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Abstract. We introduce the notion of spectral points of type π+ and type π− of closed operators
A in a Hilbert space which is equipped with an indefinite inner product. It is shown that these
points are stable under compact perturbations. In the second part of the paper we assume that
A is symmetric with respect to the indefinite inner product and prove that the growth of the
resolvent of A is of finite order in a neighborhood of a real spectral point of type π+ or π−
which is not in the interior of the spectrum of A . Finally, we prove that there exists a local
spectral function on intervals of type π+ or π− .

1. Introduction

Let (H , [· , ·]) be a Krein space and let A be a bounded or unbounded linear
operator in H which is selfadjoint with respect to the Krein space inner product [·, ·] .
The spectral properties of selfadjoint operators in Krein spaces differ essentially from
the spectral properties of selfadjoint operators in Hilbert spaces, e.g., the spectrum σ(A)
of A is in general not real and even σ(A) = C may happen.

The indefiniteness of the scalar product [· , ·] on H induces a natural classification
of isolated real eigenvalues: A real isolated eigenvalue λ0 is said to be of positive
(negative) type if all corresponding eigenvectors are positive (negative, respectively)
with respect to [· , ·] . In this case, there is no Jordan chain of length greater than one.
This classification of real isolated eigenvalues is used frequently in some papers from
theoretical physics, see, e.g., [7, 8, 10, 13, 22].

There is a corresponding notion for points from the approximate point spectrum
σap(A) . Namely, a point λ ∈ σap(A) is called a spectral point of positive (negative)
type of A if for every approximate eigensequence (xn) of A at λ we have

liminf
n→∞

[xn,xn] > 0
(
resp. limsup

n→∞
[xn,xn] < 0

)
. (1.1)

The above definitions also make sense when the underlying inner product is no longer a
Krein space inner product. In [21] bounded operators in a Hilbert space (H ,(· , ·)) are
considered which are selfadjoint with respect to an inner product [· , ·] = (G·, ·) with a

Mathematics subject classification (2010): 47A10, 47B50, 46C20, 47A55.
Keywords and phrases: Indefinite inner product, selfadjoint operator, spectrum of positive and negative

type, spectrum of type π+ and π− , local spectral function, perturbation theory.

c© � � , Zagreb
Paper OaM-09-30

481

http://dx.doi.org/10.7153/oam-09-30


482 F. PHILIPP AND C. TRUNK

selfadjoint bounded operator G . Note that in this case the point zero is allowed to be
a point of the spectrum of G , which corresponds to the situation where (H ,(· , ·)) is
not a Krein space. In [21] it is shown that the sets of the spectral points of positive and
negative type are contained in R . If, in addition, the non-real points of a neighbourhood
of spectral points of positive/negative type are contained in ρ(A) , then there exists a
local spectral function E , see [21]. The second main result in [21] is for a compact and
[· , ·]-selfadjoint perturbation K : A spectral point of positive type which is not in the
interior of σ(A) and of σ(A+K) is either a spectral point of positive type or a regular
point of A+K or it is contained in σ−, f (A+K) , see [21].

In [4] the notions of spectral points of positive/negative type are generalized to
spectral points of type π+ and type π− . These points are also introduced via approx-
imate eigensequences, and the relation (1.1) is only required for sequences (xn) in a
subspace of finite codimension. In [4] the operator A is allowed to be unbounded,
but [· , ·] is still a Krein space inner product. One of the main results in [4] is that the
above-mentioned set σ−, f (A) essentially coincides with the set of the spectral points
of type π+ which are not of positive type. Moreover, a local spectral function similar
as above is constructed. However, the proof relies on the Krein space structure. This
paper is in a sense continued by [6]. Moreover, in [1], the stability results from [4] and
[21] were generalized to closed linear relations in Krein spaces and were used in, e.g.,
[2, 5, 14, 15, 26]

In the present paper we drop the condition that (H , [· , ·]) is a Krein space and
(contrary to [21]) allow the operator A to be unbounded. Some of the known results
from [4] and [6] still hold in this much more general situation. They are collected in
Section 3. In addition, it is shown in Section 3 that ker(A−λ ) is an Almost Pontryagin
space for all complex numbers λ from the spectrum of type π+ or π− . Moreover
it is shown that the spectral points of type π are stable under compact perturbations.
In Section 4 it is proved in Theorem 4.2 that a compact interval of type π+ or π− is
always contained in an open set U such that U either consists only of eigenvalues
of A or U \R consists only of points outside σap(A) . Here we also show that in this
situation either each point of U possesses a Jordan chain of infinite length or that there
exists at most finitely many points in U with a Jordan chain of length greater than one
which has, in addition, a finite length. In Subsection 4.2, a finite rank perturbation is
constructed which turns a spectral point of type π into a spectral point of definite type.
If U \R ⊂ ρ(A) then the growth of the resolvent towards the interval is of finite order
(see Theorem 4.7). Finally, we prove in Section 5 that the operator A possesses a local
spectral function on intervals of type π+ or type π− .

2. Preliminaries

In this paper let (H ,(· , ·)) be a Hilbert space and let G be a bounded selfadjoint
operator in H . By [· , ·] we denote the inner product which is induced by G , i.e.

[x,y] := (Gx,y) for x,y ∈ H . (2.1)

The operator G is called the Gram operator of the inner product [· , ·] in (H ,(· , ·)) .
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A vector x ∈ H is called positive (negative, neutral ) if [x,x] > 0 ( [x,x] < 0,
[x,x] = 0, respectively). A subset is called positive (negative, neutral ) if all its non-
zero vectors are positive (negative, neutral, respectively). As usual (see e.g. [3, 9]), the
orthogonal companion M [⊥] and the isotropic part M ◦ of a subset M are defined by

M [⊥] := {x ∈ H : [x,y] = 0 for all y ∈ M } and M ◦ := M ∩M [⊥].

In this paper a subspace is always a closed linear manifold. Let L ⊂H be a subspace.
A fundamental decomposition of L is a decomposition of the type

L = L+[�]L−[�]L ◦, (2.2)

where L+ is a positive subspace, L− is a negative subspace, and the projections in
L onto L+ , L− and L ◦ , which are defined by this decomposition, are bounded
operators. The symbol [�] indicates that the sum is direct and orthogonal with respect
to the inner product [· , ·] . Recall, that a subspace L ⊂H always admits a fundamental
decomposition (2.2) (see [9, Theorem IV.5.2]). The numbers

κ+(L ) := dimL+, κ−(L ) := dimL−, and κ0(L ) := dimL ◦

will be called the rank of positivity, rank of negativity and the rank of degeneracy of
L , respectively. They do not depend on the particularly chosen fundamental decom-
position. Furthermore, we define

κ+,0(L ) := κ+(L )+ κ0(L ) and κ−,0(L ) := κ−(L )+ κ0(L ),

and call these values the rank of non-negativity and the rank of non-positivity of L ,
respectively. A subset L is called uniformly positive (uniformly negative) if there
exists a number δ > 0 such that

[x,x] � δ‖x‖2 for all x ∈ L (−[x,x] � δ‖x‖2 for all x ∈ L , respectively).

A subset is called uniformly definite if it is either uniformly positive or uniformly neg-
ative. Recall, that for a uniformly definite subspace L ⊂ H we have (see, e.g., [21])

H = L [�]L [⊥]. (2.3)

Let A be a closed and densely defined operator in H . We denote the spectrum
and the resolvent set by σ(A) and ρ(A) , respectively. By ker(A) we denote the kernel
and by ran(A) the range of A . We call A a Φ+ -operator if ker(A) is finite-dimensional
and ran(A) is closed. Recall (see, e.g., [24, Theorem 8 in Section 16]) that A is a Φ+ -
operator if and only if there exist a subspace M ⊂ H with codim M < ∞ and a
number c > 0 such that

‖Ax‖ � c‖x‖ for all x ∈ M ∩domA. (2.4)

The approximate point spectrum σap(A) of A is the set of all points λ ∈ C for
which there exists a sequence (xn) in domA with the property

‖xn‖ = 1, n ∈ N, and (A−λ )xn → 0 as n → ∞.
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A point λ ∈ σap(A) is called an approximate eigenvalue of A . If λ ∈ C is not an
approximate eigenvalue of A , it is called a point of regular type of A . We denote the set
of those points by r(A) . It is not difficult to see that λ ∈ C is a point of regular type of
A if and only if ker(A−λ ) = {0} and ran(A−λ ) is closed. In particular, if λ ∈ r(A) ,
then A−λ is a Φ+ -operator.

As usual, the compactification C∪{∞} of C is denoted by C . We define σ̃ap(A) :=
σap(A) if A is bounded, and σ̃ap(A) := σap(A)∪{∞} if A is unbounded and call the set
σ̃ap(A) the extended approximate point spectrum of A . The extended spectrum σ̃(A)
of A is defined analogously. The complementary sets

ρ̃(A) := C\ σ̃(A) and r̃(A) := C\ σ̃ap(A)

are called the extended resolvent set and the extended set of points of regular type of A ,
respectively. Obviously, σap(A) ⊂ σ(A) and σ̃ap(A) ⊂ σ̃(A) . Moreover, we have

∂σ(A) ⊂ σap(A) and ∂ σ̃ (A) ⊂ σ̃ap(A). (2.5)

A point λ ∈ C is contained in r̃(A) if and only if there exist an open neighborhood U
of λ in C and a number c > 0 such that

‖(A− μ)x‖� c‖x‖ for all μ ∈ U \ {∞} and all x ∈ domA. (2.6)

Thus, r̃(A) and r(A) are open in C and C , respectively.
For a linear manifold L ⊂ H the codimension of L is defined by codimL :=

dim(H /L ) . If M ⊂ H is another linear manifold such that L ⊂ M we define
codimM L := dim(M /L ) .

3. Spectral points of type π+ and type π−

Throughout this section, let A be a closed, densely defined operator in H . We
define the spectral points of type π+ and type π− of A in analogy to [1, 4, 6]. However,
we emphasize that here neither (H , [· , ·]) is assumed to be a Krein space (as in [1, 4, 6])
nor is the operator A assumed to be selfadjoint (as in [4, 6]). The following definition
is a generalization of the spectral points of definite type (see, e.g., [21, 25]).

DEFINITION 3.1. Let A be a closed, densely defined operator in H . A point
λ ∈ σap(A) is called a spectral point of type π+ (type π− ) of A if there exists a linear
manifold Hλ ⊂ H with codim Hλ < ∞ , such that for every sequence (xn) in Hλ ∩
domA with ‖xn‖ = 1 and (A−λ )xn → 0 as n → ∞ we have

liminf
n→∞

[xn,xn] > 0

(
limsup

n→∞
[xn,xn] < 0, respectively

)
.

The point ∞ is called a spectral point of type π+ (type π− ) of A if A is unbounded
and if there exists a linear manifold Hλ ⊂H with codimHλ < ∞ , such that for every
sequence (xn) in Hλ ∩domA with ‖Axn‖ = 1 and xn → 0 as n → ∞ we have

liminf
n→∞

[Axn,Axn] > 0

(
limsup

n→∞
[Axn,Axn] < 0, respectively

)
.
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We denote the set of all spectral points of type π+ (type π− ) of A by σπ+(A) (σπ−(A) ,
respectively).

A point λ ∈ σπ+(A) (λ ∈ σπ−(A)) is called a spectral point of positive type (neg-
ative type, respectively) of A if Hλ in the above definition can be chosen as H . The
set consisting of all spectral points of positive (negative) type of A is denoted by σ+(A)
(σ−(A) , respectively).

REMARK 3.2. Contrary to the notion above, in [1, 4, 6] the notion σ++(A) and
σ−−(A) is used for spectral points of positive (negative) type of A . However, here we
will use the notion σ+(A) (σ−(A) , respectively) as in [21].

REMARK 3.3. If λ ∈C then A−λ is a Φ+ -operator if and only if λ ∈ (σπ+(A)∩
σπ−(A))∪ r(A) . Indeed, if A−λ is a Φ+ -operator, then there is a subspace Hλ with
finite codimension such that there does not exist any sequence (xn) in Hλ ∩ domA
with ‖xn‖ = 1 and (A−λ )xn → 0 as n → ∞ . The opposite direction follows directly
from Definition 3.1.

In the sequel, by HA we denote the Hilbert space (domA,(· , ·)A) , where

(x,y)A := (x,y)+ (Ax,Ay), x,y ∈ domA.

The graph norm on HA induced by (· , ·)A is denoted by ‖ · ‖A , i.e.

‖x‖A :=
√
‖x‖2 +‖Ax‖2, x ∈ domA. (3.1)

For M ⊂ HA we denote the closure of M in HA by M
A
. If (xn) is a sequence in HA

converging (weakly) to some x ∈HA , we write xn
A→ x (xn

A
⇀ x , respectively), n→ ∞ .

In the following theorem we collect different characterizations for a point to belong to
σπ+(A) (or to λ ∈ σπ−(A)), see also [1, 4].

THEOREM 3.4. Let A be a closed, densely defined operator in H and let λ ∈
σ̃ap(A) . Then the following statements are equivalent.

(i) λ ∈ σπ+(A) (λ ∈ σπ−(A)).

(ii) There exists a linear manifold Dλ ⊂ domA with codimdomA Dλ < ∞ , such that
for every sequence (xn) in Dλ we have: If λ 
= ∞ , then

‖xn‖ = 1 and (A−λ )xn → 0 as n → ∞ (3.2)

implies

liminf
n→∞

[xn,xn] > 0

(
limsup

n→∞
[xn,xn] < 0, respectively

)
. (3.3)

If λ = ∞ , then
‖Axn‖ = 1 and xn → 0 as n → ∞ (3.4)
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implies

liminf
n→∞

[Axn,Axn] > 0

(
limsup

n→∞
[Axn,Axn] < 0 respectively

)
. (3.5)

(iii) There exists a linear manifold D̃λ ⊂ domA with codimdomA D̃λ < ∞ which is
closed in HA such that for every sequence (xn) in D̃λ we have: If λ 
= ∞ , then
(3.2) implies (3.3). If λ = ∞ , (3.4) implies (3.5).

(iv) There exists a subspace1 Hλ ⊂ H with codimHλ < ∞ such that for every
sequence (xn) in Hλ ∩ domA we have: If λ 
= ∞ , then (3.2) implies (3.3). If
λ = ∞ , (3.4) implies (3.5).

(v) If λ 
= ∞ , then for every sequence (xn) in domA with xn ⇀ 0 as n → ∞ (3.2)
implies (3.3). If λ = ∞ , then for every sequence (xn) in domA with Axn ⇀ 0 as
n → ∞ (3.4) implies (3.5).

Proof. Let λ ∈ σπ+(A) . A similar reasoning applies to λ ∈ σπ−(A) .
(i)⇒(ii). Let Hλ be a linear manifold with finite codimension as in Definition

3.1. Then there exists a finite-dimensional subspace Z ⊂ H , such that

H = Hλ �Z and domA = (domA∩Hλ )� (domA∩Z ),

see, e.g., [19, §7.6]. Thus, Dλ := domA∩Hλ is a linear manifold as in statement (ii).
(ii)⇒(iii). Let Dλ be a linear manifold as in (ii). In order to show (iii), we set

D̃λ := Dλ
A
, where Dλ

A
denotes the closure of Dλ with respect to the graph norm in

(3.1). Let (xn) in D̃λ be a sequence satisfying (3.2) if λ 
= ∞ or (3.4) if λ = ∞ . Then
there is a sequence (un) in Dλ with ‖xn−un‖ → 0 and ‖Axn−Aun‖ → 0 as n → ∞ .
If λ 
= ∞ , we have ‖un‖→ 1 and (A−λ )un → 0 as n → ∞ , which implies

liminf
n→∞

[xn,xn] = liminf
n→∞

[un,un] > 0.

If λ = ∞ , un → 0 and ‖Aun‖→ 1 as n → ∞ follows, which yields

liminf
n→∞

[Axn,Axn] = liminf
n→∞

[Aun,Aun] > 0.

This shows (iii).
(iii)⇒(iv) & (v)⇒(iv). Suppose that (iv) is not true. If λ 
= ∞ , then for any

subspace M of H with finite codimension there is a sequence (xn,M ) in M ∩domA
with ‖xn,M ‖ = 1, (A−λ )xn,M → 0, n → ∞ , and liminfn→∞[xn,M ,xn,M ] � 0. Hence,
by induction, we find a sequence (xn) in domA with ‖xn‖ = 1, xn ∈ {x1, . . . ,xn−1}⊥ ,
‖(A−λ )xn‖ � 1

n and [xn,xn] � 1
n . Therefore the orthonormal sequence (xn) satisfies

(A−λ )xn → 0 as n → ∞ and liminf
n→∞

[xn,xn] � 0.

1Recall that here a subspace is always a closed linear (sub)manifold
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In the case λ = ∞ there exists a sequence (xn) in domA with

‖Axn‖ = 1, xn → 0 as n → ∞ and liminf
n→∞

[Axn,Axn] � 0.

We may assume that (Axn) converges weakly to some y . Since A is a closed operator,
it has a closed graph which is also weakly closed. Then {xn,Axn} ⇀ {0,y} , n → ∞ , in
H ×H and y = 0 follows. Thus, in both cases we have xn ⇀ 0 and Axn ⇀ 0, which
yields the weak convergence of (xn) to zero in (HA,(· , ·)A) . This shows that (v) does
not hold. Suppose, that (iii) holds Then HA admits a decomposition

HA = D̃λ � D̃

with some finite-dimensional subspace D̃ . The projections onto D̃λ and D̃ with re-
spect to this decomposition are continuous in HA . Let (un) in D̃λ and (vn) in D̃ be

sequences such that xn = un +vn holds. Since D̃ is finite-dimensional, vn
A
⇀ 0 implies

vn
A→ 0, which means vn → 0 and Avn → 0 as n → ∞ . If λ 
= ∞ , we have ‖un‖ → 1,

(A−λ )un → 0 as n → ∞ and

liminf
n→∞

[un,un] = liminf
n→∞

(
[xn,xn]− [xn,vn]− [vn,un]

)
� 0,

which is a contradiction to (iii). If λ = ∞ , then un → 0, ‖Aun‖→ 1 as n → ∞ and

liminf
n→∞

[Aun,Aun] = liminf
n→∞

(
[Axn,Axn]− [Axn,Avn]− [Avn,Aun]

)
� 0

follows, contradicting (iii).
Obviously, (iv) implies (i) and, hence, assertions (i)–(iv) are equivalent. It remains

to show that (iv) implies (v). For this let Hλ be a subspace as in (iv). Then there exists
a finite-dimensional subspace Gλ ⊂ domA , such that

H = Hλ �Gλ .

Let λ 
= ∞ and let (xn) in domA be a sequence with xn ⇀ 0 as n → ∞ which fulfils
(3.2). Further, let (un) in Hλ and (vn) in Gλ be sequences, such that xn = un + vn .
Then, since vn ⇀ 0, we have vn → 0, and thus ‖un‖→ 1, (A−λ )un → 0, and

liminf
n→∞

[xn,xn] = liminf
n→∞

[un,un] > 0.

Suppose λ = ∞ . If (xn) in domA is a sequence with Axn ⇀ 0 as n → ∞ such that
(3.4) holds, define the sequences (un) in Hλ and (vn) in Gλ as above. Then un → 0,
vn → 0 and Avn → 0 as n → ∞ , which implies limn→∞ ‖Aun‖ = 1 and therefore

liminf
n→∞

[Axn,Axn] = liminf
n→∞

[Aun,Aun] > 0.

Therorem 3.4 is proved. �
The following lemma shows that the point ∞ cannot be a spectral point of type π+

or π− when it is not of positive (resp. negative) type.
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LEMMA 3.5. ∞ ∈ σπ+(A) implies ∞ ∈ σ+(A) , ∞ ∈ σπ−(A) implies ∞ ∈ σ−(A) .

Proof. If ∞ ∈ σπ+(A) \σ+(A) , then there exists (xn) in domA with xn → 0 as
n → ∞ , ‖Axn‖ = 1 and liminfn→∞ [Axn,Axn] � 0. We may assume that Axn ⇀ y as
n→∞ for some y∈H . But then {xn,Axn}⇀ {0,y} in H ×H , which implies y = 0,
since A is closed. By Theorem 3.4 we obtain a contradiction to ∞ ∈ σπ+(A) . �

In the following we study compact sets which consist of points that either belong
to σπ+(A)∪σπ−(A) or to r̃(A) . As a byproduct, it will turn out that the sets σπ+(A) ,
σπ−(A) , σ+(A) and σ−(A) are relatively open in σ̃ap(A) . Theorems 3.6 and 3.7 below
can be proved in the same way as in [4, Lemma 2 and Lemma 12]. Therefore, we omit
their proofs.

THEOREM 3.6. Let A be a closed, densely defined operator in H , and let K ⊂C

be a compact set such that K ∩ σ̃ap(A) ⊂ σ+(A) (K ∩ σ̃ap(A) ⊂ σ−(A)). Then there
exist an open neighborhood U in C of K and ε > 0 such that

λ ∈ U \ {∞}, x ∈ domA, ‖(A−λ )x‖ � ε‖x‖

implies
[x,x] � ε‖x‖2 (−[x,x] � ε‖x‖2, respectively).

In this case, we have

U ∩ σ̃ap(A) ⊂ σ+(A) (U ∩ σ̃ap(A) ⊂ σ−(A), respectively).

THEOREM 3.7. Let A be a closed, densely defined operator in H , and let K ⊂
C be a compact set such that K ∩ σ̃ap(A) ⊂ σπ+(A) (K ∩ σ̃ap(A) ⊂ σπ−(A)). Then
there exist an open neighborhood U in C of K , a linear manifold H0 ⊂ H with
codimH0 < ∞ , and ε > 0 such that

λ ∈ U \ {∞}, x ∈ H0 ∩domA, ‖(A−λ )x‖� ε‖x‖

implies
[x,x] � ε‖x‖2 (−[x,x] � ε‖x‖2, respectively).

In this case, we have

U ∩ σ̃ap(A) ⊂ σπ+(A) (U ∩ σ̃ap(A) ⊂ σπ−(A), respectively).

Theorems 3.6 and 3.7 in particular imply the following corollary.

COROLLARY 3.8. The sets σπ+(A) , σπ−(A) , σ+(A) and σ−(A) are (relatively)
open in σ̃ap(A) .

There is a certain connection between the linear manifold Hλ from Definition 3.1
and the ”nonpositive part” of the eigenspace ker(A− λ ) . For this, we first recall the
notion of an Almost Pontryagin space, see e.g. [18] and [27].
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DEFINITION 3.9. A subspace L ⊂H is called an Almost Pontryagin space with
finite rank of non-positivity (non-negativity) if there exists a uniformly positive (uni-
formly negative, respectively) subspace L̃ ⊂ L with codimL L̃ < ∞ .

LEMMA 3.10. Let A be a closed, densely defined operator in H and let λ ∈
σπ+(A) \ {∞} (λ ∈ σπ−(A) \ {∞} ). Then ker(A− λ ) is an Almost Pontryagin space
with finite rank of non-positivity (non-negativity, respectively).

Proof. We show Lemma 3.10 only for λ ∈ σπ+(A) . Let L+[�]L−[�]L ◦ be a
fundamental decomposition of ker(A−λ ) , cf. (2.2). If L−[�]L ◦ is infinite-dimen-
sional then there is an orthonormal sequence in L−[�]L ◦ ⊂ ker(A−λ ) , which is by
Theorem 3.4 (v) impossible. Hence, L+ has finite codimension in L , and it remains
to show that L+ is uniformly positive. Suppose, that this is not the case. Then there
exists a sequence (xn) in L+ with ‖xn‖ = 1 and limn→∞[xn,xn] = 0. We may assume
that (xn) converges weakly to some x0 ∈ L+ . For this x0 we have

|[x0,x0]| � |[x0,x0 − xn]|+[x0,x0]1/2[xn,xn]1/2,

and x0 = 0 follows. But this contradicts λ ∈ σπ+(A) by Theorem 3.4 (v). �
The following theorem characterizes which linear manifolds can be chosen for

Hλ in Definition 3.1 and what their smallest possible codimension is. Theorem 3.11
is contained in [6, Lemma 3.1, Theorem 3.3] for the situation where A is a selfadjoint
operator in a Krein space. However, the proof in [6] is also valid for the current situa-
tion, where A is only a closed, densely defined operator in a space with inner product
given by (2.1). Therefore, we omit the proof of Theorem 3.11.

THEOREM 3.11. Let A be a closed, densely defined operator in H and let λ ∈
σπ+(A) \ {∞} (λ ∈ σπ−(A) \ {∞} ). A linear manifold Hλ with codimHλ < ∞ is as
in Definition 3.1 if and only if the subspace

Hλ ∩domA
A ∩ker(A−λ )

is positive (negative, respectively). In the case where Hλ is closed, this is equivalent
to the positivity (negativity, respectively) of

Hλ ∩ker(A−λ ).

Moreover, there exists a subspace H ′
λ with this property and

codimH ′
λ = κ−,0(ker(A−λ ))

(
codimH ′

λ = κ+,0(ker(A−λ )), respectively
)

which is the smallest possible codimension of all the linear manifolds satisfying the
conditions of Definition 3.1.

COROLLARY 3.12. Let λ ∈ σπ+(A)\{∞} (λ ∈ σπ−(A)\{∞} ). Then λ ∈ σ+(A)
(λ ∈ σ−(A) , respectively) if and only if ker(A−λ ) is positive (negative, respectively).
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COROLLARY 3.13. Any λ ∈ σπ+(A)\σ+(A) (λ ∈ σπ−(A)\σ−(A)) is an eigen-
value of A with a corresponding non-positive (non-negative, respectively) eigenvector.

Probably the most important property of spectral points of type π+ and type π− is
their stability under compact perturbations. For this, let A be a closed, densely defined
operator in H . Recall that an operator K is said to be A-compact if domA ⊂ domK
and K , as a mapping from (HA,(· , ·)A) (cf. (3.1)), into H , is compact, cf. [17, IV
§1.3].

THEOREM 3.14. Let A and B be closed and densely defined operators in H ,
and assume that either domB = domA such that B−A is A-compact or that ρ(A)∩
ρ(B) 
= ∅ such that

(A− μ)−1− (B− μ)−1 (3.6)

is compact for some (and hence for all ) μ ∈ ρ(A)∩ρ(B) . Then

σπ+(A)∪ r(A) = σπ+(B)∪ r(B) and σπ−(A)∪ r(A) = σπ−(B)∪ r(B),
∞ ∈ σ+(A) ⇐⇒ ∞ ∈ σ+(B),
∞ ∈ σ−(A) ⇐⇒ ∞ ∈ σ−(B),

∞ ∈ r̃(A) ⇐⇒ ∞ ∈ r̃(B).

(3.7)

Proof. Assume that the operator in (3.6) is compact. In the proof of [1, Theorem
4.1] G is assumed to be boundedly invertible. This proof also holds for the current
situation. Therefore, the first two equalities in (3.7) follow from [1, Theorem 4.1].
Hence, it remains to prove the statements in (3.7) concerning ∞ . We observe

∞ ∈ r̃(A) ⇐⇒ A− μ is a bounded operator⇐⇒ (A− μ)−1 is a Φ+-operator

⇐⇒ (B− μ)−1 is a Φ+-operator⇐⇒ ∞ ∈ r̃(B).

Let ∞ ∈ σ+(A) and let (xn) in dom(B) be a sequence with xn → 0, Bxn ⇀ 0 as n→ ∞
and ‖Bxn‖= 1. Denote by K the operator in (3.6), K := (A−μ)−1− (B−μ)−1 . Then
(B− μ)xn ⇀ 0 implies K(B− μ)xn → 0 as n → ∞ . Set

un := (A− μ)−1(B− μ)xn = xn−K(B− μ)xn.

Then un → 0 and since Aun = Bxn +μ(un−xn) we have Aun ⇀ 0, ‖Aun‖→ 1, n→ ∞ ,

liminf
n→∞

[Bxn,Bxn] = liminf
n→∞

[Aun,Aun],

and ∞ ∈ σ+(B) follows from Theorem 3.4 and Lemma 3.5.
It remains to show (3.7) if K := B−A is A-compact. By [17, Theorem IV.1.11]

K is B-compact. If λ ∈ r(A) then A−λ is a Φ+ -operator. By [17, Theorem IV.5.26]
the same holds for B−λ , and we have λ ∈ σπ+(B)∪ r(B) (see Remark 3.3).

Let λ ∈ σap(B)\{∞} and let (xn) be a sequence in domA with ‖xn‖= 1, xn ⇀ 0
and (B−λ )xn → 0 as n → ∞ . Since (xn) converges weakly to zero in HB we have
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Kxn → 0 and thus (A− λ )xn → 0 as n → ∞ . Hence, by Theorem 3.4, λ ∈ σπ+(A)
implies λ ∈ σπ+(B)∪ r(B) .

For the point ∞ we have

∞ ∈ r̃(A) ⇐⇒ A bounded⇐⇒ B bounded⇐⇒ ∞ ∈ r̃(B).

Let (xn) be a sequence in domA with xn → 0, Bxn ⇀ 0 as n → ∞ and ‖Bxn‖ = 1. As
(xn) convergesweakly to zero in HB , it follows that Kxn → 0 as n→∞ . Consequently,
we have limn→∞ ‖Axn‖ = 1 and

liminf
n→∞

[Bxn,Bxn] = liminf
n→∞

[Axn,Axn].

By Theorem 3.4 and Lemma 3.5, ∞ ∈ σ+(A) implies ∞ ∈ σ+(B) . �

4. Spectral points of type π+ and π− of G-symmetric operators

As in the previous section, let G be a bounded selfadjoint operator in the Hilbert
space (H ,(· , ·)) inducing the inner product [· , ·] = (G·, ·) . A linear operator A in H
will be called G-symmetric (or [· , ·]-symmetric) if

[Ax,y] = [x,Ay] holds for all x,y ∈ domA.

Obviously, this is equivalent to GA ⊂ (GA)∗ where ∗ denotes the adjoint with respect
to the Hilbert space inner product (· , ·) . If GA = (GA)∗ holds we say that A is G-
selfadjoint. E.g., such operators are studied in [2, 21] and in [27] in the case where the
inner product [· , ·] only has a finite number of non-positive squares.

In the sequel, let A be a closed and densely defined G-symmetric operator in H .
A Jordan chain of A at λ ∈ C of length n is a finite ordered set of non-zero vectors
{x0, . . . ,xn−1} in domA such that (A−λ )x0 = 0 and (A−λ )xi = xi−1 , i = 1, . . . ,n−1.
The vector x0 is called the eigenvector of the Jordan chain. Several Jordan chains of
A at λ are called linearly independent if their union is linearly independent. This
holds if and only if the respective eigenvectors are linearly independent. The algebraic
eigenspace Lλ (A) of A at λ is the collection of all Jordan chains of A at λ ,

Lλ (A) :=
∞⋃

n=1

ker(A−λ )n.

The proof of [12, Proposition 3.2] is also valid in the present situation (in [12] it is
assumed that G is boundedly invertible). Hence, we obtain for λ ,μ ∈ C with λ 
= μ

Lλ (A) [⊥] Lμ(A), in particular, Lλ (A) is neutral for non-real λ . (4.1)

4.1. Spectral points of type π+ and π− and Jordan chains

In the following lemma we collect some properties of spectral points of type π+
and type π− and of spectral points of positive and negative type of G-symmetric oper-
ators.
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LEMMA 4.1. Let A be a closed, densely defined G-symmetric operator in H .
Then σ+(A) and σ−(A) are contained in R , and for λ ∈ (σπ+(A)∪σπ−(A)) \R the
operator A−λ is a Φ+ -operator. For λ ∈ σπ+(A)∪σπ−(A) the following holds.

(i) The eigenvector of a Jordan chain of length greater than one of A corresponding
to λ is an element of the isotropic part of ker(A−λ ) .

(ii) ker(A− λ ) is an Almost Pontryagin space, and there exists only finitely many
linear independent Jordan chains of A at λ .

(iii) Let N+ [�]N− [�]N0 be a fundamental decomposition of ker(A− λ ) . Then
there is an A-invariant linear manifold L such that

Lλ (A) = N+ [�]N− [�]L .

Proof. Let λ ∈ σπ+(A)\R . We show that A−λ is a Φ+ -operator. Let Hλ ⊂H
be a subspace of finite codimension as in Theorem 3.4 (iv). Suppose that A−λ is not
a Φ+ -operator. Then, by (2.4), there exists no ε > 0 such that ‖(A−λ )x‖ � ε‖x‖ for
all x∈Hλ ∩domA . Hence there is a sequence (xn) in Hλ ∩domA with ‖xn‖= 1 and
(A−λ )xn → 0 as n→∞ . From Imλ 
= 0 and (− Imλ )[xn,xn] = Im[(A−λ )xn,xn]→ 0
as n → ∞ we conclude limn→∞[xn,xn] = 0, a contradiction to λ ∈ σπ+(A) , and A−λ
is a Φ+ -operator. If, in addition, λ ∈ σ+(A) \R (λ ∈ σ−(A) \R), then by Corollary
3.12 and (4.1), we have ker(A−λ ) = {0} . Thus, as A−λ is a Φ+ -operator, λ ∈ r(A)
follows, which is not possible. Therefore, σ+(A) and σ−(A) are contained in R .

We prove (i)–(iii). Let λ ∈ σπ+(A)∪σπ−(A) . For λ /∈ R , (i) follows from (4.1).
For λ ∈ R , let x be the eigenvector of a Jordan chain of A at λ of length greater
than one. Then there exists y ∈ domA such that (A−λ )y = x . Hence, for any v ∈
ker(A− λ ) we have [x,v] = [(A− λ )y,v] = [y,(A− λ )v] = 0 and (i) is shown. By
Lemma 3.10 ker(A−λ ) is an Almost Pontryagin space. Hence, its isotropic part is
finite-dimensional and (ii) follows from (i). Setting L := (N+ [�]N−)[⊥] ∩Lλ (A)
we obtain (iii). �

Let [a,b] be an interval in R such that [a,b]∩σap(A) ⊂ σπ+(A) . By Theorem
3.7 there exists an open neighborhood U of [a,b] in C such that also U ∩σap(A) ⊂
σπ+(A) . It is no restriction to assume that U is connected. By Lemma 4.1, for every
λ ∈ U \R the operator A−λ is a Φ+ -operator. By [17, IV §5.6], there exists a dis-
crete set Ξ ⊂U \R such that dimker(A−λ ) is constant on each of the two connected
components of U \ (Ξ∪R) . The following theorem shows that in the special situa-
tion under consideration both these constants coincide and that it is possible to choose
U such that Ξ = ∅ . The following theorem reveals an insight into the Jordan struc-
tures corresponding to the points in U . It extends [6, Theorem 4.1] to G-symmetric
operators. Moreover, the statements (a), (b), and (e) below are not contained in [6].

THEOREM 4.2. Let A be a closed, densely defined G-symmetric operator in H .
Let [a,b] be a compact interval in R with [a,b]∩σap(A) ⊂ σπ+(A) ( [a,b]∩σap(A) ⊂
σπ−(A)). Then there exist an open neighborhood U of [a,b] in C , a finite set σ ⊂
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[a,b]∩ (σπ+(A)\σ+(A)) (σ ⊂ [a,b]∩ (σπ−(A)\σ−(A)) , respectively) and a constant
α ∈ N such that for all λ ∈ U \σ we have

κ0(ker(A−λ )) = α � min
μ∈σ

κ0(ker(A− μ))

and
κ−(ker(A−λ )) = 0

(
κ+(ker(A−λ )) = 0, respectively

)
.

If α = 0 , then

(a) Lλ (A) , λ ∈ U , is an Almost Pontryagin space. If λ ∈ U \σ then ker(A−
λ ) = Lλ (A) is a Hilbert space (anti-Hilbert space, respectively) and there is no
Jordan chain of length greater than one. If λ ∈σ then every Jordan chain of A at
λ is of finite length and, if N λ

+ [�]N λ− [�]N λ
0 is a fundamental decomposition

of ker(A−λ ) , then there exists a finite-dimensional subspace L1 with

Lλ (A) = N λ
+ [�]L1

(
Lλ (A) = N λ

− [�]L1, respectively
)
.

(b) The set σ can be chosen as σ = ([a,b]∩σap(A))\σ+(A) (σ = ([a,b]∩σap(A))\
σ−(A) , respectively).

(c) U \R ⊂ r(A) and U ∩σap(A) ⊂ σ+(A)∪σ (resp. U ∩σap(A) ⊂ σ−(A)∪σ) .

And in the case α > 0 the following hold:

(d) U ⊂ σp(A) with
(
ker(A−λ )

)◦ 
= {0} for every λ ∈ U .

(e) For each λ ∈ U there exist at least α linearly independent Jordan chains of A
corresponding to λ of infinite length.

(f) U ⊂ σπ+(A)\σ+(A) (U ⊂ σπ−(A)\σ−(A) , respectively).

Proof. We only prove the theorem for the case [a,b]∩σap(A) ⊂ σπ+(A) . The
statements follow from Lemma 4.1, Corollary 3.12, a compactness argument, and the
following claim:

CLAIM. Let λ0 be a real point with λ0 ∈ σπ+(A)∪ r(A) . Then there exists an open
neighborhood U0 in C of λ0 and an integer constant α0 such that the following holds:

(i) For each λ ∈ U0 \ {λ0} we have

κ0(ker(A−λ )) = α0 � κ0(ker(A−λ0)) and κ−(ker(A−λ )) = 0. (4.2)

(ii) If α0 = 0 then Lλ (A) is an Almost Pontryagin space for all λ ∈ U0 and U0 \
{λ0} ⊂ σ+(A) . Every Jordan chain of A corresponding to λ is of finite length.

(iii) If α0 > 0 then for all λ ∈ U0 there are at least α0 linearly independent Jordan
chains of A of infinite length.
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To prove the claim, we observe that by Theorem 3.7 we find an open neighbor-
hood V0 in C of λ0 with V0 ∩ σap(A) ⊂ σπ+(A) . For λ ∈ V0 let ker(A − λ ) =
N λ

+ [�]N λ− [�]N λ
0 be a fundamental decomposition of ker(A− λ ) . As ker(A−λ )

is an Almost Pontryagin space (cf. Lemma 3.10), the spaces N λ− and N λ
0 are finite-

dimensional. We define

N0 := span{N λ
0 : λ ∈ V0 \ {λ0}, Imλ � 0} and

N−,0 := span{N λ
− [�]N λ

0 : λ ∈ V0 \ {λ0}, Imλ � 0},

and set L0 := N0 and L−,0 := N−,0 . By (4.1), L0 is neutral and L−,0 is nonpositive.
By A0 (A−,0 ) we denote the closure of the restriction of A to N0 (N−,0 , respectively)
which then is a closed and densely defined [· , ·]-symmetric operator in L0 (L−,0 ,
respectively). We will show that for λ ∈ V0 \ {λ0} , Imλ � 0,

ker(A0−λ ) = N λ
0 , ker(A−,0−λ ) = N λ− [�]N λ

0 , (4.3)

ker(A0−λ0) ⊂ N λ0
0 . (4.4)

If λ ∈ V0 \ {λ0} with Imλ � 0, the inclusion ker(A0 − λ ) ⊇ N λ
0 is obvious. Let

λ ∈ V0 , Imλ � 0, and x ∈ ker(A0 − λ ) . Since x ∈ ker(A−λ ) we find x+ ∈ N λ
+ ,

x− ∈N λ− and x0 ∈N λ
0 such that x = x+ +x−+x0 . Moreover, there exists a sequence

(xn) in N0 with xn → x as n → ∞ . From N0[⊥]N λ
+ we conclude [x+,x+] = [x,x+] =

limn→∞[xn,x+] = 0. Analogously, we obtain [x−,x−] = 0 and therefore x = x0 ∈ N λ
0 .

Thus, we have shown the first equation in (4.3) and also the inclusion (4.4). With a
similar argument one shows the second equation in (4.3).

Since the operator A− λ0 maps N0 (N−,0 , respectively) surjectively onto it-
self, ran(A0 −λ0) ( ran(A−,0 −λ0) , respectively) is dense in L0 (L−,0 , respectively).
If this range was not closed, then A0 − λ0 (A−,0 − λ0 , respectively) would not be a
Φ+ -operator. Hence, by (2.4), there exists an orthonormal sequence (xn) in domA0

((xn) in domA−,0 , respectively) with (A− λ0)xn → 0 as n → ∞ . But this contra-
dicts λ0 ∈ σπ+(A) since L0 and L−,0 are nonpositive subspaces, see Theorem 3.4 (v).
Thus, the operators A0 −λ0 and A−,0−λ0 are surjective Fredholm operators. By [17,
IV Theorem 5.22] we find an open neighborhood U0 ⊂ V0 in C of λ0 such that all
operators A0 − λ and A−,0 − λ for λ ∈ U0 , Imλ � 0, have the same index and are
surjective Fredholm operators. For all λ ∈ U0 with Imλ � 0 this gives

dim ker(A0−λ ) = dim ker(A0−λ0) and dim ker(A−,0−λ ) = dim ker(A−,0−λ0).

Set α0 := dim ker(A0 −λ0) and α−,0 := dim ker(A−,0 −λ0) . Together with (4.3) and
(4.4) we obtain for all λ ∈ U0 with Imλ � 0

κ0(ker(A−λ )) = dimN λ
0 = α0 � dimN λ0

0 = κ0(ker(A−λ0)),

which proves the first relation in (4.2) for Imλ � 0. We have either α0 = 0 or α0 > 0
in which case for every λ ∈U0 the surjectivity of A0−λ implies that any Jordan chain
of A0 corresponding to λ is of infinite length. This shows (iii). As Lλ (A) is neutral
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for non-real λ , see (4.1), N λ− = {0} and we conclude with (4.3) for Imλ > 0 that
α0 and α−,0 coincide. But this, considering (4.3) again, implies N λ− = 0 also for
λ ∈ U0 ∩R , λ 
= λ0 . Hence, the second relation in (4.2) holds for all λ ∈ U0 \ {λ0}
with Imλ � 0. Applying similar arguments as above for the lower complex plane we
obtain (4.2) for all λ ∈ U0 \ {λ0} .

It remains to prove (ii). Due to (4.1) and (4.2) we have

Lλ (A) = {0} for λ ∈ U0 \R. (4.5)

(4.2) and Lemma 4.1 also imply that

Lλ (A) = ker(A−λ ) = N λ
+ for λ ∈ U0 ∩R, λ 
= λ0.

With Corollary 3.12, we obtain U0 \ {λ0} ⊂ σ+(A) and Lλ (A) is uniformly positive
and, hence, also an Almost Pontryagin space. Therefore we have to show (ii) only for
Lλ0

(A) . By Lemma 4.1 it suffices to show that each Jordan chain of A corresponding
to λ0 is finite. Assume the contrary. Then there exists an infinite sequence (xn) in
domA such that (A−λ0)xk+1 = xk for all k � 0 and (A−λ0)x0 = 0. Since

[xn,xm] = [(A−λ0)mxn+m,xm] = [xn+m,(A−λ0)mxm] = 0

holds for all n,m ∈ N , M0 := span{xn : n ∈ N} is neutral, and A− λ0 maps M0

surjectively onto itself. Let A1 be the closure of A|M0 in the neutral subspace M1 :=
M0 . As above for A0 − λ0 it can be shown that A1 − λ0 is a surjective Fredholm
operator. Since x0 ∈ ker(A1 −λ0) it follows [17, IV Theorem 5.22] that ker(A−λ ) ⊃
ker(A1−λ ) 
= {0} for all λ in a neighborhood of λ0 , which contradicts (4.5). �

We refer to [27, Section 4] for an example with α0 > 0 where the unit disc is
contained in σπ+(A)\σ+(A) .

4.2. Finite rank perturbations

In this section we construct a finite rank perturbation which turns a real spectral
point of type π+ (type π− ) into a spectral point of positive (negative, respectively)
type. It was shown in [16] that such a finite rank perturbation exists in the case where A
is a definitizable operator in a Krein space. The proof of the following lemma is omitted
as the proof of [27, Lemma 3.10] proves also the statements of Lemma 4.3 below.

LEMMA 4.3. Let D be a dense linear manifold in H and let L ⊂ D be an
Almost Pontryagin space. If L = L+[�]L−[�]L ◦ is a fundamental decomposition
of L , then there exist subspaces L00,L01,P ⊂ D and M ⊂ H such that

H = L+[�]L−[�]L00[�](L01 �P)[�]M ,

and the following statements hold

(i) L00 = L ◦ ∩H ◦ and L ◦ = L00 �L01 ,
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(ii) P is neutral,

(iii) P ∩L01 = L01∩P [⊥] = L
[⊥]
01 ∩P = {0} ,

(iv) G := L01 �P is non-degenerate, that is G ∩G ◦ = {0} ,

(v) κ+(G ) = κ−(G ) = dimP = dimL01 < ∞ ,

(vi) L [⊥] = L ◦[�]M .

Moreover, there exists a fundamental symmetry J in G such that P = JL01 .

We now state the above-mentioned theorem. We refer to [6] where a similar result
is shown for (the special case of) self adjoint operators in Krein spaces. Contrary to [6],
the proof of Theorem 4.4 below is based on Lemma 4.3.

THEOREM 4.4. Let A be a closed, densely defined G-symmetric operator in H
and let 0 /∈ σp(G) . If λ ∈ σπ+(A)∩R (λ ∈ σπ−(A)∩R) then there is a G-symmetric
and bounded finite rank operator F such that

λ ∈ σ+(A+F)∪ r(A+F) (λ ∈ σ−(A+F)∪ r(A+F), respectively) and

dimran(F) = κ−,0(ker(A−λ ))
(
dimran(F) = κ+,0(ker(A−λ )), respectively

)
.

Proof. ker(A− λ ) is an Almost Pontryagin space (Lemma 3.10) with a funda-
mental decomposition L+[�]L−[�]L0 . There are P ⊂ domA and M ⊂ H as in
Lemma 4.3 (L00 = {0} ) with

H = L+[�]L−[�](L01 �P)[�]M .

The subspace L+ is uniformly positive and, by (2.3), H = L+[�]L [⊥]
+ . Hence

a bounded projection onto L
[⊥]
+ = L−[�](L01 � P)[�]M exists. The subspaces

L01 and P are finite-dimensional, therefore (L01 �P)[�]M is also closed and the
bounded projection P− onto L− exists. A similar reasoning shows that there exists the
bounded projection P0 onto L01 . With the fundamental symmetry J in L01 �P with
JL01 = P (see Lemma 4.3) define

F := P−+ JP0.

This operator is G-symmetric since P− is G-symmetric and

[JP0x,y] = [JP0x,P0y] = [P0x,JP0y] = [x,JP0y] for x,y ∈ H .

Assume λ ∈ σap(A+F) . Set Hλ := L+[�]P[�]M . By λ ∈ σπ+(A) and Theorem
3.11, Hλ is a subspace as as in Definition 3.1 (for A). Since A|Hλ = (A +F)|Hλ
we have λ ∈ σπ+(A + F) . Moreover, the inclusion L+ ⊂ ker(A + F − λ ) holds. If,
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conversely, x∈ ker(A+F−λ ) , then we have P−x , P0x∈ ker(A−λ ) , [x,(A−λ )P−x] =
0, [JP0x,P−x] = 0, [x,(A−λ )P0x] = 0, [P−x,P0x] = 0, and

[P−x,P−x] = [P−x,P−x]+ [(A−λ )x,P−x]+ [JP0x,P−x]
= [(A+F −λ )x,P−x] = 0 and

[JP0x,P0x] = [JP0x,P0x]+ [(A−λ )x,P0x]+ [P−x,P0x]
= [(A+F −λ )x,P0x] = 0.

Hence we have P−x = P0x = 0, Fx = 0, x ∈ ker(A− λ ) , and thus x ∈ L+ . With
Corollary 3.12, λ ∈ σ+(A+F) follows. �

Theorem 4.4 and Theorem 4.2 together with Corollary 3.12 yield

COROLLARY 4.5. Let A be a closed, densely defined G-symmetric operator in
H , let 0 /∈ σp(G) , let [a,b]∩σap(A) ⊂ σπ+(A) or [a,b]∩σap(A) ⊂ σπ−(A) . Then
there exists a G-symmetric, bounded finite rank operator F and an open neighborhood
U of [a,b] in C such that U \R ⊂ r(A+F) .

4.3. Growth of the resolvent

The second part of the following Theorem was proved in [21] for bounded G-
symmetric operators.

THEOREM 4.6. Let A be a closed, densely defined G-symmetric operator in H .

(a) If [a,b]∩σap(A) ⊂ σπ+(A) or [a,b]∩σap(A)⊂ σπ−(A) , then there exist an open
neighborhood U in C of [a,b] , a subspace H0 ⊂ H with codimH0 < ∞ and
a number c > 0 such that

‖(A−λ )x‖� c| Imλ |‖x‖ (4.6)

holds for all x ∈ H0 ∩domA and all λ ∈ U \R .

(b) If [a,b]∩σap(A) ⊂ σ+(A) or [a,b]∩σap(A) ⊂ σ−(A) , then there are U and c
as in (a) such that (4.6) holds for all x ∈ domA and all λ ∈U \R . In particular,
U \R ⊂ r(A) , and if even U \R ⊂ ρ(A) holds, then with M := c−1 we have

‖(A−λ )−1‖ � M
| Imλ | for all λ ∈ U \R. (4.7)

If G is boundedly invertible and the operator GA is selfadjoint in H , then U
can be chosen such that U \R ⊂ ρ(A) .

Proof. (a). Let us assume that [a,b]∩σap(A) ⊂ σπ+(A) . Set K := [a,b] , let U ,
H0 , and ε be as in Theorem 3.7 and define c := min{ε/‖G‖,1} . It is no restriction
to assume | Imλ | < ε for all λ ∈ U . Now, let x ∈ H0 ∩ domA and λ ∈ U \R . If
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‖(A− λ )x‖ � ε‖x‖ , relation (4.6) clearly holds and if ‖(A− λ )x‖ � ε‖x‖ , then by
Theorem 3.7 we have [x,x] � ε‖x‖2 , and

| Imλ |ε‖x‖2 � | Im[λx,x]| = | Im[(A−λ )x,x]| � ‖G‖‖(A−λ )x‖‖x‖
follows. This shows (a).

(b). For the proof of the first part of (b) apply Theorem 3.6 instead of Theorem
3.7 in the argumentation above and we obtain that the inequality (4.6) is valid for all
x ∈ domA , thus U \R ⊂ r(A) holds. Hence, (4.7) follows from the assumption U \
R ⊂ ρ(A) . If G is boundedly invertible and GA = (GA)∗ then A is selfadjoint in the
Krein space (H , [· , ·]) . Choose U as in the first part of (b) such that U is symmetric
with respect to R . Then U \R ⊂ r(A) and for λ ∈ U \R we have ker(A− λ ) =
ker(A−λ ) = {0} and ran(A−λ ) = ran(A−λ ) = ker(A−λ )[⊥] = H . This proves
λ ∈ ρ(A) . �

The following theorem shows that an inequality similar to (4.7) holds in a neigh-
borhood of intervals with spectral points of type π+ or regular points of A .

THEOREM 4.7. Let A be a closed, densely defined G-symmetric operator in H .
Let [a,b]∩σap(A) ⊂ σπ+(A) or [a,b]∩σap(A) ⊂ σπ−(A) such that there is an open
neighborhood U of [a,b] in C with U \R ⊂ ρ(A) . Then there exists an open neigh-
borhood V of [a,b] in C and constants M > 0 and m ∈ N such that for λ ∈ V \R

we have

‖(A−λ )−1‖ � M
| Im λ |m . (4.8)

Proof. In view of Theorems 4.6 and 4.2 it is sufficient to prove Theorem 4.7
in a neighbourhood of a spectral point λ ∈ σπ+(A) \ σ+(A) . Choose a fundamen-
tal decomposition of ker(A−λ ) = N+[�]N−[�]N0 . By Lemma 3.10, N−[�]N0 is
finite-dimensional and by Corollary 3.13 it contains at least one non-zero element. We

set A0 := A|N [⊥]
+ . Then A0 is closed, densely defined in N

[⊥]
+ , G-symmetric with

λ ∈ σπ+(A0) and U \R⊂ ρ(A0) . We have Lλ (A) = N+[�]Lλ (A0) and by Theorem
4.2 (b) the subspace Lλ (A0) is finite-dimensional. If Lλ (A0) = L+[�]L−[�]L0 is a
fundamental decomposition of Lλ (A0) , then L+ , L− and L0 are finite-dimensional.
With Lemma 4.3 applied to Lλ (A0) we find subspaces L00,L01,P ⊂ dom(A0) and

M ⊂ N
[⊥]

+ which satisfy L0 = L00[�]L01 and

N
[⊥]

+ = L+[�]L−[�]L00[�](L01 �P)[�]M .

Set L1 := L+[�]L− . With (2.3) we obtain

H = N+ �L0 �L1 �M �P. (4.9)

With respect to the decomposition (4.9) the operator A can be represented as

A =

⎛
⎜⎜⎜⎜⎝

λ 0 0 0 0
0 A11 A12 A13 A14

0 0 A22 0 A24

0 0 0 A33 A34

0 0 0 0 A44

⎞
⎟⎟⎟⎟⎠ . (4.10)
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This is a consequence of the fact that N+ , N
[⊥]

+ L0 , L1 � L0 as well as L
[⊥]
0 =

L0 �M are A-invariant. On domA define the operators

K :=

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 −A11 −A12 −A13 −A14

0 0 −A22 0 −A24

0 0 0 0 −A34

0 0 0 0 −A44

⎞
⎟⎟⎟⎟⎠ and Ã :=

⎛
⎜⎜⎜⎜⎝

λ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 A33 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ . (4.11)

Then, Ã = A + K , and K is easily seen to be A-bounded, that is, Ã is a bounded
mapping from (HA,(· , ·)A) (cf. (3.1)) into H , see [17, IV §1.1]. As K has a finite-
dimensional range, K is A-compact. By [17, Theorem IV.1.11], the operator Ã is
closed. Hence also A33 is closed. We have

ρ(A)\ {λ}= ρ(A11)∩ρ(A22)∩ρ(A33)∩ρ(A44)\ {λ}. (4.12)

Moreover, A33 is [· , ·]-symmetric and if for some x ∈ M ∩ domA we have (A33 −
λ )x = 0, then (4.10) implies (A−λ )x∈Lλ (A) , hence x∈Lλ (A) which yields x = 0.
Thus, we have

ker(A33−λ ) = {0}. (4.13)

In addition, the following holds:

λ ∈ σ+(A33)∪ρ(A33). (4.14)

To prove (4.14), assume λ ∈ r(A33) . Then we find a neighbourhood (cf. (2.6)) W of
λ in C such that W ⊂ r(A33) and W ⊂ U . By assumption W \R ⊂ U \R ⊂ ρ(A)
and we conclude from (4.12) that A33−λ is a Fredholm operator of index zero which
together with (4.13) implies λ ∈ ρ(A33) . It remains to consider the case λ ∈ σap(A33) .
By (4.11), λ ∈ σap(Ã) and, as λ ∈ σπ+(A) we conclude from Theorem 3.14 that λ ∈
σπ+(Ã) . Also, by (4.11), λ ∈ σπ+(A33) . In view of Corollary 3.13 and (4.13) we obtain
λ ∈ σ+(A33) and (4.14) is proved.

Taking into account that the operators A11 , A22 and A44 act in spaces of finite
dimension and using Theorem 4.6 (b) we find an open neighborhood V of λ in C and
constants M1,M2 > 0 as well as m1 ∈ N such that

max
k=1,2,4

‖(Akk − μ)−1‖ � M1

|μ −λ |m1
and ‖(A33− μ)−1‖ � M2

| Im μ |
for all μ ∈ V \R . Now, by using (4.10) it is easily seen that (4.8) holds. �

5. The local spectral function

Let (a,b) be a real open interval with −∞ � a < b � ∞ . By M (a,b) we denote
the set consisting of all bounded intervals Δ whose closure is contained in (a,b) and
finite unions of such intervals. If S is a discrete subset of (a,b) , we set

MS(a,b) := {Δ ∈ M (a,b) : ∂Δ∩S = ∅}.
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Note that S may accumulate to a or b and that M∅(a,b) = M (a,b) . We shall say
that the bounded operator B commutes with A if BA ⊂ AB , i.e.

x ∈ domA =⇒ Bx ∈ domA and ABx = BAx.

If ρ(A) 
= ∅ this is equivalent to the fact that B commutes with the resolvent of A .

DEFINITION 5.1. Let S be a discrete subset of the open (and maybe unbounded)
interval (a,b) . A mapping E from MS(a,b) into the set of bounded projections on
H is called a local spectral function for A on (a,b) if E(∅) = 0 and the following
conditions are satisfied:

(S1) E(Δ1∩Δ2) = E(Δ1)E(Δ2) for all Δ1,Δ2 ∈ MS(a,b) .

(S2) If Δ1,Δ2, . . . ∈ MS(a,b) are mutually disjoint and Δ :=
⋃∞

i=1 Δi ∈ MS(a,b) then

E(Δ) =
∞

∑
i=1

E(Δi),

where the sum converges in the strong operator topology.

(S3) If the bounded operator B commutes with A , then it commutes with every E(Δ) ,
Δ ∈ MS(a,b) .

(S4) σ(A|E(Δ)H ) ⊂ Δ .

(S5) σ(A|(I−E(Δ))H ) ⊂ σ(A)\Δ .

For a bounded operator A with (a,b)∩σap(A) ⊂ σ+(A) and U \R ⊂ ρ(A) for
some open neighborhood U ⊂ C of (a,b) it is proved in [21] that there exists a set
function E defined on M (a,b) with (S1), (S2), (S4), and (S5) as in Definition 5.1.
Moreover, every E(Δ) is a G-symmetric projection onto a uniformly positive sub-
space. Thus, (E(Δ)H , [· , ·]) is a Hilbert space and the restriction of A to E(Δ)H is a
selfadjoint operator.

It is not mentioned in [21] that E also has the property (S3). We will show this
in the next theorem. Moreover, we extend the results on the local spectral function
from [21, Section 3] to unbounded operators. We mention that Theorem 5.2 below
is contained in [2, Theorem 2.7]. However, in [2] the property (S3) is not proved
explicitly. Therefore we prefer to give a detailed proof here.

THEOREM 5.2. Let A be a closed and densely defined G-symmetric operator in
H . Assume that [a,b]∩σap(A)⊂σ+(A) , and let U be an open neighborhood of [a,b]
in C with U \R ⊂ ρ(A) . Then there exists a local spectral function for A defined on
M (a,b) as in Definition 5.1. Moreover, every E(Δ) , Δ ∈ M (a,b) , is a G-symmetric
projection onto a uniformly positive subspace.

Proof. 1. By Theorem 4.6(b) and [23, Chapter II, §2, Theorem 5], the maximal
spectral subspace L[a,b] of A corresponding to [a,b] exists. Recall that the maximal
spectral subspace LΔ of A corresponding to a compact interval Δ (if it exists) has the
following properties (cf. [23, Chapter I, §4]):
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I. LΔ ⊂ domA is A-invariant.

II. σ(A|LΔ) ⊂ Δ∩σ(A) .

III. If L ⊂ domA is an A-invariant subspace and σ(A|L ) ⊂ Δ then L ⊂ LΔ .

We set A1 := A|L[a,b] . Then it follows from σ(A1) ⊂ [a,b] and (2.5) that σ(A1) =
σap(A1) . This and the assumption [a,b]∩σap(A)⊂ σ+(A) yield σ(A1) = σ+(A1) . By
[21], (L[a,b], [· , ·]) is a Hilbert space, and the restriction of A to L[a,b] is selfadjoint in
this Hilbert space. Consequently, it has a spectral function which we denote by E1 . As

A is G-symmetric, also L
[⊥]
[a,b] is A-invariant. Let P be the projection onto L[a,b] with

respect to the decomposition H = L[a,b][�]L [⊥]
[a,b] . Then, we define E by

E(Δ) := E1(Δ)P, Δ ∈ M (a,b).

It is not difficult to see that E satisfies (S1), (S2), (S4) and (S5).
2. It remains to show (S3). As E1 is a spectral function of a selfadjoint operator

in a Hilbert space, it is sufficient to prove (S3) for a compact interval Δ0 ⊂ (a,b) .
Note that LΔ0 := E(Δ0)H is the maximal spectral subspace of A corresponding to
Δ0 . Let B be a bounded operator which commutes with A . In order to show that B

commutes with E(Δ0) it is sufficient to show that LΔ0 and L
[⊥]
Δ0

are B-invariant. It is
easily checked that the proof of [11, Proposition 1.3.2] is also valid for an unbounded
operator A and we obtain BLΔ0 ⊂ LΔ0 . It remains to prove

BL
[⊥]
Δ0

⊂ L
[⊥]

Δ0
. (5.1)

To see this, let Δ ⊂ (a,b) be a compact interval such that Δ0 is contained in the interior
of Δ . We will show

BL
[⊥]
Δ ⊂ L

[⊥]
Δ0

. (5.2)

Then (5.1) follows from the fact that for α,β ∈ (a,b) , α < β ,⋂
ε>0

L[α−ε,β+ε] = LΔ,

which easily follows from the properties of maximal spectral subspaces.

In order to show (5.2), let λ0 ∈ ρ(B) and set K := (B−λ0)L
[⊥]

Δ . Evidently, K

is closed. Since L
[⊥]
Δ is A-invariant and BA ⊂ AB holds, K is A-invariant. From

A|L [⊥]
Δ =

[
(B−λ0)−1|K

] [
A|K

] [
(B−λ0)|L [⊥]

Δ

]
and (S5) we conclude that

σ(A|K ) = σ
(
A|L [⊥]

Δ

)
⊂ σ(A)\Δ. (5.3)

Let x ∈ K , x = u+ v , where u ∈ LΔ and v ∈ L
[⊥]
Δ . For λ ∈ ρ(A) we have

(A−λ )−1u = (A|K −λ )−1x− (A|L [⊥]
Δ −λ )−1v,



502 F. PHILIPP AND C. TRUNK

and from (5.3) it follows that this function admits a holomorphic continuation to (a′,b′)
where Δ = [a′,b′] . As (A−λ )−1u∈LΔ for λ ∈ ρ(A) and σ(A|LΔ)⊂ Δ , the function
λ �→ (A|LΔ − λ )−1u extends to a holomorphic function C \ {a′,b′} → LΔ . Since
(LΔ, [· , ·]) is a Hilbert space and A|LΔ is selfadjoint in this Hilbert space,

u ∈ ker(A−a′)�ker(A−b′) ⊂ L
[⊥]
Δ0

,

follows and, hence, x = u+ v∈ L
[⊥]
Δ0

+L
[⊥]
Δ ⊂ L

[⊥]
Δ0

. �
The next theorem is the main result in this section.

THEOREM 5.3. Let A be a closed, densely defined G-symmetric operator in H
and (a,b) a (possibly unbounded) open interval in R with (a,b)∩σap(A) ⊂ σπ+(A)
such that there exists an open neighborhood U of (a,b) in C with U \R ⊂ ρ(A) .
Then A has a local spectral function E on (a,b) with S := (a,b)∩ (σπ+(A)\σ+(A)) .
For Δ ∈ MS(a,b) the projection E(Δ) is G-selfadjoint, and its range is an Almost
Pontryagin space with finite rank of non-positivity.

Proof. The proof is divided into three parts. First, we define the spectral func-
tion, then we prove that it satisfies (S1)–(S5) and show in the last part that the spectral
projections map to Almost Pontryagin spaces.

1. Let Δ ∈ MS(a,b) be an interval with endpoints a′ and b′ , a′ < b′ . We choose
numbers a′′,b′′ ∈ (a′,b′) , a′′ < b′′ , such that [a′,a′′]∪ [b′′,b′] has no common point
with S (cf. Theorem 4.2). Then Δ1 := Δ∩ [a′,a′′] and Δ2 := Δ∩ [b′′,b′] are of positive
type with respect to A . By Theorem 5.2, A has a spectral function Ej on Δ j , j = 1,2,
such that the spectral subspace

L j := Ej(Δ j)H , j = 1,2,

of A is uniformly positive. Moreover, as σ(A|L1∩L2) = ∅ , we have L1∩L2 = {0}
and thus, by (S3), E1(Δ1)E2(Δ2) = 0 which implies L1 [⊥]L2 . By [20, Lemma I.5.3],
L1[�]L2 is uniformly positive, and we have

H = L1 [�]L2 [�]H̃ , (5.4)

where H̃ = (L1[�]L2)[⊥] . Define Ã := A|H̃ . Then, since σ(A|L [⊥]
j ) ⊂ σ(A)\Δ j ,

j = 1,2, we have due to (5.4)

σ(Ã) ⊂ σ(A)\Δ1 ∩ σ(A)\Δ2 = σ(A)\ (Δ1∪Δ2).

This implies (a′,a′′)∪ (b′′,b′) ⊂ ρ(Ã) . Let Γ be a closed curve in ρ(Ã) which is
symmetric with respect to the real axis such that the part of the spectrum of Ã in the
interior of Γ coincides with σ(Ã)∩ [a′′,b′′] . The Riesz-Dunford projection

Ẽ := − 1
2π i

∫
Γ
(Ã−λ )−1 dλ
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is then easily seen to be a bounded [· , ·]-symmetric operator in H̃ . With respect to the
decomposition (5.4) of H we now define

E(Δ) := IL1 [�] IL2 [�] Ẽ. (5.5)

This is obviously a G-selfadjoint projection in H which commutes with A .
The definition of E(Δ) in (5.5) depends on the choice of a′′ and b′′ . However, it

is not difficult to show that a different value for a′′ leads to the same operator in (5.5).
The same then holds for a different b′′ which proves that the definition (5.5) is in fact
independent on the choice of a′′ and b′′ .

For arbitrary Δ ∈ MS(a,b) we define E(Δ) := E(δ1)+ . . .+E(δn) , where the δ j

are the connected components of Δ .

2. Let us prove that the set function E , defined in the first part of this proof, is in
fact a local spectral function for A on (a,b) . Let Δ ∈ MS(a,b) be an interval. Then it
is evident that (S3) holds for Δ , and we have (using the notation from part 1)

σ(A|E(Δ)H ) = σ(A|L1)∪σ(A|L2)∪σ(Ã|ẼH )

⊂ σ(A)∩ (Δ1∪Δ2) ∪ (
σ(A)∩ [a′′,b′′]

)
= σ(A)∩ (Δ1∪Δ2∪ [a′′,b′′]),

which is (S4). The property (S5) for Δ is proved similarly. Now, let us show that for
two intervals Δ1,Δ2 ∈ MS(a,b) we have

Δ1∩Δ2 = ∅ =⇒ E(Δ1)E(Δ2) = 0. (5.6)

Indeed, if Δ1∩Δ2 = ∅ , then, as E(Δ1)E(Δ2) maps onto E(Δ1)H ∩E(Δ2)H , we have
σ(A|E(Δ1)E(Δ2)H )⊂ Δ1∩Δ2 = ∅ , and thus E(Δ1)E(Δ2) = 0. It remains to consider
the case that Δ1 and Δ2 have a common endpoint α . But then, a real neighborhood of
α must be of positive type, and the assertion follows from Theorem 5.2.

Due to (5.6) it suffices to prove (S1)–(S5) only for intervals Δ,Δ j ∈ MS(a,b) ,
and hence it remains to prove (S1) and (S2) for intervals. But (S1) follows from (5.6)
and (S2), so that only the proof of (S2) is left. For this, let Δ j ∈ MS(a,b) , j ∈ N ,
be mutually disjoint intervals such that Δ :=

⋃∞
j=1 Δ j is also an element of MS(a,b) .

Due to the definition of E(Δ) via connected components and the finiteness of Δ∩ S ,
it is no restriction to assume that each Δ j is an interval with Δ j ∩ S = ∅ . Hence,
also Δ∩S = ∅ . Therefore, the subspace Ĥ := E(Δ)H is uniformly positive and the
operator Â := A|Ĥ is a bounded selfadjoint operator in the Hilbert space (Ĥ , [· , ·])
with σ(Â) ⊂ Δ . Now, the assertion follows from the fact that the restriction of E(Δ j)
to Ĥ coincides with Ê(Δ j) , where Ê is the usual spectral measure of Â in Ĥ .

3. In this step we will show that E(Δ)H is an Almost Pontryagin space with finite
rank of non-positivity. It is sufficient to show this for a compact interval Δ ∈ MS(a,b)
such that S∩Δ consists only of one point γ . Let Lγ(A) = L+ [�]L− [�]L0 be a
fundamental decomposition of the algebraic eigenspace Lγ(A) which is by Theorem
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4.2 an Almost Pontryagin space with finite rank of non-positivity. By Lemma 4.3, we
find subspaces P,M ⊂ E(Δ)H with dim P < ∞ such that

E(Δ)H = L+ [�]L− [�]L00 [�] (L01 � P) [�]M ,

where

L00 = LS∩Δ(A)∩H ◦, Lγ(A)◦ = L00 � L01,

and Lγ(A)[⊥] = Lγ(A)◦ [�]M . Hence, with respect to the decomposition

E(Δ)H = Lγ(A) � M � P

the operator AΔ := A|E(Δ)H admits the following representation:

AΔ =

⎛
⎝A11 A12 A13

0 A22 A23

0 0 A33

⎞
⎠ .

Obviously, the operator A22 is [· , ·]-symmetric in the subspace M . Let us show that
σ(A22) = σ+(A22) . Then from [21, Theorem 3.1] it follows that M is uniformly
positive and thus that E(Δ)H is an Almost Pontryagin space with finite rank of non-
positivity. We have σ(AΔ) = σπ+(AΔ) , and since the operator A12 maps into the finite-
dimensional subspace Lγ(A)◦ , it follows from Theorem 3.4 that σ(A22) = σπ+(A22) .
For σ(A22) = σ+(A22) it suffices to show that ker(A22 − λ ) is positive for all λ ∈
σ(A22) ; cf. Corollary 3.12. Hence, let λ ∈ σ(A22) , and let x ∈ domA22 ⊂ M with
(A22−λ )x = 0. If λ = γ we have (AΔ − γ)x = A12x ∈Lγ(A) and hence (A− γ)kx = 0
for some k ∈ N . But this implies x ∈ Lγ(A) and therefore x = 0. Let λ 
= γ . There is
m ∈ N such that (A− γ)mLγ(A) = {0} . Set

y := (A− γ)mx.

Then, since (AΔ − λ )x = A12x ∈ Lγ(A) , we have (AΔ − λ )y = 0 and hence either
y = 0 (which implies x = 0) or [y,y] > 0 as λ ∈ σ+(AΔ) . Suppose y 
= 0. Then we
have (A− γ)x = A12x+(λ − γ)x , and, by induction,

(A− γ)2mx = �+(λ − γ)2mx

with some � ∈ Lγ(A) . Finally, we obtain

[x,x] =

[
(A− γ)2mx− � ,x

]
(λ − γ)2m =

[
(A− γ)2m x ,x

]
(λ − γ)2m =

[y,y]
(λ − γ)2m > 0,

and the theorem is proved. �
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