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NONCOHERENCE OF THE MULTIPLIER ALGEBRA

OF THE DRURY–ARVESON SPACE H2
n FOR n � 3

AMOL SASANE

(Communicated by S. McCullough)

Abstract. Let H2
n denote the Drury-Arveson Hilbert space on the unit ball Bn in Cn , and let

M (H2
n) be its multiplier algebra. We show that for n � 3 , the ring M (H2

n) is not coherent.

1. Introduction

The aim of this article is to investigate a certain algebraic property of rings, called
coherence, which is a generalization of the property of being Noetherian, for a particu-
lar algebra of holomorphic functions in the unit ball in C

n .

DEFINITION 1.1. (Coherent ring) Let R be a unital commutative ring, and for an
n ∈ N := {1,2,3, · · ·} , let Rn = R× ·· ·×R (n times). If f ∈ Rn , say f = ( f1, · · · , fn) ,
then a relation g on f , written g ∈ f⊥ , is an n -tuple g = (g1, · · · ,gn) ∈ Rn such that
g1 f1 + · · ·+ gn fn = 0. The ring R is said to be coherent if for each n ∈ N and each
f ∈ Rn , the R-module f⊥ is finitely generated.

A property which is equivalent to coherence is that the intersection of any two
finitely generated ideals in R is finitely generated, and the annihilator of any element is
finitely generated [4]. We refer the reader to the monograph [7] for the relevance of the
property of coherence in homological algebra. All Noetherian rings are coherent, but
not all coherent rings are Noetherian. For example, the polynomial ring C[x1,x2,x3, · · ·]
is not Noetherian (because the sequence of ideals 〈x1〉 ⊂ 〈x1,x2〉 ⊂ 〈x1,x2,x3〉 ⊂ · · · is
ascending and not stationary), but C[x1,x2,x3, · · ·] is coherent [7, Corollary 2.3.4].

For algebras of holomorphic functions in the unit disk

D := {z ∈ C : |z| < 1}

in C , it is known that the Hardy algebra H∞(D) , consisting of all bounded and holo-
morphic functions on D with pointwise operations, is coherent, while the disk algebra
A(D) (of all functions in H∞(D) that admit a continuous extension to the closure of D
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in C) is not coherent [8]. For n � 3, Amar [1] showed that the Hardy algebra H∞(Bn) ,
consisting of all bounded and holomorphic functions in the unit ball

Bn := {z = (z1, · · · ,zn) ∈ C
n : |z1|2 + · · ·+ |zn|2 < 1},

is not coherent. Related results about some other subalgebras of holomorphic functions
in the ball and the polydisk were also obtained in [1]. Whether or not the Hardy algebra
H∞(D2) (of the bidisk D

2 ) and H∞(B2) are coherent does not seem to be known.
The aim of this article is to prove the noncoherence of the multiplier algebra of the

Drury-Arveson space in Cn with n � 3, and our main result is the following.

THEOREM 1.2. For n � 3 , M (H2
n) is not coherent.

We give the pertinent definitions and notation below.
A multivariable analogue of the classical Hardy space on D in C is the Drury-

Arveson space H2
n on the unit ball Bn in Cn [2], [5]. The space H2

n is a Hilbert
function space that has a natural n -tuple of operators acting on it, giving it the structure
of a Hilbert module, and has been the object of intensive study in the last decade or so
owing to its relation to multivariable operator theory (for example the von Neumann
inequality for commuting row contractions [5]) and multivariable function theory (for
instance Nevanlinna-Pick interpolation [3]).

DEFINITION 1.3. (The Drury-Arveson space H2
n ) The Drury-Arveson space H2

n
is a reproducing kernel Hilbert space of holomorphic functions on Bn with the kernel

K(z,w) =
1

1−〈z,w〉 , z,w ∈ Bn.

We will use the standard multi-index notation: For αααα = (α1, · · · ,αn) ∈ Zn
+ , where

Z+ := {0,1,2,3, · · ·} ,

αααα! := α1! α2! · · ·αn!, |αααα | := α1 + · · ·+ αn, ζζζζ αααα := ζ α1
1 · · ·ζ αn

n .

DEFINITION 1.4. (The multiplier algebra M (H2
n)) A holomorphic function f on

Bn is called a multiplier for H2
n if f ·H2

n ⊂ H2
n .

M (H2
n) is the ring of all multipliers on H2

n with pointwise operations.

If f is a multiplier, then the multiplication operator Mf : H2
n → H2

n corresponding
to f defined by

Mf (g) := f g, g ∈ H2
n,

is necessarily bounded on H2
n [2], and the multiplier norm of f in M (H2

n) is defined to
be the operator norm of Mf . Then M (H2

n) is a strict sub-algebra of H∞(Bn) if n � 2
[2]. If n = 1, then H2

n = H2
1 is the usual Hardy space of the disk, and M (H2

n) = H∞(D) ,
the Hardy algebra on the disk D .

The proof of our main result, Theorem 1.2, is an adaption to the case of M (H2
n)

of the proof given in Amar [1] for showing the noncoherence of H∞(Dn) , n � 3.
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2. Preliminaries

The following result is shown along the same lines as the calculation done in [6,
Lemma 2.3], where it was shown that

z2

1− sz1
∈ M (H2

n)

for all real s ∈ (0,1) and n � 2.

LEMMA 2.1. Let α ∈ T := {z ∈ C : |z| = 1} and n � 2 . Then the function Gα :
Bn → C , given by

Gα(z) =
z2

(1−αz2
1)

1/4
, z = (z1, · · · ,zn) ∈ Bn,

belongs to M (H2
n ) .

Before proving this result, we need some preliminaries from [6, Section 2], repro-
duced here for the convenience of the reader, as they will play an essential role in the
justification of Lemma 2.1. Let

B := {(0,β2, · · · ,βn) : β2, · · · ,βn ∈ Z+} ⊂ Z
n
+.

We will denote as before, the components of z by z1, · · · ,zn . For each ββββ ∈ B , define
the closed linear subspace

Hββββ = span{zk
1z

ββββ : k � 0}

of H2
n . Then we have the orthogonal decomposition

H2
n =

⊕
ββββ∈B

Hββββ .

For each ββββ ∈ B , we have an orthonormal basis {ek,ββββ : k � 0} for Hββββ , where

ek,ββββ (z) =

√
(k+ |ββββ |)!

k!ββββ !
zk
1z

ββββ . (2.1)

Then H0 = H2
1 , the Hardy space of the unit disk D . For the proof of Lemma 2.1, we

need to identify each Hββββ , ββββ �= 0 , as a weighted Bergman space on the unit disk.
Let dA be the area measure on D with the normalization A(D) = 1. For each

integer m � 0, let

B(m) := L2
a

(
D,(1−|ζ |2)mdA(ζ )

)
,

the usual weighted Bergman space of weight m . Then

{e(m)
k : k ∈ Z+}
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is the standard orthonormal basis for B(m) , where

e(m)
k (ζ ) =

√
(k+m+1)!

k!m!
ζ k. (2.2)

For each ββββ ∈ B \ {0} , define the unitary operator Wββββ : Hββββ → B(|ββββ |−1) by

Wββββ ek,ββββ = e(|ββββ |−1)
k , k ∈ Z+. (2.3)

It follows from (2.1) and (2.2) that the weighted shift Mz1 |Hββββ is unitarily equivalent to

Mζ on B(|ββββ |−1) . Thus if ββββ ∈ B \ {0} , then

Wββββ Mz1hββββ = MζWββββ hββββ for all h ∈ Hββββ .

Note that Mz1 |H0 is the unilateral shift.
We will also need the following fact.

LEMMA 2.2. |1− ζ 2|−1/2dA(ζ ) is a Carleson measure for the Hardy space H2
1

of the unit disk D .

Proof. For z = eiϕ , where ϕ ∈ (−π ,π ] , let

Sθ (z) := {reit : 1−θ � r < 1, |t−ϕ |� θ}.
Then we have∫∫

Sθ (z)
|1− ζ 2|−1/2dA(ζ ) =

∫ ϕ+θ

ϕ−θ

∫ 1

1−θ

1

|1− (reit)2|1/2
rdrdt

=
∫ ϕ+θ

ϕ−θ

∫ 1

1−θ

1
4
√

1−2r2 cos(2t)+ r4
rdrdt

�
∫ ϕ+θ

ϕ−θ

∫ 1

1−θ

1
4
√

1−2r2 + r4
rdrdt

=
∫ ϕ+θ

ϕ−θ

∫ 1

1−θ

1√
1− r2

rdrdt

=
∫ ϕ+θ

ϕ−θ

∫ 1−(1−θ)2

0

1
2
√

u
dudt (with u = 1− r2)

=
∫ ϕ+θ

ϕ−θ

√
u
∣∣∣1−(1−θ)2

0
dt

=
∫ ϕ+θ

ϕ−θ

√
1− (1−θ )2dt

�
∫ ϕ+θ

ϕ−θ
1dt = 2θ .

This completes the proof. �
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We are now ready to prove Lemma 2.1.

Proof of Lemma 2.1. It is enough to consider the case when α = 1. Let hββββ ∈ Hββββ ,
where ββββ = (0,β2, · · · ,βn) . Then

hββββ (z) =
∞

∑
k=0

ckz
k
1z

ββββ .

First we assume that ββββ �= 0 . By (2.3),

(Wββββ hββββ )(ζ ) =

√
ββββ !

(|ββββ |−1)!

∞

∑
k=0

ckζ k, ζ ∈ D.

Then Wββββ hββββ ∈ B(|ββββ |−1) . Denote e2 = (0,1, · · · ,0) . Since z2zββββ = zββββ+e2 , we have

(Wββββ+e2
z2hββββ )(ζ ) =

√
(ββββ + e2)!

|ββββ |!
∞

∑
k=0

ckζ k, ζ ∈ D,

and Wββββ+e2
z2hββββ ∈ B|ββββ | . Now suppose that

hββββ (z) = (1− z2
1)

−1/4 fββββ (z),

where

fββββ (z) =
∞

∑
k=0

akz
k
1z

ββββ .

For ζ ∈ D , we have |1− ζ 2| � 1−|ζ |2 , and so

|1− ζ 2|1/2 � (1−|ζ |2)1/2 � 1−|ζ |2. (2.4)

We have

‖z2(1− z2
1)

−1/4 fββββ‖2
H2

n
= ‖z2hββββ‖2

H2
n
= ‖Wββββ+e2

ζ2hββββ‖2
B(|ββββ |)

=
(ββββ + e2)!

|ββββ |!
∫

D

∣∣∣ ∞

∑
k=0

ckζ k
∣∣∣2(1−|ζ |2)|ββββ |dA(ζ )

=
(ββββ + e2)!

|ββββ |!
∫

D

∣∣∣ 1

(1− ζ 2)1/4

∞

∑
k=0

akζ k
∣∣∣2(1−|ζ |2)|ββββ |dA(ζ )

=
(ββββ + e2)!

|ββββ |!
∫

D

∣∣∣ ∞

∑
k=0

akζ k
∣∣∣2 (1−|ζ |2)|ββββ |

|1− ζ 2|1/2
dA(ζ )

� (ββββ + e2)!
|ββββ |!

∫
D

∣∣∣ ∞

∑
k=0

akζ k
∣∣∣2(1−|ζ |2)|ββββ |−1dA(ζ ) (using (2.4))

=
β2 +1
|ββββ |

ββββ !
(|ββββ |−1)!

∫
D

∣∣∣ ∞

∑
k=0

akζ k
∣∣∣2(1−|ζ |2)|ββββ |−1dA(ζ )

=
β2 +1
|ββββ | ‖Wββββ fββββ‖2

B(|ββββ |−1) =
β2 +1
|ββββ | ‖ fββββ‖2

H2
n
� 2‖ fββββ‖2

H2
n
.
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So we have shown that for ββββ �= 0 , the norm of the restriction of the operator of multi-
plication by z2(1− z2

1)
−1/4 to Hββββ does not exceed

√
2.

Next we consider the case when ββββ = 0 . We know that H0 = H2
1 , the Hardy space

on D . Let h ∈ H0 . Then

h(z) =
∞

∑
k=0

ckz
k
1.

we have

(We2z2h)(ζ ) =
∞

∑
k=0

ckζ k, ζ ∈ D

and We2z2h belongs to the Bergman space B(0) . Now suppose

h(z) = (1− z2
1)

−1/4 f (z),

for some

f (z) =
∞

∑
k=0

akz
k
1.

Then

‖z2(1− z2
1)

−1/4 f‖2
H2

n
= ‖We2z2h‖2

B(0)

=
∫

D

∣∣∣ ∞

∑
k=0

ckζ k
∣∣∣2dA(ζ )

=
∫

D

∣∣∣ 1

(1− ζ 2)1/4

∞

∑
k=0

akζ k
∣∣∣2dA(ζ )

=
∫

D

∣∣∣ ∞

∑
k=0

akζ k
∣∣∣2|1− ζ 2|−1/2dA(ζ )

� C‖ f‖2
H2

1
,

where the last inequality follows from the fact that |1− ζ 2|−1/2dA(ζ ) is a Carleson
measure for H2

1 (Lemma 2.2 above). So we have shown that the norm of the restriction
of the operator of multiplication by z2(1− z2

1)
−1/4 to H0 does not exceed

√
C .

If ββββ �= ββββ ′ , fββββ ∈ Hββββ , and fββββ ′ ∈ Hββββ ′ , then

z2

(1− z2
1)1/4

fββββ ⊥ z2

(1− z2
1)1/4

fββββ ′ .

Thus it follows from the two paragraphs above that the multiplication operator MGα
corresponding to

Gα =
z2

(1− z2
1)1/4

is a continuous linear map on H2
n , that is, Gα ∈M (H2

n) . This completes the proof. �
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3. Noncoherence of M (H2
n)

Proof of Theorem 1.2. We will prove the claim by contradiction. Suppose that
M (H2

n) is a coherent ring. Let f = ( f1, f2) ∈ (M (H2
n))

2 , where f1 := z1 and f2 := z2 .
As M (H2

n) is coherent, f⊥ will be finitely generated, say by h1, · · · ,hk in (M (H2
n))

2 .
For α ∈ T , define gα = (g1,α ,g2,α) by

g1,α(z) :=
z2

(1−αz2
3)1/4

,

g2,α(z) :=
−z1

(1−αz2
3)1/4

,

for z = (z1, · · · ,zn) ∈ Bn . Note that by Lemma 2.1, we know that gα is in (M (H2
n))

2

for each α ∈ T .
The rest of the proof is the same, mutatis mutandis, as the proof given in [1, Sec-

tion 1, pages 69-71]. We repeat it here making sure that the implicit but straightforward
changes needed in that proof to adapt it to our different situation, are made explicit here
for the convenience of the reader.

We have

f1gα ,1 + f2gα ,2 = z1 · z2

(1−αz2
3)1/4

+ z2 · −z1

(1−αz2
3)1/4

= 0,

and so gα = (g1,α ,g2,α) ∈ f⊥ . Thus there exist γα ,i ∈ M (H2
n) such that

gα =
k

∑
i=1

γα ,ihi. (3.1)

If hi =: (ri,si) ∈ (M (H2
n))

2 , then we have

z1ri + z2si = 0.

So if z2 = 0, then z1ri = 0. Thus ri = 0 on

{z = (z1, · · · ,zn) ∈ Bn : z2 = 0}.
Hence there exist ti , holomorphic in Bn such that

ri(z) = z2ti(z), i = 1, · · · ,k, z ∈ Bn.

So it now follows from (3.1) that

z2

(1−αz2
3)1/4

=
k

∑
i=1

γα ,i(z)z2ti(z),

that is,

εα(z) :=
1

(1−αz2
3)1/4

=
k

∑
i=1

γα ,i(z)ti(z), α ∈ T, z ∈ Bn.
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Let α1, · · · ,αk,α∗ be k+1 distinct points in T . The equation

εα (z) =
k

∑
i=1

γα ,i(z)ti(z) (3.2)

for these k+1 choices of α can be rewritten in matricial form as follows:⎡
⎢⎢⎢⎣

γα1,1 · · · γα1,k εα1
...

...
...

γαk,1 · · · γαk,k εαk

γα∗,1 · · · γα∗,k εα∗

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

t1
...
tk
−1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
�=0

= 0. (3.3)

Since (3.3) is solvable, we must have

det

⎡
⎢⎢⎢⎣

γα1,1 · · · γα1,k εα1
...

...
...

γαk,1 · · · γαk,k εαk

γα∗,1 · · · γα∗,k εα∗

⎤
⎥⎥⎥⎦ = 0.

Expanding the determinant along the last column gives

det

⎡
⎢⎣ γα1,1 · · · γα1,k

...
...

γαk,1 · · · γαk,k

⎤
⎥⎦

︸ ︷︷ ︸
=:Δ

· εα∗ =
k

∑
i=1

Λα∗,i · εαi , (3.4)

with Λα∗,i ∈ M (H2
n) ⊂ H∞(Bn) (since the γα j ,i ∈ M (H2

n)). Now we consider the
following two possible cases separately:

1◦ For some choice of distinct points α1, · · · ,αk ∈ T , the determinant Δ is not iden-
tically 0 on the variety

V :=
{

z = (z1, · · · ,zn) ∈ Bn : zk = 0 for all k ∈ {1, · · · ,n} \ {3}
}
.

2◦ For every choice of distinct points α1, · · · ,αk ∈ T , Δ ≡ 0 on V .

Let us consider case 1◦ first. The map z3 �→Δ|V (0,0,z3,0, · · · ,0) : D→C is holo-
morphic and bounded, independent of α∗ . As Δ|V is not identically zero, there exists a
point α∗ ∈T , which is distinct from α1, · · · ,αk , such the radial limit of Δ|V (0,0, ·,0, · · · ,
0) is nonzero as z3 → α∗1/2 . Then z2

3 approaches α∗ , and we see in (3.4) that the left
hand side approaches ∞ , while it is not the case that the right hand side approaches ∞
(because the Λα∗,i and the εα j , with α j �= α∗ , stay bounded). This contradiction shows
that this case can’t be possible.
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So we now consider case 2◦ . Set

A := {(α1, · · · ,αk) ∈ T
k : αi �= α j whenever i �= j,1 � i, j � k}.

We know that Δ = 0 on V for every choice of (α1, · · · ,αk) ∈ A . Let � be defined by

� := max
(α1,···,αk)∈A

max
z∈V

rank

⎡
⎢⎣ γα1,1(z) · · · γα1,k(z)

...
...

γαk,1(z) · · · γαk,k(z)

⎤
⎥⎦ . (3.5)

From (3.2), we can deduce that � can’t be zero. Indeed, having � = 0 means that all
the γα j ,i ≡ 0 on V and by (3.2), we would have 1/(1−αz2)1/4 = 0, z ∈ D , which is
clearly impossible. Also � < k owing to the fact that Δ = 0 on V . So we know that
1 � � < k. Now select a particular (α1, · · · ,αk) ∈ A such that the matrix

M :=

⎡
⎢⎣ γα1,1 · · · γα1,k

...
...

γαk,1 · · · γαk,k

⎤
⎥⎦

has maximal rank � somewhere on the variety V . We can then pick out a square
�× � submatrix of the matrix M defined above, having the maximal rank � , and after a
relabelling (if necessary) of the αi , we can arrange that the minor

δ := det

⎡
⎢⎣ γα1,1 · · · γα1,�

...
...

γα�,1 · · · γα�,�

⎤
⎥⎦ �≡ 0 on V .

Now from our choice of (α1, · · · ,αk) ∈A , we keep α1, · · · ,α� fixed, but start changing
α�+1 . Note that it follows from the definition of � that for any choice of α�+1 , which
is distinct from α1, · · · ,α� ,

Di = det

⎡
⎢⎢⎢⎣

γα1,1 · · · γα1,� γα1,i
...

...
...

γα�,1 · · · γα�,� γα�,i

γα�+1,1 · · · γα�+1,� γα�+1,i

⎤
⎥⎥⎥⎦ ≡ 0 on V for all i in {1, · · · ,k}.

In the rest of the proof, we imagine this α�+1 to be a variable living in T\{α1, · · · ,α�} .
We have

det

⎡
⎢⎢⎢⎣

γα1,1 · · · γα1,� εα1
...

...
...

γα�,1 · · · γα�,� εα�

γα�+1,1 · · · γα�+1,� εα�+1

⎤
⎥⎥⎥⎦ = det

⎡
⎢⎢⎢⎣

γα1,1 · · · γα1,�
...

...
γα�,1 · · · γα�,�

t1

⎡
⎢⎣γα1,1

...
γα�,1

⎤
⎥⎦+ · · ·+ tk

⎡
⎢⎣γα1,k

...
γα�,k

⎤
⎥⎦

γα�+1,1 · · · γα�+1,� t1γα�+1,1 + · · ·+ tkγα�+1,k

⎤
⎥⎥⎥⎦

=
k

∑
i=1

tiDi ≡ 0 on V .
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By expanding the determinant on the left hand side along the last column, we obtain

det

⎡
⎢⎣ γα1,1 · · · γα1,�

...
...

γα�,1 · · · γα�,�

⎤
⎥⎦

︸ ︷︷ ︸
=δ

· εα�+1 =
�

∑
i=1

λα�+1,i · εαi on V , (3.6)

with λα�+1,i ∈ M (H2
n) ⊂ H∞(Bn) . By the choice of � , we know that it is not the case

that δ ≡ 0 on V . Now we repeat the argument in 1◦ (replacing α∗ by α�+1 ), as
follows to arrive at a contradiction. The map z3 �→ δ |V (0,0,z3,0, · · · ,0) : D → C is
holomorphic and bounded, independent of α�+1 . As δ |V is not identically zero, there
exists a point α�+1 ∈ T , which is distinct from α1, · · · ,α� , such the radial limit of
Δ|V (0,0, ·,0, · · · ,0) is nonzero as z3 →α�+1

1/2 . Then z2
3 approaches α�+1 , and we see

in (3.6) that the left hand side approaches ∞ , while it is not the case that the right hand
side approaches ∞ (because the λα�+1,i and the εαi , with αi �= α�+1 , stay bounded).
This contradiction shows that this case can’t be possible.

Consequently, f⊥ is not finitely generated, and so M (H2
n) is not coherent. �
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