A NECESSARY AND SUFFICIENT CONDITION FOR POSITIVITY OF LINEAR MAPS ON M_{4} CONSTRUCTED FROM PERMUTATION PAIRS

Haili Zhao and Jinchuan Hou

(Communicated by F. Kittaneh)

Abstract

A necessary and sufficient condition for a D-type map $\Phi_{\pi_{1}, \pi_{2}}$ on 4×4 matrices constructed from a pair of arbitrary permutations $\left\{\pi_{1}, \pi_{2}\right\}$ to be positive is obtained.

1. Introduction

Denote by $M_{n}=M_{n}(\mathbb{C})$ the algebra of all $n \times n$ complex matrices and M_{n}^{+}the set of all positive semi-definite matrices in M_{n}. A map $L: M_{n} \rightarrow M_{n}$ is positive if $L\left(M_{n}^{+}\right) \subseteq M_{n}^{+}$. The positive maps are important objects both in mathematics and quantum information theory, see $[1,2,3,4,6,7,8,9,10,11,12,13,15]$.

Suppose $\Phi_{D}: M_{n} \rightarrow M_{n}$ is a linear map of the form

$$
\begin{equation*}
\left(a_{i j}\right) \longmapsto \operatorname{diag}\left(f_{1}, f_{2}, \ldots, f_{n}\right)-\left(a_{i j}\right) \tag{1.1}
\end{equation*}
$$

with $\left(f_{1}, f_{2}, \ldots, f_{n}\right)=\left(a_{11}, a_{22}, \ldots, a_{n n}\right) D$ for an $n \times n$ nonnegative matrix $D=\left(d_{i j}\right)$ (i.e., $d_{i j} \geqslant 0$ for all i, j). The map Φ_{D} of the form Eq. (1.1) defined by a nonnegative matrix D is called a D-type map [9]. The question of when a D-type map is positive was studied intensively by many authors and applied in quantum information theory to detect entangled states and construct entanglement witnesses (ref., for instance, [9, 14] and the references therein).

A very interesting class of D-type maps is the class of maps constructed from permutations.

Assume that π is a permutation of $(1,2, \ldots, n)$. Recall that the permutation matrix $P_{\pi}=\left(p_{i j}\right)$ of π is a $n \times n$ matrix determined by

$$
p_{i j}= \begin{cases}1 & \text { if } i=\pi(j) \\ 0 & \text { if } i \neq \pi(j)\end{cases}
$$

The well-known Choi map $\Psi: M_{3} \rightarrow M_{3}$ defined by

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
a_{11}+a_{33} & -a_{12} & -a_{13} \\
-a_{21} & a_{22}+a_{11} & -a_{23} \\
-a_{31} & -a_{32} & a_{33}+a_{22}
\end{array}\right)
$$

Mathematics subject classification (2010): 15A86, 47B49, 47N50.
Keywords and phrases: Matrix algebras, positive linear maps, permutations, inequalities. This work is partially supported by Natural Science Foundation of China (11171249, 11271217).
is clearly a D-type map induced from the permutation $(1,2,3) \rightarrow(2,3,1)$.
Recall also that a subset $\left(i_{1}, \ldots, i_{l}\right) \subseteq\{1,2, \ldots, n\}$ is an l-cycle of the permutation π if $\pi\left(i_{j}\right)=i_{j+1}$ for $j=1, \ldots, l-1$ and $\pi\left(i_{l}\right)=i_{1}$. Note that every permutation π of $(1, \ldots, n)$ has a disjoint cycle decomposition $\pi=\left(\pi_{1}\right)\left(\pi_{2}\right) \cdots\left(\pi_{r}\right)$, that is, there exists a set $\left\{F_{s}\right\}_{s=1}^{r}$ of disjoint cycles of π with $\cup_{s=1}^{r} F_{s}=\{1,2, \ldots, n\}$ such that $\pi_{s}=\left.\pi\right|_{F_{s}}$ and $\pi(i)=\pi_{s}(i)$ whenever $i \in F_{s}$. Let π be a permutation of $(1,2, \ldots, n)$ with disjoint cycle decomposition $\left(\pi_{1}\right) \cdots\left(\pi_{r}\right)$ such that the maximum length of π_{i} is equal to $l>1$ and $P_{\pi}=\left(\delta_{i \pi(j)}\right)$ is the permutation matrix associated with π. For $t \geqslant 0$, let $\Phi_{t, \pi}: M_{n} \rightarrow M_{n}$ be the D-type map of the form in Eq. (1.1) with $D=(n-t) I_{n}+t P_{\pi}$. It is shown in [9] that $\Phi_{t, \pi}$ is positive if and only if $0 \leqslant t \leqslant \frac{n}{l}$. Thus Φ_{D} with $D=(n-2) I_{n}+P_{\pi}+P_{\pi}$ is not positive if $\frac{n}{l}<2$. This fact reveals that, in general, a D-type map with $D=$ $(n-2) I_{n}+P_{\pi_{1}}+P_{\pi_{2}}$ is not a positive map.

Motivated by the above result, it was discussed in [16] the D-type maps constructed from a pair of permutations, that is,

$$
\begin{equation*}
\Phi_{n, \pi_{1}, \pi_{2}}=\Phi_{D_{\pi_{1}}, \pi_{2}} \text { with } D_{\pi_{1}, \pi_{2}}=(n-2) I_{n}+P_{\pi_{1}}+P_{\pi_{2}} \tag{1.2}
\end{equation*}
$$

and the question that under what conditions that $\Phi_{n, \pi_{1}, \pi_{2}}$ of the form Eq. (1.2) are positive. A notion of the property (C) for pairs of permutations was introduced in [16] (see Definition 3.2 below), and it was proved that, if $\left\{\pi_{1}, \pi_{2}\right\}$ has property (C), then the D-type map $\Phi_{n, \pi_{1}, \pi_{2}}: M_{n} \rightarrow M_{n}$ with $n \geqslant 3$ is positive. The property (C) is characterized for $\left\{\pi_{1}, \pi_{2}\right\}$, and a criterion is given for the case that $\pi_{1}=\pi^{p}$ and $\pi_{2}=$ π^{q}, where π is the permutation defined by $\pi(i)=i+1 \bmod n$ and $1 \leqslant p<q \leqslant n$. The results in [16] allow us to construct many new positive maps. However, the property (C) is only a sufficient condition for $\Phi_{n, \pi_{1}, \pi_{2}}$ to be positive. So, it is natural and interesting to ask the following.

Problem 1.1. What is the necessary and sufficient condition for $\Phi_{n, \pi_{1}, \pi_{2}}$ to be positive?

The purpose of this paper is to give an answer to the above problem for low dimension cases, that is, the case $n \in\{3,4\}$. Since the results in [9], we always assume in this paper that $\pi_{1} \neq \pi_{2}$ and, neither π_{1} nor π_{2} is the identity permutation. Furthermore, we denote by $l\left(\pi_{1}, \pi_{2}\right)$ the length of the pair $\left\{\pi_{1}, \pi_{2}\right\}$ of permutations defined by

$$
l\left(\pi_{1}, \pi_{2}\right)=\max \left\{\# F: F \text { is a minimal common invariant subset of } \pi_{1}, \pi_{2}\right\}
$$

In other words, $l\left(\pi_{1}, \pi_{2}\right)$ is the cardinality of the minimal common invariant subset of π_{1} and π_{2} which has the largest number of elements.

The following are the main results.
THEOREM 1.2. Let π_{1} and π_{2} be two distinct permutations of $(1,2,3,4)$ that are not the identity, and let $\Phi_{\pi_{1}, \pi_{2}}: M_{4}(\mathbb{C}) \rightarrow M_{4}(\mathbb{C})$ be the D-type map defined by $D=2 I_{4}+P_{\pi_{1}}+P_{\pi_{2}}$. Then $\Phi_{\pi_{1}, \pi_{2}}$ is positive if and only if either
(i) $l\left(\pi_{1}, \pi_{2}\right)=2$; or
(ii) $l\left(\pi_{1}, \pi_{2}\right) \geqslant 3$ and the following two conditions hold:
(1) if i is not the fixed point of both π_{1} and π_{2}, then $\pi_{1}(i) \neq \pi_{2}(i)$;
(2) if π_{1} and π_{2} have no common fixed points and if there exist distinct i, j such that $\left\{\pi_{1}(i), \pi_{2}(i)\right\}=\left\{\pi_{1}(j), \pi_{2}(j)\right\}$, then neither π_{1} nor π_{2} has fixed points.

THEOREM 1.3. Let π_{1} and π_{2} be two distinct permutations of $(1,2,3)$ that are not the identity, and let $\Phi_{\pi_{1}, \pi_{2}}: M_{3}(\mathbb{C}) \rightarrow M_{3}(\mathbb{C})$ be the D-type map defined by $D=$ $I_{3}+P_{\pi_{1}}+P_{\pi_{2}}$. Then $\Phi_{\pi_{1}, \pi_{2}}$ is positive if and only if $\pi_{1}(i) \neq \pi_{2}(i)$ holds for any i.

The paper is organized as follows. In Section 2 we recall some preliminary inequalities from [16] that are needed in the remain part of the paper. Section 3 deals with the case that $n=4,\left\{\pi_{1}, \pi_{2}\right\}$ has the property (C). A easy characterization of $\left\{\pi_{1}, \pi_{2}\right\}$ to have the property (C) is given and, based on this, in Section 4, for any pair of permutations of $(1,2,3,4)$, some criteria for $\Phi_{\pi_{1}, \pi_{2}}: M_{4} \rightarrow M_{4}$ to be positive are established. The final section completes the proofs of Theorems 1.2 and 1.3.

2. Preliminary inequalities

In this section, we first recall some inequalities proved in [16].
Lemma 2.1. [16, Lemma 2.1] Let s, M be positive numbers and $f\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ be a function in m-variable defined by

$$
f\left(u_{1}, u_{2}, \ldots, u_{m}\right)=\frac{1}{s+u_{1}}+\frac{1}{s+u_{2}}+\ldots+\frac{1}{s+u_{m}}
$$

on the region $u_{i}>0$ with $u_{1} u_{2} \ldots u_{m}=M^{m}, i=1,2, \ldots, m$. Then we have
(1) f has extremum values $\left.\frac{r^{2} 2 r-m}{m}+(m-r) M^{\frac{m}{2 r-m}} \frac{s^{\prime}}{s^{2 r-m}}+M^{2 r-m}\right) \quad$ with $\frac{m}{2}<r \leqslant m$ at the points that r of $u_{i} s$ are $\left(\frac{M^{m}}{s^{2 m-2 r}}\right)^{\frac{1}{2 r-m}}$ and others are $\left(\frac{s^{2 r}}{M^{m}}\right)^{\frac{1}{2 r-m}}$;
(2) f may also achieve the extremum $\frac{m}{s+M}$ when m is even, at points $\frac{m}{2}$ of $u_{i} s$ are u and others are $\frac{s^{2}}{u}$, in this case we must have $s=M$;
(3) $\sup f\left(u_{1}, u_{2}, \ldots, u_{m}\right)=\max \left\{\frac{m-1}{s}, \frac{m}{s+M}\right\}$.

Consequently, we have
Corollary 2.2. Let s, M be positive numbers and $f\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ be a function in 4-variable defined by

$$
f\left(u_{1}, \ldots, u_{4}\right)=\frac{1}{s+u_{1}}+\frac{1}{s+u_{2}}+\frac{1}{s+u_{3}}+\frac{1}{s+u_{4}}
$$

on the region $u_{i}>0$ with $u_{1} u_{2} u_{3} u_{4}=M^{m}$. Then,

$$
\sup f\left(u_{1}, u_{2}, u_{3}, u_{m}\right)=\max \left\{\frac{3}{s}, \frac{4}{s+M}\right\} .
$$

Moreover, all possible extremum values of f is bounded by $\max \left\{\frac{4}{s+M}, \frac{2 s}{\left(s^{2}+M^{2}\right)}+\frac{1}{s}\right\}$.
Lemma 2.3. [16, Lemma 2.2] Let s be a positive number, n, k be positive integers with $s>k$. Then for any $n k$ positive real numbers $\left\{x_{h i}, h=1,2, \ldots, k ; i=\right.$ $1,2, \ldots, n$,$\} satisfying x_{h 1} x_{h 2} \ldots x_{h n}=1$ for each h with $1 \leqslant h \leqslant k$, we have

$$
\begin{aligned}
f\left(x_{11}, \ldots, x_{1 n}, x_{21}, \ldots, x_{k 1}, \ldots, x_{k n}\right) & =\sum_{i=1}^{n} \frac{1}{s-k+x_{1 i}+x_{2 i}+\ldots+x_{k i}} \\
& \leqslant \max \left\{\frac{n-1}{s-k}, \frac{n}{s}\right\}
\end{aligned}
$$

Moreover, the extremum values of f are

$$
\begin{aligned}
& \delta_{r}=\frac{r(s-k) \frac{n}{2 r-n}+(n-r) k^{\frac{n}{2 r-n}}}{(s-k)\left((s-k)^{\frac{n}{2 r-n}}+k^{\frac{n}{2 r-n}}\right)},\left[\frac{n}{2}\right]+1 \leqslant r \leqslant n \\
& \delta_{\frac{n}{2}}=\frac{n}{s} \quad \text { if } n \text { is even }
\end{aligned}
$$

where $[t]$ stands for the integer part of real number t.
The following corollary is immediate.
Corollary 2.4. Let

$$
f\left(x_{11}, \ldots, x_{14}, x_{21}, \ldots, x_{24}\right)=\sum_{i=1}^{4} \frac{1}{2+x_{1 i}+x_{2 i}}
$$

Then, $\sup f=\frac{3}{2}$ and all extremum values of f is 1 on the region of $x_{h i}>0, i=1,2,3,4$ and $h=1,2$ with $x_{h 1} x_{h 2} x_{h 3} x_{h 4}=1$.

3. Positivity of $\Phi_{\pi_{1}, \pi_{2}}$ on M_{4} with $\left\{\pi_{1}, \pi_{2}\right\}$ having property (C)

For any two permutations π_{1} and π_{2} of $(1,2,3,4)$, let $\Phi_{\pi_{1}, \pi_{2}}: M_{4}(\mathbb{C}) \rightarrow M_{4}(\mathbb{C})$ be the D-type map of the form

$$
\begin{equation*}
\left(a_{i j}\right) \longmapsto \operatorname{diag}\left(f_{1}, f_{2}, f_{3}, f_{4}\right)-\left(a_{i j}\right), \tag{3.1}
\end{equation*}
$$

where $\left(f_{1}, f_{2}, f_{3}, f_{4}\right)=\left(a_{11}, a_{22}, a_{33}, a_{44}\right) D$ and $D=2 I_{4}+P_{\pi_{1}}+P_{\pi_{2}}$ with $P_{\pi_{h}}$ the permutation matrix of $\pi_{h}, h=1,2$.

The main purpose of this section is to show the following result.
Proposition 3.1. Let $\Phi_{\pi_{1}, \pi_{2}}: M_{4}(\mathbb{C}) \rightarrow M_{4}(\mathbb{C})$ be a D-type map defined by a pair of permutations $\left\{\pi_{1}, \pi_{2}\right\}$ as in Eq. (3.1). Then $\Phi_{\pi_{1}, \pi_{2}}$ is positive if any one of the following condition satisfied.
(i) π_{1}, π_{2} have two common fixed points.
(ii) π_{1}, π_{2} have one common fixed point i, and $\pi_{1}(j) \neq \pi_{2}(j)$ for any $j \neq i$.
(iii) $\pi_{1}(i) \neq \pi_{2}(i)$ for any i and $\left\{\pi_{1}(k), \pi_{2}(k)\right\}=\left\{\pi_{1}(j), \pi_{2}(j)\right\}=\{k, j\}$ for some distinct k, j.
(iv) For any $i, \pi_{1}(i) \neq \pi_{2}(i)$ and, for any distinct $k, j,\left\{\pi_{1}(k), \pi_{2}(k)\right\} \neq\left\{\pi_{1}(j)\right.$, $\left.\pi_{2}(j)\right\}$.

The following conception was introduced in [16].
DEfinition 3.2. [16, Definition 3.2] A pair $\left\{\pi_{1}, \pi_{2}\right\}$ of permutations of $(1,2$, $\ldots, n)$ is said to have property (C) if, for any given $i \in\{1,2, \ldots, n\}$ and for any $j \neq i$, there exists $\pi_{h_{j}}(j) \in\left\{\pi_{1}(j), \pi_{2}(j)\right\}$ such that $\left\{\pi_{h_{j}}(j): j=1,2, \ldots, i-1, i+1, \ldots, n\right\}=$ $\{1,2, \ldots, i-1, i+1, \ldots, n\}$, that is, $\left(\pi_{h_{1}}(1), \ldots, \pi_{h_{i-1}}(i-1), \pi_{h_{i+1}}(i+1), \ldots, \pi_{h_{n}}(n)\right)$ is a permutation of $(1,2, \ldots, i-1, i+1, \ldots, n)$.

To make the meaning of the property (C) clear, let us see some examples before going ahead. Let π_{1} and π_{2} be the permutations $(1,2,3,4) \rightarrow(2,3,4,1)$ and $(3,4,1,2)$,
respectively; then $\left\{\pi_{1}, \pi_{2}\right\}$ has the property (C). However the pair $\left\{\rho_{1}, \rho_{2}\right\}=\{(2,3,4,1)$, $(4,1,2,3)\}$ of permutations of $(1,2,3,4)$ does not have the property (C). To see this, take $i=1$. One can not pick $\rho_{h_{2}}(2) \in\left\{\rho_{1}(2), \rho_{2}(2)\right\}=\{3,1\}, \rho_{h_{3}}(3) \in\{4,2\}$ and $\rho_{h_{4}}(4) \in\{1,3\}$ so that $\left\{\rho_{h_{2}}(2), \rho_{h_{3}}(3), \rho_{h_{4}}(4)\right\}=\{2,3,4\}$.

It was shown that for any $n \geqslant 3$ and any pair $\left\{\pi_{1}, \pi_{2}\right\}$ of permutations of $(1,2, \ldots$, n), the D-type map $\Phi_{n, \pi_{1}, \pi_{2}}$ is positive if $\left\{\pi_{1}, \pi_{2}\right\}$ has the property (C). Thus particularly we have

PROPOSITION 3.3. Let $\Phi_{\pi_{1}, \pi_{2}}: M_{4}(\mathbb{C}) \rightarrow M_{4}(\mathbb{C})$ be a D-type map defined by a pair of permutations $\left\{\pi_{1}, \pi_{2}\right\}$ as in Eq. (3.1). If $\left\{\pi_{1}, \pi_{2}\right\}$ has the property (C), then $\Phi_{\pi_{1}, \pi_{2}}$ is positive.

Since the case one of π_{1} and π_{2} is the identity permutation reduces to the situation had dealt with in [9], we may always assume in the sequel that $\pi_{1} \neq \mathrm{id}$ and $\pi_{2} \neq \mathrm{id}$.

By Proposition 3.3, to detect the positivity of a D-type map $\Phi_{\pi_{1}, \pi_{2}}$ on M_{4}, it is important to determine whether or not the pair $\left\{\pi_{1}, \pi_{2}\right\}$ of permutations has the property (C).

Let $\left\{\pi_{1}, \pi_{2}\right\}$ be a pair of permutations on $(1,2, \ldots, n)$. It is clear that the smaller n is the easier to check the property (C) of $\left\{\pi_{1}, \pi_{2}\right\}$. This motivates us to decompose the permutations into small ones. For a nonempty proper subset F of $\{1,2, \ldots, n\}$, if $\pi_{h}(F)=F$ holds for all $h=1,2$, we say that F is an invariant subset of $\left\{\pi_{1}, \pi_{2}\right\}$, or, F is a common invariant subset of π_{1} and π_{2}. Obvious, there exist disjoint minimal invariant subsets $F_{1}, F_{2}, \ldots, F_{r}(r<n)$, of $\left\{\pi_{1}, \pi_{2}\right\}$ such that $\sum_{s=1}^{r} \# F_{s}=n$ (i.e., $\left.\cup_{s=1}^{r} F_{s}=\{1,2, \ldots, n\}\right)$. We say $\left\{F_{1}, F_{2}, \ldots, F_{l}\right\}$ is the complete set of minimal invariant subsets of $\left\{\pi_{1}, \pi_{2}\right\}$. Thus one can reduce the pair $\left\{\pi_{1}, \pi_{2}\right\}$ of permutations into r pairs $\left\{\pi_{1 s}, \pi_{2 s}\right\}_{s=1}^{r}$ of small ones, where $\pi_{h s}=\left.\pi_{h}\right|_{F_{s}}$. It is easily checked that $\left\{\pi_{1}, \pi_{2}\right\}$ has the property (C) if and only if each of its sub-pairs $\left\{\pi_{1 s}, \pi_{2 s}\right\}$ has the property (C).

Now let us come back to the case of $n=4$. Let $\left\{F_{s}\right\}_{s=1}^{r}, 1 \leqslant r \leqslant 4$, be the complete set of minimal invariant subsets of $\left\{\pi_{1}, \pi_{2}\right\}$. Assume that $\# F_{1} \leqslant \# F_{2} \leqslant \ldots \leqslant$ $\# F_{r}$. It is clear that,
if $r=3$, then $\# F_{1}=\# F_{2}=1, \# F_{3}=2$, and hence $\left\{\pi_{1}, \pi_{2}\right\}$ has property (C) if and only if one of π_{i} is the identity;
if $r=2, \# F_{1}=1$ and $\# F_{2}=3$, then $\left\{\pi_{1}, \pi_{2}\right\}$ has property (C) if and only if for each $i \in F_{2}, \pi_{1}(i) \neq \pi_{2}(i)$;
if $r=2, \# F_{1}=\# F_{2}=2$, then $\left\{\pi_{1}, \pi_{2}\right\}$ has property (C) if and only if $\left.\pi_{1}\right|_{F_{s}} \neq\left.\pi_{2}\right|_{F_{s}}, s=$ 1,2 , and equivalently, $\pi_{1}(i) \neq \pi_{2}(i)$ for any i and $\left\{\pi_{1}(k), \pi_{2}(k)\right\}=\left\{\pi_{1}(j), \pi_{2}(j)\right\}=$ $\{k, j\}$ for some distinct k, j.

So, to detect whether or not $\left\{\pi_{1}, \pi_{2}\right\}$ has the property (C), the only case left is $r=1$, that is, $\left\{\pi_{1}, \pi_{2}\right\}$ has no proper invariant subsets. This will be done in the next proposition.

PROPOSITION 3.4. Let π_{1}, π_{2} be two permutations of $(1,2,3,4)$ having no proper common invariant subsets. Then $\left\{\pi_{1}, \pi_{2}\right\}$ has property (C) if and only if the following conditions are satisfied:
(1) For any $i, \pi_{1}(i) \neq \pi_{2}(i)$.
(2) For any distinct $i, j,\left\{\pi_{1}(i), \pi_{2}(i)\right\} \neq\left\{\pi_{1}(j), \pi_{2}(j)\right\}$.

Proof. Assume that $\left\{\pi_{1}, \pi_{2}\right\}$ satisfy the conditions (1)-(2). For any i, we have to show that we can choose one element in $\pi_{h_{j}}(j) \in\left\{\pi_{1}(j), \pi_{2}(j)\right\}$ for each $j \neq i$ so that $\left\{\pi_{h_{j}}(j), j \neq i\right\}=\{1,2,3,4\} \backslash\{i\}$.

Case $(i) . i \in\left\{\pi_{1}(i), \pi_{2}(i)\right\}$. Say $\pi_{1}(i)=i$; then obviously the choice $\left\{\pi_{1}(j): j \neq\right.$ $i\}=\{1,2,3,4\} \backslash\{i\}$.

Case (ii). $i \notin\left\{\pi_{1}(i), \pi_{2}(i)\right\}$.
Let j_{1}, j_{2} such that $\pi_{1}\left(j_{2}\right)=i=\pi_{2}\left(j_{1}\right)$; then $i \notin\left\{j_{1}, j_{2}\right\}$. By the condition (2), $\pi_{1}\left(j_{1}\right) \neq \pi_{2}\left(j_{2}\right)$.

If $\left\{\pi_{1}\left(j_{1}\right), \pi_{2}\left(j_{2}\right)\right\}=\left\{\pi_{1}(i), \pi_{2}(i)\right\}$, then $\left\{\pi_{1}\left(j_{1}\right), \pi_{2}\left(j_{2}\right)\right\} \cup\left\{\pi_{1}(j): j \notin\left\{i, j_{1}, j_{2}\right\}\right\}$ $=\{1,2,3,4\} \backslash\{i\}$ and we finish the proof.

In the sequel, assume that $\left\{\pi_{1}\left(j_{1}\right), \pi_{2}\left(j_{2}\right)\right\} \neq\left\{\pi_{1}(i), \pi_{2}(i)\right\}$.
If $\pi_{1}\left(j_{1}\right)=\pi_{2}(i)$ or $\pi_{2}\left(j_{2}\right)=\pi_{1}(i)$, saying $\pi_{2}\left(j_{2}\right)=\pi_{1}(i)$, then we have $\left\{\pi_{2}\left(j_{2}\right)\right\}$ $\cup\left\{\pi_{1}(j): j \notin\left\{i, j_{2}\right\}\right\}=\left\{\pi_{1}(j): j \neq j_{2}\right\}=\{1,2,3,4\} \backslash\{i\}$, and then the proof is finished.

Thus we may assume that $\left\{\pi_{1}\left(j_{1}\right), \pi_{2}\left(j_{2}\right)\right\} \cap\left\{\pi_{1}(i), \pi_{2}(i)\right\}=\emptyset$. Take j_{3} so that $\pi_{2}\left(j_{3}\right)=\pi_{1}\left(j_{1}\right)$. As $\pi_{1}\left(j_{1}\right) \neq \pi_{2}\left(j_{2}\right)$, we have $j_{3} \neq j_{2}$. Since $\pi_{1}\left(j_{1}\right) \neq \pi_{2}(i), \pi_{1}\left(j_{1}\right) \neq$ $\pi_{2}\left(j_{1}\right)=i$, we have $j_{3} \notin\left\{i, j_{1}, j_{2}\right\}$. We claim that $\pi_{1}\left(j_{3}\right) \neq \pi_{2}\left(j_{2}\right)$. In fact, if $\pi_{1}\left(j_{3}\right)=$ $\pi_{2}\left(j_{2}\right)$, then one gets $\left\{\pi_{1}\left(j_{1}\right), \pi_{2}\left(j_{2}\right)\right\}=\left\{\pi_{1}\left(j_{3}\right), \pi_{2}\left(j_{3}\right)\right\}$. It is clear that $\left\{i, \pi_{1}\left(j_{1}\right)\right.$, $\left.\pi_{2}\left(j_{2}\right)\right\}$ has three distinct elements, $\left\{\pi_{1}\left(j_{1}\right), \pi_{2}\left(j_{2}\right)\right\}=\left\{\pi_{1}\left(j_{3}\right), \pi_{2}\left(j_{3}\right)\right\}$ implies that $\pi_{1}(i)=\pi_{2}(i) \in\{1,2,3,4\} \backslash\left\{i, \pi_{1}\left(j_{1}\right), \pi_{2}\left(j_{2}\right)\right\}$, which contradicts to the condition (1). Thus we get a set $\left\{\pi_{1}\left(j_{1}\right), \pi_{2}\left(j_{2}\right), \pi_{1}\left(j_{3}\right)\right\}$ of distinct elements, and hence $\left\{\pi_{1}\left(j_{1}\right)\right.$, $\left.\pi_{2}\left(j_{2}\right), \pi_{1}\left(j_{3}\right)\right\}=\{1,2,3,4\} \backslash\{i\}$. So the conditions (1) and (2) imply that $\left\{\pi_{1}, \pi_{2}\right\}$ has the property (C).

Conversely, if any one of the conditions (1) and (2) is broken, then it is easily checked that $\left\{\pi_{1}, \pi_{2}\right\}$ cannot have the property (C). For instance, if (1) is broken, then there is i such that $\pi_{1}(i)=\pi_{2}(i)=j$. As π_{1} and π_{2} have no proper common invariant subset, we must have $j \neq i$. It follows that $j \notin\left\{\pi_{1}(h), \pi_{2}(h) ; h \neq i\right\}$ and hence $\left\{\pi_{1}, \pi_{2}\right\}$ does not have the property (C). If the condition (2) is broken, then $\left\{\pi_{1}(i), \pi_{2}(i)\right\}=\left\{\pi_{1}(j), \pi_{2}(j)\right\}$ for some $i \neq j$. If $i \in\left\{\pi_{1}(i), \pi_{2}(i)\right\}$, saying $\pi_{1}(i)=i$, then $\pi_{2}(i)=\pi_{1}(j) \neq j$ as π_{1} and π_{2} have no proper common invariant subset $\{i, j\}$. This implies that $j \in\left\{\pi_{1}(h), \pi_{2}(h)\right\}$ for each $h \in\{1,2,3,4\} \backslash\{i, j\}=$ $\left\{h_{1}, h_{2}\right\}$ and $\left\{\pi_{1}\left(h_{1}\right), \pi_{2}\left(h_{2}\right)\right\}=\left\{\pi_{1}\left(h_{2}\right), \pi_{2}\left(h_{2}\right)\right\}$. Now it is clear that there exists no choice of $\pi^{\prime}(t) \in\left\{\pi_{1}(t), \pi_{2}(t)\right\}$ so that $\left\{\pi^{\prime}(t): t \neq j\right\}=\{1,2,3,4\} \backslash\{j\}$. If $t \notin$ $\left\{\pi_{1}(t), \pi_{2}(t)\right\}$ for each $t \in\{i, j\}$, then for any choice of $\pi^{\prime}(t) \in\left\{\pi_{1}(t), \pi_{2}(t)\right\}$, at least one of $\left\{\pi_{1}(i), \pi_{2}(i)\right\}$ does not belong to $\left\{\pi^{\prime}(t): t \neq j\right\}$. Hence $\left\{\pi_{1}, \pi_{2}\right\}$ has no the property (C) if (2) is broken.

Proof of Proposition 3.1. Obvious by Proposition 3.3, Proposition 3.4 and the discussion before it.

Before ending the section we list the following lemma which comes from [9] and will be used frequently in Section 4.

LEMMA 3.5. Suppose $\Phi_{D}: M_{n} \rightarrow M_{n}$ is a D-type linear map of the form

$$
\begin{equation*}
\left(a_{i j}\right) \longmapsto \operatorname{diag}\left(f_{1}, f_{2}, \ldots, f_{n}\right)-\left(a_{i j}\right) \tag{3.2}
\end{equation*}
$$

with $\left(f_{1}, f_{2}, \ldots, f_{n}\right)=\left(a_{11}, a_{22}, \ldots, a_{n n}\right) D$ for an $n \times n$ nonnegative matrix $D=\left(d_{i j}\right)$. Then, Φ_{D} is positive if and only if, for any unit vector $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)^{t} \in \mathbb{C}^{n}$, we have $f_{j}(u)=\sum_{i=1}^{n} d_{i j}\left|u_{i}\right|^{2} \neq 0$ whenever $u_{j} \neq 0$, and $\sum_{u_{j} \neq 0} \frac{\left|u_{j}\right|^{2}}{f_{j}(u)} \leqslant 1$.

4. Positivity of $\Phi_{\pi_{1}, \pi_{2}}$ on M_{4} with arbitrary $\left\{\pi_{1}, \pi_{2}\right\}$

By Proposition 3.3, a D-type map $\Phi_{\pi_{1}, \pi_{2}}$ on 4×4 matrices constructed from a pair of permutations $\left\{\pi_{1}, \pi_{2}\right\}$ is positive if $\left\{\pi_{1}, \pi_{2}\right\}$ has the property (C). However, the property (C) is not a necessary condition. There are many examples that $\Phi_{\pi_{1}, \pi_{2}}$ is positive but $\left\{\pi_{1}, \pi_{2}\right\}$ doesn't have the property (C).

Example 4.1. Let π_{1}, π_{2} be permutations defined by $\pi_{1}(1)=2, \pi_{1}(2)=1$, $\pi_{1}(3)=3, \pi_{1}(4)=4$; and $\pi_{2}(1)=2, \pi_{2}(2)=1, \pi_{2}(3)=4, \pi_{2}(4)=3$. Clearly, $\left\{\pi_{1}, \pi_{2}\right\}$ does not have the property (C), but the D-type map $\Phi_{\pi_{1}, \pi_{2}}: M_{4} \rightarrow M_{4}$ defined by Eq. (3.2) is positive (See Proposition 4.2).

The purpose of this section is to discuss the positivity of $\Phi_{\pi_{1}, \pi_{2}}$ for pair of arbitrary permutations, which are basic to our proof of the main result Theorem 1.2.

Let $\left\{F_{s}\right\}_{s=1}^{r}$ be the set of all minimal common invariant subsets of $\left\{\pi_{1}, \pi_{2}\right\}$. As $\pi_{1} \neq \pi_{2}$, we have $r \leqslant 3$; also, if $r=3$, by the discussion before Proposition 3.5, $\left\{\pi_{1}, \pi_{2}\right\}$ must have property (C).

If $r \leqslant 2$, then we have two cases: $\# F_{1}=\# F_{2}=2$ and $\# F_{1}=1, \# F_{2}=3$. We deal with these two cases in Proposition 4.2 and Proposition 4.3 respectively.

PROPOSITION 4.2. Let π_{1}, π_{2} be two permutations of $(1,2,3,4)$ with $\left\{F_{1}, F_{2}\right\}$ the set of minimal common invariant subsets. If $\# F_{1}=\# F_{2}=2$, then $\Phi_{\pi_{1}, \pi_{2}}$ is positive.

Proof. Let $F_{1}=\left\{i_{1}, i_{2}\right\}$ and $F_{2}=\left\{i_{3}, i_{4}\right\}$. By Proposition 3.3, we may assume that $\left\{\pi_{1}, \pi_{2}\right\}$ has no property (C). Thus, by Proposition 3.1 and the discussion before Proposition 3.4, with no loss of generality, we may assume that

$$
\begin{aligned}
& \pi_{1}\left(i_{1}\right)=i_{2}, \pi_{1}\left(i_{2}\right)=i_{1}, \pi_{1}\left(i_{3}\right)=i_{3}, \pi_{1}\left(i_{4}\right)=i_{4} \\
& \pi_{2}\left(i_{1}\right)=i_{2}, \pi_{2}\left(i_{2}\right)=i_{1}, \pi_{1}\left(i_{3}\right)=i_{4}, \pi_{1}\left(i_{4}\right)=i_{3}
\end{aligned}
$$

where $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}=\{1,2,3,4\}$. By Lemma $3.5, \Phi_{\pi_{1}, \pi_{2}}$ is positive if

$$
\begin{align*}
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= & \sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}} \\
= & \sum_{i_{h} \in F_{1}} \frac{x_{i_{h}}}{2 x_{i_{h}}+x_{\pi_{1}}\left(i_{h}\right)+x_{\pi_{2}\left(i_{h}\right)}}+\sum_{i_{h} \in F_{2}} \frac{x_{i_{2}}}{2 x_{i_{h}}+x_{\pi_{1}\left(i_{h}\right)}+x_{\pi_{2}\left(i_{h}\right)}} \tag{4.1}\\
= & \frac{x_{i_{1}}}{2 x_{i_{1}}+x_{\pi_{1}\left(i_{1}\right)}+x_{\pi_{2}\left(i_{1}\right)}}+\frac{x_{i_{3}}}{2 x_{i_{2}}+x_{\pi_{1}\left(i_{2}\right)_{2}}+x_{\pi_{2}\left(i_{2}\right)}} \\
& +\frac{x_{i_{4}}}{2 x_{i_{3}}+x_{\pi_{1}\left(i_{3}\right)}+x_{\pi_{2}\left(i_{3}\right)}}+\frac{x_{i_{2}}}{2 x_{i_{4}}+x_{\pi_{1}\left(i_{4}\right)}+x_{\pi_{2}\left(i_{4}\right)}} \\
= & \frac{x_{i_{1}}}{2 x_{i_{1}}+2 x_{i_{2}}}+\frac{x_{i_{3}}}{2 x_{i_{2}}+2 x_{i_{1}}}+\frac{x_{i_{3}}}{2 x_{i_{3}}+x_{i_{3}}+x_{i_{4}}}+\frac{2 x_{i_{4}}+x_{i_{4}}+x_{i_{3}}}{2}
\end{align*} 1
$$

holds for any point $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ with $x_{i} \geqslant 0$ and $x_{1}+x_{2}+x_{3}+x_{4}=1$.
By Corollary 2.4, all possible extremum values of f are bounded above by 1. So, the inequality (4.1) holds if f is also bounded above by 1 at the points that some x_{i} s are zero. Clearly, if there are at least two of x_{i} s are 0 , then, $f\left(x_{1}, \ldots, x_{4}\right)<1$. So, we need check the case that only one of $x_{i} \mathrm{~s}$ is 0 .

If $x_{i_{1}}=0$, or, if $x_{i_{2}}=0$, we get

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}}(i)}+x_{\pi_{2}(i)} \\
& =\frac{1}{2}+\frac{1}{3+\frac{x_{i_{4}}}{x_{i_{3}}}}+\frac{1}{3+\frac{x_{i 3}}{x_{i_{4}}}}
\end{aligned} 1
$$

by Lemma 2.1.
If $x_{i_{3}}=0$, or, if $x_{i_{4}}=0$, we have

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}}(i)}+x_{\pi_{2}(i)} \\
& =\frac{1}{2+2 \frac{x_{i_{2}}}{x_{i_{1}}}}+\frac{1}{2+2 \frac{x_{i_{1}}}{x_{i_{2}}}}+\frac{1}{3}=\frac{5}{6}<1 .
\end{aligned}
$$

Therefore $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \leqslant 1$ holds for all non-negative $x_{1}, \ldots, x_{4} \in \mathbb{R}$ with $x_{1}+$ $\cdots+x_{4}=1$, and consequently, $\Phi_{\pi_{1}, \pi_{2}}$ is positive.

Proposition 4.3. Let π_{1}, π_{2} be two permutations of $(1,2,3,4)$ with $\left\{F_{1}, F_{2}\right\}$ the set of minimal common invariant subsets. If $\# F_{1}=1$ and $\# F_{2}=3$, then $\Phi_{\pi_{1}, \pi_{2}}$ is positive if and only if $\left\{\pi_{1}, \pi_{2}\right\}$ has the property (C), that is, for any $i \in F_{2}, \pi_{1}(i) \neq$ $\pi_{2}(i)$.

Proof. Let $F_{1}=\left\{i_{1}\right\}$ and $F_{2}=\left\{i_{2}, i_{3}, i_{4}\right\}$. By Proposition 3.3, we may assume that $\left\{\pi_{1}, \pi_{2}\right\}$ does not have the property (C) and show that $\Phi_{\pi_{1}, \pi_{2}}$ is not positive. Thus, by Proposition 3.1 or the discussion before Proposition 3.4, there is at least one $i \in F_{2}$ so that $\pi_{1}(i)=\pi_{2}(i) \neq i$. As $\pi_{1} \neq \pi_{2}$, we may assume further that $\pi_{1}\left(i_{2}\right)=\pi_{2}\left(i_{2}\right)=i_{3}$. So we have

$$
\pi_{1}\left(i_{1}\right)=i_{1}, \pi_{1}\left(i_{2}\right)=i_{3}, \pi_{1}\left(i_{3}\right)=i_{4}, \pi_{1}\left(i_{4}\right)=i_{2}
$$

and

$$
\pi_{2}\left(i_{1}\right)=i_{1}, \pi_{2}\left(i_{2}\right)=i_{3}, \pi_{2}\left(i_{3}\right)=i_{2}, \pi_{2}\left(i_{4}\right)=i_{4}
$$

Now it is clear by Lemma 3.5 that $\Phi_{\pi_{1}, \pi_{2}}$ is not positive whenever

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= & \sum_{k=1}^{4} \frac{x_{i_{k}}}{2 x_{i_{k}}+x_{\pi_{1}}\left(i_{k}\right)+x_{\pi_{2}\left(i_{2}\right)}\left(i_{k}\right)} \\
= & \frac{x_{i_{1}}}{2 x_{i_{1}}+x_{i_{1}}+x_{i_{1}}}+\frac{x_{i_{2}}}{2 x_{i_{2}}+x_{i_{3}}+x_{i_{3}}} \\
& +\frac{x_{i_{3}}}{2 x_{i_{3}}+x_{i_{4}}+x_{i_{2}}}+\frac{x_{i_{4}}}{2 x_{i_{4}}+x_{i_{2}}+x_{i_{4}}} \\
= & \frac{1}{4}+\frac{x_{i_{2}}}{2 x_{i_{2}}+2 x_{i_{3}}}+\frac{x_{i_{4}}}{2 x_{i_{3}}+x_{i_{4}}+x_{i_{2}}}+\frac{x_{1}}{2 x_{i_{4}}+x_{i_{2}}+x_{i_{4}}}>1
\end{aligned}
$$

for some points $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ with $x_{i} \geqslant 0$ and $x_{1}+x_{2}+x_{3}+x_{4}=1$. This is true because, if $x_{i_{2}}=0$, then we have

$$
f=\frac{1}{4}+\frac{1}{2+\frac{x_{i_{4}}}{x_{i 3}}}+\frac{1}{3}
$$

which is not bounded above by 1 . For instance, taking $x_{i_{1}}=\frac{89999}{10000}, x_{i_{2}}=0, x_{i_{3}}=\frac{1}{10}$ and $x_{i_{4}}=\frac{1}{10000}$, then $f=\frac{1}{4}+\frac{1}{2+\frac{1}{1000}}+\frac{1}{3}>1.083>1$.

For the case $r=1$, that is, $l\left(\pi_{1}, \pi_{2}\right)=4$, we have
Proposition 4.4. Assume the permutation pair $\left\{\pi_{1}, \pi_{2}\right\}$ of $(1,2,3,4)$ has no proper common invariant subsets. Then $\Phi_{\pi_{1}, \pi_{2}}: M_{4} \rightarrow M_{4}$ is positive if and only if the following conditions are satisfied.
(1) $\pi_{1}(i) \neq \pi_{2}(i)$ for any i;
(2) if there are distinct i, j, such that $\left\{\pi_{1}(i), \pi_{2}(i)\right\}=\left\{\pi_{1}(j), \pi_{2}(j)\right\}$, then neither π_{1} nor π_{2} has fixed point.

Proof. Note that, if $\left\{\pi_{1}, \pi_{2}\right\}$ has the property (C), then (1) is satisfied.
Firstly, let us prove that if π_{1}, π_{2} satisfy the conditions (1) and (2), then $\Phi_{\pi_{1}, \pi_{2}}$ is positive.

Assume (1) and (2); then, for any i, we have $\pi_{1}(i) \neq \pi_{2}(i)$ and $i \notin\left\{\pi_{1}(i), \pi_{2}(i)\right\}$. By Proposition 3.3 we may assume that $\left\{\pi_{1}, \pi_{2}\right\}$ does not possesses the property (C). Thus it follows that, there are $i_{1}, i_{2}, i_{3}, i_{4} \in\{1,2,3,4\}$ with $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}=\{1,2,3,4\}$ such that

$$
\begin{align*}
& \left\{\pi_{1}\left(i_{1}\right), \pi_{2}\left(i_{1}\right)\right\}=\left\{\pi_{1}\left(i_{2}\right), \pi_{2}\left(i_{2}\right)\right\}=\left\{i_{3}, i_{4}\right\} \tag{4.2}\\
& \left\{\pi_{1}\left(i_{3}\right), \pi_{2}\left(i_{3}\right)\right\}=\left\{\pi_{1}\left(i_{4}\right), \pi_{2}\left(i_{4}\right)\right\}=\left\{i_{1}, i_{2}\right\} .
\end{align*}
$$

By Lemma 3.5, the D-type map $\Phi_{\pi_{1}, \pi_{2}}$ is positive if and only if

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}} \leqslant 1
$$

holds for all non-negative $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}$ with $x_{1}+\cdots+x_{4}=1$. By Eq. (4.2), we have

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}}(i)+x_{\pi_{2}(i)}} \\
= & \frac{x_{i_{1}}}{2 x_{i_{1}}+x_{i_{1}}\left(i_{1}\right)+x_{\pi_{2}\left(i_{1}\right)}}+\frac{x_{i_{1}}}{2 x_{i_{2}}+x_{\pi_{1}}\left(i_{2}\right)+x_{\pi_{2}\left(i_{2}\right)}}+\frac{x_{i_{3}}}{2 x_{i_{3}}+x_{\pi_{1}}\left(i_{3}\right)+x_{\pi_{2}\left(i_{3}\right)}}+\frac{x_{i_{4}}}{2 x_{i_{4}}+x_{\pi_{1}\left(i_{4}\right)}+x_{\pi_{2}\left(i_{4}\right)}} \\
= & \frac{x_{i_{1}}}{2 x_{i_{1}}+x_{i_{3}}+x_{i_{4}}}+\frac{x_{i_{3}}}{2 x_{i_{2}}+x_{i_{3}}+x_{i_{4}}}+\frac{x_{i_{1}}}{2 x_{i_{3}}+x_{i_{1}}+x_{i_{2}}}+\frac{x_{4}}{2 x_{i_{4}}+x_{i_{1}}+x_{i_{2}}} .
\end{aligned}
$$

By Corollary 2.4, it is easily seen that all extremum values of f are bounded above by 1 . For the values of f at points on the boundary of the region $\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{i} \geqslant\right.$ $\left.0, x_{1}+x_{2}+x_{3}+x_{4}=1\right\}$, if at least two of x_{i} s are 0 , then obviously $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)<1$. Assume that only one of x_{i} s is 0 .

Consider the function

$$
g(s, t)=\frac{1}{2+s+t}+\frac{1}{2+\frac{1}{s}}+\frac{1}{2+\frac{1}{t}}=\frac{1}{2+s+t}+\frac{s}{2 s+1}+\frac{t}{2 t+1}
$$

where $s>0$ and $t>0$. As

$$
\begin{aligned}
& (2 s+1)(2 t+1)+s(s+t+2)(2 t+1)+t(s+t+2)(2 s+1) \\
= & 4 s^{2} t+4 s t^{2}+14 s t+s^{2}+t^{2}+4 s+4 t+1
\end{aligned}
$$

$$
(2 s+1)(2 t+1)(s+t+2)=4 s^{2} t+4 s t^{2}+12 s t+2 s^{2}+2 t^{2}+5 s+5 t+2
$$

and $2 s t<s^{2}+t^{2}+s+t+1$, it is easily checked that

$$
g(s, t)=1-\frac{(s-t)^{2}+s+t+1}{(2 s+1)(2 t+1)(s+t+2)}<1
$$

holds for any $t>0$ and $s>0$. Applying the above inequality, we see that if $x_{i_{1}}=0$, then

$$
\begin{aligned}
f & =\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}}(i)}+x_{\pi_{2}(i)} \\
& =\frac{1}{2+\frac{x_{3}}{x_{i_{2}}}+\frac{x_{i_{4}}}{x_{i_{2}}}}+\frac{1}{2+\frac{x_{2}}{x_{i_{3}}}}+\frac{1}{2+\frac{x_{i_{2}}}{x_{i_{4}}}}<1 ;
\end{aligned}
$$

if $x_{i_{2}}=0$, we get

$$
\begin{aligned}
f & =\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}}(i)}+x_{\pi_{2}(i)} \\
& =\frac{1}{2+\frac{x_{i}}{x_{i_{1}}}+\frac{x_{i_{4}}}{x_{i_{1}}}}+\frac{1}{2+\frac{x_{i_{1}}}{x_{i_{3}}}}+\frac{1}{2+\frac{x_{i_{1}}}{x_{i_{4}}}}<1 ;
\end{aligned}
$$

if $x_{i_{3}}=0$, we get

$$
\begin{aligned}
f & =\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}}(i)}+x_{\pi_{2}(i)} \\
& =\frac{1}{2+\frac{x_{i_{4}}}{x_{i_{1}}}}+\frac{1}{2+\frac{x_{i_{4}}}{x_{i_{2}}}}+\frac{1+\frac{x_{1}}{x_{i_{4}}}+\frac{x_{i_{2}}}{x_{i_{4}}}}{}<1 ;
\end{aligned}
$$

if $x_{i_{4}}=0$, we get

$$
\begin{aligned}
f & =\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}}(i)}+x_{\pi_{2}(i)} \\
& =\frac{1}{2+\frac{x_{i_{3}}}{x_{i_{1}}}}+\frac{1}{2+\frac{x_{i_{3}}}{x_{i_{2}}}}+\frac{1}{2+\frac{i_{1}}{x_{i_{3}}}+\frac{x_{i_{2}}}{x_{i_{3}}}}<1 .
\end{aligned}
$$

So we have shown that $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \leqslant 1$ holds for any $x_{i} \geqslant 0, i=1,2,3,4$, with $x_{1}+x_{2}+x_{3}+x_{4}=1$. Therefore, $\Phi_{\pi_{1}, \pi_{2}}$ is positive.

Conversely, we show that $\Phi_{\pi_{1}, \pi_{2}} \geqslant 0$ implies both (1) and (2) hold. To do this, it suffices to show that any one of the following conditions (a) and (b) will imply that $\Phi_{\pi_{1}, \pi_{2}}$ is not positive:
(a) there is i such that $\pi_{1}(i)=\pi_{2}(i)$;
(b) if there are distinct i, j such that $\left\{\pi_{1}(i), \pi_{2}(i)\right\}=\left\{\pi_{1}(j), \pi_{2}(j)\right\}$, then π_{1} or π_{2} has fixed point.

Since the proof of " $(\mathrm{a}) \Rightarrow \Phi_{\pi_{1}, \pi_{2}}$ is not positive" is a little more complex, we first treat the case (b).

CLAIM 1. (b) $\Rightarrow \Phi_{\pi_{1}, \pi_{2}}$ is not positive.
Suppose that (b) holds. Because of (a), we may assume that $\pi_{1}(k) \neq \pi_{2}(k)$ for any $k=1,2,3,4$. With no loss of generality, say π_{1} has fixed points.

Case (i). π_{1} has two fixed points. In this case π_{1} and π_{2} have the forms

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{1}, & \pi_{1}\left(i_{2}\right)=i_{2}, & \pi_{1}\left(i_{3}\right)=i_{4}, & \pi_{1}\left(i_{4}\right)=i_{3} \\
\pi_{2}\left(i_{1}\right)=i_{3}, & \pi_{2}\left(i_{2}\right)=i_{4}, & \pi_{1}\left(i_{3}\right)=i_{1}, & \pi_{1}\left(i_{4}\right)=i_{2} .
\end{array}
$$

Then we have

$$
\left\{\pi_{1}\left(i_{1}\right), \pi_{2}\left(i_{1}\right)\right\}=\left\{\pi_{1}\left(i_{4}\right), \pi_{2}\left(i_{4}\right)\right\}
$$

and thus, by Lemma 3.5, $\Phi_{\pi_{1}, \pi_{2}}$ is not positive if

$$
\left.\begin{array}{rl}
& f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}} \\
= & \frac{x_{i_{1}}}{2 x_{i_{1}}+x_{\pi_{1}}\left(i_{1}\right)}+x_{\pi_{2}\left(i_{1}\right)} \tag{4.3}
\end{array}+\frac{x_{i_{2}}}{2 x_{i_{2}}+x_{\pi_{1}}\left(i_{2}\right)+x_{\pi_{2}\left(i_{2}\right)}}+\frac{x_{i_{3}}}{2 x_{i_{3}}+x_{\pi_{1}\left(i_{3}\right)}+x_{\pi_{2}\left(i_{3}\right)}}+\frac{x_{i_{4}}}{2 x_{i_{4}}+x_{\pi_{1}\left(i_{4}\right)}+x_{\pi_{2}\left(i_{4}\right)}}\right)
$$

>1 for some point $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ with $x_{i} \geqslant 0$ and $x_{1}+x_{2}+x_{3}+x_{4}=1$.
Let $x_{i_{3}}=0$; then $x_{i_{1}}+x_{i_{2}}+x_{i_{4}}=1$ and, by Eq. (4.3),

$$
\begin{aligned}
& f=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}} \\
= & \frac{1}{3}+\frac{1}{3+\frac{x_{i_{4}}}{x_{i_{2}}}}+\frac{1}{2+\frac{x_{i_{1}}}{x_{i_{4}}}}
\end{aligned}
$$

If we take $x_{i_{1}}=\frac{1}{10000}, x_{i_{4}}=\frac{1}{100}$ and $x_{i_{2}}=1-\frac{1}{10000}-\frac{1}{100}=\frac{9899}{10000}$, then

$$
\begin{aligned}
& f=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}} \\
= & \frac{1}{3}+\frac{1}{3+\frac{100}{9899}}+\frac{1}{2+\frac{1}{100}} \approx 1.1631>1 .
\end{aligned}
$$

So, $\Phi_{\pi_{1}, \pi_{2}}$ is not positive.
Case (ii). π_{1} has only one fixed point.
We check this case by considering six subcases.
Subcase (1). π_{1}, π_{2} have respectively the forms

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{1}, & \pi_{1}\left(i_{2}\right)=i_{3}, & \pi_{1}\left(i_{3}\right)=i_{4}, & \pi_{1}\left(i_{4}\right)=i_{2} \\
\pi_{2}\left(i_{1}\right)=i_{3}, & \pi_{2}\left(i_{2}\right)=i_{1}, & \pi_{1}\left(i_{3}\right)=i_{2}, & \pi_{1}\left(i_{4}\right)=i_{4}
\end{array}
$$

Then

$$
\begin{aligned}
& \left\{\pi_{1}\left(i_{1}\right), \pi_{2}\left(i_{1}\right)\right\}=\left\{\pi_{1}\left(i_{2}\right), \pi_{2}\left(i_{2}\right)\right\}=\left\{i_{1}, i_{3}\right\} \\
& \left\{\pi_{1}\left(i_{3}\right), \pi_{2}\left(i_{3}\right)\right\}=\left\{\pi_{1}\left(i_{4}\right), \pi_{2}\left(i_{4}\right)\right\}=\left\{i_{2}, i_{4}\right\} .
\end{aligned}
$$

Thus $\Phi_{\pi_{1}, \pi_{2}}$ is not positive if

$$
\begin{align*}
& f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}} \\
= & \frac{x_{i_{1}}}{2 x_{i_{1}}+x_{\pi_{1}\left(i_{1}\right)}+x_{\pi_{2}\left(i_{1}\right)}}+\frac{x_{i_{2}}}{2 x_{i_{2}}+x_{\pi_{1}}\left(i_{2}\right)+x_{\pi_{2}\left(i_{2}\right)}}+\frac{x_{i_{3}}}{2 x_{i_{3}}+x_{\pi_{1}\left(i_{3}\right)}+x_{\pi_{2}\left(i_{3}\right)}}+\frac{x_{i_{4}}}{2 x_{i_{4}}+x_{\pi_{1}\left(i_{4}\right)}+x_{\pi_{2}\left(i_{4}\right)}} \tag{4.4}\\
= & \frac{x_{i_{1}}}{2 x_{i_{1}}+x_{i_{1}}+x_{i_{3}}}+\frac{x_{i_{4}}}{2 x_{i_{2}}+x_{i_{3}}+x_{i_{1}}}+\frac{x_{3}}{2 x_{i_{3}}+x_{i_{4}}+x_{i_{2}}}+\frac{x_{4}}{2 x_{i_{4}}+x_{i_{2}}+x_{i_{4}}}
\end{align*}
$$

greater than 1 at some point.
Let $x_{i_{2}}=0$, we get

$$
\begin{aligned}
f & =\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}} \\
& =\frac{1}{3+\frac{x_{i 3}}{x_{i_{1}}}}+\frac{1}{2+\frac{x_{i_{4}}}{x_{i_{3}}}}+\frac{1}{3} .
\end{aligned}
$$

Now take $x_{i_{4}}=\frac{1}{10000}, x_{i_{3}}=\frac{1}{100}$, and $x_{i_{1}}=\frac{9899}{10000}$, we get $f \approx 1.1631>1$, as desired. The following subcases (2)-(6) are dealt with similarly.
Subcase (2). π_{1}, π_{2} have respectively the forms

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{1}, & \pi_{1}\left(i_{2}\right)=i_{3}, & \pi_{1}\left(i_{3}\right)=i_{4}, & \pi_{1}\left(i_{4}\right)=i_{2} \\
\pi_{2}\left(i_{1}\right)=i_{4}, & \pi_{2}\left(i_{2}\right)=i_{2}, & \pi_{1}\left(i_{3}\right)=i_{1}, & \pi_{1}\left(i_{4}\right)=i_{3} .
\end{array}
$$

Subcase (3).

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{1}, & \pi_{1}\left(i_{2}\right)=i_{3}, & \pi_{1}\left(i_{3}\right)=i_{4}, & \pi_{1}\left(i_{4}\right)=i_{2} \\
\pi_{2}\left(i_{1}\right)=i_{2}, & \pi_{2}\left(i_{2}\right)=i_{4}, & \pi_{1}\left(i_{3}\right)=i_{3}, & \pi_{1}\left(i_{4}\right)=i_{1} .
\end{array}
$$

Subcase (4).

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{1}, & \pi_{1}\left(i_{2}\right)=i_{4}, & \pi_{1}\left(i_{3}\right)=i_{2}, & \pi_{1}\left(i_{4}\right)=i_{3} \\
\pi_{2}\left(i_{1}\right)=i_{4}, & \pi_{2}\left(i_{2}\right)=i_{1}, & \pi_{1}\left(i_{3}\right)=i_{3}, & \pi_{1}\left(i_{4}\right)=i_{2}
\end{array}
$$

Subcase (5).

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{1}, & \pi_{1}\left(i_{2}\right)=i_{4}, & \pi_{1}\left(i_{3}\right)=i_{2}, & \pi_{1}\left(i_{4}\right)=i_{3} ; \\
\pi_{2}\left(i_{1}\right)=i_{2}, & \pi_{2}\left(i_{2}\right)=i_{3}, & \pi_{1}\left(i_{3}\right)=i_{1}, & \pi_{1}\left(i_{4}\right)=i_{4} .
\end{array}
$$

Subcase (6).

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{1}, & \pi_{1}\left(i_{2}\right)=i_{4}, & \pi_{1}\left(i_{3}\right)=i_{2}, & \pi_{1}\left(i_{4}\right)=i_{3} \\
\pi_{2}\left(i_{1}\right)=i_{3}, & \pi_{2}\left(i_{2}\right)=i_{2}, & \pi_{1}\left(i_{3}\right)=i_{4}, & \pi_{1}\left(i_{4}\right)=i_{1} .
\end{array}
$$

Therefore Claim 1 is true.
CLAIM 2. (a) $\Rightarrow \Phi_{\pi_{1}, \pi_{2}}$ is not positive.
As π_{1}, π_{2} have no proper common invariant subsets, if there exists i such that $\pi_{1}(i)=\pi_{2}(i)$, then $\pi_{h}(i) \neq i, h=1,2$.

Case (i). There are i_{1}, i_{2} such that $\pi_{1}\left(i_{1}\right)=\pi_{2}\left(i_{1}\right)$ and $\pi_{1}\left(i_{2}\right)=\pi_{2}\left(i_{2}\right)$. We have six different situations.

Subcase (1).

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{2}, & \pi_{1}\left(i_{2}\right)=i_{3}, & \pi_{1}\left(i_{3}\right)=i_{1}, & \pi_{1}\left(i_{4}\right)=i_{4} \\
\pi_{2}\left(i_{1}\right)=i_{2}, & \pi_{2}\left(i_{2}\right)=i_{3}, & \pi_{1}\left(i_{3}\right)=i_{4}, & \pi_{1}\left(i_{4}\right)=i_{1} .
\end{array}
$$

In this situation,

$$
\begin{align*}
& f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}}(i)+x_{\pi_{2}(i)}} \\
= & \frac{x_{i_{1}}}{2 x_{i_{1}}+x_{i_{1}}\left(i_{1}\right)+x_{\pi_{2}\left(i_{1}\right)}}+\frac{x_{i_{3}}}{2 x_{i_{2}}+x_{i_{1}}\left(i_{1}\right)+x_{\pi_{2}\left(i_{2}\right)}}+\frac{x_{1}}{2 x_{i_{3}}+x_{\pi_{1}}\left(i_{3}\right)+x_{\pi_{2}\left(i_{3}\right)}}+\frac{x_{i_{4}}}{2 x_{i_{4}}+x_{\pi_{1}\left(i_{4}\right)}+x_{\pi_{2}\left(i_{4}\right)}} \tag{4.5}\\
= & \frac{x_{i_{1}}}{2 x_{i_{1}}+2 x_{i_{2}}}+\frac{x_{i_{2}}}{2 x_{i_{2}}+2 x_{i_{3}}}+\frac{x_{i_{3}}}{2 x_{i_{3}}+x_{i_{1}}+x_{i_{4}}}+\frac{x_{4}}{2 x_{i_{4}}+x_{i_{4}}+x_{i_{1}}} .
\end{align*}
$$

Let $x_{i_{1}}=0$, we have

$$
\begin{aligned}
& f=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}}(i)+x_{\pi_{2}(i)}} \\
= & \frac{1}{2+2 \frac{x_{i_{3}}}{x_{i_{2}}}}+\frac{1}{2+\frac{x_{i_{4}}}{x_{i_{3}}}}+\frac{1}{3} .
\end{aligned}
$$

Taking $x_{i_{4}}=\frac{1}{10000}, x_{i_{3}}=\frac{1}{100}$ and $x_{i_{2}}=\frac{9899}{10000}$ gives

$$
\begin{aligned}
f & =\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}}(i)} \\
& =\frac{1}{2+2 \frac{100}{9899}}+\frac{1}{2+\frac{1}{100}}+\frac{1}{3} \approx 1.3258>1 .
\end{aligned}
$$

Then, by the Lemma 3.5, $\Phi_{\pi_{1}, \pi_{2}}$ is not positive.
Subcase (2).

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{2}, & \pi_{1}\left(i_{2}\right)=i_{4}, & \pi_{1}\left(i_{3}\right)=i_{1}, & \pi_{1}\left(i_{4}\right)=i_{3} \\
\pi_{2}\left(i_{1}\right)=i_{2}, & \pi_{2}\left(i_{2}\right)=i_{4}, & \pi_{1}\left(i_{3}\right)=i_{3}, & \pi_{1}\left(i_{4}\right)=i_{1} .
\end{array}
$$

By Lemma 3.5, Φ_{D} is not positive if

$$
\begin{align*}
& f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}}(i)+x_{\pi_{2}(i)}} \\
= & \frac{x_{i_{1}}}{2 x_{i_{1}}+x_{i_{1}}\left(i_{1}\right)+x_{\pi_{2}\left(i_{1}\right)}}+\frac{x_{i_{1}}}{2 x_{i_{2}}+x_{\pi_{1}}\left(i_{2}\right)+x_{\pi_{2}\left(i_{2}\right)}}+\frac{x_{i_{2}}}{2 x_{i_{3}}+x_{\pi_{1}\left(i i_{3}\right)}+x_{\pi_{2}\left(i_{3}\right)}}+\frac{x_{i_{4}}}{2 x_{i_{4}}+x_{\pi_{1}\left(i_{4}\right)}+x_{\pi_{2}\left(i_{4}\right)}} \tag{4.6}\\
= & \frac{x_{i_{1}}}{2 x_{i_{1}}+2 x_{i_{2}}}+\frac{x_{i_{2}}}{2 x_{i_{2}}+2 x_{i_{4}}}+\frac{x_{i_{3}}}{2 x_{i_{3}}+x_{i_{1}}+x_{i_{3}}}+\frac{x_{4}}{2 x_{i_{4}}+x_{i_{3}}+x_{i_{1}}} .
\end{align*}
$$

>1 at some points $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ with $x_{i} \geqslant 0$ and $x_{1}+x_{2}+x_{3}+x_{4}=1$. Let $x_{i_{1}}=0$, we get

$$
\begin{aligned}
f & =\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}} \\
& =\frac{1}{2+2 \frac{x_{i_{4}}}{x_{i_{2}}}}+\frac{1}{3}+\frac{1}{2+\frac{x_{i_{3}}}{x_{i}}}
\end{aligned}
$$

Taking $x_{i_{3}}=\frac{1}{10000}, x_{i_{4}}=\frac{1}{100}$ and $x_{i_{2}}=\frac{9899}{10000}$ gives

$$
\begin{aligned}
f & =\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}} \\
& =\frac{1}{2+2 \frac{100}{9899}}+\frac{1}{3}+\frac{1}{2+\frac{1}{100}} \approx 1.3258>1 .
\end{aligned}
$$

Subcase (3).

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{3}, & \pi_{1}\left(i_{2}\right)=i_{4}, & \pi_{1}\left(i_{3}\right)=i_{1}, & \pi_{1}\left(i_{4}\right)=i_{2} \\
\pi_{2}\left(i_{1}\right)=i_{3}, & \pi_{2}\left(i_{2}\right)=i_{4}, & \pi_{1}\left(i_{3}\right)=i_{2}, & \pi_{1}\left(i_{4}\right)=i_{1} .
\end{array}
$$

In this subcase, $\Phi_{\pi_{1}, \pi_{2}}$ is not positive if

$$
\begin{align*}
& f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}} \\
= & \frac{x_{i_{1}}}{2 x_{i_{1}}+x_{\pi_{1}}\left(i_{1}\right)+x_{\pi_{2}\left(i_{1}\right)}}+\frac{x_{i_{2}}}{2 x_{i_{2}}+x_{\pi_{1}\left(i_{2}\right)}+x_{\pi_{2}\left(i_{2}\right)}}+\frac{x_{i_{3}}}{2 x_{i_{3}}+x_{\pi_{1}\left(i_{3}\right)}+x_{\pi_{2}\left(i_{3}\right)}}+\frac{x_{i_{4}}}{2 x_{i_{4}}+x_{\pi_{1}\left(i_{4}\right)}+x_{\pi_{2}\left(i_{4}\right)}} \tag{4.7}\\
= & \frac{x_{i_{1}}}{2 x_{i_{1}}+2 x_{i_{3}}}+\frac{x_{i_{2}}}{2 x_{i_{2}}+2 x_{i_{4}}}+\frac{x_{i_{3}}}{2 x_{i_{3}}+x_{i_{1}}+x_{i_{2}}}+\frac{x_{4}}{2 x_{i_{4}}+x_{i_{2}}+x_{i_{1}}}
\end{align*}
$$

>1 at some points $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ with $x_{i} \geqslant 0$ and $x_{1}+x_{2}+x_{3}+x_{4}=1$.
Let $x_{i_{3}}=0$, we get

$$
\begin{aligned}
f & =\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}} \\
& =\frac{1}{2}+\frac{1}{2+2 \frac{x_{i_{4}}}{x_{i_{2}}}}+\frac{1}{2+\frac{x_{i_{1}}}{x_{i_{4}}}+\frac{x_{i_{2}}}{x_{i_{4}}}} .
\end{aligned}
$$

Take $x_{i_{4}}=\frac{9}{10}, x_{i_{1}}=\frac{1}{100}$ and $x_{i_{2}}=\frac{9}{100}$. Then

$$
\begin{aligned}
f & =\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}}(i)}+x_{\pi_{2}(i)} \\
& =\frac{1}{2}+\frac{1}{2+20}+\frac{9}{19} \approx 1.019>1
\end{aligned}
$$

Subcase (4).

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{3}, & \pi_{1}\left(i_{2}\right)=i_{1}, & \pi_{1}\left(i_{3}\right)=i_{2}, & \pi_{1}\left(i_{4}\right)=i_{4} \\
\pi_{2}\left(i_{1}\right)=i_{3}, & \pi_{2}\left(i_{2}\right)=i_{1}, & \pi_{1}\left(i_{3}\right)=i_{4}, & \pi_{1}\left(i_{4}\right)=i_{2}
\end{array}
$$

In this subcase we have to check

$$
\begin{align*}
& f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}} \\
= & \frac{x_{i_{1}}}{2 x_{i_{1}}+x_{\pi_{1}\left(i_{1}\right)}+x_{\pi_{2}\left(i_{1}\right)}}+\frac{x_{i_{2}}}{2 x_{i_{2}}+x_{\pi_{1}\left(i_{2}\right)}+x_{\pi_{2}\left(i_{2}\right)}}+\frac{x_{i_{3}}}{2 x_{i_{3}}+x_{\pi_{1}\left(i_{3}\right)}+x_{\pi_{2}\left(i_{3}\right)}}+\frac{x_{i_{4}}}{2 x_{i_{4}}+x_{\pi_{1}\left(i_{4}\right)}+x_{\pi_{2}\left(i_{4}\right)}} \tag{4.8}\\
= & \frac{x_{i_{1}}}{2 x_{i_{1}}+2 x_{i_{3}}}+\frac{x_{i_{4}}}{2 x_{i_{2}}+2 x_{i_{1}}}+\frac{x_{i_{3}}}{2 x_{i_{3}}+x_{i_{2}}+x_{i_{4}}}+\frac{x_{1}}{2 x_{i_{4}}+x_{i_{4}}+x_{i_{2}}}
\end{align*}
$$

>1 at some points $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ with $x_{i} \geqslant 0$ and $x_{1}+x_{2}+x_{3}+x_{4}=1$.
Letting $x_{i_{2}}=0$, we get

$$
\begin{aligned}
f & =\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}}(i)} \\
& =\frac{1}{2+2 \frac{x_{i_{3}}}{x_{i_{1}}}}+\frac{1}{2+\frac{x_{i_{4}}}{x_{i_{3}}}}+\frac{1}{3}
\end{aligned}
$$

If $x_{i_{4}}=\frac{1}{10000}, x_{i_{3}}=\frac{1}{100}$, and $x_{i_{1}}=\frac{9899}{10000}$, then

$$
\begin{aligned}
f & =\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}}(i)} \\
& =\frac{1}{2+2 \frac{100}{9899}}+\frac{1}{2+\frac{1}{100}}+\frac{1}{3} \approx 1.3258>1
\end{aligned}
$$

Subcase (5).

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{4}, & \pi_{1}\left(i_{2}\right)=i_{1}, & \pi_{1}\left(i_{3}\right)=i_{2}, & \pi_{1}\left(i_{4}\right)=i_{3} \\
\pi_{2}\left(i_{1}\right)=i_{4}, & \pi_{2}\left(i_{2}\right)=i_{1}, & \pi_{1}\left(i_{3}\right)=i_{3}, & \pi_{1}\left(i_{4}\right)=i_{2}
\end{array}
$$

$\Phi_{\pi_{1}, \pi_{2}}$ is not positive because the function

$$
\left.\begin{array}{rl}
& \sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}}(i)+x_{\pi_{2}(i)}} \\
= & \frac{x_{i_{1}}}{2 x_{i_{1}}+x_{\pi_{1}}\left(i_{1}\right)}+x_{\pi_{2}\left(i_{1}\right)} \tag{4.9}
\end{array}+\frac{x_{i_{2}}}{2 x_{i_{2}}+x_{\pi_{1}}\left(i_{2}\right)+x_{\pi_{2}\left(i_{2}\right)}}+\frac{x_{i_{3}}}{2 x_{i_{3}}+x_{\pi_{1}\left(i_{3}\right)}+x_{\pi_{2}\left(i_{3}\right)}}+\frac{x_{i_{4}}}{2 x_{i_{4}}+x_{\pi_{1}\left(i_{4}\right)}+x_{\pi_{2}\left(i_{4}\right)}}\right)
$$

has value $\approx 1.3258>1$ at the point of $x_{i_{1}}=\frac{9899}{10000}, x_{i_{2}}=0, x_{i_{3}}=\frac{1}{10000}$ and $x_{i_{4}}=\frac{1}{100}$.
Subcase (6).

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{4}, & \pi_{1}\left(i_{2}\right)=i_{3}, & \pi_{1}\left(i_{3}\right)=i_{1}, & \pi_{1}\left(i_{4}\right)=i_{2} \\
\pi_{2}\left(i_{1}\right)=i_{4}, & \pi_{2}\left(i_{2}\right)=i_{3}, & \pi_{1}\left(i_{3}\right)=i_{2}, & \pi_{1}\left(i_{4}\right)=i_{1}
\end{array}
$$

$\Phi_{\pi_{1}, \pi_{2}}$ is not positive in this subcase because

$$
\begin{align*}
& \sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}}(i)+x_{\pi_{2}(i)}}=\frac{x_{i_{1}}}{x_{i_{2}}}=\frac{x_{1}}{2 x_{i_{1}}+x_{\pi_{1}\left(i_{1}\right)}+x_{\pi_{2}\left(i_{1}\right)}} \\
& +\frac{x_{i_{2}}}{2 x_{i_{2}}+x_{\pi_{1}\left(i_{2}\right)}+x_{i_{2}\left(i_{2}\right)}}+\frac{x_{i_{1}}}{x_{i_{1}}}+\frac{x_{i_{3}}}{2 x_{i_{3}}+x_{\pi_{1}\left(i_{3}\right)} x_{i_{3}}+x_{\pi_{2}\left(i_{3}\right)}}+\frac{x_{i_{4}}}{2 x_{i_{4}}+x_{\pi_{1}\left(i_{4}\right)}+x_{\pi_{2}\left(i_{4}\right)}} \tag{4.10}\\
& =\frac{x_{i_{1}}^{2}}{2 x_{i_{1}}+2 x_{i_{4}}}+\frac{x_{i_{2}}}{2 x_{i_{2}}+2 x_{i_{3}}}+\frac{x_{i_{3}}}{2 x_{i_{3}}+x_{i_{1}}+x_{i_{2}}}+\frac{x_{i_{4}}}{2 x_{i_{4}}+x_{i_{2}}+x_{i_{1}}}
\end{align*}
$$

achieves its value $\approx 1.019>1$ at the point of $x_{i_{1}}=\frac{9}{100}, x_{i_{2}}=\frac{1}{100}, x_{i_{3}}=0$ and $x_{i_{4}}=\frac{9}{10}$.
Case (ii). There is only one i such that $\pi_{1}(i)=\pi_{2}(i)$.
We have twelve subcases.
Subcase (1).

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{2}, & \pi_{1}\left(i_{2}\right)=i_{3}, & \pi_{1}\left(i_{3}\right)=i_{4}, & \pi_{1}\left(i_{4}\right)=i_{1} \\
\pi_{2}\left(i_{1}\right)=i_{2}, & \pi_{2}\left(i_{2}\right)=i_{4}, & \pi_{1}\left(i_{3}\right)=i_{1}, & \pi_{1}\left(i_{4}\right)=i_{3} .
\end{array}
$$

In this case

$$
\begin{align*}
& \begin{array}{l}
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}}(i)+x_{\pi_{2}(i)}}=\frac{x_{i_{1}}}{2 x_{i_{1}}+x_{\pi_{1}}\left(i_{1}\right)}+x_{x_{2}\left(i_{1}\right)} \\
+\frac{x_{i_{2}}}{2 x_{i_{2}}+x_{\pi_{1}\left(i_{2}\right)}+x_{\pi_{2}\left(i_{2}\right)}}+\frac{x_{x_{i 2}}}{2 x_{i_{3}}+x_{\pi_{1}}\left(i_{3}\right)}+x_{\pi_{i_{2}}\left(i_{3}\right)}^{x_{i_{3}}} \\
x_{1} \\
2 x_{i_{4}}+x_{\pi_{1}\left(i_{4}\right)}+x_{\pi_{2}\left(i_{4}\right)} \\
x_{i_{4}}
\end{array} \tag{4.11}\\
& =\frac{x_{i_{1}}^{2}}{2 x_{i_{1}}+2 x_{i_{2}}}+\frac{x_{i_{2}}}{2 x_{i_{2}}+x_{i_{3}}+x_{i_{4}}}+\frac{x_{i_{3}}+x_{1}}{2 x_{i_{3}}+x_{i_{4}}+x_{1}}+\frac{x_{i_{4}}}{2 x_{i_{4}}+x_{i_{1}}+x_{i_{3}}} .
\end{align*}
$$

If we let $x_{i_{1}}=0$, then

$$
f=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}}(i)+x_{\pi_{2}(i)}}=\frac{1}{2+\frac{x_{3}}{x_{i_{2}}}+\frac{x_{i_{4}}}{x_{i_{2}}}}+\frac{1}{2+\frac{x_{i 4}}{x_{i_{3}}}}+\frac{1}{2+\frac{i_{3}}{x_{i_{4}}}} .
$$

Take $x_{i_{3}}=x_{i_{4}}=\frac{1}{100}, x_{i_{2}}=\frac{98}{100}$, we get

$$
f=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}}(i)}=\frac{1}{1+\frac{100}{98}}+\frac{2}{3} \approx 1.16>1 .
$$

So $\Phi_{\pi_{1}, \pi_{2}}$ is not positive.
Subcase (2).

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{2}, & \pi_{1}\left(i_{2}\right)=i_{3}, & \pi_{1}\left(i_{3}\right)=i_{4}, & \pi_{1}\left(i_{4}\right)=i_{1} \\
\pi_{2}\left(i_{1}\right)=i_{2}, & \pi_{2}\left(i_{2}\right)=i_{1}, & \pi_{1}\left(i_{3}\right)=i_{3}, & \pi_{1}\left(i_{4}\right)=i_{4}
\end{array}
$$

Then

$$
\begin{align*}
& f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}}(i)+x_{\pi_{2}(i)}}=\frac{x_{i_{1}}}{2 x_{i_{1}}+x_{\pi_{1}}\left(i_{1}\right)+x_{\pi_{2}\left(i_{1}\right)}} \\
& +\frac{x_{i_{1}}}{2 x_{i_{2}}+x_{\pi_{1}}\left(i_{2}\right)+x_{\pi_{2}\left(i_{2}\right)}}+\frac{x_{2}}{2 x_{i_{3}}+x_{\pi_{1}\left(i_{3}\right)}+x_{\pi_{2}\left(i_{3}\right)}}+\frac{x_{1}}{2 x_{i_{4}}+x_{\pi_{1}\left(i_{4}\right)}+x_{\pi_{2}\left(i_{4}\right)}} \tag{4.12}\\
& =\frac{x_{i_{1}}}{2 x_{i_{1}}+2 x_{i_{2}}}+\frac{x_{3}}{2 x_{i_{2}}+x_{i_{3}}+x_{i_{1}}}+\frac{x_{i 3}}{2 x_{i_{3}}+x_{i_{4}}+x_{i_{3}}}+\frac{2 x_{i_{4}}+x_{i_{1}}+x_{i_{4}}}{}
\end{align*}
$$

Let $x_{i_{2}}=0$, we get

$$
f=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}}=\frac{1}{2}+\frac{1}{3+\frac{i_{i 4}}{x_{i_{3}}}}+\frac{1}{3+\frac{x_{i_{1}}}{x_{i_{4}}}} .
$$

It is then clear that $x_{i_{1}}=\frac{1}{100}, x_{i_{4}}=\frac{1}{10}$ and $x_{i_{3}}=1-\frac{1}{100}-\frac{1}{10}=\frac{89}{100}$ gives

$$
f=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}}=\frac{1}{2}+\frac{1}{3+\frac{10}{89}}+\frac{1}{3+\frac{1}{10}} \approx 1.144>1 .
$$

Subcase (3).

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{2}, & \pi_{1}\left(i_{2}\right)=i_{3}, & \pi_{1}\left(i_{3}\right)=i_{1}, & \pi_{1}\left(i_{4}\right)=i_{4} \\
\pi_{2}\left(i_{1}\right)=i_{2}, & \pi_{2}\left(i_{2}\right)=i_{4}, & \pi_{1}\left(i_{3}\right)=i_{3}, & \pi_{1}\left(i_{4}\right)=i_{1} .
\end{array}
$$

We have

$$
\begin{align*}
& f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{i=1}^{4} \frac{x_{i}}{x_{i_{2}}} \frac{x_{i}+x_{\pi_{1}}(i)+x_{\pi_{2}(i)}}{x_{i_{3}}}=\frac{x_{1}}{2 x_{i_{1}}+x_{\pi_{1}\left(i_{1}\right)}+x_{\pi_{2}}\left(i_{1}\right)} \tag{4.13}
\end{align*}
$$

$$
\begin{aligned}
& =\frac{x_{i_{1}}}{2 x_{i_{1}}+2 x_{i_{2}}}+\frac{x_{i_{2}}}{2 x_{i_{2}}+x_{3}+x_{i_{4}}}+\frac{x_{i_{3}}}{2 x_{i_{3}}+x_{i_{1}}+x_{i_{3}}}+\frac{x_{i_{4}}}{2 x_{i_{4}}+x_{i_{4}}+x_{i_{1}}} .
\end{aligned}
$$

Letting $x_{i_{2}}=0$ gives

$$
f=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}}=\frac{1}{2}+\frac{1}{3+\frac{x_{1}}{x_{i_{3}}}}+\frac{1}{3+\frac{x_{i_{1}}}{x_{i_{4}}}} .
$$

So, taking $x_{i_{1}}=\frac{1}{100}, x_{i_{4}}=\frac{1}{10}$ and $x_{i_{3}}=1-\frac{1}{100}-\frac{1}{10}=\frac{89}{100}$, one gets

$$
f=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}}=\frac{1}{2}+\frac{1}{3+\frac{1}{89}}+\frac{1}{3+\frac{1}{10}} \approx 1.155>1 .
$$

Subcase (4).

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{2}, & \pi_{1}\left(i_{2}\right)=i_{3}, & \pi_{1}\left(i_{3}\right)=i_{1}, & \pi_{1}\left(i_{4}\right)=i_{4} \\
\pi_{2}\left(i_{1}\right)=i_{2}, & \pi_{2}\left(i_{2}\right)=i_{1}, & \pi_{1}\left(i_{3}\right)=i_{4}, & \pi_{1}\left(i_{4}\right)=i_{3} .
\end{array}
$$

Then we have

$$
\begin{align*}
& f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{1_{1}}(i)+x_{\pi_{2}}(i)}=\frac{x_{i_{1}}}{2 x_{i_{1}}+x_{\pi_{1}}\left(i_{1}\right)+x_{\pi_{2}\left(i_{1}\right)}} \tag{4.14}\\
& \quad+\frac{x_{i_{2}}}{2 x_{i_{2}}+x_{\pi_{1}\left(i_{2}\right)}+x_{\pi_{2}\left(i_{2}\right)}}+\frac{x_{2}}{2 x_{i_{3}}+x_{\pi_{1}}\left(i_{3}\right)+x_{\pi_{2}}\left(i_{3}\right)}+\frac{x_{i_{4}}}{2 x_{i_{4}}+x_{\pi_{1}\left(i_{4}\right)}+x_{\pi_{2}\left(i_{4}\right)}} \\
& = \\
& =\frac{x_{i_{1}}}{2 x_{i_{1}}+2 x_{i_{2}}}+\frac{x_{i_{2}}}{2 x_{i_{2}}+x_{i_{3}}+x_{i_{1}}}+\frac{x_{i_{3}}}{2 x_{i_{3}}+x_{i_{1}}+x_{i_{4}}}+\frac{x_{i_{4}}+x_{i_{4}}+x_{i_{3}}}{} .
\end{align*}
$$

Let $x_{i_{2}}=0$, we get

$$
f=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{x_{1}}(i)+x_{\pi_{2}}(i)}=\frac{1}{2}+\frac{1}{2+\frac{x_{i}}{x_{i_{3}}}+\frac{x_{i_{4}}}{x_{i_{3}}}}+\frac{1}{3+\frac{x_{3}}{x_{i_{4}}}} .
$$

Then taking $x_{i_{1}}=\frac{1}{20}, x_{i_{4}}=\frac{1}{20}$ and $x_{i_{3}}=1-\frac{1}{20}-\frac{1}{20}=\frac{9}{10}$, we have

$$
f=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}}=\frac{1}{2}+\frac{9}{19}+\frac{1}{21} \approx 1.021>1 .
$$

Subcase (5).

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{2}, & \pi_{1}\left(i_{2}\right)=i_{4}, & \pi_{1}\left(i_{3}\right)=i_{3}, & \pi_{1}\left(i_{4}\right)=i_{1} \\
\pi_{2}\left(i_{1}\right)=i_{2}, & \pi_{2}\left(i_{2}\right)=i_{1}, & \pi_{1}\left(i_{3}\right)=i_{4}, & \pi_{1}\left(i_{4}\right)=i_{3} .
\end{array}
$$

For this subcase we have

$$
\begin{align*}
& f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{i=1}^{4} \frac{x_{i}}{x_{i_{2}}} \begin{array}{l}
x_{i}+x_{\pi_{1}}(i)+x_{\pi_{2}}(i)
\end{array}=\frac{x_{i_{1}}}{2 x_{i_{1}}+x_{\pi_{1}\left(i_{1}\right)}+x_{\pi_{2}\left(i_{1}\right)}} \\
& +\frac{x_{i_{2}}}{2 x_{i_{2}}+x_{\pi_{1}\left(i_{2}\right)}+x_{\pi_{2}\left(i_{2}\right)}}+\frac{x_{x_{i}}}{x_{i}}+\frac{x_{i_{3}}}{2 x_{i_{3}}+x_{\pi_{1}\left(i_{3}\right)}+x_{\pi_{2}\left(i_{3}\right)}}+\frac{x_{x_{i}}}{x_{i_{1}}+x_{x_{1}}} x_{x_{1}\left(i_{4}\right)}+x_{\pi_{2}\left(i_{4}\right)} \tag{4.15}\\
& =\frac{x_{i 1}}{2 x_{i_{1}}+2 x_{i_{2}}}+\frac{x_{i}}{2 x_{i_{2}}+x_{i_{4}}+x_{i_{1}}}+\frac{x_{i_{3}}}{2 x_{i_{3}}+x_{i_{3}}+x_{i_{4}}}+\frac{x_{i_{4}}}{2 x_{i_{4}}+x_{i_{1}}+x_{i_{3}}} .
\end{align*}
$$

It is clear that, if $x_{i_{2}}=0$, then

$$
f=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}}=\frac{1}{2}+\frac{1}{3+\frac{x_{i_{4}}}{x_{i_{3}}}}+\frac{1}{2+\frac{x_{i_{1}}}{x_{i_{4}}}+\frac{x_{i_{3}}}{x_{i_{4}}}} .
$$

Thus if we take $x_{i_{4}}=\frac{9}{10}, x_{i_{1}}=\frac{1}{20}$ and $x_{i_{3}}=\frac{1}{20}$, we get

$$
f=\frac{1}{2}+\frac{1}{21}+\frac{9}{19} \approx 1.021>1
$$

Subcase (6).

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{2}, & \pi_{1}\left(i_{2}\right)=i_{4}, & \pi_{1}\left(i_{3}\right)=i_{3}, & \pi_{1}\left(i_{4}\right)=i_{1} \\
\pi_{2}\left(i_{1}\right)=i_{2}, & \pi_{2}\left(i_{2}\right)=i_{3}, & \pi_{1}\left(i_{3}\right)=i_{1}, & \pi_{1}\left(i_{4}\right)=i_{4} .
\end{array}
$$

In this subcase we have

$$
\begin{align*}
& f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}}(i)+x_{\pi_{2}(i)}}=\frac{x_{i_{1}}}{2 x_{i_{1}}+x_{\pi_{1}\left(i_{1}\right)}+x_{\pi_{1}\left(i_{1}\right)}} \tag{4.16}\\
& \quad+\frac{x_{i_{2}}}{2 x_{i_{2}}+x_{i_{1}}\left(i_{2}\right)+x_{\pi_{2}\left(i i_{2}\right)}}+\frac{x_{i_{2}}}{2 x_{i_{3}}+x_{\pi_{1}\left(i_{3}\right)}+x_{\pi_{2}\left(i_{3}\right)}}+\frac{x_{1}}{2 x_{i_{1}}+x_{\pi_{1}\left(i_{4}\right)}+x_{\pi_{2}\left(i_{4}\right)}} \\
&= \frac{x_{i_{1}}}{2 x_{i_{1}}+2 x_{i_{2}}}+\frac{x_{i_{2}}}{2 x_{i_{2}}+x_{i_{4}}+x_{i_{3}}}+\frac{x_{4}}{2 x_{i_{3}}+x_{i_{3}}+x_{i_{1}}}+\frac{x_{1}}{2 x_{i_{4}}+x_{i_{4}}+x_{i_{1}}} .
\end{align*}
$$

Then letting $x_{i_{1}}=0$ and $x_{i_{2}}=\frac{3}{4}$ gives

$$
f=\frac{1}{2+\frac{x_{i 3}}{x_{i_{2}}}+\frac{x_{i_{4}}}{x_{i_{2}}}}+\frac{1}{3}+\frac{1}{3}=\frac{2}{3}+\frac{1}{1+\frac{1}{x_{i_{2}}}}=\frac{2}{3}+\frac{3}{7}=\frac{23}{21}>1 .
$$

Subcase (7).

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{2}, & \pi_{1}\left(i_{2}\right)=i_{4}, & \pi_{1}\left(i_{3}\right)=i_{1}, & \pi_{1}\left(i_{4}\right)=i_{3} ; \\
\pi_{2}\left(i_{1}\right)=i_{2}, & \pi_{2}\left(i_{2}\right)=i_{1}, & \pi_{1}\left(i_{3}\right)=i_{3}, & \pi_{1}\left(i_{4}\right)=i_{4} .
\end{array}
$$

In this subcase we have

$$
\begin{align*}
& f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{1_{1}}(i)}+x_{\pi_{2}(i)} \\
= & \frac{x_{i_{1}}}{2 x_{i_{1}}+2 x_{i_{2}}}+\frac{x_{i_{2}}}{2 x_{i_{2}}+x_{i_{4}}+x_{i_{1}}}+\frac{x_{3}}{2 x_{i_{3}}+x_{i_{3}}+x_{i_{1}}}+\frac{x_{i_{4}}}{2 x_{i_{4}}+x_{i_{4}}+x_{i_{1}}} . \tag{4.17}
\end{align*}
$$

Then, taking $x_{i_{2}}=0, x_{i_{1}}=\frac{1}{100}, x_{i_{3}}=\frac{1}{10}$ and $x_{i_{4}}=1-\frac{1}{100}-\frac{1}{10}=\frac{89}{100}$, we get

$$
f=\frac{1}{2}+\frac{1}{3++\frac{x_{1}}{x_{i_{3}}}}+\frac{1}{3+\frac{x_{3}}{x_{i_{4}}}}=\frac{1}{2}+\frac{1}{3+\frac{1}{10}}+\frac{1}{3+\frac{10}{89}} \approx 1.144>1 .
$$

Subcase (8).

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{2}, & \pi_{1}\left(i_{2}\right)=i_{4}, & \pi_{1}\left(i_{3}\right)=i_{1}, & \pi_{1}\left(i_{4}\right)=i_{3} \\
\pi_{2}\left(i_{1}\right)=i_{2}, & \pi_{2}\left(i_{2}\right)=i_{3}, & \pi_{1}\left(i_{3}\right)=i_{4}, & \pi_{1}\left(i_{4}\right)=i_{1} .
\end{array}
$$

Then we have

$$
\begin{align*}
& f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}}(i)}+x_{\pi_{2}(i)} \\
= & \frac{x_{i_{1}}}{2 x_{i_{1}}+2 x_{i_{2}}}+\frac{x_{i_{2}}}{2 x_{i_{2}}+x_{i_{4}}+x_{i_{3}}}+\frac{x_{3}}{2 x_{i_{3}}+x_{i_{1}}+x_{i_{4}}}+\frac{x_{i_{4}}}{2 x_{i_{4}}+x_{i_{1}}+x_{i_{3}}} . \tag{4.18}
\end{align*}
$$

If $x_{i_{1}}=0, x_{i_{3}}=x_{i_{4}}=\frac{1}{100}$ and $x_{i_{2}}=1-\frac{1}{100}-\frac{1}{100}=\frac{98}{100}$, we get

$$
f=\frac{1}{2+\frac{x_{i_{3}}}{x_{i_{2}}}+\frac{x_{i_{4}}}{x_{i_{2}}}}+\frac{1}{2+\frac{x_{i_{4}}}{x_{i_{3}}}}+\frac{1}{2+\frac{x_{i 3}}{x_{i_{4}}}}=\frac{1}{1+\frac{100}{98}}+\frac{2}{3} \approx 1.16>1 .
$$

Subcase (9).

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{2}, & \pi_{1}\left(i_{2}\right)=i_{1}, & \pi_{1}\left(i_{3}\right)=i_{3}, & \pi_{1}\left(i_{4}\right)=i_{4} \\
\pi_{2}\left(i_{1}\right)=i_{2}, & \pi_{2}\left(i_{2}\right)=i_{3}, & \pi_{1}\left(i_{3}\right)=i_{4}, & \pi_{1}\left(i_{4}\right)=i_{1} .
\end{array}
$$

Obviously, we have

$$
\begin{align*}
& f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}}(i)}+x_{\pi_{2}(i)} \\
= & \frac{x_{i_{1}}}{2 x_{i_{1}}+2 x_{i_{2}}}+\frac{x_{i_{2}}}{2 x_{i_{2}}+x_{i_{1}}+x_{i_{3}}}+\frac{x_{i_{3}}}{2 x_{i_{3}}+x_{i_{3}}+x_{i_{4}}}+\frac{x_{4}}{2 x_{i_{4}}+x_{i_{4}}+x_{i_{1}}} . \tag{4.19}
\end{align*}
$$

Now if we take $x_{i_{1}}=0, x_{i_{3}}=\frac{1}{100}, x_{i_{4}}=\frac{1}{10000}$, and $x_{i_{2}}=\frac{9899}{10000}$, then

$$
f=\frac{1}{2+\frac{x_{i 3}}{x_{i_{2}}}}+\frac{1}{3+\frac{x_{i}}{x_{i_{3}}}}+\frac{1}{3}=\frac{1}{2+\frac{100}{9899}}+\frac{1}{3+\frac{1}{100}}+\frac{1}{3} \approx 1.163>1 .
$$

Subcase (10).

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{2}, & \pi_{1}\left(i_{2}\right)=i_{1}, & \pi_{1}\left(i_{3}\right)=i_{3}, & \pi_{1}\left(i_{4}\right)=i_{4} \\
\pi_{2}\left(i_{1}\right)=i_{2}, & \pi_{2}\left(i_{2}\right)=i_{4}, & \pi_{1}\left(i_{3}\right)=i_{1}, & \pi_{1}\left(i_{4}\right)=i_{3} .
\end{array}
$$

Clearly,

$$
\begin{align*}
f & =\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}} \tag{4.20}\\
& =\frac{x_{i_{1}}}{2 x_{i_{1}}+2 x_{i_{2}}}+\frac{x_{i_{2}}}{2 x_{i_{2}}+x_{i_{1}}+x_{i_{4}}}+\frac{x_{i_{3}}}{2 x_{i_{3}}+x_{i_{3}}+x_{i_{1}}}+\frac{x_{i_{4}}}{2 x_{i_{4}}+x_{i_{4}}+x_{i_{3}}}
\end{align*}
$$

If $x_{i_{1}}=0$, we get

$$
f=\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}}=\frac{1}{2+\frac{x_{i_{4}}}{x_{i_{2}}}}+\frac{1}{3}+\frac{1}{3+\frac{x_{i_{3}}}{x_{i_{4}}}} .
$$

Letting $x_{i_{3}}=\frac{1}{10000}, x_{i_{4}}=\frac{1}{100}$ and $x_{i_{2}}=\frac{9899}{10000}$, we get

$$
\begin{aligned}
f & =\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}} \\
& =\frac{1}{2+\frac{100}{9899}}+\frac{1}{3}+\frac{1}{3+\frac{1}{100}} \approx 1.163>1
\end{aligned}
$$

Subcase (11).

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{2}, & \pi_{1}\left(i_{2}\right)=i_{1}, & \pi_{1}\left(i_{3}\right)=i_{4}, & \pi_{1}\left(i_{4}\right)=i_{3} \\
\pi_{2}\left(i_{1}\right)=i_{2}, & \pi_{2}\left(i_{2}\right)=i_{3}, & \pi_{1}\left(i_{3}\right)=i_{1}, & \pi_{1}\left(i_{4}\right)=i_{4} .
\end{array}
$$

For this case we have

$$
\begin{align*}
f & =\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}} \\
& =\frac{x_{i_{1}}}{2 x_{i_{1}}+2 x_{i_{2}}}+\frac{x_{i_{2}}}{2 x_{i_{2}}+x_{i_{1}}+x_{i_{3}}}+\frac{x_{i_{3}}}{2 x_{i_{3}}+x_{i_{4}}+x_{i_{1}}}+\frac{x_{i_{4}}}{2 x_{i_{4}}+x_{i_{4}}+x_{i_{3}}} \tag{4.21}
\end{align*}
$$

Thus, if $x_{i_{2}}=0, x_{i_{1}}=\frac{1}{20}, x_{i_{4}}=\frac{1}{20}$ and $x_{i_{3}}=\frac{9}{10}$, we get

$$
f=\frac{1}{2}+\frac{1}{2+\frac{x_{i 1}}{x_{i_{3}}}+\frac{x_{i_{4}}}{x_{i_{3}}}}+\frac{1}{3+\frac{x_{i_{3}}}{x_{i_{4}}}}=\frac{1}{2}+\frac{9}{19}+\frac{1}{21} \approx 1.021>1 .
$$

Subcase (12).

$$
\begin{array}{llll}
\pi_{1}\left(i_{1}\right)=i_{2}, & \pi_{1}\left(i_{2}\right)=i_{1}, & \pi_{1}\left(i_{3}\right)=i_{4}, & \pi_{1}\left(i_{4}\right)=i_{3} \\
\pi_{2}\left(i_{1}\right)=i_{2}, & \pi_{2}\left(i_{2}\right)=i_{4}, & \pi_{1}\left(i_{3}\right)=i_{3}, & \pi_{1}\left(i_{4}\right)=i_{1}
\end{array}
$$

Then we have

$$
\begin{align*}
f & =\sum_{i=1}^{4} \frac{x_{i}}{2 x_{i}+x_{\pi_{1}}(i)+x_{\pi_{2}}(i)} \\
& =\frac{x_{i_{1}}}{2 x_{i_{1}}+2 x_{i_{2}}}+\frac{x_{i_{2}}}{2 x_{i_{2}}+x_{i_{1}}+x_{i_{4}}}+\frac{x_{i_{3}}}{2 x_{i_{3}}+x_{i_{3}}+x_{i_{4}}}+\frac{x_{i_{4}}}{2 x_{i_{4}}+x_{i_{3}}+x_{i_{1}}} . \tag{4.22}
\end{align*}
$$

If $x_{i_{2}}=0, x_{i_{1}}=\frac{1}{20}, x_{i_{3}}=\frac{1}{20}$ and $x_{i_{4}}=\frac{9}{10}$, we get

$$
f=\frac{1}{2}+\frac{1}{3+\frac{x_{i_{4}}}{x_{i_{3}}}}+\frac{1}{2+\frac{i_{3}}{x_{i_{4}}}+\frac{x_{i_{1}}}{x_{i_{4}}}}=\frac{1}{2}+\frac{1}{21}+\frac{9}{19} \approx 1.021>1 .
$$

By the Lemma 3.5, for subcases (1)-(12) of Case (ii), $\Phi_{\pi_{1}, \pi_{2}}$ is not positive, either.
Hence we have proved that if there exist i such that $\pi_{1}(i)=\pi_{2}(i) \neq i$, then $\Phi_{\pi_{1}, \pi_{2}}$ is not positive. So, $\Phi_{\pi_{1}, \pi_{2}}$ is positive implies that there is no i so that $\pi_{1}(i)=\pi_{2}(i) \neq i$, this finishes the proof of Proposition 4.4.

5. Proofs of the main results

Now we are in a position to complete the proofs of Theorem 1.2 and Theorem 1.3.
Proof of Theorem 1.2. Note that, by the assumption, π_{1} and π_{2} are not the identity permutation and $\pi_{1} \neq \pi_{2}$. Still denote by $\left\{F_{s}\right\}_{s=1}^{r}$ the set of minimal common invariant subsets of π_{1} and π_{2} and denote by $l\left(\pi_{1}, \pi_{2}\right)$ the length of $\left\{\pi_{1}, \pi_{2}\right\}$, i.e., $l\left(\pi_{1}, \pi_{2}\right)=$ $\max \left\{\# F_{s}\right\}_{s=1}^{r}$.

If $l\left(\pi_{1}, \pi_{2}\right)=2$, then $\Phi_{\pi_{1}, \pi_{2}}$ is always positive. In fact, $l(\pi)=2$ implies either $r=3$, in this situation one of π_{1}, π_{2} is the identity; or $r=2$ with $\# F_{1}=\# F_{2}=2$, in this situation we apply Proposition 4.2.

If $l\left(\pi_{1}, \pi_{2}\right)=3$ with $\# F_{1}=1$, then by Proposition 4.3, $\Phi_{\pi_{1}, \pi_{2}}$ is positive if and only if for any $i \in F_{2}$ we have $\pi_{1}(i) \neq \pi_{2}(i)$, and in turn, if and only if the condition (1) in (ii) holds. Since π_{1}, π_{2} has a common fixed point, the condition (2) in (ii) holds emptily. Hence the theorem is true for this case.

If $l\left(\pi_{1}, \pi_{2}\right)=4$, then π_{1}, π_{2} have no common fixed point. By Proposition 4.4, it is obvious that $\Phi_{\pi_{1}, \pi_{2}}$ is positive if and only if (1) and (2) in (ii) hold.

Proof of Theorem 1.3. As π_{1}, π_{2} are not the identity, $\left\{\pi_{1}, \pi_{2}\right\}$ has the property (C) if and only if $\pi_{1}(i) \neq \pi_{2}(i)$ for any $i=1,2,3$. Thus by [16], $\pi_{1}(i) \neq \pi_{2}(i)$ for any $i=1,2,3$ implies that $\Phi_{\pi_{1}, \pi_{2}}: M_{3} \rightarrow M_{3}$ is positive. Conversely, if there is some $i_{1} \in$ $\{1,2,3\}$ so that $\pi_{1}\left(i_{1}\right)=\pi_{2}\left(i_{1}\right)$, then $\pi_{1}\left(i_{1}\right)=\pi_{2}\left(i_{1}\right)=i_{2} \in\left\{i_{2}, i_{3}\right\}=\{1,2,3\} \backslash\left\{i_{1}\right\}$. Thus, with no loss of generality, we may assume that

$$
\begin{array}{lll}
\pi_{1}\left(i_{1}\right)=i_{2}, & \pi_{1}\left(i_{2}\right)=i_{3}, & \pi_{1}\left(i_{3}\right)=i_{1} \\
\pi_{2}\left(i_{1}\right)=i_{2}, & \pi_{2}\left(i_{2}\right)=i_{1}, & \pi_{2}\left(i_{3}\right)=i_{3}
\end{array}
$$

It follows from Lemma 3.5 that $\Phi_{\pi_{1}, \pi_{2}}$ is not positive if

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}\right)=\sum_{i=1}^{3} \frac{x_{i}}{x_{i}+x_{\pi_{1}(i)}+x_{\pi_{2}(i)}} \\
= & \frac{x_{i_{1}}}{x_{i_{1}}+2 x_{i_{2}}}+\frac{x_{i_{2}}}{x_{i_{2}}+x_{i_{1}}+x_{i_{3}}}+\frac{x_{i_{3}}}{2 x_{i_{3}}+x_{i_{1}}}
\end{aligned}
$$

is greater than 1 at some point. This is the case because letting $x_{i_{1}}=0$ gives

$$
f=\frac{x_{i_{2}}}{x_{i_{2}}+x_{i_{3}}}+\frac{1}{2}
$$

which has supremum $\frac{3}{2}>1$.

Acknowledgement. The authors give their thanks to the referees for helpful comments and suggestions on this paper.

REFERENCES

[1] P. Albert and A. Uhlmanm, A problem relating to positive linear maps on matrix algebras, Rep. Math. Phys. 18 (1980), 163.
[2] R. Augusiak, J. Bae, L. Czekaj, M. Lewenstein, On structural physical approximations and entanglement breaking maps, J. Phys. A: Math. Theor. 44 (2011), 185-308.
[3] A. Chefles, R. Jozs A, AND A. Winter, On the existence of physical transformations between sets of quantum states, International J. Quantum Information, 2 (2004), 11-21.
[4] M.-D. Choi, Completely Positive Linear Maps on Complex Matrix, Lin. Alg. Appl. 10 (1975), 285290.
[5] D. Chruściński and A. Kossakowski, Spectral conditions for positive maps, Comm. Math. Phys. 290 (2009), 10-51.
[6] R. A. Horn, Charles R. Johnson, Matrix Analysis, Cambridge Univ. Press, 1985, New York.
[7] J.-C. Hou, A characterization of positive linear maps and criteria for entangled'quantum states, J. Phys. A: Math. Theor. 43 (2010) 385-201.
[8] J.-C. Hou, Acharacterization of positive elementary operators, J. Operator Theory, 39 (1998), 43-58.
[9] J.-C. Hou, C.-K. Li, Y.-T. Poon, X. F. Qi and N.-S. Sze, A new criterion and a special class of k-positive maps, Lin. Alg. Appl., 470 (2015), 51-69.
[10] Z.-J. Huang, C.-K. Li, E. Poon, N.-S. Sze, Physical transformation between quantum states, J. Mathematical Physics 53, 102209 (2012).
[11] K. Kraus, States, Effects, and Operations: Fundamental Notions of Quantun Theory, Lecture Notes in Physics, Vol. 190. Spring-Verlag,Berlin, 1983.
[12] C.-K. Li and Y.-T. Poon, Interpolation by Completely Positive Maps, Linear and Multilinear Algebra 59 (2011), 1159-1170.
[13] M. A. Nielsen and I. L. ChUANG, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000.
[14] X.-F. Qi And J.-C. Hou, Positive finite rank elementary operators and characterizing entanglement of states, J. Phys. A: Math. Theor. 44 (2011), 215-305.
[15] S. Yamagami, Cyclic inequalities, Proc. Amer. Math. Sco., 118 (1993), 521-527.
[16] H.-L. Zhao and J.-C. Hou, Criteria of positivity for linear maps constructed from permutation pairs, arXiv:1302.0175v2 [quant-ph].
(Received April 17, 2013)

Haili Zhao
College of Mathematics
Taiyuan University of Technology
Taiyuan 030024, P.R. of China
e-mail: zhaohaili927@yahoo.com.cn
Jinchuan Hou
College of Mathematics
Taiyuan University of Technology
Taiyuan 030024, P.R. of China
e-mail: jinchuanhou@yahoo.com.cn

