A NECESSARY AND SUFFICIENT CONDITION FOR POSITIVITY OF LINEAR MAPS ON M₄ CONSTRUCTED FROM PERMUTATION PAIRS

HAILI ZHAO AND JINCHUAN HOU

(Communicated by F. Kittaneh)

Abstract. A necessary and sufficient condition for a *D*-type map Φ_{π_1,π_2} on 4×4 matrices constructed from a pair of arbitrary permutations $\{\pi_1,\pi_2\}$ to be positive is obtained.

1. Introduction

Denote by $M_n = M_n(\mathbb{C})$ the algebra of all $n \times n$ complex matrices and M_n^+ the set of all positive semi-definite matrices in M_n . A map $L: M_n \to M_n$ is positive if $L(M_n^+) \subseteq M_n^+$. The positive maps are important objects both in mathematics and quantum information theory, see [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15].

Suppose $\Phi_D: M_n \to M_n$ is a linear map of the form

$$(a_{ij}) \longmapsto \operatorname{diag}(f_1, f_2, \dots, f_n) - (a_{ij}) \tag{1.1}$$

with $(f_1, f_2, ..., f_n) = (a_{11}, a_{22}, ..., a_{nn})D$ for an $n \times n$ nonnegative matrix $D = (d_{ij})$ (i.e., $d_{ij} \ge 0$ for all i, j). The map Φ_D of the form Eq. (1.1) defined by a nonnegative matrix D is called a D-type map [9]. The question of when a D-type map is positive was studied intensively by many authors and applied in quantum information theory to detect entangled states and construct entanglement witnesses (ref., for instance, [9, 14] and the references therein).

A very interesting class of *D*-type maps is the class of maps constructed from permutations.

Assume that π is a permutation of (1, 2, ..., n). Recall that the permutation matrix $P_{\pi} = (p_{ij})$ of π is a $n \times n$ matrix determined by

$$p_{ij} = \begin{cases} 1 & \text{if } i = \pi(j), \\ 0 & \text{if } i \neq \pi(j). \end{cases}$$

The well-known Choi map $\Psi: M_3 \to M_3$ defined by

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \mapsto \begin{pmatrix} a_{11} + a_{33} & -a_{12} & -a_{13} \\ -a_{21} & a_{22} + a_{11} & -a_{23} \\ -a_{31} & -a_{32} & a_{33} + a_{22} \end{pmatrix}$$

© CENN, Zagreb Paper OaM-09-36

Mathematics subject classification (2010): 15A86, 47B49, 47N50.

Keywords and phrases: Matrix algebras, positive linear maps, permutations, inequalities. This work is partially supported by Natural Science Foundation of China (11171249, 11271217).

is clearly a *D*-type map induced from the permutation $(1,2,3) \rightarrow (2,3,1)$.

Recall also that a subset $(i_1, \ldots, i_l) \subseteq \{1, 2, \ldots, n\}$ is an *l*-cycle of the permutation π if $\pi(i_j) = i_{j+1}$ for $j = 1, \ldots, l-1$ and $\pi(i_l) = i_1$. Note that every permutation π of $(1, \ldots, n)$ has a disjoint cycle decomposition $\pi = (\pi_1)(\pi_2) \cdots (\pi_r)$, that is, there exists a set $\{F_s\}_{s=1}^r$ of disjoint cycles of π with $\bigcup_{s=1}^r F_s = \{1, 2, \ldots, n\}$ such that $\pi_s = \pi|_{F_s}$ and $\pi(i) = \pi_s(i)$ whenever $i \in F_s$. Let π be a permutation of $(1, 2, \ldots, n)$ with disjoint cycle decomposition $(\pi_1) \cdots (\pi_r)$ such that the maximum length of π_i is equal to l > 1 and $P_{\pi} = (\delta_{i\pi(j)})$ is the permutation matrix associated with π . For $t \ge 0$, let $\Phi_{t,\pi} : M_n \to M_n$ be the *D*-type map of the form in Eq. (1.1) with $D = (n-t)I_n + tP_{\pi}$. It is shown in [9] that $\Phi_{t,\pi}$ is positive if and only if $0 \le t \le \frac{n}{l}$. Thus Φ_D with $D = (n-2)I_n + P_{\pi} + P_{\pi}$ is not positive if $\frac{n}{l} < 2$. This fact reveals that, in general, a *D*-type map with $D = (n-2)I_n + P_{\pi_1} + P_{\pi_2}$ is not a positive map.

Motivated by the above result, it was discussed in [16] the *D*-type maps constructed from a pair of permutations, that is,

$$\Phi_{n,\pi_1,\pi_2} = \Phi_{D_{\pi_1,\pi_2}} \text{ with } D_{\pi_1,\pi_2} = (n-2)I_n + P_{\pi_1} + P_{\pi_2}, \tag{1.2}$$

and the question that under what conditions that Φ_{n,π_1,π_2} of the form Eq. (1.2) are positive. A notion of the property (C) for pairs of permutations was introduced in [16] (see Definition 3.2 below), and it was proved that, if $\{\pi_1, \pi_2\}$ has property (C), then the *D*-type map $\Phi_{n,\pi_1,\pi_2} : M_n \to M_n$ with $n \ge 3$ is positive. The property (C) is characterized for $\{\pi_1, \pi_2\}$, and a criterion is given for the case that $\pi_1 = \pi^p$ and $\pi_2 = \pi^q$, where π is the permutation defined by $\pi(i) = i+1 \mod n$ and $1 \le p < q \le n$. The results in [16] allow us to construct many new positive maps. However, the property (C) is only a sufficient condition for Φ_{n,π_1,π_2} to be positive. So, it is natural and interesting to ask the following.

PROBLEM 1.1. What is the necessary and sufficient condition for Φ_{n,π_1,π_2} to be positive?

The purpose of this paper is to give an answer to the above problem for low dimension cases, that is, the case $n \in \{3,4\}$. Since the results in [9], we always assume in this paper that $\pi_1 \neq \pi_2$ and, neither π_1 nor π_2 is the identity permutation. Furthermore, we denote by $l(\pi_1, \pi_2)$ the length of the pair $\{\pi_1, \pi_2\}$ of permutations defined by

 $l(\pi_1, \pi_2) = \max\{\#F : F \text{ is a minimal common invariant subset of } \pi_1, \pi_2\}.$

In other words, $l(\pi_1, \pi_2)$ is the cardinality of the minimal common invariant subset of π_1 and π_2 which has the largest number of elements.

The following are the main results.

THEOREM 1.2. Let π_1 and π_2 be two distinct permutations of (1,2,3,4) that are not the identity, and let $\Phi_{\pi_1,\pi_2} : M_4(\mathbb{C}) \to M_4(\mathbb{C})$ be the *D*-type map defined by $D = 2I_4 + P_{\pi_1} + P_{\pi_2}$. Then Φ_{π_1,π_2} is positive if and only if either

(i) $l(\pi_1, \pi_2) = 2$; or

(ii) $l(\pi_1, \pi_2) \ge 3$ and the following two conditions hold:

(1) if *i* is not the fixed point of both π_1 and π_2 , then $\pi_1(i) \neq \pi_2(i)$;

(2) if π_1 and π_2 have no common fixed points and if there exist distinct i, j such that $\{\pi_1(i), \pi_2(i)\} = \{\pi_1(j), \pi_2(j)\}$, then neither π_1 nor π_2 has fixed points.

THEOREM 1.3. Let π_1 and π_2 be two distinct permutations of (1,2,3) that are not the identity, and let $\Phi_{\pi_1,\pi_2}: M_3(\mathbb{C}) \to M_3(\mathbb{C})$ be the D-type map defined by D = $I_3 + P_{\pi_1} + P_{\pi_2}$. Then Φ_{π_1,π_2} is positive if and only if $\pi_1(i) \neq \pi_2(i)$ holds for any *i*.

The paper is organized as follows. In Section 2 we recall some preliminary inequalities from [16] that are needed in the remain part of the paper. Section 3 deals with the case that n = 4, $\{\pi_1, \pi_2\}$ has the property (C). A easy characterization of $\{\pi_1, \pi_2\}$ to have the property (C) is given and, based on this, in Section 4, for any pair of permutations of (1,2,3,4), some criteria for $\Phi_{\pi_1,\pi_2}: M_4 \to M_4$ to be positive are established. The final section completes the proofs of Theorems 1.2 and 1.3.

2. Preliminary inequalities

In this section, we first recall some inequalities proved in [16].

LEMMA 2.1. [16, Lemma 2.1] Let s, M be positive numbers and $f(u_1, u_2, ..., u_m)$ be a function in *m*-variable defined by

$$f(u_1, u_2, \dots, u_m) = \frac{1}{s+u_1} + \frac{1}{s+u_2} + \dots + \frac{1}{s+u_m}$$

on the region $u_i > 0$ with $u_1u_2...u_m = M^m$, i = 1, 2, ..., m. Then we have (1) f has extremum values $\frac{rs^{\frac{m}{2r-m}} + (m-r)M^{\frac{m}{2r-m}}}{s(s^{\frac{m}{2r-m}} + M^{\frac{m}{2r-m}})}$ with $\frac{m}{2} < r \le m$ at the points that

r of $u_i s$ are $\left(\frac{M^m}{s^{2m-2r}}\right)^{\frac{1}{2r-m}}$ and others are $\left(\frac{s^{2r}}{M^m}\right)^{\frac{1}{2r-m}}$; (2) *f* may also achieve the extremum $\frac{m}{s+M}$ when *m* is even, at points $\frac{m}{2}$ of $u_i s$ are u and others are $\frac{s^2}{u}$, in this case we must have s = M;

(3) $\sup f(u_1, u_2, ..., u_m) = \max\{\frac{m-1}{s}, \frac{m}{s+M}\}$

Consequently, we have

COROLLARY 2.2. Let s, M be positive numbers and $f(u_1, u_2, u_3, u_4)$ be a function in 4-variable defined by

$$f(u_1, \dots, u_4) = \frac{1}{s+u_1} + \frac{1}{s+u_2} + \frac{1}{s+u_3} + \frac{1}{s+u_4}$$

on the region $u_i > 0$ with $u_1u_2u_3u_4 = M^m$. Then,

$$\sup f(u_1, u_2, u_3, u_m) = \max\{\frac{3}{s}, \frac{4}{s+M}\}.$$

Moreover, all possible extremum values of f *is bounded by* $\max\{\frac{4}{s+M}, \frac{2s}{(s^2+M^2)} + \frac{1}{s}\}$.

LEMMA 2.3. [16, Lemma 2.2] Let s be a positive number, n,k be positive integers with s > k. Then for any nk positive real numbers $\{x_{hi}, h = 1, 2, ..., k; i = 1, 2, ..., k\}$ 1,2,...,n satisfying $x_{h1}x_{h2}...x_{hn} = 1$ for each h with $1 \le h \le k$, we have

$$f(x_{11},...,x_{1n},x_{21},...,x_{k1},...,x_{kn}) = \sum_{i=1}^{n} \frac{1}{\frac{1}{s-k+x_{1i}+x_{2i}+...+x_{ki}}} \le \max\{\frac{n-1}{s-k},\frac{n}{s}\}.$$

Moreover, the extremum values of f are

$$\begin{split} \delta_r &= \frac{r(s-k)\frac{n}{2r-n} + (n-r)k^{\frac{n}{2r-n}}}{(s-k)((s-k)^{\frac{n}{2r-n}} + k^{\frac{n}{2r-n}})}, \ [\frac{n}{2}] + 1 \leqslant r \leqslant n;\\ \delta_{\frac{n}{2}} &= \frac{n}{s} \quad \text{if } n \text{ is even}, \end{split}$$

where [t] stands for the integer part of real number t.

The following corollary is immediate.

COROLLARY 2.4. Let

$$f(x_{11},\ldots,x_{14},x_{21},\ldots,x_{24}) = \sum_{i=1}^{4} \frac{1}{2 + x_{1i} + x_{2i}}.$$

Then, $\sup f = \frac{3}{2}$ and all extremum values of f is 1 on the region of $x_{hi} > 0$, i = 1, 2, 3, 4and h = 1, 2 with $x_{h1}x_{h2}x_{h3}x_{h4} = 1$.

3. Positivity of Φ_{π_1,π_2} on M_4 with $\{\pi_1,\pi_2\}$ having property (C)

For any two permutations π_1 and π_2 of (1,2,3,4), let $\Phi_{\pi_1,\pi_2}: M_4(\mathbb{C}) \to M_4(\mathbb{C})$ be the *D*-type map of the form

$$(a_{ij}) \longmapsto \operatorname{diag}(f_1, f_2, f_3, f_4) - (a_{ij}), \tag{3.1}$$

where $(f_1, f_2, f_3, f_4) = (a_{11}, a_{22}, a_{33}, a_{44})D$ and $D = 2I_4 + P_{\pi_1} + P_{\pi_2}$ with P_{π_h} the permutation matrix of π_h , h = 1, 2.

The main purpose of this section is to show the following result.

PROPOSITION 3.1. Let $\Phi_{\pi_1,\pi_2} : M_4(\mathbb{C}) \to M_4(\mathbb{C})$ be a *D*-type map defined by a pair of permutations $\{\pi_1,\pi_2\}$ as in Eq. (3.1). Then Φ_{π_1,π_2} is positive if any one of the following condition satisfied.

(i) π_1, π_2 have two common fixed points.

(ii) π_1, π_2 have one common fixed point *i*, and $\pi_1(j) \neq \pi_2(j)$ for any $j \neq i$.

(iii) $\pi_1(i) \neq \pi_2(i)$ for any *i* and $\{\pi_1(k), \pi_2(k)\} = \{\pi_1(j), \pi_2(j)\} = \{k, j\}$ for some distinct *k*, *j*.

(iv) For any *i*, $\pi_1(i) \neq \pi_2(i)$ and, for any distinct *k*, *j*, $\{\pi_1(k), \pi_2(k)\} \neq \{\pi_1(j), \pi_2(j)\}$.

The following conception was introduced in [16].

DEFINITION 3.2. [16, Definition 3.2] A pair $\{\pi_1, \pi_2\}$ of permutations of $(1, 2, \ldots, n)$ is said to have property (C) if, for any given $i \in \{1, 2, \ldots, n\}$ and for any $j \neq i$, there exists $\pi_{h_j}(j) \in \{\pi_1(j), \pi_2(j)\}$ such that $\{\pi_{h_j}(j) : j = 1, 2, \ldots, i - 1, i + 1, \ldots, n\} = \{1, 2, \ldots, i - 1, i + 1, \ldots, n\}$, that is, $(\pi_{h_1}(1), \ldots, \pi_{h_{i-1}}(i-1), \pi_{h_{i+1}}(i+1), \ldots, \pi_{h_n}(n))$ is a permutation of $(1, 2, \ldots, i - 1, i + 1, \ldots, n)$.

To make the meaning of the property (C) clear, let us see some examples before going ahead. Let π_1 and π_2 be the permutations $(1,2,3,4) \rightarrow (2,3,4,1)$ and (3,4,1,2),

respectively; then $\{\pi_1, \pi_2\}$ has the property (C). However the pair $\{\rho_1, \rho_2\} = \{(2, 3, 4, 1), (4, 1, 2, 3)\}$ of permutations of (1, 2, 3, 4) does not have the property (C). To see this, take i = 1. One can not pick $\rho_{h_2}(2) \in \{\rho_1(2), \rho_2(2)\} = \{3, 1\}, \rho_{h_3}(3) \in \{4, 2\}$ and $\rho_{h_4}(4) \in \{1, 3\}$ so that $\{\rho_{h_2}(2), \rho_{h_3}(3), \rho_{h_4}(4)\} = \{2, 3, 4\}$.

It was shown that for any $n \ge 3$ and any pair $\{\pi_1, \pi_2\}$ of permutations of (1, 2, ..., n), the *D*-type map Φ_{n,π_1,π_2} is positive if $\{\pi_1, \pi_2\}$ has the property (C). Thus particularly we have

PROPOSITION 3.3. Let $\Phi_{\pi_1,\pi_2} : M_4(\mathbb{C}) \to M_4(\mathbb{C})$ be a *D*-type map defined by a pair of permutations $\{\pi_1,\pi_2\}$ as in Eq. (3.1). If $\{\pi_1,\pi_2\}$ has the property (*C*), then Φ_{π_1,π_2} is positive.

Since the case one of π_1 and π_2 is the identity permutation reduces to the situation had dealt with in [9], we may always assume in the sequel that $\pi_1 \neq id$ and $\pi_2 \neq id$.

By Proposition 3.3, to detect the positivity of a *D*-type map Φ_{π_1,π_2} on M_4 , it is important to determine whether or not the pair $\{\pi_1,\pi_2\}$ of permutations has the property (C).

Let $\{\pi_1, \pi_2\}$ be a pair of permutations on (1, 2, ..., n). It is clear that the smaller n is the easier to check the property (C) of $\{\pi_1, \pi_2\}$. This motivates us to decompose the permutations into small ones. For a nonempty proper subset F of $\{1, 2, ..., n\}$, if $\pi_h(F) = F$ holds for all h = 1, 2, we say that F is an invariant subset of $\{\pi_1, \pi_2\}$, or, F is a common invariant subset of π_1 and π_2 . Obvious, there exist disjoint minimal invariant subsets $F_1, F_2, ..., F_r$ (r < n), of $\{\pi_1, \pi_2\}$ such that $\sum_{s=1}^r \#F_s = n$ (i.e., $\bigcup_{s=1}^r F_s = \{1, 2, ..., n\}$). We say $\{F_1, F_2, ..., F_l\}$ is the complete set of minimal invariant subsets of $\{\pi_1, \pi_2\}$. Thus one can reduce the pair $\{\pi_1, \pi_2\}$ of permutations into r pairs $\{\pi_{1s}, \pi_{2s}\}_{s=1}^r$ of small ones, where $\pi_{hs} = \pi_h|_{F_s}$. It is easily checked that $\{\pi_1, \pi_2\}$ has the property (C) if and only if each of its sub-pairs $\{\pi_{1s}, \pi_{2s}\}$ has the property (C).

Now let us come back to the case of n = 4. Let $\{F_s\}_{s=1}^r$, $1 \le r \le 4$, be the complete set of minimal invariant subsets of $\{\pi_1, \pi_2\}$. Assume that $\#F_1 \le \#F_2 \le \ldots \le \#F_r$. It is clear that,

if r = 3, then $\#F_1 = \#F_2 = 1$, $\#F_3 = 2$, and hence $\{\pi_1, \pi_2\}$ has property (C) if and only if one of π_i is the identity;

if r = 2, $\#F_1 = 1$ and $\#F_2 = 3$, then $\{\pi_1, \pi_2\}$ has property (C) if and only if for each $i \in F_2$, $\pi_1(i) \neq \pi_2(i)$;

if r = 2, $\#F_1 = \#F_2 = 2$, then $\{\pi_1, \pi_2\}$ has property (C) if and only if $\pi_1|_{F_s} \neq \pi_2|_{F_s}$, s = 1, 2, and equivalently, $\pi_1(i) \neq \pi_2(i)$ for any *i* and $\{\pi_1(k), \pi_2(k)\} = \{\pi_1(j), \pi_2(j)\} = \{k, j\}$ for some distinct *k*, *j*.

So, to detect whether or not $\{\pi_1, \pi_2\}$ has the property (C), the only case left is r = 1, that is, $\{\pi_1, \pi_2\}$ has no proper invariant subsets. This will be done in the next proposition.

PROPOSITION 3.4. Let π_1, π_2 be two permutations of (1, 2, 3, 4) having no proper common invariant subsets. Then $\{\pi_1, \pi_2\}$ has property (C) if and only if the following conditions are satisfied:

(1) *For any i*, $\pi_1(i) \neq \pi_2(i)$.

(2) For any distinct $i, j, \{\pi_1(i), \pi_2(i)\} \neq \{\pi_1(j), \pi_2(j)\}.$

Proof. Assume that $\{\pi_1, \pi_2\}$ satisfy the conditions (1)-(2). For any *i*, we have to show that we can choose one element in $\pi_{h_j}(j) \in \{\pi_1(j), \pi_2(j)\}$ for each $j \neq i$ so that $\{\pi_{h_i}(j), j \neq i\} = \{1, 2, 3, 4\} \setminus \{i\}$.

Case (i). $i \in \{\pi_1(i), \pi_2(i)\}$. Say $\pi_1(i) = i$; then obviously the choice $\{\pi_1(j) : j \neq i\} = \{1, 2, 3, 4\} \setminus \{i\}$.

Case (ii). $i \notin \{\pi_1(i), \pi_2(i)\}.$

Let j_1, j_2 such that $\pi_1(j_2) = i = \pi_2(j_1)$; then $i \notin \{j_1, j_2\}$. By the condition (2), $\pi_1(j_1) \neq \pi_2(j_2)$.

If $\{\pi_1(j_1), \pi_2(j_2)\} = \{\pi_1(i), \pi_2(i)\}$, then $\{\pi_1(j_1), \pi_2(j_2)\} \cup \{\pi_1(j) : j \notin \{i, j_1, j_2\}\}$ = $\{1, 2, 3, 4\} \setminus \{i\}$ and we finish the proof.

In the sequel, assume that $\{\pi_1(j_1), \pi_2(j_2)\} \neq \{\pi_1(i), \pi_2(i)\}.$

If $\pi_1(j_1) = \pi_2(i)$ or $\pi_2(j_2) = \pi_1(i)$, saying $\pi_2(j_2) = \pi_1(i)$, then we have $\{\pi_2(j_2)\} \cup \{\pi_1(j) : j \notin \{i, j_2\}\} = \{\pi_1(j) : j \neq j_2\} = \{1, 2, 3, 4\} \setminus \{i\}$, and then the proof is finished.

Thus we may assume that $\{\pi_1(j_1), \pi_2(j_2)\} \cap \{\pi_1(i), \pi_2(i)\} = \emptyset$. Take j_3 so that $\pi_2(j_3) = \pi_1(j_1)$. As $\pi_1(j_1) \neq \pi_2(j_2)$, we have $j_3 \neq j_2$. Since $\pi_1(j_1) \neq \pi_2(i), \pi_1(j_1) \neq \pi_2(j_1) = i$, we have $j_3 \notin \{i, j_1, j_2\}$. We claim that $\pi_1(j_3) \neq \pi_2(j_2)$. In fact, if $\pi_1(j_3) = \pi_2(j_2)$, then one gets $\{\pi_1(j_1), \pi_2(j_2)\} = \{\pi_1(j_3), \pi_2(j_3)\}$. It is clear that $\{i, \pi_1(j_1), \pi_2(j_2)\}$ has three distinct elements, $\{\pi_1(j_1), \pi_2(j_2)\} = \{\pi_1(j_3), \pi_2(j_3)\}$ implies that $\pi_1(i) = \pi_2(i) \in \{1, 2, 3, 4\} \setminus \{i, \pi_1(j_1), \pi_2(j_2)\}$, which contradicts to the condition (1). Thus we get a set $\{\pi_1(j_1), \pi_2(j_2), \pi_1(j_3)\}$ of distinct elements, and hence $\{\pi_1(j_1), \pi_2(j_2), \pi_1(j_3)\} = \{1, 2, 3, 4\} \setminus \{i\}$. So the conditions (1) and (2) imply that $\{\pi_1, \pi_2\}$ has the property (C).

Conversely, if any one of the conditions (1) and (2) is broken, then it is easily checked that $\{\pi_1, \pi_2\}$ cannot have the property (C). For instance, if (1) is broken, then there is *i* such that $\pi_1(i) = \pi_2(i) = j$. As π_1 and π_2 have no proper common invariant subset, we must have $j \neq i$. It follows that $j \notin \{\pi_1(h), \pi_2(h); h \neq i\}$ and hence $\{\pi_1, \pi_2\}$ does not have the property (C). If the condition (2) is broken, then $\{\pi_1(i), \pi_2(i)\} = \{\pi_1(j), \pi_2(j)\}$ for some $i \neq j$. If $i \in \{\pi_1(i), \pi_2(i)\}$, saying $\pi_1(i) = i$, then $\pi_2(i) = \pi_1(j) \neq j$ as π_1 and π_2 have no proper common invariant subset $\{i, j\}$. This implies that $j \in \{\pi_1(h), \pi_2(h)\}$ for each $h \in \{1, 2, 3, 4\} \setminus \{i, j\} = \{h_1, h_2\}$ and $\{\pi_1(h_1), \pi_2(h_2)\} = \{\pi_1(h_2), \pi_2(h_2)\}$. Now it is clear that there exists no choice of $\pi'(t) \in \{\pi_1(t), \pi_2(t)\}$ so that $\{\pi'(t) : t \neq j\} = \{1, 2, 3, 4\} \setminus \{j\}$. If $t \notin \{\pi_1(t), \pi_2(t)\}$ for each $t \in \{i, j\}$, then for any choice of $\pi'(t) \in \{\pi_1(t), \pi_2(t)\}$ has no the property (C) if (2) is broken. \Box

Proof of Proposition 3.1. Obvious by Proposition 3.3, Proposition 3.4 and the discussion before it. \Box

Before ending the section we list the following lemma which comes from [9] and will be used frequently in Section 4.

LEMMA 3.5. Suppose $\Phi_D: M_n \to M_n$ is a D-type linear map of the form

$$(a_{ij}) \longmapsto \operatorname{diag}(f_1, f_2, \dots, f_n) - (a_{ij}) \tag{3.2}$$

with $(f_1, f_2, ..., f_n) = (a_{11}, a_{22}, ..., a_{nn})D$ for an $n \times n$ nonnegative matrix $D = (d_{ij})$. Then, Φ_D is positive if and only if, for any unit vector $u = (u_1, u_2, ..., u_n)^t \in \mathbb{C}^n$, we have $f_j(u) = \sum_{i=1}^n d_{ij} |u_i|^2 \neq 0$ whenever $u_j \neq 0$, and $\sum_{u_j \neq 0} \frac{|u_j|^2}{f_j(u)} \leq 1$.

4. Positivity of Φ_{π_1,π_2} on M_4 with arbitrary $\{\pi_1,\pi_2\}$

By Proposition 3.3, a *D*-type map Φ_{π_1,π_2} on 4×4 matrices constructed from a pair of permutations $\{\pi_1,\pi_2\}$ is positive if $\{\pi_1,\pi_2\}$ has the property (C). However, the property (C) is not a necessary condition. There are many examples that Φ_{π_1,π_2} is positive but $\{\pi_1,\pi_2\}$ doesn't have the property (C).

EXAMPLE 4.1. Let π_1 , π_2 be permutations defined by $\pi_1(1) = 2$, $\pi_1(2) = 1$, $\pi_1(3) = 3$, $\pi_1(4) = 4$; and $\pi_2(1) = 2$, $\pi_2(2) = 1$, $\pi_2(3) = 4$, $\pi_2(4) = 3$. Clearly, $\{\pi_1, \pi_2\}$ does not have the property (C), but the *D*-type map $\Phi_{\pi_1, \pi_2} : M_4 \to M_4$ defined by Eq. (3.2) is positive (See Proposition 4.2).

The purpose of this section is to discuss the positivity of Φ_{π_1,π_2} for pair of arbitrary permutations, which are basic to our proof of the main result Theorem 1.2.

Let $\{F_s\}_{s=1}^r$ be the set of all minimal common invariant subsets of $\{\pi_1, \pi_2\}$. As $\pi_1 \neq \pi_2$, we have $r \leq 3$; also, if r = 3, by the discussion before Proposition 3.5, $\{\pi_1, \pi_2\}$ must have property (C).

If $r \leq 2$, then we have two cases: $\#F_1 = \#F_2 = 2$ and $\#F_1 = 1$, $\#F_2 = 3$. We deal with these two cases in Proposition 4.2 and Proposition 4.3 respectively.

PROPOSITION 4.2. Let π_1, π_2 be two permutations of (1, 2, 3, 4) with $\{F_1, F_2\}$ the set of minimal common invariant subsets. If $\#F_1 = \#F_2 = 2$, then Φ_{π_1, π_2} is positive.

Proof. Let $F_1 = \{i_1, i_2\}$ and $F_2 = \{i_3, i_4\}$. By Proposition 3.3, we may assume that $\{\pi_1, \pi_2\}$ has no property (C). Thus, by Proposition 3.1 and the discussion before Proposition 3.4, with no loss of generality, we may assume that

$$\pi_1(i_1) = i_2, \ \pi_1(i_2) = i_1, \ \pi_1(i_3) = i_3, \ \pi_1(i_4) = i_4; \ \pi_2(i_1) = i_2, \ \pi_2(i_2) = i_1, \ \pi_1(i_3) = i_4, \ \pi_1(i_4) = i_3,$$

where $\{i_1, i_2, i_3, i_4\} = \{1, 2, 3, 4\}$. By Lemma 3.5, Φ_{π_1, π_2} is positive if

$$f(x_{1}, x_{2}, x_{3}, x_{4}) = \sum_{i=1}^{4} \frac{x_{i}}{2x_{i} + x_{\pi_{1}(i)} + x_{\pi_{2}(i)}} \\ = \sum_{i_{h} \in F_{1}} \frac{x_{i_{h}}}{2x_{i_{h}} + x_{\pi_{1}(i_{h})} + x_{\pi_{2}(i_{h})}} + \sum_{i_{h} \in F_{2}} \frac{x_{i_{h}}}{2x_{i_{h}} + x_{\pi_{1}(i_{h})} + x_{\pi_{2}(i_{h})}} \\ = \frac{x_{i_{1}}}{2x_{i_{1}} + x_{\pi_{1}(i_{1})} + x_{\pi_{2}(i_{1})}} + \frac{x_{i_{2}}}{2x_{i_{2}} + x_{\pi_{1}(i_{2})} + x_{\pi_{2}(i_{2})}} \\ + \frac{x_{i_{3}}}{2x_{i_{1}} + x_{\pi_{1}(i_{3})} + x_{\pi_{2}(i_{3})}} + \frac{x_{i_{4}}}{2x_{i_{4}} + x_{\pi_{1}(i_{4})} + x_{\pi_{2}(i_{4})}} \\ = \frac{x_{i_{1}}}{2x_{i_{1}} + 2x_{i_{2}}} + \frac{x_{i_{2}}}{2x_{i_{2}} + 2x_{i_{1}}} + \frac{x_{i_{3}}}{2x_{i_{3}} + x_{i_{4}} + x_{i_{4}}} + \frac{x_{i_{4}}}{2x_{i_{4}} + x_{i_{4}} + x_{i_{3}}} \leqslant 1$$

$$(4.1)$$

holds for any point (x_1, x_2, x_3, x_4) with $x_i \ge 0$ and $x_1 + x_2 + x_3 + x_4 = 1$.

By Corollary 2.4, all possible extremum values of f are bounded above by 1. So, the inequality (4.1) holds if f is also bounded above by 1 at the points that some x_i s are zero. Clearly, if there are at least two of x_i s are 0, then, $f(x_1,...,x_4) < 1$. So, we need check the case that only one of x_i s is 0.

If $x_{i_1} = 0$, or, if $x_{i_2} = 0$, we get

$$f(x_1, x_2, x_3, x_4) = \sum_{i=1}^4 \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}}$$

= $\frac{1}{2} + \frac{1}{3 + \frac{x_{i_4}}{x_{i_3}}} + \frac{1}{3 + \frac{x_{i_3}}{x_{i_4}}} \leqslant 1$

by Lemma 2.1.

If $x_{i_3} = 0$, or, if $x_{i_4} = 0$, we have

$$f(x_1, x_2, x_3, x_4) = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} \\ = \frac{1}{2 + 2\frac{x_{i_2}}{x_{i_1}}} + \frac{1}{2 + 2\frac{x_{i_1}}{x_{i_2}}} + \frac{1}{3} = \frac{5}{6} < 1.$$

Therefore $f(x_1, x_2, x_3, x_4) \leq 1$ holds for all non-negative $x_1, \dots, x_4 \in \mathbb{R}$ with $x_1 + \dots + x_4 = 1$, and consequently, Φ_{π_1, π_2} is positive. \Box

PROPOSITION 4.3. Let π_1, π_2 be two permutations of (1, 2, 3, 4) with $\{F_1, F_2\}$ the set of minimal common invariant subsets. If $\#F_1 = 1$ and $\#F_2 = 3$, then Φ_{π_1, π_2} is positive if and only if $\{\pi_1, \pi_2\}$ has the property (C), that is, for any $i \in F_2$, $\pi_1(i) \neq \pi_2(i)$.

Proof. Let $F_1 = \{i_1\}$ and $F_2 = \{i_2, i_3, i_4\}$. By Proposition 3.3, we may assume that $\{\pi_1, \pi_2\}$ does not have the property (C) and show that Φ_{π_1, π_2} is not positive. Thus, by Proposition 3.1 or the discussion before Proposition 3.4, there is at least one $i \in F_2$ so that $\pi_1(i) = \pi_2(i) \neq i$. As $\pi_1 \neq \pi_2$, we may assume further that $\pi_1(i_2) = \pi_2(i_2) = i_3$. So we have

$$\pi_1(i_1) = i_1, \ \pi_1(i_2) = i_3, \ \pi_1(i_3) = i_4, \ \pi_1(i_4) = i_2$$

and

$$\pi_2(i_1) = i_1, \ \pi_2(i_2) = i_3, \ \pi_2(i_3) = i_2, \ \pi_2(i_4) = i_4;$$

Now it is clear by Lemma 3.5 that Φ_{π_1,π_2} is not positive whenever

$$\begin{split} f(x_1, x_2, x_3, x_4) &= \sum_{k=1}^4 \frac{x_{i_k}}{2x_{i_k} + x_{\pi_1}(i_k) + x_{\pi_2}(i_k)} \\ &= \frac{x_{i_1}}{2x_{i_1} + x_{i_1}} + \frac{x_{i_2}}{2x_{i_2} + x_{i_3} + x_{i_3}} \\ &+ \frac{x_{i_3}}{2x_{i_3} + x_{i_4} + x_{i_2}} + \frac{x_{i_4}}{2x_{i_4} + x_{i_2} + x_{i_4}} \\ &= \frac{1}{4} + \frac{x_{i_2}}{2x_{i_2} + 2x_{i_3}} + \frac{x_{i_3}}{2x_{i_3} + x_{i_4} + x_{i_2}} + \frac{x_{i_4}}{2x_{i_4} + x_{i_2} + x_{i_4}} > 1 \end{split}$$

for some points (x_1, x_2, x_3, x_4) with $x_i \ge 0$ and $x_1 + x_2 + x_3 + x_4 = 1$. This is true because, if $x_{i_2} = 0$, then we have

$$f = \frac{1}{4} + \frac{1}{2 + \frac{x_{i_4}}{x_{i_3}}} + \frac{1}{3},$$

which is not bounded above by 1. For instance, taking $x_{i_1} = \frac{89999}{10000}$, $x_{i_2} = 0$, $x_{i_3} = \frac{1}{10}$ and $x_{i_4} = \frac{1}{10000}$, then $f = \frac{1}{4} + \frac{1}{2 + \frac{1}{1000}} + \frac{1}{3} > 1.083 > 1$. \Box

For the case r = 1, that is, $l(\pi_1, \pi_2) = 4$, we have

PROPOSITION 4.4. Assume the permutation pair $\{\pi_1, \pi_2\}$ of (1, 2, 3, 4) has no proper common invariant subsets. Then $\Phi_{\pi_1, \pi_2} : M_4 \to M_4$ is positive if and only if the following conditions are satisfied.

(1) $\pi_1(i) \neq \pi_2(i)$ for any *i*;

(2) if there are distinct *i*, *j*, such that $\{\pi_1(i), \pi_2(i)\} = \{\pi_1(j), \pi_2(j)\}$, then neither π_1 nor π_2 has fixed point.

Proof. Note that, if $\{\pi_1, \pi_2\}$ has the property (C), then (1) is satisfied.

Firstly, let us prove that if π_1, π_2 satisfy the conditions (1) and (2), then Φ_{π_1, π_2} is positive.

Assume (1) and (2); then, for any *i*, we have $\pi_1(i) \neq \pi_2(i)$ and $i \notin {\pi_1(i), \pi_2(i)}$. By Proposition 3.3 we may assume that ${\pi_1, \pi_2}$ does not possesses the property (C). Thus it follows that, there are $i_1, i_2, i_3, i_4 \in {1, 2, 3, 4}$ with ${i_1, i_2, i_3, i_4} = {1, 2, 3, 4}$ such that

$$\{ \pi_1(i_1), \pi_2(i_1) \} = \{ \pi_1(i_2), \pi_2(i_2) \} = \{ i_3, i_4 \} \{ \pi_1(i_3), \pi_2(i_3) \} = \{ \pi_1(i_4), \pi_2(i_4) \} = \{ i_1, i_2 \}.$$

$$(4.2)$$

By Lemma 3.5, the *D*-type map Φ_{π_1,π_2} is positive if and only if

$$f(x_1, x_2, x_3, x_4) = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} \leqslant 1$$

holds for all non-negative $x_1, x_2, x_3, x_4 \in \mathbb{R}$ with $x_1 + \cdots + x_4 = 1$. By Eq. (4.2), we have

$$\begin{aligned} f(x_1, x_2, x_3, x_4) &= \sum_{i=1}^4 \frac{x_i}{2x_{i+x_{\pi_1}(i)} + x_{\pi_2(i)}} \\ &= \frac{x_{i_1}}{2x_{i_1} + x_{\pi_1(i_1)} + x_{\pi_2(i_1)}} + \frac{x_{i_2}}{2x_{i_2} + x_{\pi_1(i_2)} + x_{\pi_2(i_2)}} + \frac{x_{i_3}}{2x_{i_3} + x_{\pi_1(i_3)} + x_{\pi_2(i_3)}} + \frac{x_{i_4}}{2x_{i_4} + x_{\pi_1(i_4)} + x_{\pi_2(i_4)}} \\ &= \frac{x_{i_1}}{2x_{i_1} + x_{i_3} + x_{i_4}} + \frac{x_{i_2}}{2x_{i_2} + x_{i_3} + x_{i_4}} + \frac{x_{i_3}}{2x_{i_3} + x_{i_1} + x_{i_2}} + \frac{x_{i_4}}{2x_{i_4} + x_{i_1} + x_{i_2}}. \end{aligned}$$

By Corollary 2.4, it is easily seen that all extremum values of f are bounded above by 1. For the values of f at points on the boundary of the region $\{(x_1, x_2, x_3, x_4) : x_i \ge 0, x_1 + x_2 + x_3 + x_4 = 1\}$, if at least two of x_i s are 0, then obviously $f(x_1, x_2, x_3, x_4) < 1$. Assume that only one of x_i s is 0.

Consider the function

$$g(s,t) = \frac{1}{2+s+t} + \frac{1}{2+\frac{1}{s}} + \frac{1}{2+\frac{1}{t}} = \frac{1}{2+s+t} + \frac{s}{2s+1} + \frac{t}{2t+1},$$

where s > 0 and t > 0. As

$$(2s+1)(2t+1) + s(s+t+2)(2t+1) + t(s+t+2)(2s+1)$$

= $4s^2t + 4st^2 + 14st + s^2 + t^2 + 4s + 4t + 1$,

and $2st < s^2 + t^2 + s + t + 1$, it is easily checked that

$$g(s,t) = 1 - \frac{(s-t)^2 + s + t + 1}{(2s+1)(2t+1)(s+t+2)} < 1$$

holds for any t > 0 and s > 0. Applying the above inequality, we see that if $x_{i_1} = 0$, then

$$\begin{split} f &= \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} \\ &= \frac{1}{2 + \frac{x_{i_3}}{x_{i_2}} + \frac{x_{i_4}}{x_{i_2}}} + \frac{1}{2 + \frac{x_{i_2}}{x_{i_3}}} + \frac{1}{2 + \frac{x_{i_2}}{x_{i_4}}} < 1; \end{split}$$

if $x_{i_2} = 0$, we get

$$\begin{split} f &= \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1}(i) + x_{\pi_2}(i)} \\ &= \frac{1}{2 + \frac{x_{i_3}}{x_{i_1}} + \frac{x_{i_4}}{x_{i_1}}} + \frac{1}{2 + \frac{x_{i_1}}{x_{i_3}}} + \frac{1}{2 + \frac{x_{i_1}}{x_{i_4}}} < 1; \end{split}$$

if $x_{i_3} = 0$, we get

$$\begin{split} f &= \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1}(i) + x_{\pi_2}(i)} \\ &= \frac{1}{2 + \frac{x_{i_4}}{x_{i_1}}} + \frac{1}{2 + \frac{x_{i_4}}{x_{i_2}}} + \frac{1}{2 + \frac{x_{i_1}}{x_{i_4}} + \frac{x_{i_2}}{x_{i_4}}} < 1; \end{split}$$

if $x_{i_4} = 0$, we get

$$\begin{split} f &= \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} \\ &= \frac{1}{2 + \frac{x_{i_3}}{x_{i_1}}} + \frac{1}{2 + \frac{x_{i_3}}{x_{i_2}}} + \frac{1}{2 + \frac{x_{i_1}}{x_{i_3}} + \frac{x_{i_2}}{x_{i_3}}} < 1. \end{split}$$

So we have shown that $f(x_1, x_2, x_3, x_4) \leq 1$ holds for any $x_i \geq 0$, i = 1, 2, 3, 4, with $x_1 + x_2 + x_3 + x_4 = 1$. Therefore, Φ_{π_1, π_2} is positive.

Conversely, we show that $\Phi_{\pi_1,\pi_2} \ge 0$ implies both (1) and (2) hold. To do this, it suffices to show that any one of the following conditions (a) and (b) will imply that Φ_{π_1,π_2} is not positive:

(a) there is *i* such that $\pi_1(i) = \pi_2(i)$;

(b) if there are distinct i, j such that $\{\pi_1(i), \pi_2(i)\} = \{\pi_1(j), \pi_2(j)\}$, then π_1 or π_2 has fixed point.

Since the proof of "(a) $\Rightarrow \Phi_{\pi_1,\pi_2}$ is not positive" is a little more complex, we first treat the case (b).

CLAIM 1. (b) $\Rightarrow \Phi_{\pi_1,\pi_2}$ is not positive.

Suppose that (b) holds. Because of (a), we may assume that $\pi_1(k) \neq \pi_2(k)$ for any k = 1, 2, 3, 4. With no loss of generality, say π_1 has fixed points.

Case (i). π_1 has two fixed points. In this case π_1 and π_2 have the forms

$$\begin{aligned} \pi_1(i_1) &= i_1, \quad \pi_1(i_2) = i_2, \quad \pi_1(i_3) = i_4, \quad \pi_1(i_4) = i_3; \\ \pi_2(i_1) &= i_3, \quad \pi_2(i_2) = i_4, \quad \pi_1(i_3) = i_1, \quad \pi_1(i_4) = i_2. \end{aligned}$$

Then we have

$$\{\pi_1(i_1), \pi_2(i_1)\} = \{\pi_1(i_4), \pi_2(i_4)\}$$

and thus, by Lemma 3.5, Φ_{π_1,π_2} is not positive if

$$f(x_1, x_2, x_3, x_4) = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} \\ = \frac{x_{i_1}}{2x_{i_1} + x_{\pi_1(i_1)} + x_{\pi_2(i_1)}} + \frac{x_{i_2}}{2x_{i_2} + x_{\pi_1(i_2)} + x_{\pi_2(i_2)}} + \frac{x_{i_3}}{2x_{i_3} + x_{\pi_1(i_3)} + x_{\pi_2(i_3)}} + \frac{x_{i_4}}{2x_{i_4} + x_{\pi_1(i_4)} + x_{\pi_2(i_4)}}$$
(4.3)
$$= \frac{x_{i_1}}{2x_{i_1} + x_{i_1} + x_{i_3}} + \frac{x_{i_2}}{2x_{i_2} + x_{i_2} + x_{i_4}} + \frac{x_{i_3}}{2x_{i_3} + x_{i_4} + x_{i_2}} + \frac{x_{i_4}}{2x_{i_4} + x_{i_3} + x_{i_1}}$$

> 1 for some point (x_1, x_2, x_3, x_4) with $x_i \ge 0$ and $x_1 + x_2 + x_3 + x_4 = 1$. Let $x_{i_3} = 0$; then $x_{i_1} + x_{i_2} + x_{i_4} = 1$ and, by Eq. (4.3),

$$f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}}$$

= $\frac{1}{3} + \frac{1}{3 + \frac{x_{i_4}}{x_{i_2}}} + \frac{1}{2 + \frac{x_{i_1}}{x_{i_4}}}.$

If we take $x_{i_1} = \frac{1}{10000}$, $x_{i_4} = \frac{1}{100}$ and $x_{i_2} = 1 - \frac{1}{10000} - \frac{1}{100} = \frac{9899}{10000}$, then

$$f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}}$$

= $\frac{1}{3} + \frac{1}{3 + \frac{100}{9899}} + \frac{1}{2 + \frac{1}{100}} \approx 1.1631 > 1.$

So, Φ_{π_1,π_2} is not positive.

Case (ii). π_1 has only one fixed point. We check this case by considering six subcases. *Subcase* (1). π_1, π_2 have respectively the forms

$$\pi_1(i_1) = i_1, \quad \pi_1(i_2) = i_3, \quad \pi_1(i_3) = i_4, \quad \pi_1(i_4) = i_2; \\ \pi_2(i_1) = i_3, \quad \pi_2(i_2) = i_1, \quad \pi_1(i_3) = i_2, \quad \pi_1(i_4) = i_4.$$

Then

$$\{ \pi_1(i_1), \pi_2(i_1) \} = \{ \pi_1(i_2), \pi_2(i_2) \} = \{ i_1, i_3 \} \\ \{ \pi_1(i_3), \pi_2(i_3) \} = \{ \pi_1(i_4), \pi_2(i_4) \} = \{ i_2, i_4 \}.$$

Thus Φ_{π_1,π_2} is not positive if

$$f(x_1, x_2, x_3, x_4) = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} \\ = \frac{x_{i_1}}{2x_{i_1} + x_{\pi_1(i_1)} + x_{\pi_2(i_1)}} + \frac{x_{i_2}}{2x_{i_2} + x_{\pi_1(i_2)} + x_{\pi_2(i_2)}} + \frac{x_{i_3}}{2x_{i_3} + x_{\pi_1(i_3)} + x_{\pi_2(i_3)}} + \frac{x_{i_4}}{2x_{i_4} + x_{\pi_1(i_4)} + x_{\pi_2(i_4)}}$$
(4.4)
$$= \frac{x_{i_1}}{2x_{i_1} + x_{i_1} + x_{i_3}} + \frac{x_{i_2}}{2x_{i_2} + x_{i_3} + x_{i_1}} + \frac{x_{i_3}}{2x_{i_3} + x_{i_4} + x_{i_2}} + \frac{x_{i_4}}{2x_{i_4} + x_{i_2} + x_{i_4}}$$

greater than 1 at some point.

Let $x_{i_2} = 0$, we get

$$f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}}$$

= $\frac{1}{3 + \frac{x_{i_3}}{x_{i_1}}} + \frac{1}{2 + \frac{x_{i_4}}{x_{i_3}}} + \frac{1}{3}.$

Now take $x_{i_4} = \frac{1}{10000}$, $x_{i_3} = \frac{1}{100}$, and $x_{i_1} = \frac{9899}{10000}$, we get $f \approx 1.1631 > 1$, as desired. The following subcases (2)-(6) are dealt with similarly.

Subcase (2). π_1, π_2 have respectively the forms

$$\begin{array}{ll} \pi_1(i_1)=i_1, & \pi_1(i_2)=i_3, & \pi_1(i_3)=i_4, & \pi_1(i_4)=i_2; \\ \pi_2(i_1)=i_4, & \pi_2(i_2)=i_2, & \pi_1(i_3)=i_1, & \pi_1(i_4)=i_3. \end{array}$$

Subcase (3).

$$\begin{aligned} \pi_1(i_1) &= i_1, \quad \pi_1(i_2) = i_3, \quad \pi_1(i_3) = i_4, \quad \pi_1(i_4) = i_2; \\ \pi_2(i_1) &= i_2, \quad \pi_2(i_2) = i_4, \quad \pi_1(i_3) = i_3, \quad \pi_1(i_4) = i_1. \end{aligned}$$

Subcase (4).

$$\begin{aligned} \pi_1(i_1) &= i_1, \quad \pi_1(i_2) = i_4, \quad \pi_1(i_3) = i_2, \quad \pi_1(i_4) = i_3; \\ \pi_2(i_1) &= i_4, \quad \pi_2(i_2) = i_1, \quad \pi_1(i_3) = i_3, \quad \pi_1(i_4) = i_2. \end{aligned}$$

Subcase (5).

$$\begin{aligned} \pi_1(i_1) &= i_1, \quad \pi_1(i_2) = i_4, \quad \pi_1(i_3) = i_2, \quad \pi_1(i_4) = i_3; \\ \pi_2(i_1) &= i_2, \quad \pi_2(i_2) = i_3, \quad \pi_1(i_3) = i_1, \quad \pi_1(i_4) = i_4. \end{aligned}$$

Subcase (6).

$$\begin{aligned} \pi_1(i_1) &= i_1, \quad \pi_1(i_2) = i_4, \quad \pi_1(i_3) = i_2, \quad \pi_1(i_4) = i_3; \\ \pi_2(i_1) &= i_3, \quad \pi_2(i_2) = i_2, \quad \pi_1(i_3) = i_4, \quad \pi_1(i_4) = i_1. \end{aligned}$$

Therefore Claim 1 is true.

CLAIM 2. (a) $\Rightarrow \Phi_{\pi_1,\pi_2}$ is not positive.

As π_1, π_2 have no proper common invariant subsets, if there exists *i* such that $\pi_1(i) = \pi_2(i)$, then $\pi_h(i) \neq i$, h = 1, 2.

Case (i). There are i_1, i_2 such that $\pi_1(i_1) = \pi_2(i_1)$ and $\pi_1(i_2) = \pi_2(i_2)$. We have six different situations.

Subcase (1).

$$\begin{aligned} \pi_1(i_1) &= i_2, \quad \pi_1(i_2) = i_3, \quad \pi_1(i_3) = i_1, \quad \pi_1(i_4) = i_4; \\ \pi_2(i_1) &= i_2, \quad \pi_2(i_2) = i_3, \quad \pi_1(i_3) = i_4, \quad \pi_1(i_4) = i_1. \end{aligned}$$

In this situation,

$$f(x_1, x_2, x_3, x_4) = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} \\ = \frac{x_{i_1}}{2x_{i_1} + x_{\pi_1(i_1)} + x_{\pi_2(i_1)}} + \frac{x_{i_2}}{2x_{i_2} + x_{\pi_1(i_2)} + x_{\pi_2(i_2)}} + \frac{x_{i_3}}{2x_{i_3} + x_{\pi_1(i_3)} + x_{\pi_2(i_3)}} + \frac{x_{i_4}}{2x_{i_4} + x_{\pi_1(i_4)} + x_{\pi_2(i_4)}}$$
(4.5)
$$= \frac{x_{i_1}}{2x_{i_1} + 2x_{i_2}} + \frac{x_{i_2}}{2x_{i_2} + 2x_{i_3}} + \frac{x_{i_3}}{2x_{i_3} + x_{i_1} + x_{i_4}} + \frac{x_{i_4}}{2x_{i_4} + x_{i_4} + x_{i_1}}.$$

Let $x_{i_1} = 0$, we have

$$f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} \\ = \frac{1}{2 + 2\frac{x_{i_3}}{x_{i_2}}} + \frac{1}{2 + \frac{x_{i_4}}{x_{i_3}}} + \frac{1}{3}.$$

Taking
$$x_{i_4} = \frac{1}{10000}$$
, $x_{i_3} = \frac{1}{100}$ and $x_{i_2} = \frac{9899}{10000}$ gives

$$f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}}$$

$$= \frac{1}{2 + 2\frac{100}{9899}} + \frac{1}{2 + \frac{1}{100}} + \frac{1}{3} \approx 1.3258 > 1$$

Then, by the Lemma 3.5, Φ_{π_1,π_2} is not positive.

Subcase (2).

$$\begin{aligned} \pi_1(i_1) &= i_2, \quad \pi_1(i_2) = i_4, \quad \pi_1(i_3) = i_1, \quad \pi_1(i_4) = i_3; \\ \pi_2(i_1) &= i_2, \quad \pi_2(i_2) = i_4, \quad \pi_1(i_3) = i_3, \quad \pi_1(i_4) = i_1. \end{aligned}$$

By Lemma 3.5, Φ_D is not positive if

$$f(x_1, x_2, x_3, x_4) = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} \\ = \frac{x_{i_1}}{2x_{i_1} + x_{\pi_1(i_1)} + x_{\pi_2(i_1)}} + \frac{x_{i_2}}{2x_{i_2} + x_{\pi_1(i_2)} + x_{\pi_2(i_2)}} + \frac{x_{i_3}}{2x_{i_3} + x_{\pi_1(i_3)} + x_{\pi_2(i_3)}} + \frac{x_{i_4}}{2x_{i_4} + x_{\pi_1(i_4)} + x_{\pi_2(i_4)}}$$
(4.6)
$$= \frac{x_{i_1}}{2x_{i_1} + 2x_{i_2}} + \frac{x_{i_2}}{2x_{i_2} + 2x_{i_4}} + \frac{x_{i_3}}{2x_{i_3} + x_{i_1} + x_{i_3}} + \frac{x_{i_4}}{2x_{i_4} + x_{i_3} + x_{i_1}}.$$

> 1 at some points (x_1, x_2, x_3, x_4) with $x_i \ge 0$ and $x_1 + x_2 + x_3 + x_4 = 1$. Let $x_{i_1} = 0$, we get

$$f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} \\ = \frac{1}{2 + 2\frac{x_{i_4}}{x_{i_2}}} + \frac{1}{3} + \frac{1}{2 + \frac{x_{i_3}}{x_{i_4}}}.$$

Taking $x_{i_3} = \frac{1}{10000}$, $x_{i_4} = \frac{1}{100}$ and $x_{i_2} = \frac{9899}{10000}$ gives

$$f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}}$$

= $\frac{1}{2 + 2\frac{100}{9899}} + \frac{1}{3} + \frac{1}{2 + \frac{1}{100}} \approx 1.3258 > 1.$

Subcase (3).

$$\pi_1(i_1) = i_3, \quad \pi_1(i_2) = i_4, \quad \pi_1(i_3) = i_1, \quad \pi_1(i_4) = i_2; \\ \pi_2(i_1) = i_3, \quad \pi_2(i_2) = i_4, \quad \pi_1(i_3) = i_2, \quad \pi_1(i_4) = i_1.$$

In this subcase, Φ_{π_1,π_2} is not positive if

$$f(x_{1}, x_{2}, x_{3}, x_{4}) = \sum_{i=1}^{4} \frac{x_{i}}{2x_{i} + x_{\pi_{1}(i)} + x_{\pi_{2}(i)}} = \frac{x_{i_{1}}}{2x_{i_{1}} + x_{\pi_{1}(i_{1})} + x_{\pi_{2}(i_{1})}} + \frac{x_{i_{2}}}{2x_{i_{2}} + x_{\pi_{1}(i_{2})} + x_{\pi_{2}(i_{2})}} + \frac{x_{i_{3}}}{2x_{i_{3}} + x_{\pi_{1}(i_{3})} + x_{\pi_{2}(i_{3})}} + \frac{x_{i_{4}}}{2x_{i_{4}} + x_{\pi_{1}(i_{4})} + x_{\pi_{2}(i_{4})}}$$
(4.7)
$$= \frac{x_{i_{1}}}{2x_{i_{1}} + 2x_{i_{3}}} + \frac{x_{i_{2}}}{2x_{i_{2}} + 2x_{i_{4}}} + \frac{x_{i_{3}}}{2x_{i_{3}} + x_{i_{1}} + x_{i_{2}}} + \frac{x_{i_{4}}}{2x_{i_{4}} + x_{i_{2}} + x_{i_{1}}}$$

> 1 at some points (x_1, x_2, x_3, x_4) with $x_i \ge 0$ and $x_1 + x_2 + x_3 + x_4 = 1$. Let $x_{i_3} = 0$, we get

$$f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}}$$

= $\frac{1}{2} + \frac{1}{2 + 2\frac{x_{i_4}}{x_{i_2}}} + \frac{1}{2 + \frac{x_{i_1}}{x_{i_4}} + \frac{x_{i_2}}{x_{i_4}}}$

Take $x_{i_4} = \frac{9}{10}$, $x_{i_1} = \frac{1}{100}$ and $x_{i_2} = \frac{9}{100}$. Then

$$f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}}$$

= $\frac{1}{2} + \frac{1}{2+20} + \frac{9}{19} \approx 1.019 > 1.$

Subcase (4).

$$\pi_1(i_1) = i_3, \quad \pi_1(i_2) = i_1, \quad \pi_1(i_3) = i_2, \quad \pi_1(i_4) = i_4; \\ \pi_2(i_1) = i_3, \quad \pi_2(i_2) = i_1, \quad \pi_1(i_3) = i_4, \quad \pi_1(i_4) = i_2.$$

In this subcase we have to check

$$f(x_1, x_2, x_3, x_4) = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} + \frac{x_i}{2x_{i_2} + x_{\pi_1(i_1)} + x_{\pi_2(i_2)}} + \frac{x_{i_3}}{2x_{i_1} + x_{\pi_1(i_1)} + x_{\pi_2(i_2)}} + \frac{x_{i_4}}{2x_{i_2} + x_{\pi_1(i_3)} + x_{\pi_2(i_3)}} + \frac{x_{i_4}}{2x_{i_4} + x_{\pi_1(i_4)} + x_{\pi_2(i_4)}}$$

$$= \frac{x_i}{2x_{i_1} + 2x_{i_3}} + \frac{x_{i_2}}{2x_{i_2} + 2x_{i_1}} + \frac{x_{i_2}}{2x_{i_3} + x_{i_2} + x_{i_4}} + \frac{x_{i_4}}{2x_{i_4} + x_{i_4} + x_{i_2}}$$
(4.8)

> 1 at some points (x_1, x_2, x_3, x_4) with $x_i \ge 0$ and $x_1 + x_2 + x_3 + x_4 = 1$. Letting $x_{i_2} = 0$, we get

$$f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} \\ = \frac{1}{2 + 2\frac{x_{i_3}}{x_{i_1}}} + \frac{1}{2 + \frac{x_{i_4}}{x_{i_3}}} + \frac{1}{3}.$$

If $x_{i_4} = \frac{1}{10000}$, $x_{i_3} = \frac{1}{100}$, and $x_{i_1} = \frac{9899}{10000}$, then

$$f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}}$$

= $\frac{1}{2 + 2\frac{100}{9899}} + \frac{1}{2 + \frac{1}{100}} + \frac{1}{3} \approx 1.3258 > 1.$

Subcase (5).

$$\begin{aligned} \pi_1(i_1) &= i_4, \quad \pi_1(i_2) = i_1, \quad \pi_1(i_3) = i_2, \quad \pi_1(i_4) = i_3; \\ \pi_2(i_1) &= i_4, \quad \pi_2(i_2) = i_1, \quad \pi_1(i_3) = i_3, \quad \pi_1(i_4) = i_2. \end{aligned}$$

 Φ_{π_1,π_2} is not positive because the function

$$= \frac{\sum_{i=1}^{4} \frac{x_{i}}{2x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}}}{\frac{x_{i_{1}}}{2x_{i_{1}}+x_{\pi_{1}(i_{1})}+x_{\pi_{2}(i_{1})}} + \frac{x_{i_{2}}}{2x_{i_{2}}+x_{\pi_{1}(i_{2})}+x_{\pi_{2}(i_{2})}} + \frac{x_{i_{3}}}{2x_{i_{3}}+x_{\pi_{1}(i_{3})}+x_{\pi_{2}(i_{3})}} + \frac{x_{i_{4}}}{2x_{i_{4}}+x_{\pi_{1}(i_{4})}+x_{\pi_{2}(i_{4})}}$$

$$= \frac{x_{i_{1}}}{2x_{i_{1}}+2x_{i_{4}}} + \frac{x_{i_{2}}}{2x_{i_{2}}+2x_{i_{1}}} + \frac{x_{i_{3}}}{2x_{i_{3}}+x_{i_{2}}+x_{i_{3}}} + \frac{x_{i_{4}}}{2x_{i_{4}}+x_{i_{3}}+x_{i_{2}}}$$

$$(4.9)$$

has value $\approx 1.3258 > 1$ at the point of $x_{i_1} = \frac{9899}{10000}$, $x_{i_2} = 0$, $x_{i_3} = \frac{1}{10000}$ and $x_{i_4} = \frac{1}{100}$. Subcase (6).

$$\begin{aligned} \pi_1(i_1) &= i_4, \quad \pi_1(i_2) = i_3, \quad \pi_1(i_3) = i_1, \quad \pi_1(i_4) = i_2; \\ \pi_2(i_1) &= i_4, \quad \pi_2(i_2) = i_3, \quad \pi_1(i_3) = i_2, \quad \pi_1(i_4) = i_1. \end{aligned}$$

 Φ_{π_1,π_2} is not positive in this subcase because

$$\Sigma_{i=1}^{4} \frac{x_{i}}{2x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}} = \frac{x_{i_{1}}}{2x_{i_{1}}+x_{\pi_{1}(i_{1})}+x_{\pi_{2}(i_{1})}} + \frac{x_{i_{2}}}{2x_{i_{2}}+x_{\pi_{1}(i_{2})}+x_{\pi_{2}(i_{2})}} + \frac{x_{i_{3}}}{2x_{i_{3}}+x_{\pi_{1}(i_{3})}+x_{\pi_{2}(i_{3})}} + \frac{x_{i_{4}}}{2x_{i_{4}}+x_{\pi_{1}(i_{4})}+x_{\pi_{2}(i_{4})}} = \frac{x_{i_{1}}}{2x_{i_{1}}+2x_{i_{4}}} + \frac{x_{i_{2}}}{2x_{i_{2}}+2x_{i_{3}}} + \frac{x_{i_{3}}}{2x_{i_{3}}+x_{i_{1}}+x_{i_{2}}} + \frac{x_{i_{4}}}{2x_{i_{4}}+x_{i_{2}}+x_{i_{1}}}$$
(4.10)

achieves its value $\approx 1.019 > 1$ at the point of $x_{i_1} = \frac{9}{100}$, $x_{i_2} = \frac{1}{100}$, $x_{i_3} = 0$ and $x_{i_4} = \frac{9}{10}$. *Case (ii).* There is only one *i* such that $\pi_1(i) = \pi_2(i)$.

We have twelve subcases.

Subcase (1).

$$\begin{aligned} \pi_1(i_1) &= i_2, \quad \pi_1(i_2) = i_3, \quad \pi_1(i_3) = i_4, \quad \pi_1(i_4) = i_1; \\ \pi_2(i_1) &= i_2, \quad \pi_2(i_2) = i_4, \quad \pi_1(i_3) = i_1, \quad \pi_1(i_4) = i_3. \end{aligned}$$

In this case

$$f(x_1, x_2, x_3, x_4) = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1}(i) + x_{\pi_2}(i)} = \frac{x_{i_1}}{2x_{i_1} + x_{\pi_1}(i_1) + x_{\pi_2}(i_1)} + \frac{x_{i_2}}{2x_{i_2} + x_{\pi_1}(i_2) + x_{\pi_2}(i_2)} + \frac{x_{i_3}}{2x_{i_3} + x_{\pi_1}(i_3) + x_{\pi_2}(i_3)} + \frac{x_{i_4}}{2x_{i_4} + x_{\pi_1}(i_4) + x_{\pi_2}(i_4)} = \frac{x_{i_1}}{2x_{i_1} + 2x_{i_2}} + \frac{x_{i_2}}{2x_{i_2} + x_{i_3} + x_{i_4}} + \frac{x_{i_3}}{2x_{i_3} + x_{i_4} + x_{i_1}} + \frac{x_{i_4}}{2x_{i_4} + x_{i_1} + x_{i_3}}.$$
(4.11)

If we let $x_{i_1} = 0$, then

$$f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} = \frac{1}{2 + \frac{x_{i_3}}{x_{i_2}} + \frac{x_{i_4}}{x_{i_2}}} + \frac{1}{2 + \frac{x_{i_4}}{x_{i_3}}} + \frac{1}{2 + \frac{x_{i_3}}{x_{i_4}}}$$

Take $x_{i_3} = x_{i_4} = \frac{1}{100}$, $x_{i_2} = \frac{98}{100}$, we get

$$f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} = \frac{1}{1 + \frac{100}{98}} + \frac{2}{3} \approx 1.16 > 1.$$

So Φ_{π_1,π_2} is not positive.

Subcase (2).

$$\begin{aligned} \pi_1(i_1) &= i_2, \quad \pi_1(i_2) = i_3, \quad \pi_1(i_3) = i_4, \quad \pi_1(i_4) = i_1; \\ \pi_2(i_1) &= i_2, \quad \pi_2(i_2) = i_1, \quad \pi_1(i_3) = i_3, \quad \pi_1(i_4) = i_4. \end{aligned}$$

Then

$$f(x_1, x_2, x_3, x_4) = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} = \frac{x_{i_1}}{2x_{i_1} + x_{\pi_1(i_1)} + x_{\pi_2(i_1)}} + \frac{x_{i_2}}{2x_{i_2} + x_{\pi_1(i_2)} + x_{\pi_2(i_2)}} + \frac{x_{i_3}}{2x_{i_3} + x_{\pi_1(i_3)} + x_{\pi_2(i_3)}} + \frac{x_{i_4}}{2x_{i_4} + x_{\pi_1(i_4)} + x_{\pi_2(i_4)}} = \frac{x_{i_1}}{2x_{i_1} + 2x_{i_2}} + \frac{x_{i_2}}{2x_{i_2} + x_{i_3} + x_{i_1}} + \frac{x_{i_3}}{2x_{i_3} + x_{i_4} + x_{i_3}} + \frac{x_{i_4}}{2x_{i_4} + x_{i_1} + x_{i_4}}.$$
(4.12)

Let $x_{i_2} = 0$, we get

$$f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} = \frac{1}{2} + \frac{1}{3 + \frac{x_{i_4}}{x_{i_3}}} + \frac{1}{3 + \frac{x_{i_1}}{x_{i_4}}}.$$

It is then clear that $x_{i_1} = \frac{1}{100}$, $x_{i_4} = \frac{1}{10}$ and $x_{i_3} = 1 - \frac{1}{100} - \frac{1}{10} = \frac{89}{100}$ gives

$$f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} = \frac{1}{2} + \frac{1}{3 + \frac{10}{89}} + \frac{1}{3 + \frac{1}{10}} \approx 1.144 > 1.$$

Subcase (3).

$$\begin{aligned} \pi_1(i_1) &= i_2, \quad \pi_1(i_2) = i_3, \quad \pi_1(i_3) = i_1, \quad \pi_1(i_4) = i_4; \\ \pi_2(i_1) &= i_2, \quad \pi_2(i_2) = i_4, \quad \pi_1(i_3) = i_3, \quad \pi_1(i_4) = i_1. \end{aligned}$$

We have

$$f(x_1, x_2, x_3, x_4) = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} = \frac{x_{i_1}}{2x_{i_1} + x_{\pi_1(i_1)} + x_{\pi_2(i_1)}} + \frac{x_{i_2}}{2x_{i_2} + x_{\pi_1(i_2)} + x_{\pi_2(i_2)}} + \frac{x_{i_3}}{2x_{i_3} + x_{\pi_1(i_3)} + x_{\pi_2(i_3)}} + \frac{x_{i_4}}{2x_{i_4} + x_{\pi_1(i_4)} + x_{\pi_2(i_4)}} = \frac{x_{i_1}}{2x_{i_1} + 2x_{i_2}} + \frac{x_{i_2}}{2x_{i_2} + x_{i_3} + x_{i_4}} + \frac{x_{i_3}}{2x_{i_3} + x_{i_1} + x_{i_3}} + \frac{x_{i_4}}{2x_{i_4} + x_{i_4} + x_{i_1}}.$$
(4.13)

Letting $x_{i_2} = 0$ gives

$$f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} = \frac{1}{2} + \frac{1}{3 + \frac{x_{i_1}}{x_{i_3}}} + \frac{1}{3 + \frac{x_{i_1}}{x_{i_4}}}$$

So, taking $x_{i_1} = \frac{1}{100}$, $x_{i_4} = \frac{1}{10}$ and $x_{i_3} = 1 - \frac{1}{100} - \frac{1}{10} = \frac{89}{100}$, one gets $f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} = \frac{1}{2} + \frac{1}{3 + \frac{1}{89}} + \frac{1}{3 + \frac{1}{10}} \approx 1.155 > 1.$

Subcase (4).

$$\begin{aligned} \pi_1(i_1) &= i_2, \quad \pi_1(i_2) = i_3, \quad \pi_1(i_3) = i_1, \quad \pi_1(i_4) = i_4; \\ \pi_2(i_1) &= i_2, \quad \pi_2(i_2) = i_1, \quad \pi_1(i_3) = i_4, \quad \pi_1(i_4) = i_3. \end{aligned}$$

Then we have

$$f(x_1, x_2, x_3, x_4) = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1}(i) + x_{\pi_2}(i)} = \frac{x_{i_1}}{2x_{i_1} + x_{\pi_1}(i_1) + x_{\pi_2}(i_1)} + \frac{x_{i_2}}{2x_{i_2} + x_{\pi_1}(i_2) + x_{\pi_2}(i_2)} + \frac{x_{i_3}}{2x_{i_3} + x_{\pi_1}(i_3) + x_{\pi_2}(i_3)} + \frac{x_{i_4}}{2x_{i_4} + x_{\pi_1}(i_4) + x_{\pi_2}(i_4)} = \frac{x_{i_1}}{2x_{i_1} + 2x_{i_2}} + \frac{x_{i_2}}{2x_{i_2} + x_{i_3} + x_{i_1}} + \frac{x_{i_3}}{2x_{i_3} + x_{i_1} + x_{i_4}} + \frac{x_{i_4}}{2x_{i_4} + x_{i_4} + x_{i_3}}.$$

$$(4.14)$$

Let $x_{i_2} = 0$, we get

$$f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} = \frac{1}{2} + \frac{1}{2 + \frac{x_{i_1}}{x_{i_3}} + \frac{x_{i_4}}{x_{i_3}}} + \frac{1}{3 + \frac{x_{i_3}}{x_{i_4}}}$$

Then taking $x_{i_1} = \frac{1}{20}$, $x_{i_4} = \frac{1}{20}$ and $x_{i_3} = 1 - \frac{1}{20} - \frac{1}{20} = \frac{9}{10}$, we have $f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} = \frac{1}{2} + \frac{9}{19} + \frac{1}{21} \approx 1.021 > 1.$

Subcase (5).

$$\begin{aligned} \pi_1(i_1) &= i_2, \quad \pi_1(i_2) = i_4, \quad \pi_1(i_3) = i_3, \quad \pi_1(i_4) = i_1; \\ \pi_2(i_1) &= i_2, \quad \pi_2(i_2) = i_1, \quad \pi_1(i_3) = i_4, \quad \pi_1(i_4) = i_3. \end{aligned}$$

For this subcase we have

$$f(x_1, x_2, x_3, x_4) = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} = \frac{x_{i_1}}{2x_{i_1} + x_{\pi_1(i_1)} + x_{\pi_2(i_1)}} + \frac{x_{i_2}}{2x_{i_2} + x_{\pi_1(i_2)} + x_{\pi_2(i_2)}} + \frac{x_{i_3}}{2x_{i_3} + x_{\pi_1(i_3)} + x_{\pi_2(i_3)}} + \frac{x_{i_4}}{2x_{i_4} + x_{\pi_1(i_4)} + x_{\pi_2(i_4)}} = \frac{x_{i_1}}{2x_{i_1} + 2x_{i_2}} + \frac{x_{i_2}}{2x_{i_2} + x_{i_4} + x_{i_1}} + \frac{x_{i_3}}{2x_{i_3} + x_{i_3} + x_{i_4}} + \frac{x_{i_4}}{2x_{i_4} + x_{i_1} + x_{i_3}}.$$
(4.15)

It is clear that, if $x_{i_2} = 0$, then

$$f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} = \frac{1}{2} + \frac{1}{3 + \frac{x_{i_4}}{x_{i_3}}} + \frac{1}{2 + \frac{x_{i_1}}{x_{i_4}} + \frac{x_{i_3}}{x_{i_4}}}$$

Thus if we take $x_{i_4} = \frac{9}{10}$, $x_{i_1} = \frac{1}{20}$ and $x_{i_3} = \frac{1}{20}$, we get

$$f = \frac{1}{2} + \frac{1}{21} + \frac{9}{19} \approx 1.021 > 1.$$

Subcase (6).

$$\begin{array}{ll} \pi_1(i_1) = i_2, & \pi_1(i_2) = i_4, & \pi_1(i_3) = i_3, & \pi_1(i_4) = i_1; \\ \pi_2(i_1) = i_2, & \pi_2(i_2) = i_3, & \pi_1(i_3) = i_1, & \pi_1(i_4) = i_4. \end{array}$$

In this subcase we have

$$f(x_1, x_2, x_3, x_4) = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} = \frac{x_{i_1}}{2x_{i_1} + x_{\pi_1(i_1)} + x_{\pi_2(i_1)}} + \frac{x_{i_2}}{2x_{i_2} + x_{\pi_1(i_2)} + x_{\pi_2(i_2)}} + \frac{x_{i_3}}{2x_{i_3} + x_{\pi_1(i_3)} + x_{\pi_2(i_3)}} + \frac{x_{i_4}}{2x_{i_4} + x_{\pi_1(i_4)} + x_{\pi_2(i_4)}} = \frac{x_{i_1}}{2x_{i_1} + 2x_{i_2}} + \frac{x_{i_2}}{2x_{i_2} + x_{i_4} + x_{i_3}} + \frac{x_{i_3}}{2x_{i_3} + x_{i_3} + x_{i_1}} + \frac{x_{i_4}}{2x_{i_4} + x_{i_4} + x_{i_1}}.$$
(4.16)

Then letting $x_{i_1} = 0$ and $x_{i_2} = \frac{3}{4}$ gives

$$f = \frac{1}{2 + \frac{x_{i_3}}{x_{i_2}} + \frac{x_{i_4}}{x_{i_2}}} + \frac{1}{3} + \frac{1}{3} = \frac{2}{3} + \frac{1}{1 + \frac{1}{x_{i_2}}} = \frac{2}{3} + \frac{3}{7} = \frac{23}{21} > 1.$$

Subcase (7).

$$\begin{array}{ll} \pi_1(i_1) = i_2, & \pi_1(i_2) = i_4, & \pi_1(i_3) = i_1, & \pi_1(i_4) = i_3; \\ \pi_2(i_1) = i_2, & \pi_2(i_2) = i_1, & \pi_1(i_3) = i_3, & \pi_1(i_4) = i_4. \end{array}$$

In this subcase we have

$$f(x_1, x_2, x_3, x_4) = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1}(i) + x_{\pi_2}(i)}$$

= $\frac{x_{i_1}}{2x_{i_1} + 2x_{i_2}} + \frac{x_{i_2}}{2x_{i_2} + x_{i_4} + x_{i_1}} + \frac{x_{i_3}}{2x_{i_3} + x_{i_3} + x_{i_1}} + \frac{x_{i_4}}{2x_{i_4} + x_{i_4} + x_{i_1}}.$ (4.17)

Then, taking $x_{i_2} = 0$, $x_{i_1} = \frac{1}{100}$, $x_{i_3} = \frac{1}{10}$ and $x_{i_4} = 1 - \frac{1}{100} - \frac{1}{10} = \frac{89}{100}$, we get

$$f = \frac{1}{2} + \frac{1}{3 + \frac{x_{i_1}}{x_{i_3}}} + \frac{1}{3 + \frac{x_{i_3}}{x_{i_4}}} = \frac{1}{2} + \frac{1}{3 + \frac{1}{10}} + \frac{1}{3 + \frac{10}{89}} \approx 1.144 > 1.$$

Subcase (8).

$$\begin{aligned} \pi_1(i_1) &= i_2, \quad \pi_1(i_2) = i_4, \quad \pi_1(i_3) = i_1, \quad \pi_1(i_4) = i_3; \\ \pi_2(i_1) &= i_2, \quad \pi_2(i_2) = i_3, \quad \pi_1(i_3) = i_4, \quad \pi_1(i_4) = i_1. \end{aligned}$$

Then we have

$$f(x_1, x_2, x_3, x_4) = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1}(i) + x_{\pi_2}(i)}$$

= $\frac{x_{i_1}}{2x_{i_1} + 2x_{i_2}} + \frac{x_{i_2}}{2x_{i_2} + x_{i_4} + x_{i_3}} + \frac{x_{i_3}}{2x_{i_3} + x_{i_1} + x_{i_4}} + \frac{x_{i_4}}{2x_{i_4} + x_{i_1} + x_{i_3}}.$ (4.18)

If $x_{i_1} = 0$, $x_{i_3} = x_{i_4} = \frac{1}{100}$ and $x_{i_2} = 1 - \frac{1}{100} - \frac{1}{100} = \frac{98}{100}$, we get

$$f = \frac{1}{2 + \frac{x_{i_3}}{x_{i_2}} + \frac{x_{i_4}}{x_{i_2}}} + \frac{1}{2 + \frac{x_{i_4}}{x_{i_3}}} + \frac{1}{2 + \frac{x_{i_3}}{x_{i_4}}} = \frac{1}{1 + \frac{100}{98}} + \frac{2}{3} \approx 1.16 > 1.$$

Subcase (9).

$$\begin{aligned} \pi_1(i_1) &= i_2, \quad \pi_1(i_2) = i_1, \quad \pi_1(i_3) = i_3, \quad \pi_1(i_4) = i_4; \\ \pi_2(i_1) &= i_2, \quad \pi_2(i_2) = i_3, \quad \pi_1(i_3) = i_4, \quad \pi_1(i_4) = i_1. \end{aligned}$$

Obviously, we have

$$f(x_1, x_2, x_3, x_4) = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1}(i) + x_{\pi_2}(i)}$$

= $\frac{x_{i_1}}{2x_{i_1} + 2x_{i_2}} + \frac{x_{i_2}}{2x_{i_2} + x_{i_1} + x_{i_3}} + \frac{x_{i_3}}{2x_{i_3} + x_{i_3} + x_{i_4}} + \frac{x_{i_4}}{2x_{i_4} + x_{i_4} + x_{i_1}}.$ (4.19)

Now if we take $x_{i_1} = 0$, $x_{i_3} = \frac{1}{100}$, $x_{i_4} = \frac{1}{10000}$, and $x_{i_2} = \frac{9899}{10000}$, then

$$f = \frac{1}{2 + \frac{x_{i_3}}{x_{i_2}}} + \frac{1}{3 + \frac{x_{i_4}}{x_{i_3}}} + \frac{1}{3} = \frac{1}{2 + \frac{100}{9899}} + \frac{1}{3 + \frac{1}{100}} + \frac{1}{3} \approx 1.163 > 1.$$

Subcase (10).

$$\pi_1(i_1) = i_2, \quad \pi_1(i_2) = i_1, \quad \pi_1(i_3) = i_3, \quad \pi_1(i_4) = i_4; \\ \pi_2(i_1) = i_2, \quad \pi_2(i_2) = i_4, \quad \pi_1(i_3) = i_1, \quad \pi_1(i_4) = i_3.$$

Clearly,

$$f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} = \frac{x_{i_1}}{2x_{i_1} + 2x_{i_2}} + \frac{x_{i_2}}{2x_{i_2} + x_{i_1} + x_{i_4}} + \frac{x_{i_3}}{2x_{i_3} + x_{i_3} + x_{i_1}} + \frac{x_{i_4}}{2x_{i_4} + x_{i_4} + x_{i_3}}.$$
(4.20)

If $x_{i_1} = 0$, we get

$$f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} = \frac{1}{2 + \frac{x_{i_4}}{x_{i_2}}} + \frac{1}{3} + \frac{1}{3 + \frac{x_{i_3}}{x_{i_4}}}.$$

Letting $x_{i_3} = \frac{1}{10000}$, $x_{i_4} = \frac{1}{100}$ and $x_{i_2} = \frac{9899}{10000}$, we get

$$f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}}$$

= $\frac{1}{2 + \frac{100}{9899}} + \frac{1}{3} + \frac{1}{3 + \frac{1}{100}} \approx 1.163 > 1.$

Subcase (11).

$$\begin{aligned} \pi_1(i_1) &= i_2, \quad \pi_1(i_2) = i_1, \quad \pi_1(i_3) = i_4, \quad \pi_1(i_4) = i_3; \\ \pi_2(i_1) &= i_2, \quad \pi_2(i_2) = i_3, \quad \pi_1(i_3) = i_1, \quad \pi_1(i_4) = i_4. \end{aligned}$$

For this case we have

$$f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} = \frac{x_{i_1}}{2x_{i_1} + 2x_{i_2}} + \frac{x_{i_2}}{2x_{i_2} + x_{i_1} + x_{i_3}} + \frac{x_{i_3}}{2x_{i_3} + x_{i_4} + x_{i_1}} + \frac{x_{i_4}}{2x_{i_4} + x_{i_4} + x_{i_3}}.$$
(4.21)

Thus, if $x_{i_2} = 0$, $x_{i_1} = \frac{1}{20}$, $x_{i_4} = \frac{1}{20}$ and $x_{i_3} = \frac{9}{10}$, we get

$$f = \frac{1}{2} + \frac{1}{2 + \frac{x_{i_1}}{x_{i_3}} + \frac{x_{i_4}}{x_{i_3}}} + \frac{1}{3 + \frac{x_{i_3}}{x_{i_4}}} = \frac{1}{2} + \frac{9}{19} + \frac{1}{21} \approx 1.021 > 1.$$

Subcase (12).

$$\begin{aligned} \pi_1(i_1) &= i_2, \quad \pi_1(i_2) = i_1, \quad \pi_1(i_3) = i_4, \quad \pi_1(i_4) = i_3; \\ \pi_2(i_1) &= i_2, \quad \pi_2(i_2) = i_4, \quad \pi_1(i_3) = i_3, \quad \pi_1(i_4) = i_1. \end{aligned}$$

Then we have

$$f = \sum_{i=1}^{4} \frac{x_i}{2x_i + x_{\pi_1(i)} + x_{\pi_2(i)}} = \frac{x_{i_1}}{2x_{i_1} + 2x_{i_2}} + \frac{x_{i_2}}{2x_{i_2} + x_{i_1} + x_{i_4}} + \frac{x_{i_3}}{2x_{i_3} + x_{i_3} + x_{i_4}} + \frac{x_{i_4}}{2x_{i_4} + x_{i_3} + x_{i_1}}.$$
(4.22)

If $x_{i_2} = 0$, $x_{i_1} = \frac{1}{20}$, $x_{i_3} = \frac{1}{20}$ and $x_{i_4} = \frac{9}{10}$, we get

$$f = \frac{1}{2} + \frac{1}{3 + \frac{x_{i_4}}{x_{i_3}}} + \frac{1}{2 + \frac{x_{i_3}}{x_{i_4}} + \frac{x_{i_1}}{x_{i_4}}} = \frac{1}{2} + \frac{1}{21} + \frac{9}{19} \approx 1.021 > 1.$$

By the Lemma 3.5, for subcases (1)–(12) of Case (ii), Φ_{π_1,π_2} is not positive, either.

Hence we have proved that if there exist *i* such that $\pi_1(i) = \pi_2(i) \neq i$, then Φ_{π_1,π_2} is not positive. So, Φ_{π_1,π_2} is positive implies that there is no *i* so that $\pi_1(i) = \pi_2(i) \neq i$, this finishes the proof of Proposition 4.4. \Box

5. Proofs of the main results

Now we are in a position to complete the proofs of Theorem 1.2 and Theorem 1.3.

Proof of Theorem 1.2. Note that, by the assumption, π_1 and π_2 are not the identity permutation and $\pi_1 \neq \pi_2$. Still denote by $\{F_s\}_{s=1}^r$ the set of minimal common invariant subsets of π_1 and π_2 and denote by $l(\pi_1, \pi_2)$ the length of $\{\pi_1, \pi_2\}$, i.e., $l(\pi_1, \pi_2) = \max\{\#F_s\}_{s=1}^r$.

If $l(\pi_1, \pi_2) = 2$, then Φ_{π_1, π_2} is always positive. In fact, $l(\pi) = 2$ implies either r = 3, in this situation one of π_1, π_2 is the identity; or r = 2 with $\#F_1 = \#F_2 = 2$, in this situation we apply Proposition 4.2.

If $l(\pi_1, \pi_2) = 3$ with $\#F_1 = 1$, then by Proposition 4.3, Φ_{π_1, π_2} is positive if and only if for any $i \in F_2$ we have $\pi_1(i) \neq \pi_2(i)$, and in turn, if and only if the condition (1) in (ii) holds. Since π_1, π_2 has a common fixed point, the condition (2) in (ii) holds emptily. Hence the theorem is true for this case.

If $l(\pi_1, \pi_2) = 4$, then π_1, π_2 have no common fixed point. By Proposition 4.4, it is obvious that Φ_{π_1, π_2} is positive if and only if (1) and (2) in (ii) hold. \Box

Proof of Theorem 1.3. As π_1, π_2 are not the identity, $\{\pi_1, \pi_2\}$ has the property (C) if and only if $\pi_1(i) \neq \pi_2(i)$ for any i = 1, 2, 3. Thus by [16], $\pi_1(i) \neq \pi_2(i)$ for any i = 1, 2, 3 implies that $\Phi_{\pi_1, \pi_2} : M_3 \to M_3$ is positive. Conversely, if there is some $i_1 \in \{1, 2, 3\}$ so that $\pi_1(i_1) = \pi_2(i_1)$, then $\pi_1(i_1) = \pi_2(i_1) = i_2 \in \{i_2, i_3\} = \{1, 2, 3\} \setminus \{i_1\}$. Thus, with no loss of generality, we may assume that

$$\begin{aligned} \pi_1(i_1) &= i_2, \quad \pi_1(i_2) = i_3, \quad \pi_1(i_3) = i_1; \\ \pi_2(i_1) &= i_2, \quad \pi_2(i_2) = i_1, \quad \pi_2(i_3) = i_3. \end{aligned}$$

It follows from Lemma 3.5 that Φ_{π_1,π_2} is not positive if

$$f(x_1, x_2, x_3) = \sum_{i=1}^{3} \frac{x_i}{x_i + x_{\pi_1(i)} + x_{\pi_2(i)}}$$
$$= \frac{x_{i_1}}{x_{i_1} + 2x_{i_2}} + \frac{x_{i_2}}{x_{i_2} + x_{i_1} + x_{i_3}} + \frac{x_{i_3}}{2x_{i_3} + x_{i_1}}$$

is greater than 1 at some point. This is the case because letting $x_{i_1} = 0$ gives

$$f = \frac{x_{i_2}}{x_{i_2} + x_{i_3}} + \frac{1}{2}$$

which has supremum $\frac{3}{2} > 1$. \Box

Acknowledgement. The authors give their thanks to the referees for helpful comments and suggestions on this paper.

REFERENCES

- P. ALBERT AND A. UHLMANM, A problem relating to positive linear maps on matrix algebras, Rep. Math. Phys. 18 (1980), 163.
- [2] R. AUGUSIAK, J. BAE, L. CZEKAJ, M. LEWENSTEIN, On structural physical approximations and entanglement breaking maps, J. Phys. A: Math. Theor. 44 (2011), 185–308.
- [3] A. CHEFLES, R. JOZSA, AND A. WINTER, On the existence of physical transformations between sets of quantum states, International J. Quantum Information, 2 (2004), 11–21.
- [4] M.-D. CHOI, Completely Positive Linear Maps on Complex Matrix, Lin. Alg. Appl. 10 (1975), 285– 290.
- [5] D. CHRUŚCIŃSKI AND A. KOSSAKOWSKI, Spectral conditions for positive maps, Comm. Math. Phys. 290 (2009), 10–51.
- [6] R. A. HORN, CHARLES R. JOHNSON, Matrix Analysis, Cambridge Univ. Press, 1985, New York.
- [7] J.-C. HOU, A characterization of positive linear maps and criteria for entangled'quantum states, J. Phys. A: Math. Theor. 43 (2010) 385–201.
- [8] J.-C. HOU, Acharacterization of positive elementary operators, J. Operator Theory, 39 (1998), 43–58.

- [9] J.-C. HOU, C.-K. LI, Y.-T. POON, X. F. QI AND N.-S. SZE, A new criterion and a special class of k-positive maps, Lin. Alg. Appl., 470 (2015), 51–69.
- [10] Z.-J. HUANG, C.-K. LI, E. POON, N.-S. SZE, *Physical transformation between quantum states*, J. Mathematical Physics 53, 102209 (2012).
- [11] K. KRAUS, States, Effects, and Operations: Fundamental Notions of Quantum Theory, Lecture Notes in Physics, Vol. 190. Spring-Verlag, Berlin, 1983.
- [12] C.-K. LI AND Y.-T. POON, Interpolation by Completely Positive Maps, Linear and Multilinear Algebra 59 (2011), 1159–1170.
- [13] M. A. NIELSEN AND I. L. CHUANG, *Quantum Computation and Quantum Information*, Cambridge University Press, Cambridge, 2000.
- [14] X.-F. QI AND J.-C. HOU, Positive finite rank elementary operators and characterizing entanglement of states, J. Phys. A: Math. Theor. 44 (2011), 215–305.
- [15] S. YAMAGAMI, Cyclic inequalities, Proc. Amer. Math. Sco., 118 (1993), 521-527.
- [16] H.-L. ZHAO AND J.-C. HOU, Criteria of positivity for linear maps constructed from permutation pairs, arXiv:1302.0175v2 [quant-ph].

(Received April 17, 2013)

Haili Zhao College of Mathematics Taiyuan University of Technology Taiyuan 030024, P.R. of China e-mail: zhaohaili927@yahoo.com.cn

Jinchuan Hou College of Mathematics Taiyuan University of Technology Taiyuan 030024, P.R. of China e-mail: jinchuanhou@yahoo.com.cn

Operators and Matrices www.ele-math.com oam@ele-math.com