# HIGHER RANK NUMERICAL HULLS OF MATRICES AND MATRIX POLYNOMIALS 

Gholamreza Aghamollaei and Sharifeh Rezagholi

Dedicated to our teacher:
Professor Abbas Salemi

## (Communicated by C.-K. Li)


#### Abstract

In this paper, some properties of the higher rank numerical hulls, as a generalization of higher rank numerical ranges and polynomial numerical hulls, of matrices are investigated. In particular, the higher rank numerical hulls of Pauli matrices are characterized. Moreover, the notion of higher rank numerical hulls of matrix polynomials is introduced, and some algebraic properties of this notion are investigated. The higher rank numerical hulls of the basic $A$-factor block circulant matrix, which is the block companion matrix of the matrix polynomial $Q(\lambda)=$ $\lambda^{s} I_{n}-A$, are also studied.


## 1. Introduction and preliminaries

Let $M_{n \times m}$ be the vector space of all $n \times m$ complex matrices. For the case $n=m$, $M_{n \times n}$ is denoted by $M_{n}$, namely, the algebra of all $n \times n$ complex matrices. Throughout the paper, $k, m$ and $n$ are considered as positive integers, and $k \leqslant n$. Moreover, $I_{k}$ denotes the $k \times k$ identity matrix, and $\mathscr{I}_{n, k}$ is the set of all $n \times k$ isometry matrices, i.e., $\mathscr{I}_{n, k}=\left\{X \in M_{n \times k}: X^{*} X=I_{k}\right\}$. Motivated by the study of convergence of iterative methods in solving linear systems, e.g., see [23], researchers studied the polynomial numerical hull of order $m$ of a matrix $A \in M_{n}$, which is defined and denoted by

$$
V^{m}(A)=\left\{\lambda \in \mathbb{C}:|p(\lambda)| \leqslant\|p(A)\| \text { for all } p \in \mathbb{P}_{m}\right\}
$$

where $\mathbb{P}_{m}$ is the set of all scalar polynomials of degree $m$ or less and $\|$.$\| is the spectral$ matrix norm (i.e., the matrix norm subordinate to the Euclidean vector norm). This is a set designed to give more information than the spectrum alone can provide about the behavior of the matrix $A$ under the action of polynomials and other functions. For more information see [7], [8], [12], [13] and [24].

[^0]In the context of quantum information theory, if the quantum states are represented as matrices in $M_{n}$, then a quantum channel is a trace preserving completely positive map $L: M_{n} \longrightarrow M_{n}$ with the operator sum representation:

$$
L(A)=\sum_{j=1}^{r} E_{j}^{*} A E_{j}
$$

where $E_{1}, \ldots, E_{r} \in M_{n}$ satisfy $\sum_{j=1}^{r} E_{j} E_{j}^{*}=I_{n}$. The matrices $E_{1}, \ldots, E_{r}$ are known as the error operators of the quantum channel $L$. Let $V$ be a $k$-dimensional subspace of $\mathbb{C}^{n}$, and $P$ be the orthogonal projection of $\mathbb{C}^{n}$ onto $V$. Then, the $k$-dimensional subspace $V$ is a quantum error correction code for the channel $L$ if and only if there are scalars $\gamma_{i j} \in \mathbb{C}$ with $i, j \in\{1, \ldots, r\}$ such that $P E_{i}^{*} E_{j} P=\gamma_{i j} P$; for more information, see [16], [17] and [18]. In this connection, the rank- $k$ numerical range of $A \in M_{n}$ is defined and denoted by

$$
\Lambda_{k}(A)=\left\{\lambda \in \mathbb{C}: X^{*} A X=\lambda I_{k} \text { for some } X \in \mathscr{I}_{n, k}\right\}
$$

The sets $\Lambda_{k}(A)$, where $k \in\{1, \ldots, n\}$, are generally called higher rank numerical ranges of $A$; see [5], [6], [19], [20] and [21] for more information.

Recently, the notion of rank- $k$ numerical hull of order $m$ of a matrix $A \in M_{n}$, as a generalization of $V^{m}(A)$ and $\Lambda_{k}(A)$, is introduced by A. Salemi in [26] and is denoted by:

$$
\mathscr{X}_{k}^{m}(A)=\left\{\lambda \in \mathbb{C}:\left(\lambda, \lambda^{2}, \ldots, \lambda^{m}\right) \in \operatorname{conv}\left(\Lambda_{k}\left(A, A^{2}, \ldots, A^{m}\right)\right)\right\},
$$

where $\operatorname{conv}(S)$ denotes the convex hull of $S \subseteq \mathbb{C}$, and
$\Lambda_{k}\left(A_{1}, A_{2}, \ldots, A_{m}\right)=\left\{\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{C}^{m}: \exists X \in \mathscr{I}_{n, k}\right.$ s.t. $\left.X^{*} A_{j} X=\lambda_{j} I_{k}, j=1, \ldots, m\right\}$
is the joint rank- $k$ numerical range of $\left(A_{1}, A_{2}, \ldots, A_{m}\right) \in \underbrace{M_{n} \times \cdots \times M_{n}}_{m-\text { times }}$. The joint rank-1 numerical range of $\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ is the joint numerical range; namely, $\Lambda_{1}\left(A_{1}, A_{2}, \ldots, A_{m}\right)=W\left(A_{1}, A_{2}, \ldots, A_{m}\right)=\left\{\left(x^{*} A_{1} x, x^{*} A_{2} x, \ldots, x^{*} A_{m} x\right): x \in \mathbb{C}^{n}, x^{*} x=1\right\}$.

The sets $\mathscr{X}_{k}^{m}(A)$, where $k \in\{1,2, \ldots, n\}$ and $m \in \mathbb{N}$, are generally called higher rank numerical hulls of $A$. For the case $k=m=1, \mathscr{X}_{k}^{m}(A)$ reduces to the classical numerical range of $A$; namely,

$$
\mathscr{X}_{1}^{1}(A)=V^{1}(A)=\Lambda_{1}(A)=W(A):=\left\{x^{*} A x: x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

which is useful in studying and understanding of matrices and operators, and has many applications in numerical analysis, differential equations, systems theory, etc; e.g., see [ $9,14,15]$ and references cited there. The rank-k spectrum of a matrix $A \in M_{n}$, as a generalization of the spectrum of $A$, is defined and denoted, see [26], by $\sigma_{k}(A)=\{\lambda \in$ $\left.\mathbb{C}: \operatorname{dim}\left(\operatorname{ker}\left(\lambda I_{n}-A\right)\right) \geqslant k\right\}$.

Next, we list some properties of the higher rank numerical hulls and rank- $k$ spectrum of matrices which will be useful in our discussion. One may see [26] for more details.

Proposition 1.1. Let $A \in M_{n}$. Then the following assertions are true:
(i) $\quad \sigma_{k}(A) \subseteq \sigma_{k-1}(A) \subseteq \cdots \subseteq \sigma_{1}(A)=\sigma(A) ;$
(ii) $\quad \sigma_{k}(A) \subseteq \mathscr{X}_{k}^{m}(A) \subseteq \mathscr{X}_{k-1}^{m}(A) \subseteq \cdots \subseteq \mathscr{X}_{1}^{m}(A)=V^{m}(A) \subseteq V^{m-1}(A) \subseteq \cdots \subseteq V^{1}(A)$

$$
=W(A)
$$

(iii) $\quad \sigma_{k}(A) \subseteq \mathscr{X}_{k}^{m}(A) \subseteq \mathscr{X}_{k}^{m-1}(A) \subseteq \cdots \subseteq \mathscr{X}_{k}^{1}(A)=\Lambda_{k}(A) \subseteq \Lambda_{k-1}(A) \subseteq \cdots \subseteq \Lambda_{1}(A)$ $=W(A)$;
(iv) $\mathscr{X}_{k}^{m}\left(\alpha A+\beta I_{n}\right)=\alpha \mathscr{X}_{k}^{m}(A)+\beta$; where $\alpha, \beta \in \mathbb{C}$;
(v) If $A$ is Hermitian and $m \geqslant 2$, then $\mathscr{X}_{k}^{m}(A)=\sigma_{k}(A)$;
(vi) If $A$ is unitary, then $\mathscr{X}_{k}^{m}(A) \cap \sigma(A)=\sigma_{k}(A)$;
(vii) If $m, k \geqslant 2, n=2 k$, and $A$ is a unitary matrix with distinct eigenvalues, then $\mathscr{X}_{k}^{m}(A)=\emptyset$.

At the end of this section, we give some information about matrix polynomials. Notice that matrix polynomials arise in many applications and their spectral analysis is very important when studying linear systems of ordinary differential equations with constant coefficients [11]. Suppose that

$$
\begin{equation*}
Q(\lambda)=A_{s} \lambda^{s}+\cdots+A_{1} \lambda+A_{0} \tag{1}
\end{equation*}
$$

is a matrix polynomial, where $A_{i} \in M_{n}(i=0,1, \ldots, s), A_{s} \neq 0$ and $\lambda$ is a complex variable. The numbers $s$ and $n$ are referred to as the degree and the order of $Q(\lambda)$, respectively. The matrix polynomial $Q(\lambda)$, as in (1), is called selfadjoint if all coefficients $A_{i}$ are Hermitian. It is called a monic matrix polynomial if $A_{s}=I_{n}$. A scalar $\lambda_{0} \in \mathbb{C}$ is an eigenvalue of $Q(\lambda)$ if the system $Q\left(\lambda_{0}\right) x=0$ has a nonzero solution $x_{0} \in \mathbb{C}^{n}$. This solution $x_{0}$ is known as an eigenvector of $Q(\lambda)$ corresponding to $\lambda_{0}$, and the set of all eigenvalues of $Q(\lambda)$ is said to be the spectrum of $Q(\lambda)$; namely, $\sigma[Q(\lambda)]=\{\mu \in \mathbb{C}: \operatorname{det}(Q(\mu))=0\}$. The (classical) numerical range of $Q(\lambda)$, as in (1), is defined as:

$$
W[Q(\lambda)]:=\left\{\mu \in \mathbb{C}: x^{*} Q(\mu) x=0 \text { for some nonzero } x \in \mathbb{C}^{n}\right\}
$$

which is closed and contains $\sigma[Q(\lambda)]$; see [22] for more information. The numerical range of matrix polynomials plays an important role in the study of overdamped vibration systems with finite number of degrees of freedom, and it is also related to the stability theory; e.g., see [11] and [22]. One generalization of the classical numerical range of $Q(\lambda)$, as in (1), is the polynomial numerical hull of order $m$, which is defined and denoted, see [1] and [27], by

$$
V^{m}[Q(\lambda)]=\left\{\mu \in \mathbb{C}:|p(0)| \leqslant\|p(Q(\mu))\| \text { for all } p \in \mathbb{P}_{m}\right\}
$$

Recently, the notion of rank-k numerical range of $Q(\lambda)$, as another generalization of the classical numerical range of $Q(\lambda)$ was introduced by Aretki and Maroulas [2] as

$$
\Lambda_{k}[Q(\lambda)]=\left\{\mu \in \mathbb{C}: X^{*} Q(\mu) X=0 I_{k} \text { for some } X \in \mathscr{I}_{n, k}\right\}
$$

It is known that $V^{1}[Q(\lambda)]=W[Q(\lambda)]=\Lambda_{1}[Q(\lambda)]$. Also, for the case $Q(\lambda)=\lambda I_{n}-A$, where $A \in M_{n}$, we have $V^{m}[Q(\lambda)]=V^{m}(A)$ and $\Lambda_{k}[Q(\lambda)]=\Lambda_{k}(A)$. So, $V^{m}[Q(\lambda)]$ and $\Lambda_{k}[Q(\lambda)]$ can be considered as generalizations of $V^{m}(A)$ and $\Lambda_{k}(A)$, respectively. In this paper, we are going to study some algebraic and geometrical properties of the higher rank numerical hulls of matrices, and we are also going to generalize this notion for matrix polynomials. For this mind, in Section 2, we present some algebraic and geometrical properties of the higher rank numerical hulls of matrices. In Section 3, we characterize the higher rank numerical hulls of Pauli matrices. In Section 4, we introduce and study the notion of higher rank numerical hulls of matrix polynomials. The higher rank numerical hulls of the basic $A$-factor block circulant matrix, denoted by $\pi_{A}$, which is the block companion matrix of the matrix polynomial $Q(\lambda)=\lambda^{s} I_{n}-A$, are also studied.

## 2. Some properties of higher rank numerical hulls of matrices

At first, we state a result about joint higher rank numerical ranges of matrices which will be useful in our discussion.

THEOREM 2.1. Let $A_{1}, A_{2}, \ldots, A_{m} \in M_{n}$. Then the following assertions are true:
(i) $\Lambda_{k}\left(A_{1}, A_{2}, \ldots, A_{m}\right) \subseteq \Lambda_{k}\left(A_{1} \oplus B_{1}, A_{2} \oplus B_{2}, \ldots, A_{m} \oplus B_{m}\right)$, where $B_{1}, B_{2}, \ldots, B_{m} \in$ $M_{n^{\prime}}$;
(ii) $\Lambda_{k}\left(A_{1}, A_{2}, \ldots, A_{m}\right) \subseteq \bigcap_{X \in \mathscr{I}_{n, n-k+1}} W\left(X^{*} A_{1} X, \ldots, X^{*} A_{m} X\right)$, and for the case $k=1$, the equality holds.

Proof. Let $\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \Lambda_{k}\left(A_{1}, A_{2}, \ldots, A_{m}\right)$. So, there exists a $X \in \mathscr{I}_{n, k}$ such that $X^{*} A_{i} X=\lambda_{i} I_{k}$ for $i=1,2, \ldots, m$. By setting $Y:=\left(\frac{X}{0}\right) \in M_{\left(n+n^{\prime}\right) \times k}$, we have $Y \in$ $\mathscr{I}_{n+n^{\prime}, k}$ and $Y^{*}\left(A_{i} \oplus B_{i}\right) Y=X^{*} A_{i} X=\lambda_{i} I_{k}$, for $i=1,2, \ldots, m$. Hence, $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right) \in$ $\Lambda_{k}\left(A_{1} \oplus B_{1}, A_{2} \oplus B_{2}, \ldots, A_{m} \oplus B_{m}\right)$ and so, the result in (i) holds.

To prove the result in $(i i)$, let $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right) \in \Lambda_{k}\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ be given. So, there exists a $Y \in \mathscr{I}_{n, k}$ such that $Y^{*} A_{j} Y=\alpha_{j} I_{k}$ for $j=1, \ldots, m$. Now, let $X \in \mathscr{I}_{n, n-k+1}$ be given. The dimensions of the column spaces of $Y$ and $X$ are $k$ and $n-k+1$, respectively. Hence, there exists a unit vector $w$ in the intersection of the column spaces of $Y$ and $X$. Let $Y=\left[y_{1}, y_{2}, \ldots, y_{k}\right]$. Since $X^{*} X=I_{n-k+1}$, there exists a unit vector $z \in \mathbb{C}^{n}$ such that $X z=w$. If $w=\beta_{1} y_{1}+\beta_{2} y_{2}+\cdots+\beta_{k} y_{k}$, where $\beta_{i} \in \mathbb{C}$ and $\sum_{i=1}^{k}\left|\beta_{i}\right|^{2}=$ 1 , then for every $j=1, \ldots, m$, we have $z^{*} X^{*} A_{j} X z=w^{*} A_{j} w=\left|\beta_{1}\right|^{2} y_{1}^{*} A_{j} y_{1}+\cdots+$ $\left|\beta_{k}\right|^{2} y_{k}^{*} A_{j} y_{k}=\alpha_{j}$. So, $\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in W\left(X^{*} A_{1} X, X^{*} A_{2} X, \ldots, X^{*} A_{m} X\right)$, and hence, the proof of $\subseteq$ is complete. Since $W\left(U^{*} A_{1} U, \ldots, U^{*} A_{m} U\right)=W\left(A_{1}, \ldots, A_{m}\right)$ for any unitary matrix $U \in M_{n}$, the second assertion is also true.

The following example shows that the set equality in Theorem 2.1 (ii) does not hold in general.

EXAMPLE 2.2. Consider the following matrices in $M_{4}$ :

$$
A_{1}=\left(\begin{array}{cc}
I_{2} & 0 \\
0 & -I_{2}
\end{array}\right), A_{2}=\left(\begin{array}{cc}
0 & I_{2} \\
I_{2} & 0
\end{array}\right), \text { and } A_{3}=\left(\begin{array}{cc}
0 & l I_{2} \\
-l I_{2} & 0
\end{array}\right)
$$

where $t=\sqrt{-1}$. By [19, Example 2.6], we have $\Lambda_{2}\left(A_{1}, A_{2}, A_{3}\right)=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}\right.$ : $\left.x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$, which is not convex. Also $W\left(X^{*} A_{1} X, X^{*} A_{2} X, X^{*} A_{3} X\right)$ is convex for every $X \in \mathscr{I}_{4,3}$. So, $\bigcap_{X \in \mathscr{I}_{4,3}} W\left(X^{*} A_{1} X, X^{*} A_{2} X, X^{*} A_{3} X\right)$ is convex, and can not be equal to $\Lambda_{2}\left(A_{1}, A_{2}, A_{3}\right)$.

Now, in the following proposition, we are going to state some basic properties of the higher rank numerical hulls of matrices.

Proposition 2.3. Let $A \in M_{n}$. Then the following assertions are true:
(i) $\mathscr{X}_{k}^{m}(A)$ is a compact set;
(ii) $\mathscr{X}_{k}^{m}\left(A^{*}\right)=\overline{\mathscr{X}_{k}^{m}(A)}$. Consequently, if $A$ is Hermitian, then $\mathscr{X}_{k}^{m}(A) \subseteq \mathbb{R}$;
(iii) $\mathscr{X}_{k}^{m}\left(U^{*} A U\right)=\mathscr{X}_{k}^{m}(A)$, where $U \in M_{n}$ is unitary;
(iv) $\mathscr{X}_{k}^{m}(A) \cup \mathscr{X}_{k}^{m}(B) \subseteq \mathscr{X}_{k}^{m}(A \oplus B)$, where $B \in M_{n^{\prime}}$ and $k \leqslant \min \left\{n, n^{\prime}\right\}$.

Proof. It is clear that $\Lambda_{k}\left(A, A^{2}, \ldots, A^{m}\right)$ is compact, and hence, $\operatorname{conv}\left(\Lambda_{k}\left(A, A^{2}, \ldots\right.\right.$, $\left.A^{m}\right)$ ) is also compact by [4, Lemma 2.7]. So, $\mathscr{X}_{k}^{m}(A)$ is a closed subset of the compact set $W(A)$ and hence the result in $(i)$ holds.

We have that $\lambda \in \mathscr{X}_{k}^{m}\left(A^{*}\right)$ if and only if there exist $l \in \mathbb{N}$ and positive real numbers $t_{i}(i=1, \ldots, l)$ with $\sum_{i=1}^{l} t_{i}=1$, and $X_{i} \in \mathscr{I}_{n, k}$ such that $\lambda^{j} I_{k}=\sum_{i=1}^{l} t_{i} X_{i}^{*}\left(A^{*}\right)^{j} X_{i}=$ $\left(\sum_{i=1}^{l} t_{i} X_{i}^{*} A^{j} X_{i}\right)^{*}$, for $j=1, \ldots, m$. This is equivalent to $\bar{\lambda}^{j} I_{k}=\sum_{i=1}^{l} t_{i} X_{i}^{*} A^{j} X_{i}$, for $j=1, \ldots, m$; or equivalently, $\bar{\lambda} \in \mathscr{X}_{k}^{m}(A)$. So the result in (ii) also holds.

The result in (iii) is derived easily from this fact that $\Lambda_{k}\left(U^{*} A_{1} U, \ldots, U^{*} A_{m} U\right)=$ $\Lambda_{k}\left(A_{1}, \ldots, A_{m}\right)$, for every $A_{1}, \ldots, A_{m} \in M_{n}$, and for any unitary matrix $U \in \mathbb{M}_{n}$.

For (iv), let $\lambda \in \mathscr{X}_{k}^{m}(A) \cup \mathscr{X}_{k}^{m}(B)$. Without loss of generality, we assume that $\lambda \in \mathscr{X}_{k}^{m}(A)$. Then $\left(\lambda, \lambda^{2}, \ldots, \lambda^{m}\right) \in \operatorname{conv}\left(\Lambda_{k}\left(A, A^{2}, \ldots, A^{m}\right)\right) \subseteq \operatorname{conv}\left(\Lambda_{k}\left(A \oplus B, A^{2} \oplus\right.\right.$ $\left.B^{2}, \ldots, A^{m} \oplus B^{m}\right)$ ), in which the inclusion follows from Theorem $2.1(i)$. This means that $\lambda \in \mathscr{X}_{k}^{m}(A \oplus B)$.

Notice that $\mathscr{X}_{k}^{m}(\cdot)$ can be an empty or a nonempty set in $\mathbb{C}$. For example, let $A=\operatorname{diag}(1,-1)$. Then by Proposition $1.1(v), \mathscr{X}_{2}^{2}(A)=\sigma_{2}(A)=\emptyset$; while $\mathscr{X}_{2}^{2}(A \oplus$ $A)=\sigma_{2}(A \oplus A)=\{-1,1\} \neq \emptyset$. Moreover, by [20, Theorem 3] and Proposition 1.1 (iii), we have the following result.

Proposition 2.4. If $k \geqslant n / 3+1$, then there exists $A \in M_{n}$ such that $\mathscr{X}_{k}^{m}(A)=$ $\emptyset$.

In the following theorem, we study the higher rank numerical hulls of nilpotent matrices.

THEOREM 2.5. Let $A \in M_{n}$ be a nilpotent matrix and $s$ be the geometric multiplicity of its zero eigenvalue. Let $t$ be the smallest positive integer number such that $A^{t}=0$. If $m \geqslant t$, then $\mathscr{X}_{k}^{m}(A) \subseteq\{0\}$, and for the case $k \leqslant s$, the equality holds.

Proof. It is clear that:

$$
\begin{aligned}
\mathscr{X}_{k}^{m}(A) & =\{\lambda \in \mathbb{C}:\left(\lambda, \lambda^{2}, \ldots, \lambda^{m}\right) \in \operatorname{conv}(\Lambda_{k}(A, A^{2}, \ldots, A^{t-1}, \underbrace{0, \ldots, 0}_{(m-t+1)-\text { times }}))\} \\
& =\{\lambda \in \mathbb{C}:\left(\lambda, \lambda^{2}, \ldots, \lambda^{m}\right) \in \operatorname{conv}\left(\Lambda_{k}\left(A, A^{2}, \ldots, A^{t-1}\right)\right) \times \underbrace{\{0\} \times \cdots \times\{0\}}_{(m-t+1)-\text { times }}\} .
\end{aligned}
$$

Now, if $\mathscr{X}_{k}^{m}(A) \neq \emptyset$ and $\lambda \in \mathscr{X}_{k}^{m}(A)$, then by this fact that $t \leqslant m, \lambda^{t}=0$ and hence $\lambda=0$. So $\mathscr{X}_{k}^{m}(A) \subseteq\{0\}$. If $k \leqslant s$, then by Proposition $1.1((i i)$ or $(i i i)),\{0\}=$ $\sigma_{k}(A) \subseteq \mathscr{X}_{k}^{m}(A) \subseteq\{0\}$. Hence, $\mathscr{X}_{k}^{m}(A)=\{0\}$.

COROLLARY 2.6. Let $A \in M_{n}$ be a nilpotent matrix and $t$ be the smallest positive integer number such that $A^{t}=0$. If $m \geqslant t$, then $V^{m}(A)=\{0\}$.

The following example shows that the result in Theorem 2.5 for the case $t>m$ does not hold.

Example 2.7. Let $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. One can easily see that $A^{2}=0$ and

$$
\mathscr{X}_{1}^{1}(A)=W(A)=\{z \in \mathbb{C}:|z| \leqslant 1 / 2\} \nsubseteq\{0\}
$$

At the end of this section, we are going to study the higher rank numerical hulls of tensor products of matrices. For this mind, we need the following lemma. Before, we recall that for the compact set $S \subseteq \mathbb{C}$, the polynomially convex hull of degree $m$ of $S$ (e.g., see [10]), is the following set:

$$
\operatorname{pconv}_{m}(S)=\left\{\lambda \in \mathbb{C}:|p(\lambda)| \leqslant \max _{z \in S}|p(z)| \text { for all } p \in \mathbb{P}_{m}\right\}
$$

LEmmA 2.8. Let $A=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{l} \in M_{n}$, where $A_{i} \in M_{n_{i}}\left(n_{1}+n_{2}+\cdots+n_{l}=\right.$ $n)$. If all matrices $A_{i}$ are normal such that $\sigma\left(A_{i}\right)=\sigma_{k}\left(A_{i}\right)$, then

$$
V^{m}(A)=\operatorname{pconv}_{m}\left(\bigcup_{i=1}^{l} \mathscr{X}_{k}^{m}\left(A_{i}\right)\right)
$$

Proof. Since $A_{i}$ 's are normal for $i=1,2, \ldots, l$, in view of Proposition 2.3 (iii), we assume, without loss of generality, that they are diagonal. Note that the property $\sigma\left(A_{i}\right)=\sigma_{k}\left(A_{i}\right)$ implies that $\mathscr{X}_{k}^{m}\left(A_{i}\right) \neq \emptyset$ for $i=1,2, \ldots, l$. Now, by setting $S=\bigcup_{i=1}^{l} \mathscr{X}_{k}^{m}\left(A_{i}\right)$ and using [10, Theorem 1(v)], it is enough to show that $\|p(A)\|=$ $\max _{z \in S}|p(z)|$ for all $p \in \mathbb{P}_{m}$. Let $p \in \mathbb{P}_{m}$ be given. It is known that $\|p(A)\|=$
$\max _{1 \leqslant i \leqslant l}\left\|p\left(A_{i}\right)\right\|$. Since, $\mathscr{X}_{k}^{m}\left(A_{i}\right) \subseteq V^{m}\left(A_{i}\right)$ for all $i, S \subseteq \bigcup_{i=1}^{l} V^{m}\left(A_{i}\right)$, and hence, $\max _{1 \leqslant i \leqslant l}\left\|p\left(A_{i}\right)\right\| \geqslant \max _{z \in S}|p(z)|$. So $\|p(A)\| \geqslant \max _{z \in S}|p(z)|$.

Conversely, we assume that $\|p(A)\|=|p(\alpha)|$, where $\alpha \in \sigma\left(A_{j}\right)$ for some $1 \leqslant$ $j \leqslant l$. Since $\sigma\left(A_{j}\right)=\sigma_{k}\left(A_{j}\right)$, Proposition $1.1($ ii $)$ implies that $\alpha \in \mathscr{X}_{k}^{m}\left(A_{j}\right) \subseteq S$, and hence $\|p(A)\|=|p(\alpha)| \leqslant \max _{z \in S}|p(z)|$. So the proof is complete.

Theorem 2.9. Let $A \in M_{n_{1}}, B \in M_{n_{2}}$, and $1 \leqslant k_{1} \leqslant n_{1}$ and $1 \leqslant k_{2} \leqslant n_{2}$ be two positive integers. Then the following assertions are true:
(i) $\mathscr{X}_{k_{1}}^{m}(A) \mathscr{X}_{k_{2}}^{m}(B) \subseteq \mathscr{X}_{k_{1} k_{2}}^{m}(A \otimes B)$;
(ii) If $A$ and $B$ are normal matrices, and $\sigma_{k_{1}}(A)=\sigma(A)$ and $\sigma_{k_{2}}(B)=\sigma(B)$, then

$$
V^{m}(A \otimes B)=\operatorname{ponv}_{m}\left(\mathscr{X}_{k_{1}}^{m}(A) \mathscr{X}_{k_{2}}^{m}(B)\right) ;
$$

(iii) If $A$ and $B$ are Hermitian matrices and $m \geqslant 2$, then

$$
\mathscr{X}_{k_{1} k_{2}}^{m}(A \otimes B)=\sigma_{k_{1} k_{2}}(A \otimes B) \supseteq \sigma_{k_{1}}(A) \sigma_{k_{2}}(B) .
$$

Proof. Let $\lambda \in \mathscr{X}_{k_{1}}^{m}(A)$ and $\mu \in \mathscr{X}_{k_{2}}^{m}(B)$ be given. Then there exists nonnegative real numbers $t_{1}, \ldots, t_{p}$ and $s_{1}, \ldots, s_{q}$ with $\sum_{i=1}^{p} t_{i}=1$ and $\sum_{i=1}^{q} s_{i}=1$, and $X_{1}, \ldots, X_{p} \in$ $\mathscr{I}_{n_{1}, k_{1}}$, and $Y_{1}, \ldots, Y_{q} \in \mathscr{I}_{n_{2}, k_{2}}$ such that for $i=1,2, \ldots, m, \lambda^{i} I_{k_{1}}=\sum_{j=1}^{p} t_{j}\left(X_{j}^{*} A^{i} X_{j}\right)$ and $\mu^{i} I_{k_{2}}=\sum_{j=1}^{q} s_{j}\left(Y_{j}^{*} B^{i} Y_{j}\right)$. Now, for $i=1,2, \ldots, m$, we have:

$$
\begin{aligned}
(\lambda \mu)^{i} I_{k_{1} k_{2}} & =\left(\lambda^{i} I_{k_{1}}\right) \otimes\left(\mu^{i} I_{k_{2}}\right) \\
& =\sum_{j=1}^{p} \sum_{l=1}^{q} t_{j} s_{l}\left(X_{j} \otimes Y_{l}\right)^{*}(A \otimes B)^{i}\left(X_{j} \otimes Y_{l}\right) .
\end{aligned}
$$

Since $\sum_{j=1}^{p} \sum_{l=1}^{q} t_{j} s_{l}=1$ and $X_{j} \otimes Y_{l} \in \mathscr{I}_{n_{1} n_{2}, k_{1} k_{2}}$,

$$
\left(\lambda \mu,(\lambda \mu)^{2}, \ldots,(\lambda \mu)^{m}\right) \in \operatorname{conv}\left(\Lambda_{k_{1} k_{2}}\left((A \otimes B),(A \otimes B)^{2}, \ldots,(A \otimes B)^{m}\right)\right),
$$

and hence $\lambda \mu \in \mathscr{X}_{k_{1} k_{2}}^{m}(A \otimes B)$. So, the result in (i) holds.
If $A$ and $B$ are normal matrices, then $A \otimes B$ is also normal.
Without loss of generality, by Proposition 2.3 (iii) , we assume that $A=\operatorname{diag}\left(\alpha_{1}\right.$, $\left.\alpha_{2}, \ldots, \alpha_{n_{1}}\right)$. So, $A \otimes B=\alpha_{1} B \oplus \alpha_{2} B \oplus \cdots \oplus \alpha_{n_{1}} B$, and hence by Lemma 2.8, $V^{m}(A \otimes$ $B)=\operatorname{pconv}_{m}\left(\bigcup_{j=1}^{n_{1}}\left(\alpha_{j} \mathscr{X}_{k_{2}^{m}}^{m}(B)\right)\right)$. In view of Proposition $1.1(i i), \alpha_{j} \in \mathscr{X}_{k_{1}}^{m}(A) \quad(j=$ $\left.1,2, \ldots, n_{1}\right)$ and hence $\operatorname{pconv}_{m}\left(\bigcup_{j=1}^{n_{1}}\left(\alpha_{j} \mathscr{X}_{k_{2}}^{m}(B)\right)\right) \subseteq \operatorname{pconv}_{m}\left(\mathscr{X}_{k_{1}}^{m}(A) \mathscr{X}_{k_{2}}^{m}(B)\right)$. So, $V^{m}(A \otimes B) \subseteq \operatorname{pconv}_{m}\left(\mathscr{X}_{k_{1}}^{m}(A) \mathscr{X}_{k_{2}}^{m}(B)\right)$. On the other hand, by (i) and Proposition $1.1(i i i)$, we have $\mathscr{X}_{k_{1}^{m}}^{m}(A) \mathscr{X}_{k_{2}^{m}}^{m}(B) \subseteq V^{m}(A \otimes B)$.

Hence, by $[10$, Theorem $1(v)], \operatorname{pconv}_{m}\left(\mathscr{X}_{k_{1}}^{m}(A) \mathscr{X}_{k_{2}}^{m}(B)\right) \subseteq V^{m}(A \otimes B)$. So the result in (ii) also holds.

The set equality in (iii) follows from Proposition $1.1(v)$, and also $\supseteq$ is clear. So, the proof is complete.

By setting $k_{1}=k_{2}=1$ in Theorem 2.9, we have the following result.

Corollary 2.10. (See also [1, Theorem 3.5]) Let $A \in M_{n_{1}}$ and $B \in M_{n_{2}}$. Then
(i) $\operatorname{pconv}_{m}\left(V^{m}(A) V^{m}(B)\right) \subseteq V^{m}(A \otimes B)$;
(ii) If $A$ and $B$ are normal matrices, then $V^{m}(A \otimes B)=\operatorname{pconv}_{m}\left(V^{m}(A) V^{m}(B)\right)$.

The following example shows that there are matrices in Theorem 2.9(i) such that the set equality holds.

Example 2.11. Let $A=I_{2}$ and $B=[-1] \oplus I_{3}$. By setting $k_{1}=2, k_{2}=3$ and $m=2$ in Theorem 2.9(i), and using Proposition $1.1(v)$, we have $\mathscr{X}_{2}^{2}(A)=\sigma_{2}(A)=$ $\{1\}, \mathscr{X}_{3}^{2}(B)=\sigma_{3}(B)=\{1\}, \mathscr{X}_{k_{1} k_{2}}^{m}(A \otimes B)=\mathscr{X}_{6}^{2}\left(I_{2} \oplus B\right)=\sigma_{6}(B)=\{1\}$.

So, $\mathscr{X}_{k_{1}}^{m}(A) \mathscr{X}_{k_{2}}^{m}(B)=\mathscr{X}_{k_{1} k_{2}}^{m}(A \otimes B)$.

## 3. Higher rank numerical hulls of Pauli matrices

Four extremely useful matrices in the study of quantum computation and quantum information are known as Pauli matrices, represented as follows:

$$
\sigma_{0}:=I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \sigma_{1}:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}:=\left(\begin{array}{cc}
0 & -l \\
l & 0
\end{array}\right) \quad \text { and } \sigma_{3}:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

where $t=\sqrt{-1}$. These four matrices form an orthogonal basis for the algebra of $2 \times 2$ complex matrices with the Hilbert-Schmidt inner product $\langle A, B\rangle=\operatorname{trace}\left(B^{*} A\right)$. Let $N$ be a positive integer and $n=2^{N}$. The Pauli group $\mathscr{P}_{N}$ is defined to consist of all N -fold tensor product of Pauli matrices with multiplicative factors $\pm 1$ and $\pm l$, as follows

$$
\mathscr{P}_{N}=\left\{\alpha\left(\sigma_{i_{1}} \otimes \sigma_{i_{2}} \otimes \cdots \otimes \sigma_{i_{N}}\right): i_{1}, i_{2}, \ldots, i_{N} \in\{0,1,2,3\}, \alpha \in\{ \pm 1, \pm l\}\right\}
$$

By a Pauli matrix $P \in M_{n}$ we mean an element of the Pauli group $\mathscr{P}_{N}$. For more information, see [16] and [25].

In the following theorem, we characterize the higher rank numerical hulls of Pauli matrices.

THEOREM 3.1. Let $n=2^{N}$ and $P=\alpha\left(\sigma_{i_{1}} \otimes \sigma_{i_{2}} \otimes \cdots \otimes \sigma_{i_{N}}\right) \in M_{n}$, where $\alpha \in$ $\{ \pm 1, \pm \imath\}$ and $i_{1}, i_{2}, \ldots, i_{N} \in\{0,1,2,3\}$, be a Pauli matrix. Then

$$
\mathscr{X}_{k}^{m}(P)= \begin{cases}\{-\alpha, \alpha\} & \text { if } P \neq \alpha I_{n}, k \leqslant n / 2 \text { and } m>1 \\ {[-\alpha, \alpha]} & \text { if } P \neq \alpha I_{n}, k \leqslant n / 2 \text { and } m=1 \\ \emptyset & \text { if } P \neq \alpha I_{n}, k>n / 2 \\ \{\alpha\} & \text { if } P=\alpha I_{n}\end{cases}
$$

where $[-\alpha, \alpha]=\{\alpha x:-1 \leqslant x \leqslant 1\}$.

Proof. We know that both $\sigma_{1}$ and $\sigma_{2}$ are unitarily similar to $\sigma_{3}$. Thus, if $i_{j}=0$ for all $j$, then $P=\alpha I_{n}$; otherwise, $P$ is unitarily similar to $\alpha\left(I_{n / 2} \oplus-I_{n / 2}\right)$ if $i_{j} \neq 0$ for some $j$. Now, Proposition $1.1(v)$ and [6, Theorem 2.4] yield that

$$
\mathscr{X}_{k}^{m}\left(I_{n / 2} \oplus-I_{n / 2}\right)= \begin{cases}\sigma_{k}\left(I_{n / 2} \oplus-I_{n / 2}\right)=\{-1,1\} & \text { if } k \leqslant n / 2 \text { and } m>1 \\ \Lambda_{k}\left(I_{n / 2} \oplus-I_{n / 2}\right)=[-1,1] & \text { if } k \leqslant n / 2 \text { and } m=1 \\ \emptyset & \text { if } k>n / 2\end{cases}
$$

Hence, by Propositions 1.1 (iv) and 2.3 (iii), the result holds.
By setting $k=1$ or $m=1$ in Theorem 3.1, we have the following result.

Corollary 3.2. Let $n=2^{N}$ and $P=\alpha\left(\sigma_{i_{1}} \otimes \sigma_{i_{2}} \otimes \cdots \otimes \sigma_{i_{N}}\right) \in M_{n}$, where $\alpha \in\{ \pm 1, \pm \imath\}$ and $i_{1}, i_{2}, \ldots, i_{N} \in\{0,1,2,3\}$, be a Pauli matrix. Then

$$
V^{m}(P)= \begin{cases}\{-\alpha, \alpha\} & \text { if } P \neq \alpha I_{n} \text { and } m>1 \\ {[-\alpha, \alpha]} & \text { if } P \neq \alpha I_{n} \text { and } m=1 \\ \{\alpha\} & \text { if } P=\alpha I_{n}\end{cases}
$$

and

$$
\Lambda_{k}(P)= \begin{cases}{[-\alpha, \alpha]} & \text { if } P \neq \alpha I_{n} \text { and } k \leqslant n / 2 \\ \emptyset & \text { if } P \neq \alpha I_{n} \text { and } k>n / 2 \\ \{\alpha\} & \text { if } P=\alpha I_{n}\end{cases}
$$

where $[-\alpha, \alpha]=\{\alpha x:-1 \leqslant x \leqslant 1\}$.

## 4. Higher rank numerical hulls of matrix polynomials

In this section, we consider a matrix polynomial $Q(\lambda)=A_{s} \lambda^{s}+\cdots+A_{1} \lambda+A_{0}$ as in (1), and at first, we introduce the notions of higher rank numerical hulls and rank- $k$ spectrum of $Q(\lambda)$.

DEFINITION 4.1. Let $Q(\lambda)$ be a matrix polynomial as in (1). The rank- $k$ numerical hull of order $m$ of $Q(\lambda)$ is defined and denoted by

$$
\mathscr{X}_{k}^{m}[Q(\lambda)]=\left\{\mu \in \mathbb{C}: 0 \in \mathscr{X}_{k}^{m}(Q(\mu))\right\} .
$$

Also, the rank-k spectrum of $Q(\lambda)$ is defined and denoted by

$$
\sigma_{k}[Q(\lambda)]=\left\{\mu \in \mathbb{C}: 0 \in \sigma_{k}(Q(\mu))\right\} .
$$

The sets $\mathscr{X}_{k}^{m}[Q(\lambda)]$, where $k \in\{1,2, \ldots, n\}$ and $m \in \mathbb{N}$, are called generally higher rank numerical hulls of $Q(\lambda)$.

REmARK 4.2. Let $Q(\lambda)=\lambda I-A$, where $A \in M_{n}$. By Definition 4.1 and Proposition $1.1(i v)$, it is clear that $\mathscr{X}_{k}^{m}[Q(\lambda)]=\mathscr{X}_{k}^{m}(A)$. Also, $\sigma_{k}[Q(\lambda)]=\sigma_{k}(A)$. Thus, the notions of rank-k numerical hull and rank-k spectrum of matrix polynomials are generalizations of the rank-k numerical hull and rank-k spectrum of matrices, respectively.

In the next theorem, we establish some basic properties of the higher rank numerical hulls of matrix polynomials.

THEOREM 4.3. Let $Q(\lambda)$ be a matrix polynomial as in (1). Then the following assertions are true:
(i) $\quad \sigma_{k}[Q(\lambda)] \subseteq \mathscr{X}_{k}^{m}[Q(\lambda)] \subseteq \mathscr{X}_{k-1}^{m}[Q(\lambda)] \subseteq \cdots \subseteq \mathscr{X}_{1}^{m}[Q(\lambda)]=V^{m}[Q(\lambda)]$ $\subseteq V^{m-1}[Q(\lambda)] \subseteq \cdots \subseteq V^{1}[Q(\lambda)]=W[Q(\lambda)] ;$
(ii) $\sigma_{k}[Q(\lambda)] \subseteq \mathscr{X}_{k}^{m}[Q(\lambda)] \subseteq \mathscr{X}_{k}^{m-1}[Q(\lambda)] \subseteq \cdots \subseteq \mathscr{X}_{k}^{1}[Q(\lambda)]=\Lambda_{k}[Q(\lambda)]$ $\subseteq \Lambda_{k-1}[Q(\lambda)] \subseteq \cdots \subseteq \Lambda_{1}[Q(\lambda)]=W[Q(\lambda)] ;$
(iii) $\mathscr{X}_{k}^{m}[Q(\lambda+\alpha)]=\mathscr{X}_{k}^{m}[Q(\lambda)]-\alpha$, where $\alpha \in \mathbb{C}$;
(iv) $\mathscr{X}_{k}^{m}[\alpha Q(\lambda)]=\mathscr{X}_{k}^{m}[Q(\lambda)]$, where $\alpha \in \mathbb{C} \backslash\{0\}$;
(v) $\mathscr{X}_{k}^{m}\left[U^{*} Q(\lambda) U\right]=\mathscr{X}_{k}^{m}[Q(\lambda)]$, where $U \in M_{n}$ is unitary;
(vi) $\mathscr{X}_{k}^{m}[Q(\lambda)]=\mathscr{X}_{k}^{m}\left[(Q(\lambda))^{*}\right]$, where $(Q(\lambda))^{*}=A_{s}^{*} \lambda^{s}+\cdots+A_{1}^{*} \lambda+A_{0}^{*}$;
(vii) If $R(\lambda)=\lambda^{s} Q\left(\lambda^{-1}\right):=A_{0} \lambda^{s}+A_{1} \lambda^{s-1}+\cdots+A_{s-1} \lambda+A_{s}$, then

$$
\mathscr{X}_{k}^{m}[R(\lambda)] \backslash\{0\}=\left\{\mu^{-1}: \mu \in \mathscr{X}_{k}^{m}[Q(\lambda)], \mu \neq 0\right\}
$$

(viii) If all the powers of $\lambda$ in $Q(\lambda)$ are even (or all of them are odd), then $\mathscr{X}_{k}^{m}[Q(\lambda)]$ is symmetric with respect to the origin.

Proof. The results in parts (i), (ii), (iii), (iv) and (vii) follows from Definition 4.1 and Proposition $1.1((i i),(i i i),(i v))$. By Definition 4.1 and Proposition $2.3((i i)$ and $(i i i))$, the results in $(v)$ and (vi) can be easily verified. For investigating (viii), assume that all the powers of $\lambda$ in $Q(\lambda)$ are even. Thus, $\mu \in \mathscr{X}_{k}^{m}[Q(\lambda)]$ if and only if $0 \in$ $\mathscr{X}_{k}^{m}(Q(\mu))=\mathscr{X}_{k}^{m}(Q(-\mu))$; or equivalently, $-\mu \in \mathscr{X}_{k}^{m}[Q(\lambda)]$. Another case in (viii) follows from this fact that $Q(-\mu)=-Q(\mu)$ and using the same manner in the proof of the first case. So, the proof is complete.

It is known, by Proposition 1.1 (ii), that the higher rank numerical hulls of matrices are bounded sets. In the next example, we show that this result is not necessarily true for matrix polynomials.

Example 4.4. Let $A=\operatorname{diag}(1,-1, l, 0)$. Then, by Proposition $1.1(i i)$ and [8, Theorem 2.5], we have

$$
\mathscr{X}_{1}^{2}(A)=V^{2}(A)=\sigma(A) \cup\{l s: 0 \leqslant s \leqslant 1\} .
$$

So, by Theorem $4.3(v i i)$ and the fact that $0 \notin \mathscr{X}_{1}^{2}(I)$, we have

$$
\mathscr{X}_{1}^{2}[A \lambda-I]=\left\{\mu^{-1}: \mu \in \mathscr{X}_{1}^{2}(A), \mu \neq 0\right\}=\{-1,1,-l s: s \geqslant 1\},
$$

which is an unbounded set in the complex plane.
By [2, Proposition 7] and Theorem 4.3 (ii), we have the following result.
Proposition 4.5. Let $L(\lambda)=A \lambda+B$ be a selfadjoint linear pencil. If $A$ is a positive semidefinite matrix such that $0 \in \sigma_{k}(A)$, and $B$ is a positive (or negative) definite matrix, then $\mathscr{X}_{k}^{m}[\lambda A+B]=\emptyset$ for any $k=2,3, \ldots n$.

At the end of this section, we study the higher rank numerical hulls of block companion matrix of the monic matrix polynomial $Q(\lambda)=I_{n} \lambda^{s}-A$, where $A \in M_{n}$ and $s \geqslant 2$ (to avoid trivial consideration), which is called the basic $A$-factor block circulant matrix and denoted by

$$
\pi_{A}=\left(\begin{array}{cccccc}
0 & I_{n} & 0 & \ldots & 0 & 0  \tag{2}\\
0 & 0 & I_{n} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & I_{n} & 0 \\
0 & 0 & 0 & \ldots & 0 & I_{n} \\
A & 0 & 0 & \ldots & 0 & 0
\end{array}\right) \in M_{n s}
$$

Basic $A$-factor block circulant matrices have important applications in vibration analysis and differential equations; e.g., see [3] and references therein.

It is known, see [1, Remark 3.2], that

$$
\pi_{A}^{p s+q}=\left(\begin{array}{cc}
0 & I_{s-q} \otimes A^{p} \\
I_{q} \otimes A^{p+1} & 0
\end{array}\right) \in M_{n s}
$$

where $p$ and $q$ are two nonnegative integers with $q \leqslant s, I_{0}$ is a vacuous matrix and $A^{0}=I_{n}$. By Proposition 1.1 (iv) and Definition 4.1, we have $\mathscr{X}_{k}^{m}[Q(\lambda)]=\sqrt[s]{\mathscr{X}_{k}^{m}(A)}$, where for $T \subseteq \mathbb{C}, \sqrt[s]{T}:=\left\{\mu \in \mathbb{C}: \mu^{s} \in T\right\}$. In the following theorem, we state the relationship between $\mathscr{X}_{k}^{m}[Q(\lambda)]$ and the higher rank numerical hulls of $\pi_{A}$.

THEOREM 4.6. Let $A \in M_{n}$ and $\pi_{A}$, as in (2), be the basic $A$-factor block circulant matrix. Then

$$
\sqrt[s]{\mathscr{X}_{k}^{m}(A)} \subseteq \mathscr{X}_{k}^{m s}\left(\pi_{A}\right)
$$

Proof. Let $\mu \in \sqrt[s]{\mathscr{X}_{k}^{m}(A)}$ be given. Then $\mu^{s} \in \mathscr{X}_{k}^{m}(A)$, and hence, there are nonnegative real numbers $t_{1}, t_{2}, \ldots, t_{l}$ summing to 1 , and isometry matrices $X_{1}, X_{2}, \ldots, X_{l} \in$ $\mathscr{I}_{n, k}$ such that

$$
\begin{equation*}
\mu^{s j} I_{k}=\sum_{i=1}^{l} t_{i}\left(X_{i}^{*} A^{j} X_{i}\right) ; \quad j=0,1, \ldots, m \tag{3}
\end{equation*}
$$

Now we consider the following isometries:

$$
Y_{i}=\frac{1}{\sqrt{\sum_{r=0}^{s-1}|\mu|^{2 r}}}\left(\begin{array}{c}
X_{i} \\
\mu X_{i} \\
\vdots \\
\mu^{s-1} X_{i}
\end{array}\right) \in \mathscr{I}_{n s, k} ; \quad i=1,2, \ldots, l
$$

Let $j \in \mathbb{N}$ with $j \leqslant m s$ be given. Then there are integers $0 \leqslant p \leqslant m-1$ and $0 \leqslant q \leqslant s$ such that $j=p s+q$. So, for any $i=1,2, \ldots, l$, we have:

$$
\begin{aligned}
\sum_{r=0}^{s-1}|\mu|^{2 r}\left(Y_{i}^{*} \pi_{A}^{j} Y_{i}\right) & =\left(\sum_{r=0}^{s-1}|\mu|^{2 r}\right)\left(Y_{i}^{*} \pi_{A}^{p s+q} Y_{i}\right) \\
& =\left(\sum_{r=q}^{s-1} \mu^{r} \bar{\mu}^{r-q}\right)\left(X_{i}^{*} A^{p} X_{i}\right)+\left(\sum_{r=0}^{q-1} \mu^{r} \bar{\mu}^{s-q+r}\right)\left(X_{i}^{*} A^{p+1} X_{i}\right),
\end{aligned}
$$

where for the case $q=0$ we only consider the left summation and also for the case $q=s$ we only consider the right summation. Therefore, by (3), we have

$$
\begin{aligned}
\left(\sum_{r=0}^{s-1}|\mu|^{2 r}\right)\left(\sum_{i=1}^{l} t_{i}\left(Y_{i}^{*} \pi_{A}^{j} Y_{i}\right)\right) & =\sum_{i=1}^{l} t_{i}\left[\left(\sum_{r=0}^{s-1}|\mu|^{2 r}\right) Y_{i}^{*} \pi_{A}^{j} Y_{i}\right] \\
& =\sum_{i=1}^{l} t_{i}\left[\left(\sum_{r=q}^{s-1} \mu^{r} \bar{\mu}^{r-q}\right)\left(X_{i}^{*} A^{p} X_{i}\right)+\left(\sum_{r=0}^{q-1} \mu^{r} \bar{\mu}^{r+s-q}\right)\left(X_{i}^{*} A^{p+1} X_{i}\right)\right] \\
& =\left(\sum_{r=q}^{s-1} \mu^{r} \bar{\mu}^{r-q}\right) \sum_{i=1}^{l} t_{i} X_{i}^{*} A^{p} X_{i}+\left(\sum_{r=0}^{q-1} \mu^{r} \bar{\mu}^{r+s-q}\right) \sum_{i=1}^{l} t_{i} X_{i}^{*} A^{p+1} X_{i} \\
& \stackrel{(3)}{=} \sum_{r=q}^{s-1} \mu^{r} \bar{\mu}^{r-q} \mu^{p s} I_{k}+\sum_{r=0}^{q-1} \mu^{r} \bar{\mu}^{r+s-q} \mu^{s(p+1)} I_{k} \\
& =\sum_{r=q}^{s-1} \mu^{r-q} \bar{\mu}^{r-q} \mu^{p s+q} I_{k}+\sum_{r=0}^{q-1} \mu^{r+s-q} \bar{\mu}^{r+s-q} \mu^{p s+q} I_{k} \\
& =\left(\sum_{r=q}^{s-1}|\mu|^{2(r-q)}\right) \mu^{p s+q} I_{k}+\left(\sum_{r=0}^{q-1}|\mu|^{2(r+s-q)}\right) \mu^{p s+q} I_{k} \\
& =\left(\sum_{r=0}^{s-1}|\mu|^{2 r}\right) \mu^{j} I_{k} .
\end{aligned}
$$

So, $\sum_{i=1}^{l} t_{i}\left(Y_{i}^{*} \pi_{A}^{j} Y_{i}\right)=\mu^{j} I_{k}$. Therefore, $\left(\mu, \mu^{2}, \ldots, \mu^{m s}\right) \in \operatorname{conv}\left(\Lambda_{k}\left(\pi_{A}, \pi_{A}^{2}, \ldots, \pi_{A}^{m s}\right)\right)$, and hence $\mu \in \mathscr{X}_{k}^{m s}\left(\pi_{A}\right)$. So, the proof is complete.

Proposition 4.7. Let $A \in M_{n}$ and $\pi_{A}$, as in (2), be the basic $A$-factor block circulant matrix. Then

$$
\sqrt[s]{\Lambda_{k}(A)} \subseteq \mathscr{X}_{k}^{s}\left(\pi_{A}\right)
$$

and the equality holds if $k=1$ or $A$ is a scalar matrix.

Proof. By setting $m=1$ in Theorem 4.6, the inclusion $\subseteq$ holds. For the case $k=1$, the equality holds by [1, Theorem 3.9]. If $A=\alpha I$, for some $\alpha \in \mathbb{C}$, and $\mu \in$ $\mathscr{X}_{k}^{s}\left(\pi_{A}\right)$, then $\left(\mu, \mu^{2}, \ldots, \mu^{s}\right) \in \operatorname{conv}\left(\Lambda_{k}\left(\pi_{A}, \pi_{A}^{2}, \ldots, \pi_{A}^{s}\right)\right)$. So, there exist nonnegative real numbers $t_{1}, \ldots, t_{l}$ with $\sum_{i=1}^{l} t_{i}=1$, and $Y_{1}, \ldots, Y_{l} \in \mathscr{I}_{n s, k}$, where $l \in \mathbb{N}$, such that

$$
\mu^{s} I_{k}=\sum_{i=1}^{l} t_{i} Y_{i}^{*} \pi_{A}^{s} Y_{i}
$$

Since $\pi_{A}^{s}=\underbrace{A \oplus \cdots \oplus A}_{s-\text { times }}=\alpha I_{n s}$, the above relation implies that $\mu^{s} I_{k}=\alpha I_{k}$ and hence, $\mu^{s}=\alpha$. So, $\mu \in \sqrt[s]{\{\alpha\}}=\sqrt[s]{\Lambda_{k}(A)}$, and hence the equality also holds.

Proposition 4.8. Let $A \in M_{n}, k \leqslant n$ and $m \leqslant s-1$. Then $0 \in \mathscr{X}_{k}^{m}\left(\pi_{A}\right)$.
Proof. Since $m \leqslant s-1$, the $(1,1)$-block of $\pi_{A}^{j}$, where $j=1,2, \ldots, m$, is the zero matrix. Hence, by setting

$$
X=\binom{\frac{I_{n \times k}}{0}}{\frac{\vdots}{0}} \in M_{n s \times k}
$$

where $I_{n \times k}=\left(\frac{I_{k}}{0}\right) \in M_{n \times k}$, we have $X \in \mathscr{I}_{n s, k}$ and $X^{*} \pi_{A}^{j} X=0 I_{k}$ for $j=1,2, \ldots, m$. So, $(\underbrace{0,0, \ldots, 0}_{m \text {-times }}) \in \Lambda_{k}\left(\pi_{A}, \pi_{A}^{2}, \ldots, \pi_{A}^{m}\right)$, and hence, $0 \in \mathscr{X}_{k}^{m}\left(\pi_{A}\right)$.

Theorem 4.9. Let $A \in M_{n}$ and $\pi_{A}$, as in (2), be the basic $A$-factor block circulant matrix. Then
(i) $\mathscr{X}_{k}^{m}(A) \subseteq \mathscr{X}_{k^{2}}^{m}\left(\pi_{A}^{s}\right)$;
(ii) If $m \geqslant 2$ and $A$ is Hermitian, and $(r-1) s<k \leqslant r s$ for some $1 \leqslant r \leqslant n$, then

$$
\mathscr{X}_{k}^{m}\left(\pi_{A}^{S}\right)=\sigma_{r}(A)
$$

Proof. Since $\pi_{A}^{s}=I_{s} \otimes A$, by Theorem $2.9(i), \mathscr{X}_{k^{2}}^{m}\left(\pi_{A}^{s}\right) \supseteq \mathscr{X}_{k}^{m}(A) \mathscr{X}_{k}^{m}(I)=\mathscr{X}_{k}^{m}(A)$, and hence, the result in $(i)$ holds. To prove the result in $(i i)$, by Proposition $1.1((i),(v))$, we have

$$
\mathscr{X}_{k}^{m}\left(\pi_{A}^{s}\right)=\mathscr{X}_{k}^{m}\left(I_{s} \otimes A\right)=\sigma_{k}\left(I_{s} \otimes A\right)=\sigma_{k}(\underbrace{A \oplus \cdots \oplus A}_{s-\text { times }}) \supseteq \sigma_{r s}(\underbrace{A \oplus \cdots \oplus A}_{s-\text { times }})=\sigma_{r}(A)
$$

For the converse, let $\lambda \in \sigma_{k}(\underbrace{A \oplus \cdots \oplus A}_{s \text {-times }})$. Then $\operatorname{dim}\left(\operatorname{ker}\left(\left(\lambda I_{n}-A\right)\right) \geqslant k / s\right.$. Since $(r-$ 1) $<k / s \leqslant r, \operatorname{dim}\left(\operatorname{ker}\left(\lambda I_{n}-A\right)\right) \geqslant r$, and hence, $\lambda \in \sigma_{r}(A)$. Therefore, $\mathscr{X}_{k}^{m}\left(\pi_{A}^{s}\right)=$ $\sigma_{k}\left(I_{s} \otimes A\right) \subseteq \sigma_{r}(A)$, and so, the result holds.

At the final proposition, we study the higher rank numerical hulls of unitary basic $A$-factor block circulant matrices.

Proposition 4.10. Let $A \in M_{n}$ be a unitary matrix. Then

$$
\begin{equation*}
\mathscr{X}_{k}^{m}\left(\pi_{A}\right) \cap \sigma\left(\pi_{A}\right)=\sigma_{k}\left(\pi_{A}\right)=\sqrt[s]{\sigma_{k}(A)} \tag{i}
\end{equation*}
$$

(ii) If all eigenvalues of $A$ are distinct, $k, m \geqslant 2$ and $n s=2 k$, then $\mathscr{X}_{k}^{m}\left(\pi_{A}\right)=\emptyset$.

Proof. The result in $(i)$ follows from Proposition $1.1(v i)$. It is known that $\sigma\left(\pi_{A}\right)=$ $\sigma[Q(\lambda)]=\{\sqrt[s]{\mu}: \mu \in \sigma(A)\}$. Since eigenvalues of $A$ are distinct, the eigenvalues of $\pi_{A}$ are also distinct. By [1, Theorem 3.3], $\pi_{A}$ is unitary, and hence, Proposition 1.1 (vii) implies $\mathscr{X}_{k}^{m}\left(\pi_{A}\right)=\emptyset$. So, the proof is complete.

Acknowledgement. The authors are very grateful to the anonymous referees for helpful comments and useful suggestions, especially for simplifying the proof of Theorem 3.1, which greatly improved the presentation of the original manuscript.

The second author has been supported by Payam Noor University, Iran.

## REFERENCES

[1] Gh. Aghamollaei and A. Salemi, Polynomial numerical hulls of matrix polynomials, II, Linear Multilinear Algebra, 59 (2011), 291-302.
[2] A. Aretaki and J. Maroulas, The higher rank numerical range of matrix polynomials, Preprint available at http://arxiv.org/abs/1104.1328.
[3] M. Bayat, H. Teimoori and B. Mehri, A generalization of rotations and hiperbolic matrices and its applications, Electr. J. Linear Algebra, 16 (2007), 125-134.
[4] L. D. Berkovitz, Convexity and Optimization in $\mathbb{R}^{n}$, John Wiley \& Sons, Inc. 2002.
[5] M. D. Choi, M. Giesinger, J. A. Holbrook and D. W. Kribs, Geometry of higher rank numerical ranges, Linear Multilinear Algebra, 56 (2008), 53-64.
[6] M. D. Choi, D. W. Kribs and K. ZycZKowski, Higher rank numerical ranges and compression problems, Linear Algebra Appl. 418 (2006), 828-839.
[7] Ch. Davis, C. K. Li and A. Salemi, Polynomial numerical hulls of matrices, Linear Algebra Appl. 428 (2008), 137-153.
[8] Ch. Davis and A. Salemi, On polynomial numerical hulls of normal matrices, Linear Algebra Appl. 383 (2004), 151-161.
[9] M. Eiermann, Field of values and iterative methods, Linear Algebra Appl. 180 (1993), 167-197.
[10] V. Faber, A. Greenbaum and D. E. Marshall, The polynomial numerical hulls of Jordan blocks and related matrices, Linear Algebra Appl. 374 (2003), 231-246.
[11] I. Gohberg, P. Lancaster and L. Rodman, Matrix Polynomials, Academic Press, New York, 1982.
[12] A. Greenbaum, Generalizations of field of values useful in the study of polynomial functions of a matrix, Linear Algebra Appl. 347 (2003), 233-249.
[13] A. Greenbaum, Upper and lower bounds on norms of functions of matrices, Linear Algebra Appl. 430 (2009), 52-65.
[14] K. E. Gustafson and D. K. M. Rao, Numerical Range: The Field of Values of Linear Operators and Matrices, Springer-Verlage, New York, 1997.
[15] R. Horn and C. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991.
[16] E. Knill and R. Laflamme, Theory of quantum error-correcting codes, Phys. Rev. A. 55 (1997), 900-911.
[17] E. Knill, R. Laflamme and L. Viola, Theory of quantum error correction for general noise, Phys. Rev. Lett. 84 (2000), 2525-2528.
[18] D. W. Kribs, R. Laflamme, D. Poulin and M. Lesosky, Operator quantum error correction, Quant. Inf. Comput. 6 (2006), 383-399.
[19] C. K. Li and Y. T. Poon, Generalized numerical ranges and quantum error correction, J. Operator Theory, 66 (2011), 335-351.
[20] C. K. Li, Y. T. Poon And N. S. Sze, Condition for the higher rank numerical range to be non-empty, Linear Multilinear Algebra, 57 (2009), 365-368.
[21] C. K. Li, Y. T. Poon and N. S. Sze, Higher rank numerical ranges and low rank perturbations of quantum channels, J. Math. Anal. Appl. 348 (2008), 843-855.
[22] C. K. Li and L. Rodman, Numerical range of matrix polynomials, SIAM J. Matrix Anal. Appl. 15 (1994), 1256-1265.
[23] O. Nevanlinna, Convergence of Iterations for Linear Equations, Birkhäuser, Basel, 1993.
[24] O. Nevanlinna, Hessenberge matrices in Krylove subspace and computation of the spectrum, Numer. Func. Anal. Optim. 16 (1995), 443-473.
[25] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2010.
[26] A. Salemi, Higher rank numerical hulls of matrices, Operators and Matrices, 6 (2012), 79-84.
[27] A. Salemi and Gh. Aghamollaei, Polynomial numerical hulls of matrix polynomials, Linear Multilinear Algebra, 55 (2007), 219-228.
(Received July 2, 2014)

Gholamreza Aghamollaei<br>Department of Pure Mathematics Shahid Bahonar University of Kerman<br>76169-14111, Kerman, Iran<br>e-mail: aghamollaei@uk.ac.ir,<br>gh_aghamollaei@yahoo.com<br>Sharifeh Rezagholi<br>Department of Pure Mathematics Shahid Bahonar University of Kerman<br>76169-14111, Kerman, Iran<br>e-mail: rezagholi@math.uk.ac.ir,<br>sh_rezagholi79@yahoo.com


[^0]:    Mathematics subject classification (2010): 15A60, 15A18, 15A69, 47A56, 81P68.
    Keywords and phrases: Higher rank numerical hull, rank- $k$ numerical range, joint higher rank numerical range, polynomial numerical hull, Pauli matrices, matrix polynomials.

