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INTERPOLATING BETWEEN THE ARITHMETIC–GEOMETRIC

MEAN AND CAUCHY–SCHWARZ MATRIX NORM INEQUALITIES

KOENRAAD M. R. AUDENAERT

(Communicated by R. Bhatia)

Abstract. We prove an inequality for unitarily invariant norms that interpolates between the
Arithmetic-Geometric Mean inequality and the Cauchy-Schwarz inequality.

1. Introduction

In this paper we prove the following inequality for unitarily invariantmatrix norms:

THEOREM 1. Let ||| · ||| be any unitarily invariant norm. For all n× n matrices
X and Y , and all q ∈ [0,1] ,

|||XY ∗|||2 � |||qX∗X +(1−q)Y∗Y ||| |||(1−q)X∗X +qY∗Y |||. (1)

For q = 0 or q = 1, this reduces to the known Cauchy-Schwarz (CS) inequality
for unitarily invariant norms [3, (IX.32)], [2], [6]

|||XY ∗|||2 � |||X∗X ||| |||Y ∗Y |||.

For q = 1/2 on the other hand, this yields the arithmetic-geometric mean (AGM) in-
equality [3, (IX.22)], [4]

|||XY ∗||| � 1
2
|||X∗X +Y∗Y |||.

Thus, inequality (1) interpolates between the AGM and CS inequalities for unitarily
invariant norms.

In Section 2 we prove an eigenvalue inequality that may be of independent inter-
est. The proof of Theorem 1 follows easily from this inequality, in combination with
standard majorisation techniques; this proof is given in Section 3.
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2. Main technical result

For any n× n matrix A with real eigenvalues, we will denote these eigenvalues
sorted in non-ascending order by λk(A) . Thus λ1(A) � · · · � λn(A) . Singular values
will be denoted as σk(A) , again sorted in non-ascending order.

Our main technical tool in proving Theorem 1 is the following eigenvalue inequal-
ity, which may be of independent interest:

THEOREM 2. Let A and B be n× n positive semidefinite matrices. Let q be a
number between 0 and 1, and let C(q) := qA+(1−q)B. Then, for all k = 1, . . . ,n,

λk(AB) � λk(C(q)C(1−q)). (2)

Putting A = X∗X and B = Y ∗Y , for n×n matrices X and Y , and noting that

λ 1/2
k (AB) = λ 1/2

k (YX∗XY ∗) = σk(XY ∗),

we can write (2) as a singular value inequality:

σ2
k (XY ∗) � λk((qX∗X +(1−q)Y∗Y )((1−q)X∗X +qY∗Y )). (3)

For p = 1/2, Theorem 2 gives

λ 1/2
k (AB) � 1

2
λk(A+B) (4)

and (3) becomes the well-known AGM inequality for singular values [3, inequality
(IX.20)]

σk(XY ∗) � 1
2

σk(X∗X +Y∗Y ).

The following modification of inequality (2), proven by Drury for the case q = 1/2
[5], does not hold for all q ∈ [0,1] :

σk(AB) � σk(C(q)C(1−q)).

We are grateful to Swapan Rana for informing us about counterexamples.

Proof. We first reduce the statement of the theorem to a special case using a tech-
nique that is due to Ando [1] and that was also used in [5, Section 4].

Throughout the proof, we will keep k fixed. If either A or B has rank less than k ,
then λk(AB) = 0 and (2) holds trivially. We will therefore assume that A and B have
rank at least k . By scaling A and B we can ensure that λk(AB) = 1.

We will now try and find a positive semidefinite matrix B′ of rank exactly k with
B′ � B and such that AB′ has k eigenvalues equal to 1 and all others equal to 0. By
hypothesis, AB and hence A1/2BA1/2 have at least k eigenvalues larger than or equal
to 1. Therefore, there exists a rank-k projector P satisfying P � A1/2BA1/2 . Let B′
be a rank-k matrix such that A1/2B′A1/2 = P . If A is invertible, we simply have B′ =
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A−1/2PA−1/2 ; otherwise the generalised inverse of A is required. Then B′ � B and AB′
has the requested spectrum.

Passing to an eigenbasis of B′ , we can decompose B′ as the direct sum B′ =
B11 ⊕ [0]n−k , where B11 is a k × k positive definite block. In that same basis, we

partition A conformally with B′ as A =
(

A11 A12

A∗
12 A22

)
. Since A1/2B′A1/2 = P is a rank

k projector, so is

R := (B′)1/2A(B′)1/2 = (B11)1/2A11(B11)1/2⊕ [0]n−k.

The top-left block of R is a k× k matrix, and R is a rank-k projector. Therefore, that
block must be identical to the k× k identity matrix: (B11)1/2A11(B11)1/2 = I . This
implies that A11 is invertible and B11 = (A11)−1 . We therefore have, in an eigenbasis
of B′ ,

A =
(

A11 A12

A∗
12 A22

)
, B′ =

(
(A11)−1

0

)
� B.

Clearly, C′(q) := qA+(1−q)B′ satisfies C′(q) � C(q) , so that

λk(C′(q)C′(1−q)) � λk(C(q)C(1−q)),

while still λk(AB′) = λk(AB) = 1. It is now left to show that λk(C′(q)C′(1−q)) � 1.
A further reduction is possible. Let

A′ =
(

A11 A12

A∗
12 A∗

12(A11)−1A12

)
,

which has rank k and satisfies 0 � A′ � A . Let also C′′(q) := qA′+(1−q)B′ , for which
0 � C′′(q) � C′(q) . Then λk(C′′(q)C′′(1−q)) � λk(C′(q)C′(1−q)) .

Introducing F := A11 > 0, G := A12A∗
12 � 0 and s := (1−q)/q > 0, we have

C′′(q) = q

(
F A12

A∗
12 A∗

12F
−1A12

)
+(1−q)

(
F−1

0

)

= q

(
I

A∗
12

) (
F + sF−1 I

I F−1

) (
I

A12

)

so that

λk(C′′(q)C′′(1−q))

= q(1−q)λk

((
I

G

)(
F + sF−1 I

I F−1

)(
I

G

)(
F + s−1F−1 I

I F−1

))
,

where each factor is a 2k×2k matrix. Noting that

(
F + sF−1 I

I F−1

)
=
(

s1/2F−1/2 F1/2

0 F−1/2

) (
s1/2F−1/2 0

F1/2 F−1/2

)
,
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we then have λk(C′′(q)C′′(1−q)) = q(1−q)λk(Z∗Z) = q(1−q)σ2
k (Z) , where

Z =
(

s1/2F−1/2 0
F1/2 F−1/2

) (
I

G

) (
s−1/2F−1/2 F1/2

0 F−1/2

)
=
(

F−1 s1/2

s−1/2 F +H

)
,

and H := F−1/2GF−1/2 � 0. The singular values of Z are the same as those of

X :=
(

s1/2 F−1

F +H s−1/2

)
.

By the Fan-Hoffman theorem [3, Proposition III.5.1], the singular values of X are
bounded below by the ordered eigenvalues of the Hermitian part of X : σ j(X) �
λ j((X +X∗)/2) for j = 1, . . . ,2k . Thus,

λk(C′′(q)C′′(1−q)) � q(1−q)λ 2
k (Y ),

with Y :=
(

s1/2 K
K s−1/2

)
and K := (F +H +F−1)/2.

Clearly, K � (F +F−1)/2 � I . It is easily checked that the k largest eigenvalues of Y
are given by

λ j(Y ) =
1
2

(
s1/2 + s−1/2 +

√
(s1/2 + s−1/2)2 −4+4λ 2

j (K)
)

, j = 1, . . . ,k.

As this expression is a monotonously increasing function of λ j(K) , and λ j(K) � 1, we
obtain the lower bound λk(Y ) � s1/2 + s−1/2 . Then, finally,

λk(C′′(q)C′′(1−q)) � q(1−q) (s1/2 + s−1/2)2

= q(1−q)

((
1−q

q

)1/2

+
(

q
1−q

)1/2
)2

= (1−q+q)2 = 1,

from which it follows that λk(C′(q)C′(1−q)) � 1. �

3. Proof of Theorem 1

Using Theorem 2 and some standard arguments, the promised norm inequality is
easily proven.

Proof. For all positive semidefinite matrices A and B , and any r > 0, we have the
weak majorisation relation

λ r(AB) ≺w λ r(A) ·λ r(B),

where ‘ ·’ denotes the elementwise product for vectors. This relation follows from com-
bining the fact that AB has non-negative eigenvalues with Weyl’s majorant inequality
[3, (II.23)],

|λ (AB)|r ≺w σ r(AB)
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and with the singular value majorisation relation ([3], inequality (IV.41))

σ r(AB) ≺w σ r(A) ·σ r(B).

From (3) we immediately get, for any r > 0,

σ2r(XY ∗) ≺w λ r ((qX∗X +(1−q)Y∗Y ) ((1−q)X∗X +qY∗Y )) .

Hence,

σ2r(XY ∗) ≺w λ r(qX∗X +(1−q)Y∗Y ) ·λ r((1−q)X∗X +qY∗Y )).

If we now apply Hölder’s inequality for symmetric gauge functions Φ ,

Φ(|x · y|) � Φ(|x|p)1/p Φ(|y|p′)1/p′ ,

where x,y ∈ Cn and 1/p+1/p′ = 1, we obtain

Φ(σ2r(XY ∗)) � Φ(λ r(qX∗X +(1−q)Y∗Y ) ·λ r((1−q)X∗X +qY∗Y )))

� Φ(λ rp(qX∗X +(1−q)Y∗Y ))1/p Φ(λ rp′((1−q)X∗X +qY∗Y )))1/p′ .

Hence, for any unitarily invariant norm,

||| |XY ∗|2r ||| � |||(qX∗X +(1−q)Y∗Y )rp|||1/p |||((1−q)X∗X +qY∗Y )rp′ |||1/p′ .

Theorem 1 now follows by setting r = 1/2 and p = p′ = 2. �
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