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ANA C. CONCEIÇÃO AND RUI C. MARREIROS

(Communicated by I. M. Spitkovsky)

Abstract. On the Hilbert space L̃2(T) the singular integral operator with non-Carleman shift
and conjugation K = P+ + (aI + AC)P− is considered, where P± are the Cauchy projectors,

A =
m
∑
j=0

ajU j , a,aj , j = 1,m , are continuous functions on the unit circle T , U is the shift

operator and C is the operator of complex conjugation. Some estimates for the dimension of the
kernel of the operator K are obtained.

1. Introduction

Let T denote the unit circle in the complex plane, T+ and T− denote the inte-
rior and the exterior (∞ included) of the unit disk, respectively. On the Hilbert Space
L2(T) we consider the singular integral operator with Cauchy kernel, defined almost
everywhere on T by

(Sϕ)(t) = (π i)−1
∫

T

ϕ(τ)(τ − t)−1dτ,

where the integral is understood in the sense of its principal value. The operator S is a
bounded linear involutive operator (S2 = I , where I is the identity operator on L2(T)).
Then it is possible to define in L2(T) a pair of complementary projection operators in
L2(T) ,

P± =
1
2
(I±S),

and to decompose L2(T) = L+
2 (T)⊕

◦
L−

2 (T) , with L+
2 (T) = imP+ and

◦
L−

2 (T) = imP− .

We also set L−
2 (T) =

◦
L−

2 (T)⊕C .
As usual, L∞(T) denotes the space of all essentially bounded functions on T and

H∞(T) the class of all bounded and analytic functions in T+ .

Mathematics subject classification (2010): Primary 47G10, 47A68; Secondary 45P05, 68W30.
Keywords and phrases: Singular integral operators with shift, kernel dimension, factorization theory,

symbolic computation.
This research was supported by Fundação para a Ciência e Tecnologia (Portugal) through Centro de Análise Funcional

e Aplicações of Instituto Superior Técnico.

c© � � , Zagreb
Paper OaM-09-27

433

http://dx.doi.org/10.7153/oam-09-27
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Let Hr,θ (T) denote the set of all functions of H∞(T) that can be represented by
the product of a rational outer function r (i.e., r has all the zeros and poles in T− )
and an inner function θ (i.e., θ is a bounded and analytic function on T+ , such that
its modulus is equal to one a.e. on T). Let C (T) denote the algebra of all continuous
functions on T , R(T) denote the algebra of rational functions without poles on T , and
R±(T) denote the subsets of R(T) whose elements have no poles in T± , respectively.

Now let us introduce the concept of matrix function generalized factorization (see,
for instance, [3] and [23]): we say that a matrix function c ∈ Ln×n

∞ (T) admits a right
(left) generalized factorization in L2(T) if it can be represented as

c = c−Λc+ (c+Λc−), (1)

where
c±1
− ∈ [L−

2 (T)
]n×n

, c±1
+ ∈ [L+

2 (T)
]n×n

, Λ(t) = diag{tκ j},
κ j ∈ Z , j = 1,n , with κ1 � κ2 � . . . � κn , and c−P+c+I (c+P+c−I ) represents

a bounded linear operator in Ln
2(T) ; the number κ =

n
∑
j=1

κ j is called the factorization

index of the determinant of the matrix function c . The integers κ j are uniquely defined
by the matrix function c and are called its right (left) partial indices. If κ j = 0, j = 1,n ,
then c is said to admit a right (left) canonical generalized factorization in L2(T) .

Any non-singular continuous matrix function c ∈ C n×n(T) admits a generalized
factorization (1) in L2(T) (see, for instance, the above cited [3] and [23]).

Any non-singular rational matrix function c ∈ Rn×n(T) admits a factorization of
the form (1) (see, for instance, [12]), where

c±1
− ∈ [R−(T)

]n×n
, c±1

+ ∈ [R+(T)
]n×n

. (2)

For the particular scalar case we note that κ = indc if c ∈ C (T) ; as usual, indϕ
denotes the Cauchy index of a continuous function ϕ ∈ C (T) , i.e.,

indϕ =
1
2π

{argϕ(t)}t∈T.

If c± ∈ R(T) , then κ = z+− p+ , where z+ is the number of zeros of c in T+ and p+
is the number of poles of c in T+ (with regard to their multiplicities) (see, for instance,
[6])

Now let ω be a homeomorphism of T onto itself, which is differentiable on T

and whose derivative does not vanish there. The function ω : T → T is called a shift
function or simply a shift on T . By

ωk(t) ≡ ω [ωk−1(t)], ω1(t) ≡ ω(t), ω0(t) ≡ t, t ∈ T,

we denote the k-th iteration of the shift, k � 2, k ∈ N .
A shift ω is called a (generalized) Carleman shift of order n∈N\{1} if ωn(t)≡ t ,

but ωk(t) �≡ t for k = 1,n−1. Otherwise, if ω is not a Carleman shift, it is called a
non-Carleman shift.
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In what follows we will consider a linear fractional non-Carleman shift preserving
the orientation on T

α(t) =
μt + ν
νt + μ

, t ∈ T, (3)

where μ ,ν ∈ C : |μ |2 −|ν|2 = 1. This shift has two fixed points, τ1 and τ2 , given by
the formula

τ1,2 =
μ − μ ±√(μ + μ)2 −4

2ν
. (4)

Obviously τ1 �= τ2 if |Re μ | �= 1.
The rational shift function α admits the factorization (1)

α(t) = α+(t)tα−(t),

where

α+(t) =
1

νt + μ
, α−(t) =

μt + ν
t

= (α+(t))−1.

We see that the functions α±,α−1
± are analytic in T± and continuous in the closure of

T± , respectively.
Let a,a0,a1, . . . ,am ∈ C (T) be given continuous functions on T . As usual, let

L̃2(T) denote the real space of all Lebesgue measurable square summable complex
valued functions on T . On L̃2(T) , associated with the shift α , we consider the shift
operator U defined by

(Uϕ)(t) = α+(t)ϕ [α(t)].

The shift operator U satisfies the properties:
i) U is isometric, i.e., ‖Uϕ‖ = ‖ϕ‖ ;
ii) US = SU .
We also consider the following two operators on L̃2(T) : the bounded linear invo-

lutive operator of complex conjugation C ,

(Cϕ)(t) = t−1ϕ(t), (5)

and the functional operator

A =
m

∑
j=0

a jU
j.

The operators P± , U and C , verify the properties

CU =UC, UP± = P±U, CP± = P∓C. (6)

In this work we will study the singular integral operator (SIO) with non-Carleman
shift and conjugation defined in the unit circle

K = P+ +(aI +AC)P−. (7)

The history of SIOs with shift, as well as related singular integral equations with
shift and related boundary value problems with shift, is rich. These problems were



436 A. C. CONCEIÇÃO AND R. C. MARREIROS

studied during the second half of the last century till the present time. Ilya Vekua’s book
[28] (first edition in 1959) played a key role in this process; in this and in other similar
books (see e.g. [29]), it has been shown how some mathematical physics problems
lead to the solvability of boundary value problems with shift. The Fredholm theory of
SIOs with Carleman shift was constructed in the sixties and the seventies of the XX
century (see [21]). For the case of non-Carleman shift, the theory was completed in
the eighties (see [17]). However, more interesting questions about the solvability of
boundary value problems with shifts, have been considered only with very restrictive
conditions on the respective coefficients (see [21]). Recent progress in the study of the
spectral properties of SIOs with linear fractional Carleman shift and conjugation (see
[11], [14], [15], [16], and [27]) makes it possible to study the solvability of the related
boundary value problems (see [22]). For non-Carleman shift, the question about the
solvability of this type of problems remains open (see [2], [18], and [24]).

In [19] we studied a generalized Riemann boundary value problem with a non-
Carleman shift and conjugation on the real line, through the study of the kernel of
the operator (7) (considering the shift operator (Urϕ)(t) = ϕ(t + μ) , μ is a fixed real
number, and the operator of complex conjugation (Crϕ)(t) = ϕ(t) ).

In the present paper we consider the operator (7) on the unit circle. The estimate
for the dimension of its kernel,

dimkerK � l( f )+max(κ− k,0)+max(κ + k,0)+1,

is obtained (see formula (29) bellow). It is interesting to note that, besides the terms
present when we had considered K on the real line, there is a new term in the right
member of (29). As we see bellow, this term, 1, appears as a consequence of the
weight t−1 in the definition of the operator of complex conjugation. The influence of
the coefficients a1,a2, . . . ,am is restricted to the term l( f ) only; the terms κ and k
depend only on the coefficients a and a0 .

In Section 2 we present some estimates for the dimension of the kernel of the
operator K . The most general case is considered in Subsection 2.1. A special case,
when K has some bounded and analytic coefficients in T+ , is described in Subsection
2.2.

In recent years, several software applications with extensive capabilities of sym-
bolic computation were made available to the general public. These computer algebra
systems (CAS) allow to delegate to a computer all, or a significant part, of the symbolic
and numeric calculations present in many mathematical algorithms. In our work we use
the CAS Mathematica to implement, on a computer, some of our analytical algorithms
within operator theory (see [5], [6], [9], and [25]).

In Section 3 we show how symbolic computation can be used to explore the dimen-
sion of the kernel of the operator K . The rational case is considered in Subsection 3.1.
In Subsubsection 3.1.1 we present the analytical algorithm [ARFact-Scalar] that gives
explicit factorizations for any factorable rational function defined on the unit circle. The
[ARFact-Matrix] algorithm that computes explicit factorizations for non-singular ratio-
nal matrix functions defined on the unit circle is presented in Subsubsection 3.1.2. The
inner-outer factorization concept is considered in Subsection 3.2 to obtain particular
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results on the estimate of the dimension of the kernel of operator K . The Subsubsec-
tion 3.2.1 describe the generalized factorization algorithm [AFact], for special classes
of factorable essentially bounded hermitian matrix functions. The [AKer-Hϕ *Hϕ ]
algorithm that computes the kernel of SIOs related with Hankel operators is presented
in Subsubsection 3.2.2. Subsubsection 3.2.3 contains some particular cases. These four
analytical algorithms allows us to design a new algorithm to estimate the dimension
of the kernel of operator K . Several nontrivial examples are presented to illustrate the
importance of symbolic computation on the study of this kind of problems.

2. On the dimension of the kernel of the operator K

In this section we present some estimates for the dimension of the kernel of the
operator (7). The most general case is considered in Subsection 2.1. A special case,
when K has some bounded and analytic coefficients in T+ , is described in Subsection
2.2.

2.1. The case C (T)

PROPOSITION 2.1. Let K1 : L̃2
2(T) → L̃2

2(T) be the SIO with shift

K1 = M1P+ +M2P−,

where M1 , M2 , are the functional operators

M1 =
(

I A
0 t−1aI

)
, M2 =

(
aI 0
Ã I

)
, Ã =

m

∑
j=0

t−1a jU
j;

then

dimkerK =
1
2

dimkerK1. (8)

Proof. Making use of the properties (6) and C2 = I , we obtain the following rela-
tion between the operators K and K1 , similar to the Gohberg-Krupnik matrix equality
(see [13]),

N diag{K, K̃}N−1 = K1,

where
K̃ = P+ +(aI−AC)P−,

and N is the following invertible operator in L̃2
2(T)

N =
1√
2

(
I I
C −C

)
.

We then have
dimkerK +dimker K̃ = dimkerK1.

Since (iI)−1K(iI) = K̃ , then dimkerK = dimker K̃ .
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Thus
2dimkerK = dimkerK1,

i.e., (8). �

In what follows, all the continuous functions a are invertible on T . Then M1 , M2

are invertible operators, so the operator K1 is Fredholm in L̃2
2(T) (see [17]).

Let us consider the operator

K2 = M−1
2 K1. (9)

Simple computations show that

K2 =
2m

∑
j=0

b̃ jU
jP+ +P−, (10)

where
b̃ j = diag{1,t−1}b j, j = 0,2m,

with

b0 =
(

a−1 a−1a0

−a−1a0 a−a−1 |a0|2
)

, (11)

b1 =
(

0 a−1a1

−a−1(α)a1 −a−1a0a1−a−1(α)a1a0(α)

)
,

b2 =
(

0 a−1a2

−a−1(α2)a2 −a−1a0a2−a−1(α)a1a1(α)−a−1(α2)a2a0(α2)

)
,

. . . ,

bm =
(

0 a−1am

−a−1(αm)am −a−1a0am−·· ·−a−1(αm)ama0(αm)

)
,

bm+1 =
(

0 0
0 −a−1(α)a1am(α)−·· ·−a−1(αm)ama1(αm)

)
,

. . . ,

b2m =
(

0 0
0 −a−1(αm)amam(αm)

)
.

Taking into account Proposition 2.1 and (9) we have

PROPOSITION 2.2. Let K2 : L̃2
2(T) → L̃2

2(T) be the SIO with shift defined by (10),
then

dimkerK =
1
2

dimkerK2.

We proceed with the following result.
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PROPOSITION 2.3. Let K3 : L̃2
2(T) → L̃2

2(T) be the SIO with shift

K3 =
2m

∑
j=0

b jU
jP+ +P−,

then

dimkerK � 1
2
(dimkerK3 +2).

Proof. Let
d = diag{1,t}, d−1 = diag{1, t−1}.

The operator K2 defined by (10) can be written by the product

K2 = d−1

(
2m

∑
j=0

b jU
jP+ +dP−

)
we obtain that

dimkerK2 = dimker

(
2m

∑
j=0

b jU
jP+ +dP−

)
.

Taking into account Proposition 2.3, in [18], it follows the inequality1

dimker

(
2m

∑
j=0

b jU
jP+ +dP−

)
� dimker

(
2m

∑
j=0

b jU
jP+ +P−

)
+2,

i.e.,
dimkerK2 � dimkerK3 +2.

With Proposition 2.2 we are done. �
Let en denote the (n×n) identity matrix and, for simplicity, e ≡ e2 .

PROPOSITION 2.4. Let K4 : L̃4m
2 (T) → L̃4m

2 (T) be the SIO with shift

K4 = (c0I + c1U)P+ +P−, (12)

where c0 and c1 are the (4m×4m) matrix functions

c0 = diag{b0,e4m−2}
and

c1 =

⎛⎜⎜⎜⎜⎜⎜⎝

b1 b2 · · · b2m−1 b2m

−e 0 · · · 0 0

0 −e
. . .

...
...

...
...

. . . 0 0
0 0 · · · −e 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (13)

1Here we have ”2” in the left member of the inequality because the operators act in the real space L̃2
2(T) .
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Then

dimkerK � 1
2
(dimkerK4 +2).

Proof. We take into account the result formulated in [19], Proposition 2.3, on the

real line, considering the shift βr(t) = t+μ , t ∈
◦
R = R∪{∞} , μ is a fixed real number.

Since UηP+ = P+Uη , in a similar way, on the unit circle, we show that

dimkerK3 = dimkerK4.

With Proposition 2.3 the result follows. �

Now we analyze the matrix function b0 defined by (11) in more detail,

b0 =
(

a−1 a−1a0

−a−1a0 −a−1 |a0|2 +a

)
.

Note that detb0(t) �= 0 for all t ∈ T . So the non-singular continuous matrix function
b0 admits a right generalized factorization (1) in L2(T)

b0 = b−Λb+. (14)

It is assumed that
b±1
± ∈C2×2(T).

For the continuous function a0 let us denote its projections by

(a0)± := P±(a0).

Considering the decomposition a0 = (a0)+ + (a0)− we start to consider the par-
ticular case when the function (a0)− is the null function. This is an interesting case
since the matrix function b0 admits the right generalized factorization (14), where

b− =
(

a−1
− 0

−a−1
− (a0)+ a+

)
, b+ =

(
a−1

+ a−1
+ (a0)+

0 a−

)
,

and
Λ(t) = diag{t−κ,t−κ}.

Obviously, we get the following result

PROPOSITION 2.5. Let a be an invertible continuous function on T , and let

a(t) = a−(t)tκa+(t), κ = inda,

be a generalized factorization (1) of a in L2(T) . Then the right partial indices of the
matrix function b0 are κ1 = −κ and κ2 = −κ .
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For the general case, we must consider the function

u := (a0)−(a−a+)−1,

its projections
u± := P±u,

and the Hankel operator (acting in the Hardy class H2(T)) with symbol ϕ ∈ L∞(T)

Hϕ = P−ϕP+.

On the right partial indices of the matrix function b0 we get the following result

PROPOSITION 2.6. Let a be an invertible continuous function on T , and let

a(t) = a−(t)tκa+(t), κ = inda,

be a generalized factorization (1) of a in L2(T) . Then the right partial indices of the
matrix function b0 are

κ1 = −κ + k, κ2 = −κ− k,

where
k = dimker(H∗

u−Hu− − I). (15)

Proof. The matrix function b0 can be written as

b0(t) = t−κc−(t)g(t)c+(t),

where

c− =
(

1 0
−(a0)+ −1

)(
a−1
− 0
0 a+

)(
1 0
u+ 1

)
,

c+ =
(

1 u+
0 1

)(
a−1

+ 0
0 a−

)(
1 (a0)+
0 1

)
,

and

g =
(

1 u−
u− |u−|2 −1

)
. (16)

The hermitian matrix function g admits the following right generalized factoriza-
tion in L2(T)

g(t) = g−(t)diag{tk,t−k}g+(t).

In [4] it is proved that the right partial index k is equal to the dimension of the kernel
of the selfadjoint operator H∗

u−Hu− − I , i.e., (15). Since c±1
− ∈ [L−

2 (T)
]2×2

and c±1
+ ∈[

L+
2 (T)

]2×2
, a right generalized factorization of the matrix function b0 is

b0(t) = c−(t)g−(t)diag{t−κ+k,t−κ−k}g+(t)c+(t),

and so κ1 = −κ + k , κ2 = −κ− k are its right partial indices. �
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REMARK. In [23] it is proved that the integer k is equal to the dimension of the
kernel of the operator I −P−u−P+u−P− . We consider the operator H∗

u−Hu− instead
of the operator P−u−P+u−P− since in [7] it is described an analytical algorithm to
compute explicitly a left generalized factorization of factorable essentially bounded
matrix functions of the form

Aγ(u) =
(

1 u
u |u|2 + γ

)
, (17)

where u ∈ Hr,θ (T) and γ ∈ C \ {0} . Obviously the algorithm also computes the left
partial indices of Aγ(u) (that is, the right partial indices of A T

γ (u)). In addition, in [9]
it is described an analytical algorithm to compute explicitly the kernel of operators of
the form H∗

ϕHϕ + γI , where ϕ ∈ Hr,θ (T) .

PROPOSITION 2.7. Let a be an invertible continuous function on T and c1 be
the matrix function defined by (13). Let b0 be the matrix function defined by (11) and
(14) a right generalized factorization of b0 in L2(T) . Then

dimkerK � 1
2
(dimkerK5 −2κ

−
1 −2κ

−
2 +2), (18)

where K5 : L̃4m
2 (T) → L̃4m

2 (T) is the SIO with shift

K5 = (I + fU)P+ +P−, (19)

f is the (4m×4m) matrix function

f = diag{Λ−1
− b−1

− ,e4m−2}c1 diag{b−1
+ (α)Λ−1

+ (α),e4m−2}, (20)

with

Λ± = diag{tκ±
1 ,tκ

±
2 }, κ

±
j =

1
2
(κ j ±

∣∣κ j
∣∣), j = 1,2.

Proof. The operator K4 defined by (12) admits the factorization

K4 = diag{b−,e4m−2}K̃4[diag{b+,e4m−2}P+ +diag{b−1
− ,e4m−2}P−], (21)

where
K̃4 =

[
diag{Λ,e4m−2}I + f̃U

]
P+ +P−,

with
f̃ = diag{b−1

− ,e4m−2}c1 diag{b−1
+ (α),e4m−2}.

The first and the third operators in (21) are invertible, therefore

dimkerK4 = dimker K̃4. (22)

Now we consider the left invertible operators

K− = P+ +diag{Λ−,e4m−2}P−, K+ = diag{Λ+,e4m−2}P+ +P−,
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and the operator

K̃5 =
[
diag{Λ+,e4m−2}I +diag{Λ−1

− ,e4m−2} f̃U
]
P+ +P−.

The following equalities hold

K̃4K− = diag{Λ−,e4m−2}K̃5, (23)

K̃5 = K5K+, (24)

where K5 is the operator defined by (19).
It follows from (23) that

dimker K̃4 � dimker K̃5 +dimcokerK−, (25)

and from (24)
dimker K̃5 � dimkerK5. (26)

It is known that (see [26])2

dimcokerK− = −2κ
−
1 −2κ

−
2 . (27)

Putting together (22), (25), (26), and (27) we obtain

dimkerK4 � dimkerK5 −2κ
−
1 −2κ

−
2 .

With Proposition 2.4 we are done. �

Thus, it remains to estimate dimkerK5 . As usual, let σ(ξ ) and ‖ξ‖2 denote the
spectrum and the spectral norm of a matrix ξ ∈ Cn×n , respectively. Now we will make
use of some results from [18]; recall that τ1,2 are the fixed points (4) of the shift α
defined by (3).

LEMMA 2.8. [18] For any continuous matrix function h ∈ C n×n(T) such that

σ [h(τ j)] ⊂ T+, j = 1,2,

there exists a polynomial matrix s satisfying the conditions

max
t∈T

∥∥s(t)h(t)s−1(α(t))
∥∥

2 < 1

and

P+s±1P+ = s±1P+.

2As before (see the footnote in the proof of Proposition 2.3), we have ”2” in the left member of the
equality because the operator acts in the real space L̃4m

2 (T) .



444 A. C. CONCEIÇÃO AND R. C. MARREIROS

Let Rh denote the set of all such polynomial matrices s ,

l1(s) =
n

∑
i=1

max
j=1,n

li, j,

where li, j is the degree of the element si, j(t)of the polynomial matrix s and

l(h) = min
s∈Rh

{l1(s)}. (28)

LEMMA 2.9. [18] Let T = (I − cU)P+ +P− : Ln
2(T) → Ln

2(T) , where the matrix
function c satisfies the conditions of the Lemma 2.8, and let l(c) be the number defined
by (28) for the matrix function c. Then the following estimate holds

dimkerT � l(c).

PROPOSITION 2.10. Let the conditions of Proposition 2.7 be satisfied and K5 the
SIO defined by (19). Then

dimkerK5 � 2l( f ),

where l( f ) is the number defined by (28) for the matrix function f .

Proof. Taking into account Lemmas 2.8 and 2.9, it suffices to show that

σ [ f (τ j)] ⊂ T+, j = 1,2.

Without loss of generality we can suppose that the fixed points of the shift lie in
the real line, i.e., τ1 = 1 and τ2 = −1 (see p. 8 in [2]).

From the factorization b0 = b−Λb+ of the matrix function b0 , we have at the fixed
point τ1 = 1 (analogously we proceed at the fixed point τ2 = −1)

b0(1) = b−(1)b+(1),

so

b−1
+ (1) = b−1

0 (1)b−(1).

Now recalling (20), we can write

f (1) = diag{b−1
− (1),e4m−2}c1(1)diag{b−1

+ (1),e4m−2}

and so

f (1) = diag{b−1
− (1),e4m−2}c1(1)diag{b−1

0 (1),e4m−2}diag{b−(1),e4m−2},

which means that the matrices f (1) and c1(1)diag{b−1
0 (1),e4m−2} are similar.
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From here, doing exactly as in the proof of Proposition 2.6 in [19], we show that
all the eigenvalues of the matrix

c1(1)diag{b−1
0 (1),e4m−2} =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1(1)b−1
0 (1) b2(1) b3(1) · · · b2m−1(1) b2m(1)

−b−1
0 (1) 0 0 · · · 0 0

0 −e 0 · · · 0 0

0 0 −e
. . .

...
...

...
. . . 0 0

0 0 0 · · · −e 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

are equal to 0.
Thus

σ [ f (1)] = {0}. �

Finally, Propositions 2.7 and 2.10 allow us to establish our main result on the
estimate of the dimension of the kernel of K .

THEOREM 2.11. Let K be the SIO with non-Carleman shift and conjugation de-
fined by (7). Let a be an invertible continuous function on T , κ = inda, and k be the
number defined by (15); let f be the matrix function defined by (20), and l( f ) be the
number defined by (28) for the matrix function f . Then the following estimate holds

dimkerK � l( f )+max(κ− k,0)+max(κ + k,0)+1. (29)

REMARK. By Proposition 2.6, the partial indices of the matrix function b0 are
κ1 = −κ + k and κ2 = −κ− k . Therefore the estimate (29) can be written as

dimkerK � l( f )+max(−κ1,0)+max(−κ2,0)+1. (30)

The next result shows that, if the matrix function b0 has negative partial indices
then the estimates (29) does not depends (directly) on the value of k .

COROLLARY 2.12. If the partial indice κ1 of the matrix function b0 is negative,
then

dimkerK � l( f )+2κ +1. (31)

Proof. Since κ1 < 0, then κ > k . So,

max(κ− k,0) = κ− k and max(κ + k,0) = κ + k. �

The estimate (29) depends on the integer constants l( f ) , κ , and k . In Section 3
we will see that some analytical algorithms implemented with Mathematica can be used
to determine the constants κ and k . In addition, it is important to note the possibility
of the constants to be equal zero, only one, or more than one simultaneously. The
following results and examples in Section 3 illustrate these possibilities.

From (15) we can derive the following result:
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COROLLARY 2.13. If 1 /∈ σ(H∗
u−Hu−) , then

dimkerK � l( f )+2max(κ,0)+1. (32)

Proof. From (15) we get that k = 0. So,

max(κ− k,0) = max(κ + k,0) = max(κ,0). �

Due to the possibility of the constant κ to be equal zero, independently of the
value of the constant k we get the following result:

COROLLARY 2.14. If the Cauchy index of the function a is equal to zero, then

dimkerK � l( f )+ k+1. (33)

Using the factorization concept we get

COROLLARY 2.15. If a and g admits right canonical generalized factorizations,
then

dimkerK � l( f )+1. (34)

Obviously, the constant l( f ) can be equal to zero. Using Lemma 2.8 and formula
(28), we obtain the following

COROLLARY 2.16. If maxt∈T

∥∥s(t) f (t)s−1(α(t))
∥∥

2 < 1 for a constant matrix s,
then

dimkerK � max(κ− k,0)+max(κ + k,0)+1. (35)

In the following subsection we consider the operator K with coefficients a j , j =
0,m in a more restricted class of continuous functions on T and some results for which
the constant l( f ) is equal to zero are obtained.

2.2. The case H∞(T)∩C (T)

We are considering the SIO with non-Carleman shift and conjugation defined by
(7), with a±1 ∈ C (T) .

It is easy to see that for the case when the function a0 is a continuous, bounded and
analytic function in T+ , the selfadjoint operator H∗

u−Hu− − I has a trivial kernel. Thus,
according to the Proposition 2.5 and the Theorem 2.11, we get the following result

COROLLARY 2.17. If a0 ∈ H∞(T)∩C (T) , then

dimkerK � l( f )+2max(κ,0)+1. (36)
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Let us consider now the operator (7),

K = P+ +(aI +AC)P−, (37)

with a j ∈ H∞(T)∩C (T) , j = 1,m .
Let N1 : L̃2

2(T) → L̃2
2(T) be the invertible operator

N1 =
(

I A−a0I
0 −I

)
P+ +

( −I 0
Ã− t−1a0I I

)
P−.

Recall that A =
m
∑
j=0

a jU j and Ã =
m
∑
j=0

t−1a jU j .

We define the operator T1 : L̃2
2(T) → L̃2

2(T) by

T1 = K1N1,

where K1 is the operator defined in Proposition 2.1. It is easily seen that

T1 =
(

1 −a0

0 −t−1a

)
P+ +

( −a 0
−t−1a0 1

)
P−.

Therefore, according to Proposition 2.1, we have

dimkerK =
1
2

dimkerT1. (38)

Then we have

T1 =
( −a 0
−t−1a0 1

)[( −a 0
−t−1a0 1

)−1( 1 −a0

0 −t−1a

)
P+ +P−

]

=
( −a 0
−t−1a0 1

)[( −a−1 a−1a0

−t−1a−1a0 t−1(a−1 |a0|2−a)

)
P+ +P−

]
;

therefore
dimkerT1 = dimkerT2, (39)

where

T2 =
( −a−1 a−1a0

−t−1a−1a0 t−1(a−1 |a0|2−a)

)
P+ +P−.

The following results take place

PROPOSITION 2.18. Let T3 : L̃2
2(T) → L̃2

2(T) be the SIO with shift

T3 = b00P+ +P−, (40)

where

b00 =
( −a−1 a−1a0

−a−1a0 a−1 |a0|2−a

)
.

Then

dimkerK � 1
2
(dimkerT3 +2).



448 A. C. CONCEIÇÃO AND R. C. MARREIROS

Proof. Proceeding analogously to the proof of Proposition 2.3, let

d = diag{1,t} and d−1 = diag{1,t−1}.

Since
T2 = d−1 [b00P+ +dP−] ,

then
dimkerT2 = dimker [b00P+ +dP−] � dimkerT3 +2.

Taking into account (38) and (39), the result follows. �

PROPOSITION 2.19. Let T3 : L̃2
2(T) → L̃2

2(T) be the SIO with shift defined by
(40); then

dimkerT3 = 2 [max(−κ1,0)+max(−κ2,0)] .

Proof. Since (
1 0
0 −1

)
b00

(−1 0
0 1

)
= b0,

the partial indices of the matrix functions b00 and b0 are the same. �

Thus, with Propositions 2.18 and 2.19, we get the following estimate

PROPOSITION 2.20. Let K be the SIO with non-Carleman shift and conjugation
defined by (37) and κ = inda. Then the following estimate holds

dimkerK � max(−κ1,0)+max(−κ2,0)+1 (41)

COROLLARY 2.21. Let K be the SIO with non-Carleman shift and conjugation
defined by (37), κ = inda, and a0 ∈H∞(T)∩C (T) . Then the following estimate holds

dimkerK � 2max(κ,0)+1. (42)

REMARK. By Proposition 2.5, the partial indices of the matrix function b0 are
κ1 = κ2 = −κ . Therefore the estimate (42) can be written as

dimkerK � 2max(−κ1,0)+1.

Due to the possibility of the constant κ to be equal zero, independently of the
function a0 we get:

COROLLARY 2.22. If the Cauchy index of the function a is equal to zero and
a j ∈ H∞(T)∩C (T) , j = 0,m, then

dimkerK � 1. (43)
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3. Symbolic computation on the dimension of the kernel of the operator K

In this section we show how symbolic computation can be used to explore the
dimension of the kernel of the operator (7). The rational case is considered in Sub-
section 3.1. The inner-outer factorization concept is considered in Subsection 3.2 to
obtain particular results on the estimates of the dimension of the kernel of operator K .
The analytical algorithms described in Subsection 3.1 and Subsection 3.2 allows us to
design a new algorithm to estimate the dimension of the kernel of operator K .

3.1. The case R(T)

In this subsection we consider the rational case. This is an important case that
shows the importance of the symbolic computation on the estimation of the dimension
of the kernel of operator K since if a±1 ∈ R(T) , the constant κ can always be explic-
itly determined using the [ARFact-Scalar] algorithm (see [9]). Concerning the matrix
functions related with the estimate (29), another analytical algorithm can be considered.
If g ∈ R2×2(T) , then the [ARFact-Matrix] algorithm (see [6]) can be used to compute
constant k . In addition, if b0 ∈ R2×2(T) , then its right partial indices κ1 and κ2 can
also be determined by [ARFact-Matrix] algorithm.

3.1.1. The [ARFact-Scalar] algorithm

The [ARFact-Scalar] algorithm was implemented with Mathematica and computes
explicit factorizations for any factorable rational function defined on the unit circle. The
[ARFact-Scalar] source code was used in the design of spectral and kernel algorithms.
[6] and [9] contain several nontrivial examples computed with this algorithm.

The [ARFact-Scalar] algorithm has a rather simple structure and, in fact, it consists
essentially in the computation of factorization (1) with factors (2), using formulæ

c+(t) = λ

z−
∏
i=1

(t− z−i )

p−
∏
j=1

(t − p−j )
, c−(t) =

z+

∏
i=1

(1− t−1z+i )

p+

∏
j=1

(1− t−1p+
j )

, κ = z+ − p+, λ ∈ C,

where z±i ( i = 1, · · · ,z± ) denote all the zeros of the rational function c in T± (with
regard to their multiplicities) and p±j ( j = 1, · · · , p± ) denote all the poles of c in T±
(with regard to their multiplicities).

The symbolic computation capabilities of Mathematica, and the pretty-print func-
tionality3, allow the [ARFact-Scalar] code to be very simple and syntactically similar
to its analytical counterpart.

We note that, since the zeros and poles of c(t) are a crucial information for this
calculation technique, the success of the [ARFact-Scalar] algorithm depends on the pos-
sibility of finding those zeros and poles by solving polynomial equations. This can be a

3The pretty-print functionality allows to write on the computer screen scientific formulas in the traditional
format, as if one was using pencil and paper.
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serious limitation when working with polynomials of the fifth degree or higher. How-
ever, even in this case, thanks to the symbolic and numeric capabilities of Mathematica,
it is still possible to obtain an explicit, and for all purposes exact, rational factorization.

Mathematica uses Root objects to represent solutions of algebraic equations in one
variable, when it is impossible to find explicit formulas for these solutions. The Root
object is not a mere denoting symbol but rather an expression that can be symbolically
manipulated and numerically evaluated. In particular, it is still possible to know if any
given Root lies in the unit circle, in the interior or in the exterior of the unit circle, which
is all the information the [ARFact-Scalar] algorithm needs to construct the factors c±(t)
and to compute the factorization index. Note that the factorization index is always
obtained explicitly. So, in the rational case, the constant κ that appears in the estimate
of the Theorem 2.11 can be always determined by the [ARFact-Scalar] algorithm.

The implementation of the [ARFact-Scalar] algorithm potentiates the future design
of algorithms dedicated to specific domains of application and, in particular, algorithms
to compute the kernel of singular integral integrals.

EXAMPLE. Let K be the SIO with non-Carleman shift and conjugation defined
by (7). Let

a(t) = (t +
5
2
)(t5 +2t4 +3)−1.

In this case, using the [ARFact-Scalar] algorithm, we get that κ = inda = 0 and the
estimate

dimkerK � l( f )+ k+1

holds.
Taking into account Corollary 2.17 and Corollary 2.22 two particular cases must

be considered:

• If a0 ∈ H∞(T)∩C (T) , then

dimkerK � l( f )+1.

• If a j ∈ H∞(T)∩C (T) , j = 0,m , then

dimkerK � 1.

REMARK. This example shows that, in spite of the impossibility of computing, in
an explicit way, the roots of the high degree polynomial t5 +2t4 +3, the factorization
index of the rational function a(t) can always be obtained explicitly by the [ARFact-
Scalar] algorithm. Here Mathematica uses the objects Root [#15 + 2#14 + 3&, i] to
represent the solutions of t5 +2t4 +3. As we noted before it is possible to know if any
root lies in T , in T+ , or in T− :

In[]:= Table[ABS[Root [#15 +2#14 +3&, i]] < 1,{i,5}]
Out[]:= {False,False,False,False,False}
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3.1.2. The [ARFact-Matrix] algorithm

The [ARFact-Matrix] algorithm was implemented with Mathematica and com-
putes explicit factorizations for non-singular rational matrix functions defined on the
unit circle (see [6]). Parts of the code of the [ARFact-Matrix] algorithm were used in
the design of spectral and kernel algorithms (see [9]).

Similar to the scalar case, the success of the [ARFact-Matrix] algorithm depends
on the possibility of finding solutions of polynomial equations. However, due to the
complexity of the matrix case, it is not as feasible as before to use the Root objects to
obtain an explicit matrix factorization when working with polynomials of a high degree.
In fact, one crucial step of this algorithm is finding the zeros of the determinant of a
matrix function. This means that the dimension of the matrix function is also a limiting
factor, even when its entries are rational functions with low degree polynomials.

Some examples computed with this algorithm are presented in [6].
Since the estimate of the kernel of the SIO (7) can be obtained by computing

(directly) the right partial indices κ1 and κ2 of the matrix function b0 (if b0 belongs
to a class for which a factorization method is known), the [ARFact-Matrix] algorithm
can be very helpful in the rational case.

EXAMPLE. Let K be the SIO with non-Carleman shift and conjugation defined
by (7). Let

a(t) ≡ 1 and a0(t) =
1−2t

t
.

In this case, using the [ARFact-Matrix] algorithm, we get the factorization (14), where

b−(t) =
(

1 − 1
2

0 −1

)
, Λ(t) = diag{t,t−1},

and

b+(t) =
(

1
2 −1

(t −2)t −2(t−1)2

)
,

that is, the right partial indices of the matrix function b0 are κ1 = 1 and κ2 = −1.
Through inequality (29) the following estimate

dimkerK � l( f )+2

holds.

3.2. The case Hr,θ (T)

In this subsection the inner-outer factorization concept is considered to obtain par-
ticular results on the estimates of the dimension of the kernel of operator K .

This is another important case to illustrate the importance of the use of symbolic
computation on the study of this kind of problems since some of our analytical al-
gorithms, concerning these kind of factorization, and implemented with Mathematica
allows us to design a new algorithm to estimate the dimension of the kernel of operator
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K . In fact, if |a| is a constant function and a0 ∈ Hr,θ (T) , then the [AFact] algorithm
(see [7]) can be used to determine the right partial indices κ1 and κ2 of the matrix
function b0 (given by formula (11)). On the other hand, if the function u− that appears
in the matrix function g , defined by (16), belongs to Hr,θ (T) , then the constant k can
be determined by the [AKer-Hϕ *Hϕ ] algorithm (see [9]). So, the algorithms [AFact]
and [AKer-Hϕ *Hϕ ] can be used to obtain concrete estimates for the dimension of the
kernel of operator (7).

3.2.1. The [AFact] algorithm

In general, it is possible to show, that the study of the factorability of essentially
bounded Hermitian second-order matrix functions with negative determinant and def-
inite diagonal elements, can be reduced to the study of matrix functions of the form
(17), for u ∈ L∞(T) (see, for instance, [7] and [23]). In addition, a canonical gen-
eralized factorization of matrix functions of the type (17) has applications in several
scientific research areas (see, for instance, [1], [8], [10], [20], and [22]).

In [4], [5], and [7] we present necessary and sufficient conditions for the existence
of a canonical generalized factorization Aγ(u) = A+

γ A−
γ . In addition, explicit formulas

for the factors A+
γ and A−

γ are presented. In [7] it is presented an analytical algorithm
to study the factorability of matrix functions of the class (17), with u ∈ L∞(T) . For the
case when u− ∈ Hr,θ the [AFact] algorithm computes a left generalized factorization

of matrix functions of type (17). For instance, if −γ /∈ σ
(
H∗

u−Hu−

)
, the [AFact] al-

gorithm computes a canonical generalized factorization of Aγ(u−) by solving singular

integral equations of type
(
H∗

u−Hu− + γI
)

ω+(t) = g+(t) for g+(t)≡ 1 and g+(t) = b .

The programming features and the built-in functions of the CAS Mathematica
were used to compute the extensive symbolic calculations demanded by the [AFact]
algorithm. As a final result, we obtained a Mathematica notebook that automate the
factorization process as a whole. Due to its innovative character, the implementation
of [AFact] potentiates the future design of algorithms dedicated to specific domains of
application.

EXAMPLE. Let K be the SIO with non-Carleman shift and conjugation consid-
ered in the example of the subsubsection 3.1.2. Since b0 is a matrix function of the
class (17) the [AFact] algorithm can be used to determine explicit factorizations (14),
where

b−(t) =
(

1+ α
t2

− 1
2

2α
t2

−1

)
, Λ(t) = diag{t,t−1},

and

b+(t) =
(

1
2 −1

(t−2)t + α −2[(t−1)2 + α]

)
.

and to obtain, obviously, the same right partial indices of the matrix function b0 and
the same estimate

dimkerK � l( f )+2

holds.
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3.2.2. The [AKer-Hϕ *Hϕ ] algorithm

In [9] it is showed how Mathematica can be used to explore the spectra and the
kernel of some classes of SIOs, defined on the unit circle, related with Hankel opera-
tors. The [AKer-Hϕ *Hϕ ] algorithm computes the kernel of the operators of the type
H∗

u−Hu− + γI , where γ is a non-null complex constant and u− ∈ Hr,θ , and can be ap-
plied to particular functions θ or it can compute the closed form of the kernel as a
general expression in θ .

EXAMPLE. Let K be the SIO with non-Carleman shift and conjugation defined
by (7). Let us consider continuous functions a and a0 such that

u(t) = 3
θ (t)t
1−2t

+
3
2

θ (0) .

In this case, P−u = u , we get

u−(t) = 3
θ (t)
t−2

+
3
2

θ (0) .

Since the function u− − 3
2θ (0) ∈ Hr,θ the [AKer-Hϕ *Hϕ ] algorithm can be used4,

considering the inner-outer factorization

u−− 3
2 θ (0) = rθ ,

for r(t) = 3(t−2)−1 and θ an arbitrary inner function, to determine the constant k on
the estimate (29).

Taking into account that the [AKer-Hϕ *Hϕ ] algorithm can be applied to a gen-
eral function θ , two particular cases5 must be considered:

• If θ ′(−1) = 0, then k = 1 and

dimkerK � l( f )+max(κ−1,0)+max(κ +1,0)+1.

• If θ ′(−1) �= 0 and θ (−1)−3θ ′(−1) �= 0, then k = 0 and

dimkerK � l( f )+2max(κ,0)+1.

3.2.3. Particular cases

This subsubsection consider some particular cases where the inner-outer factor-
ization concept is considered to easily obtain particular, and interesting, results on the
estimates of the dimension of the kernel of operator (7).

Let us consider the SIO with non-Carleman shift and conjugation defined by (7).
Case 1. Let θ1 be an arbitrary inner function and r1 a rational function without

poles on the unit circle (that is, r1 ∈R(T)). For a non-negative integer constant q such
that r1t−q ∈ R−(T) it can be considered an inner-outer factorization of the rational
function r1t−q to prove the following result:

4Since Hϕ *Hϕ = H(ϕ +λ)*H(ϕ +λ) , where λ is a complex constant.
5The conditions are provided explicitly in the output of the [AKer-Hϕ *Hϕ ] algorithm. They arise from

the construction of an homogeneous linear system not uniquely solvable.
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PROPOSITION 3.1. Let a0 ∈ C (T) and a−tκa+ be a generalized factorization of
a ∈ C (T) . If p ∈ N0 , p � q: P−a0 = a+a−θ1t−pr1 , then u− ∈ Hr,θ (T) .

REMARK. In the conditions of Proposition 3.1, k = dimker(H∗
u−Hu− − I) can be

determined by the [AKer-Hϕ *Hϕ ] algorithm, for γ = −1. In addition, when θ1 is
a rational function, the [ARFact-Matrix] algorithm can be used to determine k as the
non-negative right partial indice of the matrix function g .

EXAMPLE. Let K be the SIO with non-Carleman shift and conjugation defined
by (7). Let a−tκa+ be a generalized factorization of a∈C (T) . Let a0 be a continuous
function satisfying the condition (a0)− = a+a−θ1t−p(1−2t) , for some p ∈ N .

Using the [AKer-Hϕ∗Hϕ ] algorithm, for any inner function θ = θ1t p−1 , we ob-
tain:

• If θ (́1) = 0, then ker(H∗
u−Hu− − I) = span

{
θ (1)+ (t−2)tθ (t)

(t−1)2θ (1)

}
• If θ (́1) �= 0, then the operator H∗

u−Hu− − I has a trivial kernel

So, for any SIO with non-Carleman shift and conjugation K with coefficient a0

satisfying the conditions of Proposition 3.1 we get, for every inner function θ1 , the
estimate

• If θ (́1) = 0, then

dimkerK � l( f )+max(κ−1,0)+max(κ +1,0)+1.

• If θ (́1) �= 0, then

dimkerK � l( f )+2max(κ,0)+1.

Case 2. Let θ1 be an arbitrary inner function and r1 a rational function without
poles on the unit circle and in the exterior of the unit circle. Considering an inner-outer
factorization of the rational function r1 the next result can be proved.

PROPOSITION 3.2. Let a0 ∈ C (T) and a−tκa+ be a generalized factorization of
a ∈ C (T) . If p ∈ N0 : P−a0 = a+a−θ1t−pr1 , then u− ∈ Hr,θ (T) .

REMARK. In the conditions of Proposition 3.2, k = dimker(H∗
u−Hu− − I) can be

determined by the [AKer-Hϕ *Hϕ ] algorithm, for γ = −1. In addition, when θ1 is
a rational function, the [ARFact-Matrix] algorithm can be used to determine k as the
non-negative right partial index of the matrix function g .

EXAMPLE. Let K be the SIO with non-Carleman shift and conjugation defined
by (7). Let a−tκa+ be a generalized factorization of a∈C (T) . Let a0 be a continuous
function such that (a0)− = a+a−θ1t−p(1−2t)−1 , for some p ∈ N0 .

Using the [AKer-Hϕ∗Hϕ ] algorithm, for any inner function θ = θ1t p+1 , we ob-
tain that H∗

u−Hu− − I has a trivial kernel.
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So, for any SIO with non-Carleman shift and conjugation K with coefficient a0

satisfying the conditions of Proposition 3.2 we get, for every inner function θ1 , the
estimate

dimkerK � l( f )+2max(κ,0)+1.
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[9] A. C. CONCEIÇÃO AND J. C. PEREIRA, An Overview of Symbolic Computation on Operator Theory,
Proceedings of the 1st International Conference on Algebraic and Symbolic Computation – SYM-
COMP 2013 (ECCOMAS Thematic Conference) (pen drive), Lisboa, Portugal, September 9–10,
(2013), 39–71.

[10] L. D. FADDEEV AND L. A. TAKHATAYAN, Hamiltonian Methods in the Theory of Solitons, Springer-
Verlag, 1987.

[11] T. EHRHART, Invertibility theory for Toeplitz plus Hankel operators and singular integral operators
with flip, J. Funct. Anal. 208 (2004), no. 1, 64–106.

[12] I. GOHBERG, M. A. KAASHOEK, AND I. M. SPITKOVSKY, An Overview of Matrix Factorization
Theory and Operator Applications, Factorization and Integrable Systems, Operator Theory: Advances
and Applications, vol. 141, 1–102, Birkhäuser Verlag, 2003.
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