finite
frames of a given spectrum and set of lengths, Appl. Comput. Harm. Anal., 35 (2013), 52–73.

[7] P. CASAZZA, A. HEINECKE, F. KRAHMER, G. KUTYNIOK, Optimally Sparse Frames, IEEE Trans.
Inform. Theory, 57 (2011), 7279–7287.
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