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Abstract. Let B(X ) be the algebra of all bounded linear operators on a complex Banach space
X with dimX � 2 . In this paper, we characterize the maps on B(X ) which preserve the
fixed points of sum of operators. Moreover, if X is a finite dimensional Banach space, we
also characterize the maps on B(X ) which preserve the dimension of fixed points of sum of
operators.

1. Introduction

The study of maps on operator algebras preserving certain properties is a topic
which attracts much attention of many authors (see [1]–[18] and the references cited
there.) Some of these problems are concerned with preserving a certain property of
sum or products of operators (see [1]–[11] and [16]–[18]).

Let B(X ) denote the algebra of all bounded linear operators on a complex
Banach space X . Recall that x ∈ X is a fixed point of an operator A ∈ B(X ) ,
whenever we have Ax = x . For A ∈ B(X ) , denote by LatA and F(A) the lattice
of A , that is, the set of all invariant subspaces of A and the set of all fixed points of
A , respectively. Authors in [3] characterize the maps φ : B(X ) → B(X ) which
satisfy one of the following preserving properties: Lat(A + B) = Lat(φ(A) + φ(B)) ,
or Lat(AB) = Lat(φ(A)φ(B)) , or Lat(AB + BA) = Lat(φ(A)φ(B) + φ(B)φ(A)) , or
Lat(ABA) = Lat(φ(A)φ(B)φ(A)) , or Lat(AB−BA) = Lat(φ(A)φ(B)−φ(B)φ(A)) .

Since F(A) ∈ LatA , one can replace the lattice preserving property by the fixed
points preserving property. Moreover, one can consider the maps preserving the di-
mension of fixed points which is a very weaker condition. For usual product, in [16],
we characterized the surjective maps φ : B(X ) → B(X ) satisfying dimF(AB) =
dimF(φ(A)φ(B)) , where dimF(T ) denotes the dimension of F(T ) .

In this paper, we characterize the maps φ : B(X ) → B(X ) and φ : Mn →
Mn satisfying F(A+B) = F(φ(A)+φ(B)) and dimF(A+B) = dimF(φ(A)+φ(B)) ,
respectively.

Mathematics subject classification (2010): 46J10, 47B48.
Keywords and phrases: Preserver problem, operator algebra, fixed point.

c© � � , Zagreb
Paper OaM-09-34

563

http://dx.doi.org/10.7153/oam-09-34


564 A. TAGHAVI, R. HOSSEINZADEH AND H. ROHI

2. Maps preserving the dimension of fixed points of sum of operators

Recall that two operators A and B are adjacent if A−B is of rank one.

LEMMA 2.1. Let n be an integer number such that n � 2 . Suppose that φ :
Mn −→ Mn is a map which satisfies

dimF(A+B) = dimF(φ(A)+ φ(B)) (A,B ∈ Mn).

Then the following statements are hold:
(i) φ is injective.
(ii) If φ is surjective, then φ preserves adjacency in both directions.

Proof. (i) From n = dimF(A+ I−A) = dimF(φ(A)+ φ(I−A)) we obtain

I = φ(A)+ φ(I−A) (2.1)

for every A ∈ Mn . Let φ(A1) = φ(A2) . By (2.1) we have

n = dimF(φ(A1)+ I−φ(A2))
= dimF(φ(A1)+ φ(I−A2))
= dimF(A1 + I−A2),

which implies that A1 + I−A2 = I and so A1 = A2 .
(ii) Let A and B be two matrices such that A−B is of rank one. Preserving

property of φ together with (2.1) implies that

n−1 = dimker(A−B) = dimF(A−B+ I)
= dimF(φ(A)+ φ(I−B))
= dimF(φ(A)+ I−φ(B))
= dimker(φ(A)−φ(B))

which implies that φ(A)− φ(B) is of rank one and so φ preserves adjacency. Since
φ−1 has the preserving property of φ , we can conclude that φ preserves adjacency in
both directions. �

THEOREM 2.2. Let n be an integer number such that n � 2 . Suppose that φ :
Mn −→ Mn is a surjective map which satisfies

dimF(A+B) = dimF(φ(A)+ φ(B)) (A,B ∈ Mn).

Then there exists a matrix R∈Mn and invertible matrices U,S∈Mn such that φ(A) =
US−1Aσ S+R or φ(A) = US−1At

σ S+R, for every A ∈ Mn , where σ is an automor-
phism of C and Aσ = [σ(ai j)] for A = [ai j] .
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Proof. By Lemma 2.1, φ is injective and so bijective and preserves adjacency in
both directions. By fundamental theorem of geometry of matrices [8], the forms of
bijective adjacency preserving map φ : Mn −→ Mn is φ(A) = TAσS +R or φ(A) =
TAt

σS+R , where R is a matrix, T,S are invertible matrices, σ is an automorphism of
the underlying field and Aσ = [σ(ai j)] for A = [ai j] .

Let the first case occurs. From (2.1) we have φ(0)+ φ(I) = I which implies that
R+TIσ S+R = I . Since Iσ = I , we obtain TS = I−2R . Setting U = I−2R , we obtain
T = US−1 . Therefore, φ(A) = US−1Aσ S+R . Since

dimF(2R)) = dimF(2φ(0)) = dimF(0) = 0,

F(2R) = ker(I −2R) = 0 and so I −2R is invertible. In a similar way, we can obtain
the second case. �

3. Maps preserving the fixed points of sum of operators

We recall some notations. X ∗ denotes the dual space of X . For every nonzero
x ∈ X and f ∈ X ∗ , the symbol x⊗ f stands for the rank one linear operator on X
defined by (x⊗ f )y = f (y)x for every y ∈ X . Note that every rank one operator in
B(X ) can be written in this way. The rank one operator x⊗ f is idempotent if and
only if f (x) = 1. We denote by F1(X ) and P1(X ) the set of all rank one operators
and the set of all rank one idempotent operators on X , respectively.

Let x⊗ f be a rank one operator. It is easy to check that x⊗ f is an idempotent if
and only if F(x⊗ f ) = 〈x〉 (the linear subspace spanned by x ). If x⊗ f isn’t idempotent,
then F(x⊗ f ) = {0} .

Let x,y∈X . We denote by Gcv{x,y}= {λx+(1−λ )y : λ ∈ C} the generalized
convex combination of x and y .

In order to prove the main results of this section, first we prove some auxiliary
lemmas. In the following lemmas assume that dimX � 3.

LEMMA 3.1. [5] Let A,B ∈ B(X ) be non-scalar operators. Suppose that for
every such x ∈ X that x and Ax are linearly independent or that x = Ax, Bx ∈
Gcv{x,Ax} . Then B = λ I +(1−λ )A for some λ ∈ C\ {1} .

LEMMA 3.2. Let A,B ∈ B(X ) be non-scalar operators. If F(A+P) = F(B+
P) , for every P ∈ P1(X ) , B = λ I +(1−λ )A, for some λ ∈ C\ {1} .

Proof. By Lemma 3.1, it is enough to consider the following two cases.
Case 1. Let x and Ax be linear independent. So there exists a linear functional f

such that f (x) = 1 and f (Ax) = 0. Setting P = (x−Ax)⊗ f yields that (A+P)x = x
which implies that (B+P)x = x and so Ax = Bx . Therefore, Bx ∈ Gcv{x,Ax} .

Case 2. Let x = Ax . There exists a vector z ∈ X such that x and z are linear
independent and so there exists a linear functional f such that f (x) = 0 and f (z) = 1.
Setting P = z⊗ f yields that (A + P)x = x which implies that (B + P)x = x and so
Ax = Bx . Therefore, Bx ∈ Gcv{x,Ax} . �
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LEMMA 3.3. Let A,B∈B(X ) . If F(A+R) = F(B+R) , for every R∈F1(X ) ,
then A = B.

Proof. Let x ∈ X . If x and Ax is linear independent, then there exists a linear
functional f such that f (x) = f (Ax) = 1, because dimX � 3. Setting R =(x−Ax)⊗ f
yields that x ∈ F(A+R) which implies that x ∈ F(B+R) and so Ax = Bx .

Let Ax = ax for a nonzero complex number a . There exists a linear functional f
such that f (x) = 1. Setting R = (1−a)x⊗ f yields that x ∈ F(A+R) which implies
that x ∈ F(B+R) and so Ax = Bx . The proof is complete. �

LEMMA 3.4. Let φ : B(X ) −→ B(X ) be a map which satisfies

F(A+B) = F(φ(A)+ φ(B)) (A,B ∈ B(X )).

Then the following statements are hold:
(i) φ is injective.
(ii) φ(P) = UP+R for every rank one idempotent P, where U = I−2φ(0) and

R = φ(0) .

Proof. (i) From

X = F(A+ I−A) = F(φ(A)+ φ(I−A)),

we obtain
I = φ(A)+ φ(I−A), (3.1)

for every A ∈ B(X ) . Let φ(A1) = φ(A2) . By (3.1) we have

X = F(φ(A1)+ I−φ(A2)) = F(φ(A1)+ φ(I−A2)) = F(A1 + I−A2),

which implies that A1 + I−A2 = I and so A1 = A2 .
(ii) For every nonzero x ∈ X and nonzero f ∈ X ∗ , we have

ker( f ) = F(x⊗ f + I) = F(φ(x⊗ f )+ φ(I))

which implies that
φ(x⊗ f )+ φ(I) = I (3.2)

or there exists a vector y ∈ X and a linear functional g ∈ X ∗ such that

φ(x⊗ f )+ φ(I) = y⊗g+ I. (3.3)

By (3.1) we have
φ(I)+ φ(0) = I (3.4)

and so if (3.2) holds, then φ(x⊗ f ) = φ(0) . This is a contradiction, because φ is
injective. Thus (3.3) holds and so ker( f ) = F(y⊗g+ I) = ker(g) which implies that
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f and g are linear dependent. Without loss of generality, we can assume that f = g
and hence

φ(x⊗ f )+ φ(I) = y⊗ f + I. (3.5)

Let f (x) = 1. By (3.4) and (3.5) we have

〈x〉 = F(x⊗ f ) = F(φ(x⊗ f )+ φ(0))
= F(y⊗ f + I−φ(I)+ φ(0))
= F(y⊗ f +2φ(0)),

which implies that (y⊗ f + 2φ(0))x = x and so y = (I − 2φ(0))x . This together with
(3.4) and (3.5) yields that φ(x⊗ f ) = (I − 2φ(0))x⊗ f + φ(0) which completes the
proof. �

THEOREM 3.5. Let X be a complex Banach space with dimX � 2 . Suppose
that φ : B(X ) −→ B(X ) is a surjective map which satisfies

F(A+B) = F(φ(A)+ φ(B)) (A,B ∈ B(X )).

Then φ(A) = UA+R for every A ∈ B(X ) , where U = I−2φ(0) and R = φ(0) .

Proof. If dimX = 2, from Theorem 2.2 we can conclude that there exists a matrix
R ∈M2 and invertible matrices U,S ∈M2 such that φ(A) =US−1Aσ S+R or φ(A) =
US−1At

σ S+R , for every A∈ M2 , where σ is an automorphism of C . Suppose the first
case occurs. This by assumption yields that

F(A+B) = F(U(S−1(Aσ +Bσ )S)+2R)

for every A,B ∈ M2 . It is easy to see that for arbitrary operators A,B ∈ B(X ) ,
F(S−1AS) = S−1(F(A)) and also F(A+B) = F(U(A+B)+2R) . Therefore, we obtain

SF(A+B) = F(Aσ +Bσ)

for every A,B ∈ M2 . Replacing A and B by

A1 =
(

1 0
0 0

)
,B1 = 0

and then

A2 =
(

0 0
0 1

)
,B2 = 0

yields that S(x,0) = (x,0) and S(0,y) = (0,y) , for all x,y ∈ C and hence S is the
identity operator. Thus we obtain

F(A+B) = F(Aσ +Bσ)
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for every A,B ∈ M2 . Let a ∈ C be nonzero and set

C =
(

1 0
a 0

)
,D = 0.

Replacing A and B by C and D yields that

{(x,ax);x ∈ C} = {(x,σ(a)x);x ∈ C}
which implies that σ(a) = a , for every a ∈ C and so σ is the identity automorphism.
Therefore, φ(A) = UA+R for every A ∈ M2 .

The second case can not occur. Otherwise, with a very similar way as above
discussion we obtain

F(A+B) = F(At
σ +Bt

σ)

for every A,B ∈ M2 . Again replacing A and B by C and D , yields that

{(x,ax);x ∈ C} = {(x,0);x ∈ C}
which implies that a = 0, a contradiction.

Now let dimX � 3. Since F(2φ(0)) = F(0) = 0, ker(I − 2φ(0)) = 0 and so
U = I−2φ(0) is injective. Let ψ be a map on B(X ) such that Uψ = φ −R , where
R = φ(0) . The injectivity of U yields that ψ is well-defined and that ψ satisfies
the preserving property of φ and also by Lemma 3.4, ψ(P) = P for every rank one
idempotent P . Therefore, without loss of generality, we can assume that U = I , R = 0
and so φ(P) = P for every rank one idempotent P .

We divide the proof into the following steps.
Step 1. φ(aI) = aI , for every a ∈ C .
Let A = aI , for a nonzero complex number a and set φ(A) = B . Let x be a

nonzero arbitrary vector of X . Then there exists a linear functional f such that
f (x) = 1. Setting P = (x− Bx)⊗ f yields that (B + P)x = x which implies that
(A+ φ−1(P))x = x . So we obtain

(A+P)x = x ⇒ ax+ x−Bx = x ⇒ Bx = ax.

Step 2. φ(A) = A for every rank one operator A .
Let x ∈ X and f ∈ X ∗ be nonzero. Since φ(I) = I , by (3.5) , there exists a

y ∈ X such that
φ(x⊗ f ) = y⊗ f . (3.6)

On the other hand, by Lemma 3.2, there exists an λ ∈ C\ {1} such that

φ(x⊗ f ) = λ I +(1−λ )x⊗ f , (3.7)

because by Step 1, φ(x⊗ f ) is a non-scalar operator. From (3.6) and (3.7) we obtain
λ = 0 and y = x and so φ(x⊗ f ) = x⊗ f .

Step 3. φ(A) = A for every operator A ∈ B(X ) .
Assertion follows from Step 2 and Lemma 3.3. �
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[11] C. K. LI, P. ŠEMRL, N. S. SZE, Maps preserving the nilpotency of products of operators, Linear
Algebra Appl. 424 (2007), 222–239.
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