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CLOSEST SOUTHEAST SUBMATRIX THAT MAKES MULTIPLE

A DEFECTIVE EIGENVALUE OF THE NORTHWEST ONE

GORKA ARMENTIA, JUAN-MIGUEL GRACIA AND FRANCISCO E. VELASCO

(Communicated by C.-K. Li)

Abstract. Given three complex matrices A ∈ Cn×n,B ∈ Cn×m and C ∈ Cm×n , and given a de-
fective eigenvalue z0 of A , we study when the set S of matrices X ∈ Cm×m such that z0 is a
multiple eigenvalue of the matrix (

A B
C X

)
.

is nonempty. Moreover, when S �= /0 , given a fourth matrix D ∈ C
m×m we find a matrix X0 ∈ S

such that
‖X0 −D‖= min{‖X −D‖ : X ∈ S}.

1. Introduction

Let us denote by ‖ · ‖ the spectral matrix norm. We write Λ(M) for the spectrum
of a square complex matrix M . If λ0 ∈ Λ(M) we denote by m(λ0,M) the algebraic
multiplicity of λ0 . We say that λ0 is a defective eigenvalue of M if its algebraic multi-
plicity is greater than its geometric multiplicity; or, equivalently, λ0 is defective if there
exists a Jordan block of order � 2 associated to λ0 in the Jordan canonical form of M .
An eigenvalue α0 of M is said to be semisimple if all the Jordan blocks associated to
α0 are of order one. So, an eigenvalue is defective if and only if is nonsemisimple. Let
Lnm denote the Cartesian product Cn×n×Cn×m ×Cm×n . Let Λ2(M) denote the set of
multiple eigenvalues of M . For any matrix N ∈ Cp×q we denote by ν(N) the nullity
of N . That is, ν(N) = dimKerN . We denote by σ1(N) � σ2(N) � · · · � σmin(p,q)(N)
the singular values of N . Two unitary column vectors u,v are a pair of singular vectors
(left and right) of the matrix N associated with the singular value σ if Nv = σu and
N∗u = σv , where N∗ denotes the conjugate transpose matrix of N . Finally, N† denotes
the Moore–Penrose inverse of N .

In [5] and [6] the second and third authors solved the following problems:

PROBLEM 1. Let α := (A,B,C) ∈ Lnm be a triple of matrices, and let us suppose
that z0 is a complex number such that: (1) either z0 /∈ Λ(A) ; (2) or z0 is a semisimple
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eigenvalue of A . Characterize the cases where the set M2(z0,α) of matrices X ∈Cm×m

such that z0 is a multiple eigenvalue of(
A B
C X

)

is nonempty. The second and third authors gave solutions to this problem: in [5] when
z0 /∈ Λ(A) ; and in [6] when z0 is a semisimple eigenvalue of A .

PROBLEM 2. Let α := (A,B,C) ∈ Lnm be a triple of matrices, and let us suppose
that z0 is a complex number such that: (1) either z0 /∈ Λ(A) ; (2) or z0 is a semisimple
eigenvalue of A . In case of M2(z0,α) �= /0 , given a fourth matrix D ∈ Cm×m , find a
matrix X0 ∈ M2(z0,α) such that

‖X0−D‖ = min
X∈M2(z0,α)

‖X −D‖. (1)

The second and third authors gave solutions to this problem: in [5] when z0 /∈ Λ(A) ;
and in [6] when z0 a semisimple eigenvalue of A .

In this paper we address these two problems when z0 is a nonsemisimple eigen-
value of A. One more detailed motivation for this class of structured matrix problems
can be seen in the introduction of paper [6]. To shorten notation, for a triple of matrices
α := (A,B,C) ∈ Lnm and a matrix X ∈ Cm×m we write M(α,X) instead of(

A B
C X

)
.

To simplify Problems 1 and 2 there is no loss of generality in assuming that z0 = 0. In
fact, let α ′ = (A− z0In,B,C) ; then for X ∈ C

m×m , m(z0,M(α,X)) � 2 if and only if
m(0,M(α ′,X − z0Im)) � 2. So, the set M2(z0,α) is nonempty if and only if M2(0,α ′)
is nonempty. In that case, given a matrix D ∈ Cm×m ,

min
X∈M2(z0,α)

‖X −D‖ = min
Y∈M2(0,α ′)

‖Y − (D− z0Im)‖.

Thus, from here on we suppose that z0 = 0 . We will denote the zero matrices by O and
the row and column vectors by 0, disregarding their sizes. Note that when B = O or
C = O , as 0 is supposed to be a nonsemisimple eigenvalue of A , then 0 is a multiple
eigenvalue of (

A O
C X

)
or

(
A B
O X

)

for every X ∈ Cm×m ; so M2(0,α) = Cm×m and

min
X∈M2(0,α)

‖X −D‖ = ‖D−D‖= 0.

Therefore, in what follows we will assume that B and C are nonzero matrices.
The organization of this paper is the following one. We will try to solve simul-

taneously the problems of emptiness of M2(0,α) and the minimization of ‖X −D‖
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subject to X ∈ M2(0,α) . In Section 2 we will recall results in the literature about the
nearest X to D that lowers the rank of

(
A B
C X

)
to a preassigned value less than the rank

of
(

A B
C D

)
. We will also reformulate the surjective mapping theorem about functions of

several variables. In Section 3 we will reduce the matrices A,B and C by means of uni-
tary matrices to a simplified form that makes less difficult the solution of the Problems.
Thus, they are reduced to five cases, whose analyses are made in Sections 4 and 5.

2. Preliminary results

The following statement is a reformulation of results in [4, Theorem 1.1], [8, Theo-
rem 19, (8.1), (8.2) and (8.6)], [3, Theorem 3], [11, Theorem 2.1] and Theorem 6.3.7
of the page 102 in the book [2].

THEOREM 1. Let α = (A,B,C) ∈ Lnm be a triple of matrices and let D ∈ Cm×m .
Let

ρ := rank(A,B)+ rank

(
A
C

)
− rank A,

and
M := (I−AA†)B, N := C(I−A†A).

Then for X ∈ Cm×m ,
rank M(α,X) = ρ + rank S(X),

where
S(X) := (I−NN†)(X −CA†B)(I−M†M).

Furthermore, for each integer r such that ρ � r < rank M(α,D) , there exits a matrix
X0 such that rank M(α,X0) � r and

‖X0−D‖ = min
X∈Cm×m

rank M(α ,X)�r

‖X −D‖ = σp+1 (S(D)) ,

where p = r−ρ . In addition, if U,V ∈ C
m×m are the unitary matrices which appear

in the singular value decomposition of the matrix S(D) , i.e.

U∗S(D)V = diag(σ1(S(D)), . . . ,σm(S(D))),

we can choose

X0 = D−U diag(0, . . . ,0,σp+1(S(D)), . . . ,σm(S(D)))V ∗.

Let f : Ω → Cm be a differentiable map defined on an open subset Ω of Cn . For
z = (z1, . . . ,zn) ∈ Ω write f (z) = ( f1(z1, . . . ,zn), . . . , fm(z1, . . . ,zn)) . We will denote by

∂ ( f1, . . . , fm)
∂ (z1, . . . ,zn)

(z)
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the Jacobian matrix ⎛
⎜⎜⎜⎜⎝

∂ f1
∂ z1

(z) · · · ∂ f1
∂ zn

(z)

...
. . .

...
∂ fm
∂ z1

(z) · · · ∂ fm
∂ zn

(z)

⎞
⎟⎟⎟⎟⎠ .

We say that f belongs to class C1 on Ω if it has continuous partial derivatives ∂ fi/∂ z j ,
for i = 1, . . . ,m , j = 1, . . . ,n .

Let us suppose that f : Ω → Cm×p is a map from Ω into Cm×p with Ω an open
subset of Cn×q . For each matrix X = (xi j) ∈ Ω , f (X) = ( fi j(X)) is a m× p matrix. If
f is differentiable on Ω , we define its Jacobian matrix at X in the following manner

∂ f
∂X

(X) :=
∂ ( f11, . . . , f1p, . . . , fm1, . . . , fmp)
∂ (x11, . . . ,x1q, . . . ,xn1, . . . ,xnq)

(X).

This matrix has size mp×nq . The symbol ⊗ denotes the Kronecker product of matri-
ces and T stands for the transpose matrix. With these notations, one has the following
result ([9], Examples 3(b), p. 71; [7], p. 175).

LEMMA 2. Let A ∈ Cm×n , X ∈ Cn×p , Z ∈ Cq×m . Then,

(a)
∂ (AX)

∂X
= A⊗ Ip ,

(b)
∂ (ZA)

∂Z
= Iq⊗AT .

For a family of sets S1, . . . ,Sr we will denote the Cartesian product S1 × ·· ·× Sr

by ∏r
i=1 Si . Let us suppose that g : Ω → Cm×p is a map from Ω into Cm×p with Ω an

open subset of ∏r
i=1 Cni×qi . For each r -tuple of matrices (X1, . . . ,Xr)∈Ω,Xk =

(
x(k)
i j

)
,

k = 1, . . . ,r , g(X1, . . . ,Xr) = (gi j(X1, . . . ,Xr)) is a m× p matrix. If g is differentiable
on Ω , we define its partial Jacobian matrix with respect to Xk at (X1, . . . ,Xr) in the
following manner

∂g
∂Xk

(X1, . . . ,Xr) :=
∂ (g11, . . . ,g1p, . . . ,gm1, . . . ,gmp)

∂
(
x(k)
11 , . . . ,x(k)

1qk
, . . . ,x(k)

nk1
, . . . ,x(k)

nkqk

) (X1, . . . ,Xr).

This matrix has size mp× nkqk . A consequence of the Surjective Mapping Theorem
([1], Theorem 41.6, p. 378; [10], Lemma 12.4–1, p. 230) is the following lemma. Be-
fore its statement, we need some notations. For 1 � i � n ,1 � j � p and 1 � k � s , we
are going to consider the vector spaces of matrices Cni×n′i , C

p j×p′j and C
mk×m′

k . Let us
denote

P :=
p

∑
j=1

p j p
′
j, M :=

m

∑
k=1

mkm
′
k.
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LEMMA 3. Let Ω be an open subset of(
n

∏
i=1

C
ni×n′i

)
×
(

p

∏
j=1

C
p j×p′j

)
.

For 1 � k � s consider the matrix functions

fk : Ω → C
mk×m′

k

of class C1 on Ω . Let

Z0 := (X0
1 ,X0

2 , . . . ,X0
n ,Y 0

1 ,Y 0
2 , . . . ,Y 0

p ) = (X0,Y 0) ∈ Ω,

with

X0
i ∈ C

ni×n′i 1 � i � n,

Y 0
j ∈ C

p j×p′j 1 � j � p,

be a point that satisfies ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f1(X0,Y 0) = O,

f2(X0,Y 0) = O,
...

fs(X0,Y 0) = O.

Assume M � P and that the rank of the partial Jacobian matrix

∂ ( f1, f2, . . . , fs)
∂ (Y1,Y2, . . . ,Yp)

(Z0) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f1
∂Y1

(Z0)
∂ f1
∂Y2

(Z0) · · · ∂ f1
∂Yp

(Z0)

∂ f2
∂Y1

(Z0)
∂ f2
∂Y2

(Z0) · · · ∂ f2
∂Yp

(Z0)

...
...

. . .
...

∂ fs
∂Y1

(Z0)
∂ fs
∂Y2

(Z0) · · · ∂ fs
∂Yp

(Z0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is equal to M . Then, for every sequence

{Xq}∞
q=1 = {(Xq

1 ,Xq
2 , . . . ,Xq

n )}∞
q=1

in ∏n
i=1 Cni×n′i that converges to X0 when q → ∞ , there exists at least a sequence

{Yq}∞
q=1 = {(Yq

1 ,Yq
2 , . . . ,Yq

p )}∞
q=1

in ∏p
j=1 C

p j×p′j that converges to Y 0 when q → ∞ and such that for q � 1 ,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f1(Xq,Yq) = O,

f2(Xq,Yq) = O,
...

fs(Xq,Yq) = O.
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3. A reduction of the problems

For a simplification of the Problems we make the following remarks. Given a
triple of matrices α = (A,B,C) ∈ Lnm , let us define

α ′ = (A′,B′,C′) = (PAP∗,PBQ∗,QCP∗),

with P,Q unitary matrices. Then, one readily sees that M2(0,α) is nonempty if and
only if M2(0,α ′) is nonempty. In that case, let D ∈ C

m×m , and let D′ = QDQ∗ , then

min
X∈Cm×m

m(0,M(α ,X))�2

‖X −D‖ = min
Y∈Cm×m

m(0,M(α ′,Y ))�2

‖Y −D′‖.

REMARK 4. To find the minimum in (1) there is no loss of generality in consider-
ing another triple α ′ = (A′,B′,C′) ∈ Lnm and another matrix D′ ∈ Cm×m such that

(A′,B′,C′,D′) = (PAP∗,PBQ∗,QCP∗,QDQ∗),

with unitary matrices P,Q , instead of α and D , respectively.

We say that two matrices N1,N2 ∈ C(n+m)×(n+m) are (n,m) block-diagonal uni-
tarily similar if there exist two unitary matrices U ∈ Cn×n and V ∈ Cm×m that satisfy

N1 =
(

U O
O V

)
N2

(
U O
O V

)∗
.

From this definition we get the following lemma, showed in [5, Lemma 11].

LEMMA 5. Let α := (A,B,C)∈ Lnm . Assume that B and C are nonzero matrices.
Then, the matrix M(α,O) is (n,m) block-diagonal unitarily similar to a matrix in the
reduced form:

(a) either ⎛
⎜⎜⎜⎜⎝

A11 O O O O
A21 A22 O O O
A31 A32 A33 A34 B3

A41 A42 O A44 B4

C1 O O C4 O

⎞
⎟⎟⎟⎟⎠=

(
Ar Br

Cr O

)
, (2)

with controllable pairs (
A33 A34 B3

O A44 B4

)
, (A44,B4)

and observable pairs
(C1,A11), (C4,A44);

(b) or ⎛
⎜⎜⎝

Â11 O O O
Â21 Â22 O O
Â31 Â32 Â33 B̂3

Ĉ1 O O O

⎞
⎟⎟⎠=

(
Âr B̂r

Ĉr O

)
, (3)

with (Â33, B̂3) and (Ĉ1, Â11) controllable and observable pairs, respectively.
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REMARK 6. Concerning the submatrices in (2) and (3) we notice that: the sum
of the numbers of columns of the matrices A11,A22,A33 and A44 is n ; the matrices B3

and B4 have m columns; the matrices C1 and C4 have m rows; the sum of the numbers
of columns of the matrices Â11 , Â22 and Â33 is n ; the matrix B̂3 has m columns; and
the matrix Ĉ1 has m rows.

According to Remark 4 in addressing the Problems there is no loss of generality
in assuming that the matrix M(α,O) has the reduced form (a) or (b). That is, there is
no loss of generality in considering the triples αr := (Ar,Br,Cr) or α̂r := (Âr, B̂r,Ĉr) ,
respectively, instead of the triple α = (A,B,C) .

In case (a) we write

Ã := diag(A11,A22,A33), A4 := A44 ∈ C
n4×n4 (4)

for short. Given X ∈ Cm×m , if M(α,O) is (n,m) block-diagonal unitarily similar
to (2), then using the notations in (4) we immediately obtain

det

(
λIn+m−

(
A B
C X

))
=det(λIn−n4−Ã)det

(
λ In4+m−

(
A4 B4

C4 X

))
. (5)

On the other hand, if M(α,O) is (n,m) block-diagonal unitarily similar to (3), then we
have

det

(
λ In+m−

(
A B
C X

))
= det(λ In−A)det(λ Im−X). (6)

According to the disjunctive (a) or (b) and Ã being the matrix defined in (4), the
analyses of the Problems can be reduced to the consideration of the cases:

(a) M(α,O) is (n,m) block-diagonal unitarily similar to (2), with the following
subcases: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(a-1) 0 ∈ Λ2(Ã),

(a-2) 0 ∈ Λ(Ã)\Λ2(Ã),

(a-3) 0 �∈ Λ(Ã) and m = 1,

(a-4) 0 �∈ Λ(Ã) and m > 1.

(b) M(α,O) is (n,m) block-diagonal unitarily similar to (3).

REMARK 7. Let us note that as 0 is a multiple eigenvalue of A , then in the sub-
cases (a-3) and (a-4) it follows that 0 is a multiple eigenvalue of A4 . Therefore in these
subcases we see that n4 > 1.

In section 4 we will analyze all the cases, except for the subcase (a-4), which will
be studied in Section 5.
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4. Cases: (b), (a-1), (a-2) and (a-3)

4.1. Cases: (b) and (a-1)

We have the next theorem.

THEOREM 8. In the cases (b) and (a-1) with the notations in (4), if, either M(α,O)
is (n,m) block-diagonal unitarily similar to (2) and 0 is a multiple eigenvalue of Ã , or
M(α,O) is (n,m) block-diagonal unitarily similar to (3), then M2(0,α) �= /0 and

min
X∈M2(0,α)

‖X −D‖ = 0.

Proof. It is a consequence of (6) and (5). �

4.2. Subcase (a-2)

Since M(α,O) is (n,m) block-diagonal unitarily similar to (2) and 0 ∈ Λ(Ã) \
Λ2(Ã) , fixing X ∈ Cm×m , from (5),

0 ∈ Λ2

(
A B
C X

)
⇐⇒ 0 ∈ Λ

(
A4 B4

C4 X

)
.

Therefore, denoting α4 = (A4,B4,C4) , where A4 ∈ Cn4×n4 , we have

min
X∈C

m×m

m(0,M(α ,X))�2

‖X −D‖ = min
X∈C

m×m

rank M(α4,X)<n4+m

‖X −D‖.

With these considerations, for this case we are going to prove the next result.

THEOREM 9. In the subcase (a-2), with the hypotheses and notations above, let

p := m−ν(A4)−1.

(i) If p � 0 , then M2(0,α) �= /0 and the equality

min
X∈Cm×m

m(0,M(α ,X))�2

‖X −D‖ = σp+1 (S(D))

holds, where
S(D) := (I−NN†)(D−C4A

†
4B4)(I−M†M),

with
M := (I−A4A

†
4)B4, N := C4(I−A†

4A4).

In addition, if U,V ∈ Cm×m are the unitary matrices which satisfy U∗S(D)V =
diag(σ1(S(D)), . . . ,σm(S(D))) and p � 0 , then defining

X0 := D−U diag(0, . . . ,0,σp+1(S(D)), . . . ,σm(S(D)))V ∗,

we have m(0,M(α,X0))� 2 i.e. rank M(α4,X0)< n4+m, and ‖X0−D‖= σp+1 (S(D)) .

(ii) If p < 0 , then M2(0,α) = /0 .
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Proof. We are going to apply Theorem 1. First, since (A4,B4) is controllable and
(C4,A4) is observable,

ρ = rank(A4,B4)+ rank

(
A4

C4

)
− rank A4 = n4 +n4− rank A4 = n4 + ν(A4).

Setting r = n4 +m−1, it follows that

ρ � r ⇔ ν(A4)+1 � m ⇔ p � 0.

Suppose that p � 0. If rank M(α4,D) < n4 +m , i.e. r � rank M(α4,D) , then 0
is an eigenvalue of the matrix M(α4,D) and

min
X∈Cm×m

m(0,M(α ,X))�2

‖X −D‖ = 0.

But, by Theorem 1,

n4 +m > rank M(α4,D) = ρ + rank S(D),

which implies
rank S(D) < m−ν(A4) = p+1.

Therefore σp+1 (S(D)) = 0 and the theorem has been proved in this case.
When rank M(α4,D) = n4 +m , i.e. r < rank M(α4,D) , the theorem immediately

follows from Theorem 1. This ends the proof of (i).
Now we will prove (ii). Let us observe in first place that if p < 0 then ν(A4) � m .

As (A4,B4) is controllable, then ν(A4) � m . Hence ν(A4) = m , i.e. ρ = n4 +m . By
Theorem 1, for X ∈ Cm×m , we deduce that rank M(α4,X) � ρ = n4 +m . Thus, there
is no matrix X ∈ Cm×m such that rank M(α4,X) < n4 +m . �

4.3. Subcase (a-3)

THEOREM 10. In the subcase (a-3), there is no matrix X0 ∈ C1×1 such that
m(0,M(α,X0)) � 2 .

Proof. First, let us observe that in the proof of Theorem 9 we have proved ρ =
n4+ν(A4) . Now then, by Theorem 1, for any X ∈C1×1 we conclude that rank M(α4,X)
� ρ = n4 +1. In consequence, as 0 �∈ Λ(Ã) , we infer that there is no matrix X0 ∈ C

1×1

such that m(0,M(α,X0)) � 2. �

5. Subcase (a-4)

Let α4 = (A4,B4,C4) . Since 0 is not an eigenvalue of Ã , from (5) we deduce
the following assertion: Given a matrix X ∈ Cm×m , then 0 is a multiple eigenvalue
of M(α,X) if and only if 0 is a multiple eigenvalue of M(α4,X) . For this reason
M2(0,α) = M2(0,α4) , and if this set is nonempty,



628 G. ARMENTIA, J.-M. GRACIA AND F. E. VELASCO

min
X∈M2(0,α)

‖X −D‖ = min
X∈M2(0,α4)

‖X −D‖.

The pairs (A4,B4) and (C4,A4) are controllable and observable, respectively, and 0 is
an eigenvalue of A4 . Therefore, a solution to the Problems is given by means of the
forthcoming Theorem 14. To ease the meaning of this theorem we need the following
three results.

PROPOSITION 11. Let any α = (A,B,C) ∈ Lnm with m > 1 . Then for every z0 ∈
C\Λ(A) , the set M2(z0,α) is nonempty.

Proof. As

(
In (A− z0In)−1B
O Im

)(
A B
C z0Im +C(A− z0In)−1B

)(
In −(A− z0In)−1B
O Im

)

=
(

A+(A− z0In)−1BC O
C z0Im

)

and m > 1, it follows that z0 is a multiple eigenvalue of the matrix

M(α,z0Im +C(A− z0In)−1B). �

COROLLARY 12. Let α = (A,B,C)∈ Lnm where A is invertible and m > 1 . Then
M2(0,α) �= /0.

Let us remind the following theorem about the minimum distance from a given
matrix D to the matrices X in the set M2(0,α) , which the second and third authors
showed in [5, Theorem 25, page 1205].

THEOREM 13. Let α = (A,B,C) ∈ Lnm where A is invertible and m > 1 . Let
D ∈ Cm×m . Then

sup
t∈R

σ2m−1

(
D−CA−1B t(Im +CA−2B)

O D−CA−1B

)
= min

X∈M2(0,α)
‖X −D‖.

Now we are prepared to establish the main result in this paper.

THEOREM 14. Let any triple α = (A,B,C) ∈ Lnm with m > 1 . Let us assume
that the pair (A,B) is controllable and the pair (C,A) is observable. Let {αq =
(Aq,Bq,Cq)}∞

q=1 be a sequence of triples of matrices in Lnm that converges to α when
q → ∞ , and where for every q the matrix Aq is invertible. Then there exists the limit

lim
q→∞

min
X∈M2(0,αq)

‖X‖,
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finite (� ∈ R) or infinite (∞) . Also,

lim
q→∞

min
X∈M2(0,αq)

‖X‖ =

{
� ∈ R ⇐⇒ M2(0,α) �= /0,

∞ ⇐⇒ M2(0,α) = /0.

Moreover, when this limit is � < ∞ then

min
X∈M2(0,α)

‖X‖ = �.

REMARK 15. Let us make the following observations about the statement of this
theorem:

1. The matrix A can be invertible or not.

2. The convergence of minX∈M2(0,αq)‖X‖ to a real number � (to ∞ , respectively),
and this limit, is independent of the choice of the sequence {αq}∞

q=1 converging
to α .

3. The invertibility of the matrices Aq guarantees the existence of the minimum
minX∈M2(0,αq)‖X‖ and the computation of its value.

4. The sequence of nonnegative numbers{
min

X∈M2(0,αq)
‖X‖

}∞

q=1

does not oscillate; more precisely,

liminf
q→∞

min
X∈M2(0,αq)

‖X‖ = limsup
q→∞

min
X∈M2(0,αq)

‖X‖.

Before the proof of this theorem we are going to prove a proposition and a lemma.
With the hypotheses of Theorem 14 for the triple α = (A,B,C) ∈ Lnm , let us assume
that there exists a matrix X0 ∈ Cm×m such that m(0,M(α,X0)) � 2. Therefore, there
exist vectors u1,v1 ∈ Cn×1 , u2,v2 ∈ Cm×1 and a complex number β such that

rank

(
u1 v1

u2 v2

)
= 2, (7)

and (
A B
C X0

)(
u1 v1

u2 v2

)
=
(

u1 v1

u2 v2

)(
0 β
0 0

)
. (8)

That is
Au1 +Bu2 = 0, (9a)

Cu1 +X0u2 = 0, (9b)

Av1 +Bv2−u1β = 0, (9c)

Cv1 +X0v2−u2β = 0. (9d)

We have the following result.
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PROPOSITION 16. u2 �= 0 .

Proof. Suppose, contrary to our claim, that u2 = 0. Then, by (9a) and (9b), Au1 =
0 and Cu1 = 0. Since (C,A) is an observable pair, then u1 = 0. Hence (u1

u2 ) = 0. This
contradicts (7). �

LEMMA 17. Let α = (A,B,C)∈ Lnm be any triple of matrices, with m > 1 . Let us
assume that (A,B) is controllable and (C,A) is observable. Let us suppose that there
is a matrix X0 ∈ Cm×m such that 0 is a multiple eigenvalue of M(α,X0) . Let {αq}∞

q=1
be a sequence in Lnm that converges to α when q → ∞ . Then there exist a sequence of
matrices {Xq}∞

q=1 converging to X0 when q → ∞ , such that 0 is a multiple eigenvalue
of M(αq,Xq) , for each q.

Proof. Since 0 is a multiple eigenvalue of M(α,X0) , there exist vectors u1,v1 ∈
Cn×1 , u2,v2 ∈ Cm×1 and a complex number β such that (7) and (8) are satisfied. Let
αq := (A+ Δq

1,B+ Δq
2,C+ Δq

3) .
The proof of this lemma will be ended once we have proved the existence of se-

quences of matrices {Δq
4}∞

q=1 and sequences of vectors {sq
i }∞

q=1 , i = 1,2,3,4, of ade-
quate sizes, converging to O and 0 when q → ∞ , such that for each q ,(

A+ Δq
1 B+ Δq

2
C+ Δq

3 X0 + Δq
4

)(
u1 + sq

1 v1 + sq
2

u2 + sq
3 v2 + sq

4

)
=
(

u1 + sq
1 v1 + sq

2
u2 + sq

3 v2 + sq
4

)(
0 β
0 0

)
. (10)

Case 1. We assume that u2 and v2 are linearly independent. Operating by blocks
in (10), our problem is reduced to find sequences {Δq

4}∞
q=1 and {sq

i }∞
q=1 converging to

O and 0 when q → ∞ , such that for each q ,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(A+ Δq
1)(u1 + sq

1)+ (B+ Δq
2)(u2 + sq

3) = 0,

(C+ Δq
3)(u1 + sq

1)+ (X0 + Δq
4)(u2 + sq

3) = 0,

(A+ Δq
1)(v1 + sq

2)+ (B+ Δq
2)(v2 + sq

4)− (u1 + sq
1)β = 0,

(C+ Δq
3)(v1 + sq

2)+ (X0 + Δq
4)(v2 + sq

4)− (u2 + sq
3)β = 0.

(11)

To solve this question, we are going to take into account Lemma 3. Let Pn,m be the
product space

C
n×n×C

n×m×C
m×n×C

n×1×C
n×1×C

n×1×C
n×1×C

m×m.

Let f1 : Pn,m → Cn×1 , f2 : Pn,m → Cm×1 , f3 : Pn,m → Cn×1 , f4 : Pn,m → Cm×1 be the
maps defined by

f1(Δ1,Δ2,Δ3,s1,s2,s3,s4,Δ4) := (A+ Δ1)(u1 + s1)+ (B+ Δ2)(u2 + s3),
f2(Δ1,Δ2,Δ3,s1,s2,s3,s4,Δ4) := (C+ Δ3)(u1 + s1)+ (X0 + Δ4)(u2 + s3),
f3(Δ1,Δ2,Δ3,s1,s2,s3,s4,Δ4) := (A+ Δ1)(v1 + s2)+ (B+ Δ2)(v2 + s4)− (u1 + s1)β ,

f4(Δ1,Δ2,Δ3,s1,s2,s3,s4,Δ4) := (C+ Δ3)(v1 + s2)+ (X0 + Δ4)(v2 + s4)− (u2 + s3)β ,
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for
(Δ1,Δ2,Δ3,s1,s2,s3,s4,Δ4) ∈ Pn,m.

First, by (9) we deduce that

fi(O,O,O,0,0,0,0,O) = 0

for i = 1,2,3,4. Second, due to Lemma 2, the partial Jacobian matrix

∂ ( f1, f2, f3, f4)
∂ (s1,s2,s3,s4,Δ4)

evaluated at the point (O,O,O,0,0,0,0,O) ∈ Pn,m , is the matrix

J =

⎛
⎜⎜⎝

A O B O O
C O X0 O Im⊗uT

2
−β In A O B O

O C −β Im X0 Im ⊗ vT
2

⎞
⎟⎟⎠ .

To finish the proof, it suffices to see that the (2n+2m)×(2n+3m) matrix J has rank
2n+2m . Note that

rank J = 2m+ rank

(
A B O O

−β In O A B

)
,

because u2 and v2 are linearly independent. Finally, since (A,B) is a controllable pair
we conclude that

rank

(
A B O O

−β In O A B

)
= 2n.

Thus, rank J = 2m+2n .

Case 2. We assume that u2 and v2 are linearly dependent. Then, by Proposi-
tion 16, since u2 �= 0 we see that v2 = λu2 for some λ ∈ C . From (8), we deduce
that (

A B
C X0

)(
u1 v1

u2 v2

)(
1 −λ
0 1

)
=
(

u1 v1

u2 v2

)(
1 −λ
0 1

)(
1 λ
0 1

)(
0 β
0 0

)(
1 −λ
0 1

)
;

that is (
A B
C X0

)(
u1 v1−λu1

u2 0

)
=
(

u1 v1−λu1

u2 0

)(
0 β
0 0

)
.

Given that u2 and v2 are linearly dependent, there is no loss of generality in considering
that v2 = 0. Then, by (8),(

A B
C X0

)(
u1 v1

u2 0

)
=
(

u1 v1

u2 0

)(
0 β
0 0

)
, (12)

where u2 and v1 are nonzero vectors. Let {Tp}∞
p=0 be a sequence of matrices in Cm×n

such that for each p rank(u2 + Tpu1,Tpv1) = 2, (A−BTp,B) is a controllable pair,
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(C +TpA−X0Tp −TpBTp,A−BTp) is observable, and ‖Tp‖ < 1/p . By (12) we see
that (

In O
Tp Im

)(
A B
C X0

)(
In O
−Tp Im

)(
In O
Tp Im

)(
u1 v1

u2 0

)
=
(

In O
Tp Im

)(
u1 v1

u2 0

)(
0 β
0 0

)
,

that is

(
A−BTp B

C+TpA−X0Tp−TpBTp X0 +TpB

)(
u1 v1

u2 +Tpu1 Tpv1

)

=
(

u1 v1

u2 +Tpu1 Tpv1

)(
0 β
0 0

)
.

Since rank(u2 + Tpu1,Tpv1) = 2, (A−BTp,B) is a controllable pair, and (C +
TpA−X0Tp−TpBTp,A−BTp) is observable, by the already proved in Case 1 and given
that the sequence of {(Ωp,q

1 ,Ωp,q
2 ,Ωp,q

3 )}∞
q=1 converges to O ∈ Lnm when q → ∞ , we

infer that there exist sequences {Ep
q }∞

q=1 , {sp,q
i }∞

q=1 of adequate sizes converging to 0,
such that for each q ,

(
A−BTp + Ωp,q

1 B+ Ωp,q
2

C+TpA−X0Tp−TpBTp + Ωp,q
3 X0 +TpB+EP

q

)

×
(

u1 + sp,q
1 v1 + sp,q

2
u2 +Tpu1 + sp,q

3 Tpv1 + sp,q
4

)

=
(

u1 + sp,q
1 v1 + sp,q

2
u2 +Tpu1 + sp,q

3 Tpv1 + sp,q
4

)(
0 β
0 0

)
. (13)

Defining

Ωq,q
1 := Δq

1 +BTq, Ωq,q
2 := Δq

2, Ωq,q
3 := Δq

3−TqA+X0Tq +TqBTq,

sq
3 := Tqs

q,q
3 and sq

i := sq,q
i i = {1,2,4} , from (13) we conclude the proof in this case.

Observe that Δq
4 = TqB+Eq

q → O . �

We are in a position to prove Theorem 14.

Proof of Theorem 14. Let us consider an arbitrary sequence of triples of matrices
{αq = (Aq,Bq,Cq)}∞

q=1 converging to α , such that for each q , Aq is invertible. Since
Aq is invertible, from Corollary 12 and Theorem 13 we see that there exists a sequence
of matrices {Yq}∞

q=1 such that for each q = 1,2, . . . ,

μq := min
X∈Cm×m

m(0,M(αq,X))�2

‖X‖ = ‖Yq‖, (14)

where m(0,M(αq,Yq)) � 2.
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Case 1. Let us assume that M2(0,α) �= /0 . Let X0 be such that m(0,M(α,X0)) � 2
and

μ0 := ‖X0‖ = min
X∈Cm×m

m(0,M(α ,X))�2

‖X‖. (15)

Since {αq}∞
q=1 converges to α , by Lemma 17 there exists a sequence {Xq}∞

q=1 con-
verging to X0 , such that for each q , 0 is a multiple eigenvalue of M(αq,Xq) . Let

μ̂q := ‖Xq‖. (16)

Then
lim
q→∞

μ̂q = μ0. (17)

Since μq � μ̂q , by (17)

limsup
q→∞

μq � limsup
q→∞

μ̂q = μ0. (18)

Let {μqk}∞
k=1 be a subsequence of {μq}∞

q=1 such that

liminf
q→∞

μq = lim
k→∞

μqk . (19)

Since {Yqk}∞
k=1 is bounded, there exists a subsequence {Yqki

}∞
i=1 that converges to a

matrix Ŷ0 . As 0 is a multiple eigenvalue of M(αqki
,Yqki

) , 0 is a multiple eigenvalue of

M(α,Ŷ0) . By (19), (14) and (15), we see that

liminf
q→∞

μq = lim
i→∞

μqki
= lim

i→∞
‖Yqki

‖ = ‖Ŷ0‖ � μ0. (20)

Combining inequalities (20) and (18) we conclude that

μ0 � liminf
q→∞

μq � limsup
q→∞

μq � μ0,

that is
lim
q→∞

μq = μ0.

Case 2. Let us suppose that M2(0,α)= /0 . We are going to prove that limq→∞ μq =
∞ . Let us assume the opposite. Then, it follows from (14) that there exist convergent
subsequences {μq j}∞

j=1 and {Yqj}∞
j=1 of {μq}∞

q=1 and {Yq}∞
q=1 , respectively. Let us

call
Ẑ0 := lim

j→∞
Yqj .

As 0 is a multiple eigenvalue of M(αq j ,Yqj ) for each j , then 0 is a multiple eigenvalue
of M(α, Ẑ0) ; a contradiction. �

REMARK 18. A careful analysis of the proof of this theorem let us see that the
following assertions are true:
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1. If the limit
lim
q→∞

min
X∈M2(0,αq)

‖X‖

is finite (infinite, respectively), the same holds for the limit

lim
q→∞

min
X∈M2(0,αq)

‖X −D‖

whatever the matrix D ∈ C
m×m is.

2. The value of the limit
lim
q→∞

min
X∈M2(0,αq)

‖X −D‖

depends only on D , but it does not depend on the sequence {αq}∞
q=1 converging

to α .

COROLLARY 19. Let any triple α = (A,B,C) ∈ Lnm with m > 1 , controllable
(A,B) and observable (C,A) . Let {αq = (Aq,Bq,Cq)}∞

q=1 be a sequence of triples of
matrices in Lnm that converges to α when q → ∞ , and where for every q the matrix
Aq is invertible. Then

• M2(0,α) �= /0 ⇐⇒ limq→∞ minX∈M2(0,αq)‖X‖ is finite.

• M2(0,α) = /0 ⇐⇒ limq→∞ minX∈M2(0,αq)‖X‖ is infinite.

COROLLARY 20. Let any triple α = (A,B,C) ∈ Lnm with m > 1 , controllable
(A,B) and observable (C,A) . Let {αq = (Aq,Bq,Cq)}∞

q=1 be a sequence of triples of
matrices in Lnm that converges to α when q → ∞ , and where for every q the matrix
Aq is invertible. In case of M2(0,α) �= /0 , then for any D ∈ Cm×m ,

min
X∈M2(0,α)

‖X −D‖ = lim
q→∞

min
X∈M2(0,αq)

‖X −D‖.

Concluding remarks

1. Let α = (A,B,C) ∈ Lnm and z0 ∈ C such that z0 is a defective eigenvalue of A .
The set M2(z0,α) of matrices X ∈ Cm×m such that z0 is a multiple eigenvalue
of the matrix (

A B
C X

)

can be empty. Let α ′ denote (A− z0In,B,C) . Reducing the matrix M(α ′,O) ,
instead of M(α,O) , to the form (2), and using the same notations as in Lemma 5
for A4,B4,C4 and Ã , where (A4,B4) is controllable and (C4,A4) is observable,
we deduce that M2(z0,α) = /0 just in the cases when

• 0 is a simple eigenvalue of Ã and m < ν(A4)+1 (special case of (a-2));

• 0 /∈ Λ(Ã) and m = 1 (case (a-3));
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• 0 /∈ Λ(Ã),m > 1 and

lim
q→∞

min
X∈M2(0,αq)

‖X‖ = ∞,

where {αq = (Aq,Bq,Cq)}∞
q=1 is any sequence of triples of matrices of ade-

quate sizes, with invertible Aq for every q , converging to (A4,B4,C4) (spe-
cial case of (a-4)).

In the two first items the small value of m restricts the number of entries of
(

A B
C X

)
we may choose to do multiple the eigenvalue z0 .

2. Moreover, let D ∈ Cm×m be a fourth matrix. With this paper we complete a
solution of the problems of feasibility and finding the minimum distance

min
X∈M2(z0,α)

‖X −D‖,

whatever the complex number z0 is related to the spectrum of A , which the
second and third authors began in [5] and [6].

Summing up, when

• z0 is not an eigenvalue of A , see [5];

• z0 is a semisimple eigenvalue of A , see [6];

• z0 is a nonsemisimple eigenvalue of A , see the current paper.
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