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(Communicated by A. Böttcher)

Abstract. We consider sequences of Hermitian matrices with increasing dimension, and we pro-
vide a general tool for determining the asymptotic spectral distribution of a ‘difficult’ sequence
{An}n from the one of ‘simpler’ sequences {Bn,m}n that approximate {An}n when m→ ∞ . The
tool is based on the notion of an approximating class of sequences (a.c.s.), which was inspired by
the work of Paolo Tilli and the second author, and it is applied here in a more general setting. An
a.c.s.-based proof of the famous Szegö theorem on the spectral distribution of Toeplitz matrices
is finally presented.

1. Introduction

In the last decades, an approximation theory for sequences of matrices with in-
creasing dimension has been developed, having in mind the spectral approximation.
Such a topic has both theoretical and practical interest. For instance, in a numerical
analysis context, when a large linear system with coefficient matrix An is given, we
would like to have a procedure for constructing a matrix Pn such that: (a) the cost
for solving a linear system with matrix Pn is of the same order as the matrix-vector
product Anx ; (b) An −Pn or P−1

n An − I is spectrally close to the null matrix, with I
being the identity matrix. Of course, the notion of spectral closeness has to be made
precise. Looking at the convergence properties of important and popular solvers, pre-
conditioned Krylov and multigrid, just to mention the most successful, it is evident that
such a notion should take into consideration two aspects:

1. two matrices are spectrally close if their difference is small in some norm (prefer-
ably an induced or operator norm);

2. two matrices are spectrally close if the rank of the difference is small with respect
to the matrix size.
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The second aspect may seem less natural, but, in fact, it is largely used in numerical
analysis. As an example, the Sherman–Morrison–Woodbury formula [7, p. 50] is a fast
way for obtaining the inverse of a low-rank correction of a given invertible matrix; the
convergence speed of the preconditioned conjugate gradient method is not affected, or
only mildly affected, by a small number of spectral outliers whose presence is due to a
low-rank correction matrix [1].

The concept of spectral closeness is also important for determining the asymptotic
spectral distribution of sequences formed by Hermitian matrices with increasing dimen-
sion. Roughly speaking, if {An}n is a ‘difficult’ sequence and if {Bn,m}n is a ‘simple’
sequence1 that approximates {An}n (in the sense of items 1–2 above) when m → ∞ ,
then the asymptotic spectral distribution of {An}n can be computed as the limit of the
asymptotic spectral distribution of {Bn,m}n for m → ∞ .

This note is devoted to the mathematical foundation of this idea, which, in fact,
is presented here on a completely abstract level. In this respect, our main result (The-
orem 4) reflects our effort to provide a very general tool for computing asymptotic
spectral distributions. It is important to stress that this tool is based on the notion of an
approximating class of sequences (a.c.s.), which is due to the second author [10], but
was originally inspired by the work of Paolo Tilli on Locally Toeplitz sequences [13].
We also illustrate how the tool can be used in order to derive the famous Szegö theorem
on the spectral distribution of Toeplitz matrices.

The note is organized in two sections: the first contains the definition of a.c.s. and
the main results, while the second provides an a.c.s.-based proof of the Szegö theorem.

2. Definitions and results

We begin by introducing the notion of an approximating class of sequences [10,
Definition 2.1]. Throughout this note, the word ‘matrix-sequence’ is used as a synonym
of ‘sequence of matrices’. Moreover, ‖X‖ denotes the spectral (Euclidean) norm of the
matrix X , i.e., the maximum singular value of X .

DEFINITION 1. (Approximating class of sequences) Let {An}n be a matrix-se-
quence, with An of size dn tending to infinity. An approximating class of sequences
(a.c.s.) for {An}n is a sequence of matrix-sequences {{Bn,m}n : m} such that, for each
m ,

An = Bn,m +Rn,m +Nn,m ∀n � nm (1)

where rank(Rn,m) � ρ(m)dn, ‖Nn,m‖ � ν(m) , the quantities nm, ρ(m), ν(m) depend
only on m and lim

m→∞
ρ(m) = lim

m→∞
ν(m) = 0.

Roughly speaking, saying that {{Bn,m}n : m} is an a.c.s. for {An}n means that An

is equal to Bn,m plus a small-rank matrix (with respect to the size dn ) plus a small-
norm matrix. Lemma 1 shows that, if An and Bn,m are Hermitian, then the small-rank

1Here, ‘simple’ has to be intended in the sense of the related computational complexity and, for instance,
in the sense of sparse vs. dense, shift-invariant vs. smoothly shift-variant, Toeplitz vs. quasi-Toeplitz, circulant
vs. Toeplitz, etc.
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matrix Rn,m and the small-norm matrix Nn,m in the splitting (1) may be supposed to be
Hermitian.

LEMMA 1. Let {An}n be a sequence of Hermitian matrices, with An of size dn →
∞ , and let {{Bn,m}n : m} be an a.c.s. for {An}n formed by Hermitian matrices (i.e.,
every Bn,m is Hermitian). Then, for every m, we have

An = Bn,m +Rn,m +Nn,m ∀n � nm

where Rn,m,Nn,m are Hermitian, rank(Rn,m) � ρ(m)dn, ‖Nn,m‖ � ν(m) , the quantities
nm, ρ(m), ν(m) depend only on m and lim

m→∞
ρ(m) = lim

m→∞
ν(m) = 0 .

Proof. Take the real part in (1) and use the inequalities rank(R(X)) � 2rank(X)
and ‖R(X)‖ � ‖X‖ to conclude that, by replacing Rn,m,Nn,m with R(Rn,m),R(Nn,m)
(if necessary), we can assume Rn,m,Nn,m to be Hermitian. �

Now we turn to the main theorems (Theorems 2 and 4), which provide a gen-
eral tool for determining the asymptotic spectral distribution of a ‘difficult’ matrix-
sequence {An}n formed by Hermitian matrices, starting from the knowledge of the
asymptotic spectral distribution of simpler matrix-sequences {Bn,m}n, m = 1,2,3, . . . ,
again formed by Hermitian matrices. For any Hermitian matrix X ∈ Cm×m , the eigen-
values of X are arranged in non-increasing order: λ1(X) � . . . � λm(X) ; moreover,
we set (by convention) λ j(X) := +∞ if j � 0 and λ j(X) := −∞ if j � m + 1. The
following interlacing theorem [2, p. 63] is needed in the proof of Theorem 2.

THEOREM 1. Let Y = X +E , where X ,E ∈ Cm×m are Hermitian. Let k+,k− � 0
be respectively the number of positive and the number of negative eigenvalues of E , i.e.

k+ := #{ j ∈ {1, . . . ,m} : λ j(E) > 0}, k− := #{ j ∈ {1, . . . ,m} : λ j(E) < 0}.

Then
λ j−k+(X) � λ j(Y ) � λ j+k−(X), ∀ j = 1, . . . ,m.

In particular, if rank(E) � k , then

λ j−k(X) � λ j(Y ) � λ j+k(X), ∀ j = 1, . . . ,m.

If H : R→R , we define H(∞) := lim
x→∞

H(x) (whenever the limit exists). Similarly,

H(−∞) := lim
x→−∞

H(x) . Moreover, we denote by Cc(R) (resp. Cc(C)) the space of

complex-valued continuous functions defined over R (resp. C) and with bounded sup-
port. Finally, we set C1

c (R) := Cc(R)∩C1(R) , where C1(R) is the space of complex-
valued functions F defined on R and such that the real and imaginary parts, R(F) and
I(F) , are of class C1(R) in the classical sense.

THEOREM 2. Let {An}n be a sequence of Hermitian matrices, with An of size
dn → ∞ . Assume that
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1. {{Bn,m}n : m} is an a.c.s. for {An}n formed by Hermitian matrices;

2. for every m and every F ∈C1
c (R) , there exists lim

n→∞

1
dn

dn

∑
j=1

F(λ j(Bn,m))=: φm(F)∈
C;

3. for every F ∈C1
c (R) , there exists lim

m→∞
φm(F) =: φ(F) ∈ C .

Then, for all F ∈C1
c (R) ,

∃ lim
n→∞

1
dn

dn

∑
j=1

F(λ j(An)) = φ(F). (2)

Proof. The technique of this proof is taken from [10, Proposition 2.3], where an
analogous result was proved for the singular values instead of the eigenvalues. We
first observe that it suffices to prove (2) for those test functions F ∈ C1

c (R) that are
real-valued. Indeed, any (complex-valued) F ∈ C1

c (R) can be decomposed as F =
R(F) + iI(F) , where R(F), I(F) ∈ C1

c (R) . Thus, once we have proved (2) for all
real-valued functions in C1

c (R) , we have

lim
n→∞

1
dn

dn

∑
j=1

F(λ j(An)) = lim
n→∞

1
dn

dn

∑
j=1

[R(F(λ j(An)))+ iI(F(λ j(An)))]

= φ(R(F))+ iφ(I(F)) = φ(F),

where the last equality holds by the linearity of the functional φ , which follows from
its definition.

Now, let F ∈C1
c (R) be real-valued. For all n,m we have∣∣∣∣∣

1
dn

dn

∑
j=1

F(λ j(An))−φ(F)

∣∣∣∣∣ �
∣∣∣∣∣

1
dn

dn

∑
j=1

F(λ j(An))− 1
dn

dn

∑
j=1

F(λ j(Bn,m))

∣∣∣∣∣
+

∣∣∣∣∣
1
dn

dn

∑
j=1

F(λ j(Bn,m))−φm(F)

∣∣∣∣∣+ |φm(F)−φ(F)|. (3)

By hypothesis, the second term in the right-hand side tends to 0 for n → ∞ , while the
third one tends to 0 for m → ∞ . Therefore, if we prove that

lim
m→∞

limsup
n→∞

∣∣∣∣∣
1
dn

dn

∑
j=1

F(λ j(An))− 1
dn

dn

∑
j=1

F(λ j(Bn,m))

∣∣∣∣∣ = 0, (4)

then, passing first to the limsup
n→∞

and then to the lim
m→∞

in (3), we get the thesis.

In conclusion, we only have to prove (4). To this end, we recall that {{Bn,m}n : m}
is an a.c.s. for {An}n and that An,Bn,m are Hermitian as in Lemma 1. Hence, for every
m ,

An = Bn,m +Rn,m +Nn,m ∀n � nm
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where Rn,m,Nn,m are Hermitian, rank(Rn,m) � ρ(m)dn, ‖Nn,m‖ � ν(m) , the quantities
nm, ρ(m), ν(m) depend only on m and lim

m→∞
ρ(m) = lim

m→∞
ν(m) = 0. We can then write,

for every m and every n � nm ,∣∣∣∣∣
1
dn

dn

∑
j=1

F(λ j(An))− 1
dn

dn

∑
j=1

F(λ j(Bn,m))

∣∣∣∣∣
�

∣∣∣∣∣
1
dn

dn

∑
j=1

F(λ j(An))− 1
dn

dn

∑
j=1

F(λ j(Bn,m +Rn,m))

∣∣∣∣∣
+

∣∣∣∣∣
1
dn

dn

∑
j=1

F(λ j(Bn,m +Rn,m))− 1
dn

dn

∑
j=1

F(λ j(Bn,m))

∣∣∣∣∣ . (5)

We will consider separately the two terms in the right-hand side of (5), and we will
show that each of them is bounded from above by a quantity depending only on m and
tending to 0 as m → ∞ . After this, (4) is proved and the thesis follows.

In order to estimate the first term in the right-hand side of (5), we use the Weyl’s
perturbation theorem; see [2, p. 63]. We have∣∣∣∣∣

1
dn

dn

∑
j=1

F(λ j(An))− 1
dn

dn

∑
j=1

F(λ j(Bn,m +Rn,m))

∣∣∣∣∣
� 1

dn

dn

∑
j=1

∣∣F(λ j(An))−F(λ j(Bn,m +Rn,m))
∣∣

� 1
dn

dn

∑
j=1

‖F ′‖∞
∣∣λ j(An)−λ j(Bn,m +Rn,m)

∣∣
� ‖F ′‖∞‖An−Bn,m−Rn,m‖ = ‖F ′‖∞‖Nn,m‖ � ‖F ′‖∞ν(m),

which tends to 0 as m → ∞ .
In order to estimate the second term in the right-hand side of (5), we will use

the interlacing Theorem 1. We first observe that F can be expressed as the difference
between two nonnegative, non-decreasing, bounded functions:

F = H −K, H(x) :=
∫ x

−∞
(F ′)+(t)dt, K(x) :=

∫ x

−∞
(F ′)−(t)dt,

where (F ′)+ := max(F ′,0) and (F ′)− := max(−F ′,0) . Hence, for the second term in
the right-hand side of (5) we have∣∣∣∣∣

1
dn

dn

∑
j=1

F(λ j(Bn,m +Rn,m))− 1
dn

dn

∑
j=1

F(λ j(Bn,m))

∣∣∣∣∣
�

∣∣∣∣∣
1
dn

dn

∑
j=1

H(λ j(Bn,m +Rn,m))− 1
dn

dn

∑
j=1

H(λ j(Bn,m))

∣∣∣∣∣
+

∣∣∣∣∣
1
dn

dn

∑
j=1

K(λ j(Bn,m +Rn,m))− 1
dn

dn

∑
j=1

K(λ j(Bn,m))

∣∣∣∣∣ . (6)
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Defining rn,m := rank(Rn,m) � ρ(m)dn , Theorem 1 gives

λ j−rn,m(Bn,m) � λ j(Bn,m +Rn,m) � λ j+rn,m(Bn,m), ∀ j = 1, . . . ,dn,

and, moreover, it is clear from our notation that

λ j−rn,m(Bn,m) � λ j(Bn,m) � λ j+rn,m(Bn,m), ∀ j = 1, . . . ,dn.

Therefore, recalling the monotonicity and nonnegativity of H ,
∣∣∣∣∣

1
dn

dn

∑
j=1

H(λ j(Bn,m +Rn,m))− 1
dn

dn

∑
j=1

H(λ j(Bn,m))

∣∣∣∣∣
� 1

dn

dn

∑
j=1

∣∣H(λ j(Bn,m +Rn,m))−H(λ j(Bn,m))
∣∣

� 1
dn

dn

∑
j=1

∣∣H(λ j−rn,m(Bn,m))−H(λ j+rn,m(Bn,m))
∣∣

=
1
dn

dn

∑
j=1

H(λ j−rn,m(Bn,m))− 1
dn

dn

∑
j=1

H(λ j+rn,m(Bn,m))

=
1
dn

dn−rn,m

∑
j=1−rn,m

H(λ j(Bn,m))− 1
dn

dn+rn,m

∑
j=1+rn,m

H(λ j(Bn,m))

=
1
dn

rn,m

∑
j=1−rn,m

H(λ j(Bn,m))− 1
dn

dn+rn,m

∑
j=dn−rn,m+1

H(λ j(Bn,m))

� 1
dn

rn,m

∑
j=1−rn,m

H(λ j(Bn,m)) � 2rn,mH(∞)
dn

� 2ρ(m)‖H‖∞.

Similarly, one can show that the second term in the right-hand side of (6) is bounded
from above by 2ρ(m)‖K‖∞ , implying that the quantity in (6), namely the second term
in the right-hand side of (5), is less than or equal to 2(‖H‖∞ +‖K‖∞)ρ(m) . Since the
latter tends to 0 as m → ∞ , the thesis is proved. �

The only unpleasant point about Theorem 2 is that, in traditional formulations
of asymptotic spectral distribution results, the usual set of test functions F is Cc(C) or
Cc(R) , but not C1

c (R) ; see, e.g., Definition 2 below or [6, Definition 3.1]. However, this
point is readily settled in Theorem 4, where we prove that, under the same hypotheses
of Theorem 2, if the second and third assumptions are met for every F ∈Cc(R) , then
(2) holds for every F ∈Cc(R) . For the proof of Theorem 4, we shall use the following
corollary of the Banach-Steinhaus theorem [9].

THEOREM 3. Let E ,F be normed vector spaces, with E a Banach space, and
let Tn : E → F be a sequence of continuous linear operators. Assume that, for all
x ∈ E , there exists lim

n→∞
Tnx =: Tx ∈ F . Then,
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• sup‖Tn‖ < ∞;

• T : E → F is a continuous linear operator with ‖T‖ � liminf
n→∞

‖Tn‖ .

THEOREM 4. Let {An}n be a sequence of Hermitian matrices, with An of size
dn → ∞ . Assume that

1. {{Bn,m}n : m} is an a.c.s. for {An}n formed by Hermitian matrices;

2. for every m and every F ∈Cc(R) , there exists lim
n→∞

1
dn

dn

∑
j=1

F(λ j(Bn,m))=: φm(F)∈
C;

3. for every F ∈Cc(R) , there exists lim
m→∞

φm(F) =: φ(F) ∈ C .

Then φ : (Cc(R),‖ · ‖∞) → C is a continuous linear functional with ‖φ‖ � 1 , and, for
all F ∈Cc(R) ,

∃ lim
n→∞

1
dn

dn

∑
j=1

F(λ j(An)) = φ(F). (7)

Proof. For fixed n,m , let

φn,m(F) :=
1
dn

dn

∑
j=1

F(λ j(Bn,m)) : (Cc(R),‖ · ‖∞) → C.

It is clear that each φn,m is a continuous linear functional on (Cc(R),‖ · ‖∞) with
‖φn,m‖ � 1. Indeed, the linearity of φn,m is obvious and the inequality |φn,m(F)| �
‖F‖∞ , which is satisfied for all F ∈ Cc(R) , yields the continuity of φn,m as well as
the bound ‖φn,m‖ � 1. The functional φm is the pointwise limit of φn,m as n → ∞ .
Hence, by Theorem 3, φm : (Cc(R),‖ · ‖∞) → C is a continuous linear functional on
(Cc(R),‖·‖∞) with ‖φm‖� 1. The functional φ is the pointwise limit of φm as m→∞ .
Hence, again by Theorem 3, φ is a continuous linear functional on (Cc(R),‖ ·‖∞) with
‖φ‖ � 1.

Now, fix F ∈Cc(R) . For all ε > 0 we can find Fε ∈C1
c (R) such that ‖F−Fε‖∞ �

ε . As a consequence, for all ε > 0 and all n we have∣∣∣∣∣
1
dn

dn

∑
j=1

F(λ j(An))−φ(F)

∣∣∣∣∣
�

∣∣∣∣∣
1
dn

dn

∑
j=1

F(λ j(An))− 1
dn

dn

∑
j=1

Fε(λ j(An))

∣∣∣∣∣
+

∣∣∣∣∣
1
dn

dn

∑
j=1

Fε(λ j(An))−φ(Fε)

∣∣∣∣∣+ |φ(Fε)−φ(F)|

� ‖F −Fε‖∞ +

∣∣∣∣∣
1
dn

dn

∑
j=1

Fε(λ j(An))−φ(Fε)

∣∣∣∣∣+ |φ(Fε)−φ(F)|.
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Considering that (7) holds for Fε by Theorem 2, we have

limsup
n→∞

∣∣∣∣∣
1
dn

dn

∑
j=1

F(λ j(An))−φ(F)

∣∣∣∣∣ � ε + |φ(Fε)−φ(F)|.

Passing to the limit as ε → 0 and taking into account the continuity of φ , we obtain

limsup
n→∞

∣∣∣∣∣
1
dn

dn

∑
j=1

F(λ j(An))−φ(F)

∣∣∣∣∣ = 0,

which means that (7) holds for every F ∈Cc(R) . �

3. An a.c.s.-based proof of the Szegö theorem on the spectral distribution of
Toeplitz matrices

As an application of Theorem 4, we present in this section a new proof of the
famous Szegö theorem on the spectral distribution of Toeplitz matrices. This theorem,
which originally appeared in [8], has undergone several extensions; see [15, 16, 4, 14].
For the proof of these extensions, other arguments, different from the one used in [8],
have been proposed. In particular, Tilli’s argument [14] is similar to the one that we are
going to present, but it does not make use of the concept of a.c.s., which was introduced
later. To our knowledge, an a.c.s.-based proof, like the one that we are going to see in
the following, has never appeared in the literature.

In the following, we denote by m the Lebesgue measure on R . Moreover, the
word ‘measurable’ always means ‘Lebesgue measurable’.

DEFINITION 2. Let {An}n be a sequence of matrices, with An of size dn → ∞ ,
and let f : D → C be a measurable function, defined on a measurable set D ⊂ R with
0 < m(D) < ∞ . We say that {An}n has an asymptotic spectral distribution described
by f , in symbols {An}n ∼λ f , if

lim
n→∞

1
dn

dn

∑
j=1

F(λ j(An)) = φ f (F), ∀F ∈Cc(C), (8)

where

φ f (F) :=
1

m(D)

∫
D

F( f (x))dx. (9)

In the case where {An}n is formed by Hermitian matrices and f is real-valued, all
the eigenvalues of An are real and writing {An}n ∼λ f is equivalent to saying that (8)
is satisfied for every test function F ∈Cc(R) , with φ f still defined by (9). Concerning
the functional φ f , we record the following property, of interest later on.
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LEMMA 2. Let fm : D → C be a sequence of measurable functions, defined on a
measurable set D ⊂ R with 0 < m(D) < ∞ , and assume that fm converges in measure
to some measurable function f : D → C . Then,

φ fm(F) → φ f (F), ∀F ∈Cc(C). (10)

In particular, if fm, f are real-valued then

φ fm(F) → φ f (F), ∀F ∈Cc(R). (11)

Proof. Let F ∈Cc(C) and ε > 0. Defining {| fm − f | � ε} := {x ∈ D : | fm(x)−
f (x)| � ε} and {| fm − f | < ε} := {x ∈ D : | fm(x)− f (x)| < ε} , we have

|φ fm(F)−φ f (F)| � 1
m(D)

∫
D
|F( fm(x))−F( f (x))|dx

=
1

m(D)

∫
{| fm− f |�ε}

|F( fm(x))−F( f (x))|dx

+
1

m(D)

∫
{| fm− f |<ε}

|F( fm(x))−F( f (x))|dx

� 2‖F‖∞m({| fm − f | � ε})
m(D)

+ ωF(ε), (12)

where ωF is the modulus of continuity of F . Note that lim
m→∞

m({| fm − f | � ε}) = 0

(because fm → f in measure) and lim
ε→0

ωF(ε) = 0 (because F is uniformly continuous

by the Heine-Cantor theorem). Hence, passing first to the limsup
m→∞

and then to the

lim
ε→0

in (12), we get (10). In the case where fm, f are real-valued, (10) immediately

implies (11), because every F ∈ Cc(R) is obtained as the restriction to R of some
F̃ ∈Cc(C) . �

Now, let f : [−π ,π ] → C be a function in L1([−π ,π ]) , and denote its Fourier
coefficients by

f j :=
1
2π

∫ π

−π
f (x)e−i jxdx, j ∈ Z.

For every n � 1, define the n -th Toeplitz matrix associated with f as follows:

Tn( f ) := [ fi− j]ni, j=1.

Note that Tn(·) is linear: Tn(α f + βg) = αTn( f ) + βTn(g) for α,β ∈ C and f ,g ∈
L1([−π ,π ]) . In the case where f is real-valued, all the matrices Tn( f ) are Hermitian
and the following result holds, which is Szegö’s theorem for L∞ functions and is due to
Zamarashkin and Tyrtyshnikov [16] and Tilli [14] in the form cited here.

THEOREM 5. Let f be a real-valued function in L1([−π ,π ]) , then {Tn( f )}n ∼λ
f .
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Our goal is to provide a proof of Theorem 5 based on the notion of a.c.s. and,
especially, on Theorem 4. To this end, we need some auxiliary lemmas. For any square
matrix X ∈ Cn×n , we denote by ‖X‖1 the Schatten 1-norm (or trace-norm) of X , de-
fined as the sum of the singular values of X ; see [2] for the Schatten p -norms of
matrices. If f ∈ L1([−π ,π ]) , we set

‖ f‖L1([−π ,π ]) :=
1
2π

∫ π

−π
| f (x)|dx.

LEMMA 3. Let f ∈ L1([−π ,π ]) and n ∈ N , then

‖Tn( f )‖1 � 2n‖ f‖L1([−π ,π ]). (13)

Proof. See [14, Lemma 3.1]. �
The inequality (13) is part of a large family of inequalities involving Toeplitz ma-

trices and Schatten p -norms. In particular, in a finer version of (13), the constant 2 is
replaced by 1. We refer the interested reader to [12, Corollary 3.5].

LEMMA 4. Let {{Zn,m}n : m} be a sequence of matrix-sequences, with Zn,m of
size n, and assume that, for every m,

‖Zn,m‖1 � α(m)n, ∀n � nm,

where α(m), nm depend only on m. Then, for each m,

Zn,m = Rn,m +Nn,m, ∀n � nm,

where rank(Rn,m) �
√

α(m)n and ‖Nn,m‖ �
√

α(m).

Proof. The thesis may be somehow derived from the results in [11] (see in par-
ticular Theorem 4.4 and Corollaries 4.1–4.2). However, since the derivation is not so
plain, we include a short and direct proof for the reader’s convenience.

Fix m and n � nm . Since ‖Zn,m‖1 � α(m)n , the number of singular values of
Zn,m that exceed

√
α(m) cannot be larger than

√
α(m)n . Let Zn,m =Un,mΣn,mV ∗

n,m be
a singular value decomposition of Zn,m and write

Zn,m = Un,mΣn,mV ∗
n,m = Un,mΣ(1)

n,mV ∗
n,m +Un,mΣ(2)

n,mV ∗
n,m,

where Σ(1)
n,m is obtained from Σn,m by setting to 0 all the singular values that are less

than or equal to
√

α(m) , while Σ(2)
n,m := Σn,m −Σ(1)

n,m is obtained from Σn,m by setting
to 0 all the singular values that exceed

√
α(m) . Then

Zn,m = Rn,m +Nn,m,

where Rn,m := Un,mΣ(1)
n,mV ∗

n,m and Nn,m := Un,mΣ(2)
n,mV ∗

n,m satisfy rank(Rn,m) �
√

α(m)n

and ‖Nn,m‖ �
√

α(m) . �
The next lemma shows that Theorem 5 holds in the case where f is a trigonometric

polynomial.
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LEMMA 5. Let p be a real-valued trigonometric polynomial, then {Tn(p)}n ∼λ
p.

Proof. Let p(x) := ∑s
j=−s p jei jx be a real-valued trigonometric polynomial. Note

that p− j = p j for all j = −s, . . . ,s , because p is real. For every n � 2s+1, consider
the following decomposition of Tn(p) :

Tn(p) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0 · · · p−s ps · · · p1
...

. . .
. . .

. . .
...

ps
. . .

. . . ps
. . .

. . .
. . .

. . .
. . .

. . .

p−s
. . .

. . . p−s
...

. . .
. . .

. . .
...

p−1 · · · p−s ps · · · p0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ps · · · p1
. . .

...
ps

p−s
...

. . .
p−1 · · · p−s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=: Cn(p)−Zn(p). (14)

Cn(p) is a (Hermitian) circulant matrix and hence its eigenvalues are explicitly known
(see [3, p. 33] or [5, Section 3.2]):

λ j(Cn(p)) = p

(
2π( j−1)

n

)
, j = 1, . . . ,n.

Therefore, for every test function F ∈Cc(R) , we have

lim
n→∞

1
n

n

∑
j=1

F(λ j(Cn(p))) = lim
n→∞

1
n

n−1

∑
j=0

F

(
p

(
2π j
n

))
=

1
2π

∫ 2π

0
F(p(x))dx

=
1
2π

∫ π

−π
F(p(x))dx,

where the last equality holds because p is periodic with period 2π , while the sec-
ond equality is due to the fact that 2π

n ∑n−1
j=0 F(p( 2π j

n )) is a Riemann integral sum for∫ 2π
0 F(p(x))dx and converges to this integral as n → ∞ , because the function F(p(x))

is continuous and hence Riemann integrable on [0,2π ] . Thus, {Cn(p)}n ∼λ p .
Now, for every n,m , set An := Tn(p) and Bn,m :=Cn(p) . We have just proved that

{Bn,m}n ∼λ p for every m . All the hypotheses of Theorem 4 are then satisfied (with
φm = φ = φp , as given by (9) for f = p ) if {{Bn,m}n : m} is an a.c.s. for {An}n . But
this is clearly true, because, in view of (14), for every m we have

An = Bn,m +Rn,m +Nn,m, ∀n � nm,

where Nn,m is the zero matrix and Rn,m := −Zn(p) satisfies rank(Rn,m) � 2s � ρ(m)n
for all n � nm , provided that we choose nm = m and ρ(m) = 2s/m . All the hypotheses
of Theorem 4 are then satisfied and so {Tn(p)}n ∼λ p. �
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Proof of Theorem 5. Take a sequence of real trigonometric polynomials pm such
that pm → f in L1([−π ,π ]) . We prove that the assumptions of Theorem 4 are satisfied
with

An = Tn( f ), Bn,m = Tn(pm), φm = φpm , φ = φp.

We first note that Tn( f ) and Tn(pm) are Hermitian, because f and pm are real. By
Lemma 5, for every m we have {Tn(pm)}n ∼λ pm. By Lemma 2, φpm(F) → φp(F)
for all F ∈ Cc(R) , because pm → f in L1([−π ,π ]) and hence, a fortiori, pm → f in
measure. It remains to show that {{Tn(pm)}n : m} is an a.c.s. for {Tn( f )}n .

By Lemma 3, for every n,m we have

‖Tn( f )−Tn(pm)‖1 = ‖Tn( f − pm)‖1 � 2n‖ f − pm‖L1([−π ,π ]) = α(m)n,

where α(m) := 2‖ f − pm‖L1([−π ,π ]) . Thus, by Lemma 4, for every n,m we have

Tn( f )−Tn(pm) = Rn,m +Nn,m,

where rank(Rn,m) �
√

α(m)n and ‖Nn,m‖ �
√

α(m) . Since α(m) → 0 as m →
∞ , {{Tn(pm)}n : m} is an a.c.s. for {Tn( f )}n . The thesis now follows from Theo-
rem 4. �

We conclude by saying that a completely analogous proof as the one presented in
this section can be given also for the multilevel block version of the Szegö theorem [14,
Theorem 2]. Here, we decided to address only the monolevel scalar case in order to
avoid technicalities and notational complications, so as to make more clear the ‘a.c.s.
idea’ and the way in which Theorem 4 is applied in practice.
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