MAPS PRESERVING THE FIXED POINTS OF SUM OF OPERATORS

Ali Taghavi, Roja Hosseinzadeh and Hamid Rohi

(Communicated by C.-K. Li)

Abstract

Let $\mathscr{B}(\mathscr{X})$ be the algebra of all bounded linear operators on a complex Banach space \mathscr{X} with $\operatorname{dim} \mathscr{X} \geqslant 2$. In this paper, we characterize the maps on $\mathscr{B}(\mathscr{X})$ which preserve the fixed points of sum of operators. Moreover, if \mathscr{X} is a finite dimensional Banach space, we also characterize the maps on $\mathscr{B}(\mathscr{X})$ which preserve the dimension of fixed points of sum of operators.

1. Introduction

The study of maps on operator algebras preserving certain properties is a topic which attracts much attention of many authors (see [1]-[18] and the references cited there.) Some of these problems are concerned with preserving a certain property of sum or products of operators (see [1]-[11] and [16]-[18]).

Let $\mathscr{B}(\mathscr{X})$ denote the algebra of all bounded linear operators on a complex Banach space \mathscr{X}. Recall that $x \in \mathscr{X}$ is a fixed point of an operator $A \in \mathscr{B}(\mathscr{X})$, whenever we have $A x=x$. For $A \in \mathscr{B}(\mathscr{X})$, denote by $\mathrm{Lat} A$ and $F(A)$ the lattice of A, that is, the set of all invariant subspaces of A and the set of all fixed points of A, respectively. Authors in [3] characterize the maps $\phi: \mathscr{B}(\mathscr{X}) \rightarrow \mathscr{B}(\mathscr{X})$ which satisfy one of the following preserving properties: $\operatorname{Lat}(A+B)=\operatorname{Lat}(\phi(A)+\phi(B))$, or $\operatorname{Lat}(A B)=\operatorname{Lat}(\phi(A) \phi(B))$, or $\operatorname{Lat}(A B+B A)=\operatorname{Lat}(\phi(A) \phi(B)+\phi(B) \phi(A))$, or $\operatorname{Lat}(A B A)=\operatorname{Lat}(\phi(A) \phi(B) \phi(A))$, or $\operatorname{Lat}(A B-B A)=\operatorname{Lat}(\phi(A) \phi(B)-\phi(B) \phi(A))$.

Since $F(A) \in \operatorname{Lat} A$, one can replace the lattice preserving property by the fixed points preserving property. Moreover, one can consider the maps preserving the dimension of fixed points which is a very weaker condition. For usual product, in [16], we characterized the surjective maps $\phi: \mathscr{B}(\mathscr{X}) \rightarrow \mathscr{B}(\mathscr{X})$ satisfying $\operatorname{dim} F(A B)=$ $\operatorname{dim} F(\phi(A) \phi(B))$, where $\operatorname{dim} F(T)$ denotes the dimension of $F(T)$.

In this paper, we characterize the maps $\phi: \mathscr{B}(\mathscr{X}) \rightarrow \mathscr{B}(\mathscr{X})$ and $\phi: \mathscr{M}_{n} \rightarrow$ \mathscr{M}_{n} satisfying $F(A+B)=F(\phi(A)+\phi(B))$ and $\operatorname{dim} F(A+B)=\operatorname{dim} F(\phi(A)+\phi(B))$, respectively.

[^0]
2. Maps preserving the dimension of fixed points of sum of operators

Recall that two operators A and B are adjacent if $A-B$ is of rank one.

Lemma 2.1. Let n be an integer number such that $n \geqslant 2$. Suppose that ϕ : $\mathscr{M}_{n} \longrightarrow \mathscr{M}_{n}$ is a map which satisfies

$$
\operatorname{dim} F(A+B)=\operatorname{dim} F(\phi(A)+\phi(B)) \quad\left(A, B \in \mathscr{M}_{n}\right)
$$

Then the following statements are hold:
(i) ϕ is injective.
(ii) If ϕ is surjective, then ϕ preserves adjacency in both directions.

Proof. (i) From $n=\operatorname{dim} F(A+I-A)=\operatorname{dim} F(\phi(A)+\phi(I-A))$ we obtain

$$
\begin{equation*}
I=\phi(A)+\phi(I-A) \tag{2.1}
\end{equation*}
$$

for every $A \in \mathscr{M}_{n}$. Let $\phi\left(A_{1}\right)=\phi\left(A_{2}\right)$. By (2.1) we have

$$
\begin{aligned}
n & =\operatorname{dim} F\left(\phi\left(A_{1}\right)+I-\phi\left(A_{2}\right)\right) \\
& =\operatorname{dim} F\left(\phi\left(A_{1}\right)+\phi\left(I-A_{2}\right)\right) \\
& =\operatorname{dim} F\left(A_{1}+I-A_{2}\right),
\end{aligned}
$$

which implies that $A_{1}+I-A_{2}=I$ and so $A_{1}=A_{2}$.
(ii) Let A and B be two matrices such that $A-B$ is of rank one. Preserving property of ϕ together with (2.1) implies that

$$
\begin{aligned}
n-1=\operatorname{dim} \operatorname{ker}(A-B) & =\operatorname{dim} F(A-B+I) \\
& =\operatorname{dim} F(\phi(A)+\phi(I-B)) \\
& =\operatorname{dim} F(\phi(A)+I-\phi(B)) \\
& =\operatorname{dim} \operatorname{ker}(\phi(A)-\phi(B))
\end{aligned}
$$

which implies that $\phi(A)-\phi(B)$ is of rank one and so ϕ preserves adjacency. Since ϕ^{-1} has the preserving property of ϕ, we can conclude that ϕ preserves adjacency in both directions.

THEOREM 2.2. Let n be an integer number such that $n \geqslant 2$. Suppose that ϕ : $\mathscr{M}_{n} \longrightarrow \mathscr{M}_{n}$ is a surjective map which satisfies

$$
\operatorname{dim} F(A+B)=\operatorname{dim} F(\phi(A)+\phi(B)) \quad\left(A, B \in \mathscr{M}_{n}\right)
$$

Then there exists a matrix $R \in \mathscr{M}_{n}$ and invertible matrices $U, S \in \mathscr{M}_{n}$ such that $\phi(A)=$ $U S^{-1} A_{\sigma} S+R$ or $\phi(A)=U S^{-1} A_{\sigma}^{t} S+R$, for every $A \in M_{n}$, where σ is an automorphism of \mathbb{C} and $A_{\sigma}=\left[\sigma\left(a_{i j}\right)\right]$ for $A=\left[a_{i j}\right]$.

Proof. By Lemma 2.1, ϕ is injective and so bijective and preserves adjacency in both directions. By fundamental theorem of geometry of matrices [8], the forms of bijective adjacency preserving map $\phi: \mathscr{M}_{n} \longrightarrow \mathscr{M}_{n}$ is $\phi(A)=T A_{\sigma} S+R$ or $\phi(A)=$ $T A_{\sigma}^{t} S+R$, where R is a matrix, T, S are invertible matrices, σ is an automorphism of the underlying field and $A_{\sigma}=\left[\sigma\left(a_{i j}\right)\right]$ for $A=\left[a_{i j}\right]$.

Let the first case occurs. From (2.1) we have $\phi(0)+\phi(I)=I$ which implies that $R+T I_{\sigma} S+R=I$. Since $I_{\sigma}=I$, we obtain $T S=I-2 R$. Setting $U=I-2 R$, we obtain $T=U S^{-1}$. Therefore, $\phi(A)=U S^{-1} A_{\sigma} S+R$. Since

$$
\operatorname{dim} F(2 R))=\operatorname{dim} F(2 \phi(0))=\operatorname{dim} F(0)=0
$$

$F(2 R)=\operatorname{ker}(I-2 R)=0$ and so $I-2 R$ is invertible. In a similar way, we can obtain the second case.

3. Maps preserving the fixed points of sum of operators

We recall some notations. \mathscr{X}^{*} denotes the dual space of \mathscr{X}. For every nonzero $x \in \mathscr{X}$ and $f \in \mathscr{X}^{*}$, the symbol $x \otimes f$ stands for the rank one linear operator on \mathscr{X} defined by $(x \otimes f) y=f(y) x$ for every $y \in \mathscr{X}$. Note that every rank one operator in $\mathscr{B}(\mathscr{X})$ can be written in this way. The rank one operator $x \otimes f$ is idempotent if and only if $f(x)=1$. We denote by $\mathscr{F}_{1}(\mathscr{X})$ and $\mathscr{P}_{1}(\mathscr{X})$ the set of all rank one operators and the set of all rank one idempotent operators on \mathscr{X}, respectively.

Let $x \otimes f$ be a rank one operator. It is easy to check that $x \otimes f$ is an idempotent if and only if $F(x \otimes f)=\langle x\rangle$ (the linear subspace spanned by x). If $x \otimes f$ isn't idempotent, then $F(x \otimes f)=\{0\}$.

Let $x, y \in \mathscr{X}$. We denote by $\operatorname{Gcv}\{x, y\}=\{\lambda x+(1-\lambda) y: \lambda \in \mathbb{C}\}$ the generalized convex combination of x and y.

In order to prove the main results of this section, first we prove some auxiliary lemmas. In the following lemmas assume that $\operatorname{dim} \mathscr{X} \geqslant 3$.

Lemma 3.1. [5] Let $A, B \in \mathscr{B}(\mathscr{X})$ be non-scalar operators. Suppose that for every such $x \in \mathscr{X}$ that x and $A x$ are linearly independent or that $x=A x, B x \in$ $\operatorname{Gcv}\{x, A x\}$. Then $B=\lambda I+(1-\lambda) A$ for some $\lambda \in \mathbb{C} \backslash\{1\}$.

Lemma 3.2. Let $A, B \in \mathscr{B}(\mathscr{X})$ be non-scalar operators. If $F(A+P)=F(B+$ $P)$, for every $P \in \mathscr{P}_{1}(\mathscr{X}), B=\lambda I+(1-\lambda) A$, for some $\lambda \in \mathbb{C} \backslash\{1\}$.

Proof. By Lemma 3.1, it is enough to consider the following two cases.
Case 1. Let x and $A x$ be linear independent. So there exists a linear functional f such that $f(x)=1$ and $f(A x)=0$. Setting $P=(x-A x) \otimes f$ yields that $(A+P) x=x$ which implies that $(B+P) x=x$ and so $A x=B x$. Therefore, $B x \in \operatorname{Gcv}\{x, A x\}$.

Case 2. Let $x=A x$. There exists a vector $z \in \mathscr{X}$ such that x and z are linear independent and so there exists a linear functional f such that $f(x)=0$ and $f(z)=1$. Setting $P=z \otimes f$ yields that $(A+P) x=x$ which implies that $(B+P) x=x$ and so $A x=B x$. Therefore, $B x \in \operatorname{Gcv}\{x, A x\}$.

Lemma 3.3. Let $A, B \in \mathscr{B}(\mathscr{X})$. If $F(A+R)=F(B+R)$, for every $R \in \mathscr{F}_{1}(\mathscr{X})$, then $A=B$.

Proof. Let $x \in \mathscr{X}$. If x and $A x$ is linear independent, then there exists a linear functional f such that $f(x)=f(A x)=1$, because $\operatorname{dim} \mathscr{X} \geqslant 3$. Setting $R=(x-A x) \otimes f$ yields that $x \in F(A+R)$ which implies that $x \in F(B+R)$ and so $A x=B x$.

Let $A x=a x$ for a nonzero complex number a. There exists a linear functional f such that $f(x)=1$. Setting $R=(1-a) x \otimes f$ yields that $x \in F(A+R)$ which implies that $x \in F(B+R)$ and so $A x=B x$. The proof is complete.

Lemma 3.4. Let $\phi: \mathscr{B}(\mathscr{X}) \longrightarrow \mathscr{B}(\mathscr{X})$ be a map which satisfies

$$
F(A+B)=F(\phi(A)+\phi(B)) \quad(A, B \in \mathscr{B}(\mathscr{X}))
$$

Then the following statements are hold:
(i) ϕ is injective.
(ii) $\phi(P)=U P+R$ for every rank one idempotent P, where $U=I-2 \phi(0)$ and $R=\phi(0)$.

Proof. (i) From

$$
\mathscr{X}=F(A+I-A)=F(\phi(A)+\phi(I-A)),
$$

we obtain

$$
\begin{equation*}
I=\phi(A)+\phi(I-A), \tag{3.1}
\end{equation*}
$$

for every $A \in \mathscr{B}(\mathscr{X})$. Let $\phi\left(A_{1}\right)=\phi\left(A_{2}\right)$. By (3.1) we have

$$
\mathscr{X}=F\left(\phi\left(A_{1}\right)+I-\phi\left(A_{2}\right)\right)=F\left(\phi\left(A_{1}\right)+\phi\left(I-A_{2}\right)\right)=F\left(A_{1}+I-A_{2}\right),
$$

which implies that $A_{1}+I-A_{2}=I$ and so $A_{1}=A_{2}$.
(ii) For every nonzero $x \in \mathscr{X}$ and nonzero $f \in \mathscr{X}^{*}$, we have

$$
\operatorname{ker}(f)=F(x \otimes f+I)=F(\phi(x \otimes f)+\phi(I))
$$

which implies that

$$
\begin{equation*}
\phi(x \otimes f)+\phi(I)=I \tag{3.2}
\end{equation*}
$$

or there exists a vector $y \in \mathscr{X}$ and a linear functional $g \in \mathscr{X}^{*}$ such that

$$
\begin{equation*}
\phi(x \otimes f)+\phi(I)=y \otimes g+I . \tag{3.3}
\end{equation*}
$$

By (3.1) we have

$$
\begin{equation*}
\phi(I)+\phi(0)=I \tag{3.4}
\end{equation*}
$$

and so if (3.2) holds, then $\phi(x \otimes f)=\phi(0)$. This is a contradiction, because ϕ is injective. Thus (3.3) holds and so $\operatorname{ker}(f)=F(y \otimes g+I)=\operatorname{ker}(g)$ which implies that
f and g are linear dependent. Without loss of generality, we can assume that $f=g$ and hence

$$
\begin{equation*}
\phi(x \otimes f)+\phi(I)=y \otimes f+I . \tag{3.5}
\end{equation*}
$$

Let $f(x)=1$. By (3.4) and (3.5) we have

$$
\begin{aligned}
\langle x\rangle=F(x \otimes f) & =F(\phi(x \otimes f)+\phi(0)) \\
& =F(y \otimes f+I-\phi(I)+\phi(0)) \\
& =F(y \otimes f+2 \phi(0))
\end{aligned}
$$

which implies that $(y \otimes f+2 \phi(0)) x=x$ and so $y=(I-2 \phi(0)) x$. This together with (3.4) and (3.5) yields that $\phi(x \otimes f)=(I-2 \phi(0)) x \otimes f+\phi(0)$ which completes the proof.

Theorem 3.5. Let \mathscr{X} be a complex Banach space with $\operatorname{dim} \mathscr{X} \geqslant 2$. Suppose that $\phi: \mathscr{B}(\mathscr{X}) \longrightarrow \mathscr{B}(\mathscr{X})$ is a surjective map which satisfies

$$
F(A+B)=F(\phi(A)+\phi(B)) \quad(A, B \in \mathscr{B}(\mathscr{X})) .
$$

Then $\phi(A)=U A+R$ for every $A \in \mathscr{B}(\mathscr{X})$, where $U=I-2 \phi(0)$ and $R=\phi(0)$.

Proof. If $\operatorname{dim} \mathscr{X}=2$, from Theorem 2.2 we can conclude that there exists a matrix $R \in \mathscr{M}_{2}$ and invertible matrices $U, S \in \mathscr{M}_{2}$ such that $\phi(A)=U S^{-1} A_{\sigma} S+R$ or $\phi(A)=$ $U S^{-1} A_{\sigma}^{t} S+R$, for every $A \in M_{2}$, where σ is an automorphism of \mathbb{C}. Suppose the first case occurs. This by assumption yields that

$$
F(A+B)=F\left(U\left(S^{-1}\left(A_{\sigma}+B_{\sigma}\right) S\right)+2 R\right)
$$

for every $A, B \in \mathscr{M}_{2}$. It is easy to see that for arbitrary operators $A, B \in \mathscr{B}(\mathscr{X})$, $F\left(S^{-1} A S\right)=S^{-1}(F(A))$ and also $F(A+B)=F(U(A+B)+2 R)$. Therefore, we obtain

$$
S F(A+B)=F\left(A_{\sigma}+B_{\sigma}\right)
$$

for every $A, B \in \mathscr{M}_{2}$. Replacing A and B by

$$
A_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), B_{1}=0
$$

and then

$$
A_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), B_{2}=0
$$

yields that $S(x, 0)=(x, 0)$ and $S(0, y)=(0, y)$, for all $x, y \in \mathbb{C}$ and hence S is the identity operator. Thus we obtain

$$
F(A+B)=F\left(A_{\sigma}+B_{\sigma}\right)
$$

for every $A, B \in \mathscr{M}_{2}$. Let $a \in \mathbb{C}$ be nonzero and set

$$
C=\left(\begin{array}{cc}
1 & 0 \\
a & 0
\end{array}\right), D=0
$$

Replacing A and B by C and D yields that

$$
\{(x, a x) ; x \in \mathbb{C}\}=\{(x, \sigma(a) x) ; x \in \mathbb{C}\}
$$

which implies that $\sigma(a)=a$, for every $a \in \mathbb{C}$ and so σ is the identity automorphism. Therefore, $\phi(A)=U A+R$ for every $A \in \mathscr{M}_{2}$.

The second case can not occur. Otherwise, with a very similar way as above discussion we obtain

$$
F(A+B)=F\left(A_{\sigma}^{t}+B_{\sigma}^{t}\right)
$$

for every $A, B \in \mathscr{M}_{2}$. Again replacing A and B by C and D, yields that

$$
\{(x, a x) ; x \in \mathbb{C}\}=\{(x, 0) ; x \in \mathbb{C}\}
$$

which implies that $a=0$, a contradiction.
Now let $\operatorname{dim} \mathscr{X} \geqslant 3$. Since $F(2 \phi(0))=F(0)=0$, $\operatorname{ker}(I-2 \phi(0))=0$ and so $U=I-2 \phi(0)$ is injective. Let ψ be a map on $\mathscr{B}(\mathscr{X})$ such that $U \psi=\phi-R$, where $R=\phi(0)$. The injectivity of U yields that ψ is well-defined and that ψ satisfies the preserving property of ϕ and also by Lemma 3.4, $\psi(P)=P$ for every rank one idempotent P. Therefore, without loss of generality, we can assume that $U=I, R=0$ and so $\phi(P)=P$ for every rank one idempotent P.

We divide the proof into the following steps.
Step 1. $\phi(a I)=a I$, for every $a \in \mathbb{C}$.
Let $A=a I$, for a nonzero complex number a and set $\phi(A)=B$. Let x be a nonzero arbitrary vector of \mathscr{X}. Then there exists a linear functional f such that $f(x)=1$. Setting $P=(x-B x) \otimes f$ yields that $(B+P) x=x$ which implies that $\left(A+\phi^{-1}(P)\right) x=x$. So we obtain

$$
(A+P) x=x \Rightarrow a x+x-B x=x \Rightarrow B x=a x
$$

Step 2. $\phi(A)=A$ for every rank one operator A.
Let $x \in \mathscr{X}$ and $f \in \mathscr{X}^{*}$ be nonzero. Since $\phi(I)=I$, by (3.5), there exists a $y \in \mathscr{X}$ such that

$$
\begin{equation*}
\phi(x \otimes f)=y \otimes f \tag{3.6}
\end{equation*}
$$

On the other hand, by Lemma 3.2, there exists an $\lambda \in \mathbb{C} \backslash\{1\}$ such that

$$
\begin{equation*}
\phi(x \otimes f)=\lambda I+(1-\lambda) x \otimes f \tag{3.7}
\end{equation*}
$$

because by Step $1, \phi(x \otimes f)$ is a non-scalar operator. From (3.6) and (3.7) we obtain $\lambda=0$ and $y=x$ and so $\phi(x \otimes f)=x \otimes f$.

Step 3. $\phi(A)=A$ for every operator $A \in \mathscr{B}(\mathscr{X})$.
Assertion follows from Step 2 and Lemma 3.3.
Acknowledgements. The authors wish to thank the referee for many helpful comments.

REFERENCES

[1] M.A. Chebotar, W.-F. Ke, P.-H. Lee, N.-C. Wong, Mappings preserving zero products, Studia Math. 155 (2003), 77-94.
[2] M. Dobovišek, B. Kuzma, G. Lešnjak, C. K. Li, T. Petek, Mappings that preserve pairs of operators with zero triple Jordan Product, Linear Algebra Appl. 426 (2007), 255-279.
[3] G. Dolinar, S. Du, J. Hou, P. Legiša, General preservers of invariant subspace lattices, Linear Algebra Appl. 429 (2008), 100-109.
[4] L. FANG, G. JI, Linear maps preserving products of positive or Hermitian matrices, Linear Algebra Appl. 419 (2006), 601-611.
[5] L. FANG, G. JI, Y. PANG, Maps preserving the idempotency of products of operators, Linear Algebra Appl. 426 (2007), 40-52.
[6] J. Hou, Q. Di, Maps preserving numerical ranges of operator products, Proc. Amer. Math. Soc. 134 (2006), 1435-1446.
[7] J. Hou, C. K. Li, N. C. Wong, Jordan isomorphisms and maps preserving spectra of certain operator products, Studia Math. 184 (2008), 31-47.
[8] L.K. HaU, A theorem on matrices over a field and its applications, Acta Math. Sinica 1 (1951), 109-163.
[9] J. HOU, L. ZHAO, Zero-product preserving additive maps on symmetric operator spaces and selfadjoint operator spaces, Linear Algebra Appl. 399 (2005), 235-244.
[10] G. JI, Y. GaO, Maps preserving operator pairs whose products are projections, Linear Algebra Appl. 433 (2010), 1348-1364.
[11] C. K. Li, P. ŠEmrL, N. S. Sze, Maps preserving the nilpotency of products of operators, Linear Algebra Appl. 424 (2007), 222-239.
[12] P. Šemrl, Two characterizations of automorphisms on $\mathscr{B}(\mathscr{X})$, Studia Math. 105 (1993), 143-148.
[13] P. ŠEmRL, N. S. Sze, Non-linear commutativity preserving maps, Acta Scince Math. (Szeged) 71 (2005), 781-819.
[14] A. TAGHAVI, Additive mappings on C^{*}-algebras Preserving absolute values, Linear and Multilinear Algebra 60, 1 (2012), 33-38.
[15] A. TAGHAVI, R. Hosseinzadeh, Linear maps preserving idempotent operators, Bull. Korean Math. Soc. 47 (2010), 787-792.
[16] A. TAGHAVI, R. Hosseinzadeh, Maps preserving the dimension of fixed points of products of operators, Linear and Multilinear Algebra, accepted.
[17] M. WANG, L. FANG, G. Ji, Y. Pang, Linear maps preserving idempotency of products or triple Jordan products of operators, Linear Algebra Appl. 429 (2008), 181-189.
[18] L. ZhaO, J. Hou, Jordan zero-product preserving additive maps on operator algebras, J. Math. Anal. Appl. 314 (2006), 689-700.

Ali Taghavi
Department of Mathematics, Faculty of Mathematical Sciences
University of Mazandaran P. O. Box 47416-1468 Babolsar, Iran
e-mail: Taghavi@umz.ac.ir
Roja Hosseinzadeh
Department of Mathematics, Faculty of Mathematical Sciences
University of Mazandaran
P. O. Box 47416-1468, Babolsar, Iran
e-mail: ro.hosseinzadeh@umz.ac.ir

Hamid Rohi

Department of Mathematics, Faculty of Mathematical Sciences
University of Mazandaran
P. O. Box 47416-1468, Babolsar, Iran

Operators and Matrices

www.ele-math.com
oam@ele-math.com

[^0]: Mathematics subject classification (2010): 46J10, 47B48.
 Keywords and phrases: Preserver problem, operator algebra, fixed point.

