CLOSEST SOUTHEAST SUBMATRIX THAT MAKES MULTIPLE A DEFECTIVE EIGENVALUE OF THE NORTHWEST ONE

Gorka Armentia, Juan-Miguel Gracia and Francisco E. Velasco

(Communicated by C.-K. Li)

Abstract. Given three complex matrices $A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{n \times m}$ and $C \in \mathbb{C}^{m \times n}$, and given a defective eigenvalue z_{0} of A, we study when the set \mathcal{S} of matrices $X \in \mathbb{C}^{m \times m}$ such that z_{0} is a multiple eigenvalue of the matrix

$$
\left(\begin{array}{ll}
A & B \\
C & X
\end{array}\right)
$$

is nonempty. Moreover, when $\mathcal{S} \neq \emptyset$, given a fourth matrix $D \in \mathbb{C}^{m \times m}$ we find a matrix $X_{0} \in \mathcal{S}$ such that

$$
\left\|X_{0}-D\right\|=\min \{\|X-D\|: X \in \mathcal{S}\} .
$$

1. Introduction

Let us denote by $\|\cdot\|$ the spectral matrix norm. We write $\Lambda(M)$ for the spectrum of a square complex matrix M. If $\lambda_{0} \in \Lambda(M)$ we denote by $\mathrm{m}\left(\lambda_{0}, M\right)$ the algebraic multiplicity of λ_{0}. We say that λ_{0} is a defective eigenvalue of M if its algebraic multiplicity is greater than its geometric multiplicity; or, equivalently, λ_{0} is defective if there exists a Jordan block of order $\geqslant 2$ associated to λ_{0} in the Jordan canonical form of M. An eigenvalue α_{0} of M is said to be semisimple if all the Jordan blocks associated to α_{0} are of order one. So, an eigenvalue is defective if and only if is nonsemisimple. Let $L_{n m}$ denote the Cartesian product $\mathbb{C}^{n \times n} \times \mathbb{C}^{n \times m} \times \mathbb{C}^{m \times n}$. Let $\Lambda_{2}(M)$ denote the set of multiple eigenvalues of M. For any matrix $N \in \mathbb{C}^{p \times q}$ we denote by $v(N)$ the nullity of N. That is, $v(N)=\operatorname{dim} \operatorname{Ker} N$. We denote by $\sigma_{1}(N) \geqslant \sigma_{2}(N) \geqslant \cdots \geqslant \sigma_{\min (p, q)}(N)$ the singular values of N. Two unitary column vectors u, v are a pair of singular vectors (left and right) of the matrix N associated with the singular value σ if $N v=\sigma u$ and $N^{*} u=\sigma v$, where N^{*} denotes the conjugate transpose matrix of N. Finally, N^{\dagger} denotes the Moore-Penrose inverse of N.

In [5] and [6] the second and third authors solved the following problems:
Problem 1. Let $\alpha:=(A, B, C) \in L_{n m}$ be a triple of matrices, and let us suppose that z_{0} is a complex number such that: (1) either $z_{0} \notin \Lambda(A) ;(2)$ or z_{0} is a semisimple

[^0]eigenvalue of A. Characterize the cases where the set $\mathcal{N}_{2}\left(z_{0}, \alpha\right)$ of matrices $X \in \mathbb{C}^{m \times m}$ such that z_{0} is a multiple eigenvalue of
\[

\left($$
\begin{array}{ll}
A & B \\
C & X
\end{array}
$$\right)
\]

is nonempty. The second and third authors gave solutions to this problem: in [5] when $z_{0} \notin \Lambda(A)$; and in [6] when z_{0} is a semisimple eigenvalue of A.

Problem 2. Let $\alpha:=(A, B, C) \in L_{n m}$ be a triple of matrices, and let us suppose that z_{0} is a complex number such that: (1) either $z_{0} \notin \Lambda(A)$; (2) or z_{0} is a semisimple eigenvalue of A. In case of $\mathcal{M}_{2}\left(z_{0}, \alpha\right) \neq \emptyset$, given a fourth matrix $D \in \mathbb{C}^{m \times m}$, find a matrix $X_{0} \in \mathcal{M}_{2}\left(z_{0}, \alpha\right)$ such that

$$
\begin{equation*}
\left\|X_{0}-D\right\|=\min _{X \in \mathcal{M}_{2}\left(z_{0}, \alpha\right)}\|X-D\| \tag{1}
\end{equation*}
$$

The second and third authors gave solutions to this problem: in [5] when $z_{0} \notin \Lambda(A)$; and in [6] when z_{0} a semisimple eigenvalue of A.

In this paper we address these two problems when z_{0} is a nonsemisimple eigenvalue of A. One more detailed motivation for this class of structured matrix problems can be seen in the introduction of paper [6]. To shorten notation, for a triple of matrices $\alpha:=(A, B, C) \in L_{n m}$ and a matrix $X \in \mathbb{C}^{m \times m}$ we write $M(\alpha, X)$ instead of

$$
\left(\begin{array}{ll}
A & B \\
C & X
\end{array}\right)
$$

To simplify Problems 1 and 2 there is no loss of generality in assuming that $z_{0}=0$. In fact, let $\alpha^{\prime}=\left(A-z_{0} I_{n}, B, C\right)$; then for $X \in \mathbb{C}^{m \times m}, \mathrm{~m}\left(z_{0}, M(\alpha, X)\right) \geqslant 2$ if and only if $\mathrm{m}\left(0, M\left(\alpha^{\prime}, X-z_{0} I_{m}\right)\right) \geqslant 2$. So, the set $\mathcal{M}_{2}\left(z_{0}, \alpha\right)$ is nonempty if and only if $\mathcal{M}_{2}\left(0, \alpha^{\prime}\right)$ is nonempty. In that case, given a matrix $D \in \mathbb{C}^{m \times m}$,

$$
\min _{X \in \mathcal{M}_{2}\left(z_{0}, \alpha\right)}\|X-D\|=\min _{Y \in \mathcal{M}_{2}\left(0, \alpha^{\prime}\right)}\left\|Y-\left(D-z_{0} I_{m}\right)\right\|
$$

Thus, from here on we suppose that $z_{0}=0$. We will denote the zero matrices by O and the row and column vectors by 0 , disregarding their sizes. Note that when $B=O$ or $C=O$, as 0 is supposed to be a nonsemisimple eigenvalue of A, then 0 is a multiple eigenvalue of

$$
\left(\begin{array}{ll}
A & O \\
C & X
\end{array}\right) \text { or }\left(\begin{array}{ll}
A & B \\
O & X
\end{array}\right)
$$

for every $X \in \mathbb{C}^{m \times m}$; so $\mathcal{M}_{2}(0, \alpha)=\mathbb{C}^{m \times m}$ and

$$
\min _{X \in \mathcal{M}_{2}(0, \alpha)}\|X-D\|=\|D-D\|=0
$$

Therefore, in what follows we will assume that B and C are nonzero matrices.
The organization of this paper is the following one. We will try to solve simultaneously the problems of emptiness of $\mathcal{M}_{2}(0, \alpha)$ and the minimization of $\|X-D\|$
subject to $X \in \mathcal{M}_{2}(0, \alpha)$. In Section 2 we will recall results in the literature about the nearest X to D that lowers the rank of $\left(\begin{array}{ll}A & B \\ C & X\end{array}\right)$ to a preassigned value less than the rank of $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$. We will also reformulate the surjective mapping theorem about functions of several variables. In Section 3 we will reduce the matrices A, B and C by means of unitary matrices to a simplified form that makes less difficult the solution of the Problems. Thus, they are reduced to five cases, whose analyses are made in Sections 4 and 5.

2. Preliminary results

The following statement is a reformulation of results in [4, Theorem 1.1], [8, Theorem 19, (8.1), (8.2) and (8.6)], [3, Theorem 3], [11, Theorem 2.1] and Theorem 6.3.7 of the page 102 in the book [2].

THEOREM 1. Let $\alpha=(A, B, C) \in L_{n m}$ be a triple of matrices and let $D \in \mathbb{C}^{m \times m}$. Let

$$
\rho:=\operatorname{rank}(A, B)+\operatorname{rank}\binom{A}{C}-\operatorname{rank} A,
$$

and

$$
M:=\left(I-A A^{\dagger}\right) B, \quad N:=C\left(I-A^{\dagger} A\right)
$$

Then for $X \in \mathbb{C}^{m \times m}$,

$$
\operatorname{rank} M(\alpha, X)=\rho+\operatorname{rank} S(X)
$$

where

$$
S(X):=\left(I-N N^{\dagger}\right)\left(X-C A^{\dagger} B\right)\left(I-M^{\dagger} M\right)
$$

Furthermore, for each integer r such that $\rho \leqslant r<\operatorname{rank} M(\alpha, D)$, there exits a matrix X_{0} such that $\operatorname{rank} M\left(\alpha, X_{0}\right) \leqslant r$ and

$$
\left\|X_{0}-D\right\|=\min _{\substack{X \in \mathbb{C}^{m \times m} \\ \operatorname{rank} M(\alpha, X) \leqslant r}}\|X-D\|=\sigma_{p+1}(S(D))
$$

where $p=r-\rho$. In addition, if $U, V \in \mathbb{C}^{m \times m}$ are the unitary matrices which appear in the singular value decomposition of the matrix $S(D)$, i.e.

$$
U^{*} S(D) V=\operatorname{diag}\left(\sigma_{1}(S(D)), \ldots, \sigma_{m}(S(D))\right)
$$

we can choose

$$
X_{0}=D-U \operatorname{diag}\left(0, \ldots, 0, \sigma_{p+1}(S(D)), \ldots, \sigma_{m}(S(D))\right) V^{*}
$$

Let $f: \Omega \rightarrow \mathbb{C}^{m}$ be a differentiable map defined on an open subset Ω of \mathbb{C}^{n}. For $z=\left(z_{1}, \ldots, z_{n}\right) \in \Omega$ write $f(z)=\left(f_{1}\left(z_{1}, \ldots, z_{n}\right), \ldots, f_{m}\left(z_{1}, \ldots, z_{n}\right)\right)$. We will denote by

$$
\frac{\partial\left(f_{1}, \ldots, f_{m}\right)}{\partial\left(z_{1}, \ldots, z_{n}\right)}(z)
$$

the Jacobian matrix

$$
\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial z_{1}}(z) & \cdots & \frac{\partial f_{1}}{\partial z_{n}}(z) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial z_{1}}(z) & \cdots & \frac{\partial f_{m}}{\partial z_{n}}(z)
\end{array}\right)
$$

We say that f belongs to class C^{1} on Ω if it has continuous partial derivatives $\partial f_{i} / \partial z_{j}$, for $i=1, \ldots, m, j=1, \ldots, n$.

Let us suppose that $f: \Omega \rightarrow \mathbb{C}^{m \times p}$ is a map from Ω into $\mathbb{C}^{m \times p}$ with Ω an open subset of $\mathbb{C}^{n \times q}$. For each matrix $X=\left(x_{i j}\right) \in \Omega, f(X)=\left(f_{i j}(X)\right)$ is a $m \times p$ matrix. If f is differentiable on Ω, we define its Jacobian matrix at X in the following manner

$$
\frac{\partial f}{\partial X}(X):=\frac{\partial\left(f_{11}, \ldots, f_{1 p}, \ldots, f_{m 1}, \ldots, f_{m p}\right)}{\partial\left(x_{11}, \ldots, x_{1 q}, \ldots, x_{n 1}, \ldots, x_{n q}\right)}(X)
$$

This matrix has size $m p \times n q$. The symbol \otimes denotes the Kronecker product of matrices and ${ }^{\mathrm{T}}$ stands for the transpose matrix. With these notations, one has the following result ([9], Examples 3(b), p. 71; [7], p. 175).

Lemma 2. Let $A \in \mathbb{C}^{m \times n}, X \in \mathbb{C}^{n \times p}, Z \in \mathbb{C}^{q \times m}$. Then,
(a) $\frac{\partial(A X)}{\partial X}=A \otimes I_{p}$,
(b) $\frac{\partial(Z A)}{\partial Z}=I_{q} \otimes A^{\mathrm{T}}$.

For a family of sets S_{1}, \ldots, S_{r} we will denote the Cartesian product $S_{1} \times \cdots \times S_{r}$ by $\prod_{i=1}^{r} S_{i}$. Let us suppose that $g: \Omega \rightarrow \mathbb{C}^{m \times p}$ is a map from Ω into $\mathbb{C}^{m \times p}$ with Ω an open subset of $\prod_{i=1}^{r} \mathbb{C}^{n_{i} \times q_{i}}$. For each r-tuple of matrices $\left(X_{1}, \ldots, X_{r}\right) \in \Omega, X_{k}=\left(x_{i j}^{(k)}\right)$, $k=1, \ldots, r, g\left(X_{1}, \ldots, X_{r}\right)=\left(g_{i j}\left(X_{1}, \ldots, X_{r}\right)\right)$ is a $m \times p$ matrix. If g is differentiable on Ω, we define its partial Jacobian matrix with respect to X_{k} at $\left(X_{1}, \ldots, X_{r}\right)$ in the following manner

$$
\frac{\partial g}{\partial X_{k}}\left(X_{1}, \ldots, X_{r}\right):=\frac{\partial\left(g_{11}, \ldots, g_{1 p}, \ldots, g_{m 1}, \ldots, g_{m p}\right)}{\partial\left(x_{11}^{(k)}, \ldots, x_{1 q_{k}}^{(k)}, \ldots, x_{n_{k} 1}^{(k)}, \ldots, x_{n k}^{(k)}\right)}\left(X_{1}, \ldots, X_{r}\right)
$$

This matrix has size $m p \times n_{k} q_{k}$. A consequence of the Surjective Mapping Theorem ([1], Theorem 41.6, p. 378; [10], Lemma 12.4-1, p. 230) is the following lemma. Before its statement, we need some notations. For $1 \leqslant i \leqslant n, 1 \leqslant j \leqslant p$ and $1 \leqslant k \leqslant s$, we are going to consider the vector spaces of matrices $\mathbb{C}^{n_{i} \times n_{i}^{\prime}}, \mathbb{C}^{p_{j} \times p_{j}^{\prime}}$ and $\mathbb{C}^{m_{k} \times m_{k}^{\prime}}$. Let us denote

$$
P:=\sum_{j=1}^{p} p_{j} p_{j}^{\prime}, \quad M:=\sum_{k=1}^{m} m_{k} m_{k}^{\prime} .
$$

Lemma 3. Let Ω be an open subset of

$$
\left(\prod_{i=1}^{n} \mathbb{C}^{n_{i} \times n_{i}^{\prime}}\right) \times\left(\prod_{j=1}^{p} \mathbb{C}^{p_{j} \times p_{j}^{\prime}}\right)
$$

For $1 \leqslant k \leqslant s$ consider the matrix functions

$$
f_{k}: \Omega \rightarrow \mathbb{C}^{m_{k} \times m_{k}^{\prime}}
$$

of class C^{1} on Ω. Let

$$
Z_{0}:=\left(X_{1}^{0}, X_{2}^{0}, \ldots, X_{n}^{0}, Y_{1}^{0}, Y_{2}^{0}, \ldots, Y_{p}^{0}\right)=\left(X^{0}, Y^{0}\right) \in \Omega
$$

with

$$
\begin{aligned}
X_{i}^{0} \in \mathbb{C}^{n_{i} \times n_{i}^{\prime}} & 1 \leqslant i \leqslant n \\
Y_{j}^{0} \in \mathbb{C}^{p_{j} \times p_{j}^{\prime}} & 1 \leqslant j \leqslant p
\end{aligned}
$$

be a point that satisfies

$$
\left\{\begin{array}{c}
f_{1}\left(X^{0}, Y^{0}\right)=O \\
f_{2}\left(X^{0}, Y^{0}\right)=O \\
\vdots \\
f_{s}\left(X^{0}, Y^{0}\right)=O
\end{array}\right.
$$

Assume $M \leqslant P$ and that the rank of the partial Jacobian matrix

$$
\frac{\partial\left(f_{1}, f_{2}, \ldots, f_{s}\right)}{\partial\left(Y_{1}, Y_{2}, \ldots, Y_{p}\right)}\left(Z_{0}\right):=\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial Y_{1}}\left(Z_{0}\right) & \frac{\partial f_{1}}{\partial Y_{2}}\left(Z_{0}\right) & \cdots & \frac{\partial f_{1}}{\partial Y_{p}}\left(Z_{0}\right) \\
\frac{\partial f_{2}}{\partial Y_{1}}\left(Z_{0}\right) & \frac{\partial f_{2}}{\partial Y_{2}}\left(Z_{0}\right) & \cdots & \frac{\partial f_{2}}{\partial Y_{p}}\left(Z_{0}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{s}}{\partial Y_{1}}\left(Z_{0}\right) \frac{\partial f_{s}}{\partial Y_{2}}\left(Z_{0}\right) & \cdots & \frac{\partial f_{s}}{\partial Y_{p}}\left(Z_{0}\right)
\end{array}\right)
$$

is equal to M. Then, for every sequence

$$
\left\{X^{q}\right\}_{q=1}^{\infty}=\left\{\left(X_{1}^{q}, X_{2}^{q}, \ldots, X_{n}^{q}\right)\right\}_{q=1}^{\infty}
$$

in $\prod_{i=1}^{n} \mathbb{C}^{n_{i} \times n_{i}^{\prime}}$ that converges to X^{0} when $q \rightarrow \infty$, there exists at least a sequence

$$
\left\{Y^{q}\right\}_{q=1}^{\infty}=\left\{\left(Y_{1}^{q}, Y_{2}^{q}, \ldots, Y_{p}^{q}\right)\right\}_{q=1}^{\infty}
$$

in $\prod_{j=1}^{p} \mathbb{C}^{p_{j} \times p_{j}^{\prime}}$ that converges to Y^{0} when $q \rightarrow \infty$ and such that for $q \geqslant 1$,

$$
\left\{\begin{array}{c}
f_{1}\left(X^{q}, Y^{q}\right)=O \\
f_{2}\left(X^{q}, Y^{q}\right)=O \\
\vdots \\
f_{s}\left(X^{q}, Y^{q}\right)=O
\end{array}\right.
$$

3. A reduction of the problems

For a simplification of the Problems we make the following remarks. Given a triple of matrices $\alpha=(A, B, C) \in L_{n m}$, let us define

$$
\alpha^{\prime}=\left(A^{\prime}, B^{\prime}, C^{\prime}\right)=\left(P A P^{*}, P B Q^{*}, Q C P^{*}\right)
$$

with P, Q unitary matrices. Then, one readily sees that $\mathcal{N}_{2}(0, \alpha)$ is nonempty if and only if $\mathcal{M}_{2}\left(0, \alpha^{\prime}\right)$ is nonempty. In that case, let $D \in \mathbb{C}^{m \times m}$, and let $D^{\prime}=Q D Q^{*}$, then

$$
\min _{\substack{X \in \mathbb{C}^{m \times m} \\ \mathrm{~m}(0, M(\alpha, X)) \geqslant 2}}\|X-D\|=\min _{\substack{Y \in \mathbb{C}^{m \times m} \\ \mathrm{~m}\left(0, M\left(\alpha^{\prime}, Y\right)\right) \geqslant 2}}\left\|Y-D^{\prime}\right\| .
$$

REMARK 4. To find the minimum in (1) there is no loss of generality in considering another triple $\alpha^{\prime}=\left(A^{\prime}, B^{\prime}, C^{\prime}\right) \in L_{n m}$ and another matrix $D^{\prime} \in \mathbb{C}^{m \times m}$ such that

$$
\left(A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}\right)=\left(P A P^{*}, P B Q^{*}, Q C P^{*}, Q D Q^{*}\right)
$$

with unitary matrices P, Q, instead of α and D, respectively.
We say that two matrices $N_{1}, N_{2} \in \mathbb{C}^{(n+m) \times(n+m)}$ are (n, m) block-diagonal unitarily similar if there exist two unitary matrices $U \in \mathbb{C}^{n \times n}$ and $V \in \mathbb{C}^{m \times m}$ that satisfy

$$
N_{1}=\left(\begin{array}{cc}
U & O \\
O & V
\end{array}\right) N_{2}\left(\begin{array}{ll}
U & O \\
O & V
\end{array}\right)^{*}
$$

From this definition we get the following lemma, showed in [5, Lemma 11].
Lemma 5. Let $\alpha:=(A, B, C) \in L_{n m}$. Assume that B and C are nonzero matrices. Then, the matrix $M(\alpha, O)$ is (n, m) block-diagonal unitarily similar to a matrix in the reduced form:
(a) either

$$
\left(\begin{array}{cccc|c}
A_{11} & O & O & O & O \tag{2}\\
A_{21} & A_{22} & O & O & O \\
A_{31} & A_{32} & A_{33} & A_{34} & B_{3} \\
A_{41} & A_{42} & O & A_{44} & B_{4} \\
\hline C_{1} & O & O & C_{4} & O
\end{array}\right)=\left(\begin{array}{l|l}
A_{r} & B_{r} \\
\hline C_{r} & O
\end{array}\right)
$$

with controllable pairs

$$
\left(\begin{array}{cc|c}
A_{33} & A_{34} & B_{3} \\
O & A_{44} & B_{4}
\end{array}\right), \quad\left(A_{44}, B_{4}\right)
$$

and observable pairs

$$
\left(C_{1}, A_{11}\right), \quad\left(C_{4}, A_{44}\right)
$$

(b) $o r$

$$
\left(\begin{array}{ccc|c}
\hat{A}_{11} & O & O & O \tag{3}\\
\hat{A}_{21} & \hat{A}_{22} & O & O \\
\hat{A}_{31} & \hat{A}_{32} & \hat{A}_{33} & \hat{B}_{3} \\
\hline \hat{C}_{1} & O & O & O
\end{array}\right)=\left(\begin{array}{l|l|}
\hat{A}_{r} & \hat{B}_{r} \\
\hline \hat{C}_{r} \mid O
\end{array}\right)
$$

with $\left(\hat{A}_{33}, \hat{B}_{3}\right)$ and $\left(\hat{C}_{1}, \hat{A}_{11}\right)$ controllable and observable pairs, respectively.

REMARK 6. Concerning the submatrices in (2) and (3) we notice that: the sum of the numbers of columns of the matrices A_{11}, A_{22}, A_{33} and A_{44} is n; the matrices B_{3} and B_{4} have m columns; the matrices C_{1} and C_{4} have m rows; the sum of the numbers of columns of the matrices $\hat{A}_{11}, \hat{A}_{22}$ and \hat{A}_{33} is n; the matrix \hat{B}_{3} has m columns; and the matrix \hat{C}_{1} has m rows.

According to Remark 4 in addressing the Problems there is no loss of generality in assuming that the matrix $M(\alpha, O)$ has the reduced form (a) or (b). That is, there is no loss of generality in considering the triples $\alpha_{r}:=\left(A_{r}, B_{r}, C_{r}\right)$ or $\hat{\alpha}_{r}:=\left(\hat{A}_{r}, \hat{B}_{r}, \hat{C}_{r}\right)$, respectively, instead of the triple $\alpha=(A, B, C)$.

In case (a) we write

$$
\begin{equation*}
\tilde{A}:=\operatorname{diag}\left(A_{11}, A_{22}, A_{33}\right), \quad A_{4}:=A_{44} \in \mathbb{C}^{n_{4} \times n_{4}} \tag{4}
\end{equation*}
$$

for short. Given $X \in \mathbb{C}^{m \times m}$, if $M(\alpha, O)$ is (n, m) block-diagonal unitarily similar to (2), then using the notations in (4) we immediately obtain

$$
\operatorname{det}\left(\lambda I_{n+m}-\left(\begin{array}{ll}
A & B \tag{5}\\
C & X
\end{array}\right)\right)=\operatorname{det}\left(\lambda I_{n-n_{4}}-\tilde{A}\right) \operatorname{det}\left(\lambda I_{n_{4}+m}-\left(\begin{array}{ll}
A_{4} & B_{4} \\
C_{4} & X
\end{array}\right)\right) .
$$

On the other hand, if $M(\alpha, O)$ is (n, m) block-diagonal unitarily similar to (3), then we have

$$
\operatorname{det}\left(\lambda I_{n+m}-\left(\begin{array}{ll}
A & B \tag{6}\\
C & X
\end{array}\right)\right)=\operatorname{det}\left(\lambda I_{n}-A\right) \operatorname{det}\left(\lambda I_{m}-X\right)
$$

According to the disjunctive (a) or (b) and \tilde{A} being the matrix defined in (4), the analyses of the Problems can be reduced to the consideration of the cases:
(a) $M(\alpha, O)$ is (n, m) block-diagonal unitarily similar to (2), with the following subcases:

$$
\left\{\begin{array}{l}
\left(\text { a-1) } 0 \in \Lambda_{2}(\tilde{A}),\right. \\
\left(\text { a-2) } 0 \in \Lambda(\tilde{A}) \backslash \Lambda_{2}(\tilde{A}),\right. \\
(\text { a-3) } 0 \notin \Lambda(\tilde{A}) \text { and } m=1, \\
(\text { a-4) } 0 \notin \Lambda(\tilde{A}) \text { and } m>1 .
\end{array}\right.
$$

(b) $M(\alpha, O)$ is (n, m) block-diagonal unitarily similar to (3).

REMARK 7. Let us note that as 0 is a multiple eigenvalue of A, then in the subcases (a-3) and (a-4) it follows that 0 is a multiple eigenvalue of A_{4}. Therefore in these subcases we see that $n_{4}>1$.

In section 4 we will analyze all the cases, except for the subcase (a-4), which will be studied in Section 5.

4. Cases: (b), (a-1), (a-2) and (a-3)

4.1. Cases: (b) and (a-1)

We have the next theorem.
THEOREM 8. In the cases (b) and (a-1) with the notations in (4), if, either $M(\underset{\sim}{\alpha}, O)$ is (n, m) block-diagonal unitarily similar to (2) and 0 is a multiple eigenvalue of \tilde{A}, or $M(\alpha, O)$ is (n, m) block-diagonal unitarily similar to (3), then $\mathcal{M}_{2}(0, \alpha) \neq \emptyset$ and

$$
\min _{X \in \mathcal{M}_{2}(0, \alpha)}\|X-D\|=0
$$

Proof. It is a consequence of (6) and (5).

4.2. Subcase (a-2)

Since $M(\alpha, O)$ is (n, m) block-diagonal unitarily similar to (2) and $0 \in \Lambda(\tilde{A}) \backslash$ $\Lambda_{2}(\tilde{A})$, fixing $X \in \mathbb{C}^{m \times m}$, from (5),

$$
0 \in \Lambda_{2}\left(\begin{array}{ll}
A & B \\
C & X
\end{array}\right) \Longleftrightarrow 0 \in \Lambda\left(\begin{array}{ll}
A_{4} & B_{4} \\
C_{4} & X
\end{array}\right)
$$

Therefore, denoting $\alpha_{4}=\left(A_{4}, B_{4}, C_{4}\right)$, where $A_{4} \in \mathbb{C}^{n_{4} \times n_{4}}$, we have

$$
\min _{\substack{X \in \mathbb{C}^{m \times m} \\ \mathrm{~m}(0, M(\alpha, X)) \geqslant 2}}\|X-D\|=\min _{\substack{X \in \mathbb{C}^{m \times m} \\ \operatorname{rank} M\left(\alpha_{4}, X\right)<n_{4}+m}}\|X-D\|
$$

With these considerations, for this case we are going to prove the next result.
THEOREM 9. In the subcase (a-2), with the hypotheses and notations above, let

$$
p:=m-v\left(A_{4}\right)-1
$$

(i) If $p \geqslant 0$, then $\mathcal{M}_{2}(0, \alpha) \neq \emptyset$ and the equality

$$
\min _{\substack{X \in \mathbb{C}^{m \times m} \\ \mathrm{~m}(0, M(\alpha, X)) \geqslant 2}}\|X-D\|=\sigma_{p+1}(S(D))
$$

holds, where

$$
S(D):=\left(I-N N^{\dagger}\right)\left(D-C_{4} A_{4}^{\dagger} B_{4}\right)\left(I-M^{\dagger} M\right)
$$

with

$$
M:=\left(I-A_{4} A_{4}^{\dagger}\right) B_{4}, \quad N:=C_{4}\left(I-A_{4}^{\dagger} A_{4}\right)
$$

In addition, if $U, V \in \mathbb{C}^{m \times m}$ are the unitary matrices which satisfy $U^{*} S(D) V=$ $\operatorname{diag}\left(\sigma_{1}(S(D)), \ldots, \sigma_{m}(S(D))\right)$ and $p \geqslant 0$, then defining

$$
X_{0}:=D-U \operatorname{diag}\left(0, \ldots, 0, \sigma_{p+1}(S(D)), \ldots, \sigma_{m}(S(D))\right) V^{*}
$$

we have $\mathrm{m}\left(0, M\left(\alpha, X_{0}\right)\right) \geqslant 2$ i.e. rank $M\left(\alpha_{4}, X_{0}\right)<n_{4}+m$, and $\left\|X_{0}-D\right\|=\sigma_{p+1}(S(D))$.
(ii) If $p<0$, then $\mathcal{M}_{2}(0, \alpha)=\emptyset$.

Proof. We are going to apply Theorem 1. First, since $\left(A_{4}, B_{4}\right)$ is controllable and $\left(C_{4}, A_{4}\right)$ is observable,

$$
\rho=\operatorname{rank}\left(A_{4}, B_{4}\right)+\operatorname{rank}\binom{A_{4}}{C_{4}}-\operatorname{rank} A_{4}=n_{4}+n_{4}-\operatorname{rank} A_{4}=n_{4}+v\left(A_{4}\right) .
$$

Setting $r=n_{4}+m-1$, it follows that

$$
\rho \leqslant r \Leftrightarrow v\left(A_{4}\right)+1 \leqslant m \Leftrightarrow p \geqslant 0 .
$$

Suppose that $p \geqslant 0$. If $\operatorname{rank} M\left(\alpha_{4}, D\right)<n_{4}+m$, i.e. $r \geqslant \operatorname{rank} M\left(\alpha_{4}, D\right)$, then 0 is an eigenvalue of the matrix $M\left(\alpha_{4}, D\right)$ and

$$
\min _{\substack{X \in \mathbb{C}^{m \times m} \\ 1(0, M(\alpha, X)) \geqslant 2}}\|X-D\|=0 .
$$

But, by Theorem 1,

$$
n_{4}+m>\operatorname{rank} M\left(\alpha_{4}, D\right)=\rho+\operatorname{rank} S(D)
$$

which implies

$$
\operatorname{rank} S(D)<m-v\left(A_{4}\right)=p+1
$$

Therefore $\sigma_{p+1}(S(D))=0$ and the theorem has been proved in this case.
When $\operatorname{rank} M\left(\alpha_{4}, D\right)=n_{4}+m$, i.e. $r<\operatorname{rank} M\left(\alpha_{4}, D\right)$, the theorem immediately follows from Theorem 1. This ends the proof of (i).

Now we will prove (ii). Let us observe in first place that if $p<0$ then $v\left(A_{4}\right) \geqslant m$. As $\left(A_{4}, B_{4}\right)$ is controllable, then $v\left(A_{4}\right) \leqslant m$. Hence $v\left(A_{4}\right)=m$, i.e. $\rho=n_{4}+m$. By Theorem 1, for $X \in \mathbb{C}^{m \times m}$, we deduce that rank $M\left(\alpha_{4}, X\right) \geqslant \rho=n_{4}+m$. Thus, there is no matrix $X \in \mathbb{C}^{m \times m}$ such that rank $M\left(\alpha_{4}, X\right)<n_{4}+m$.

4.3. Subcase (a-3)

THEOREM 10. In the subcase (a-3), there is no matrix $X_{0} \in \mathbb{C}^{1 \times 1}$ such that $\mathrm{m}\left(0, M\left(\alpha, X_{0}\right)\right) \geqslant 2$.

Proof. First, let us observe that in the proof of Theorem 9 we have proved $\rho=$ $n_{4}+v\left(A_{4}\right)$. Now then, by Theorem 1 , for any $X \in \mathbb{C}^{1 \times 1}$ we conclude that rank $M\left(\alpha_{4}, X\right)$ $\geqslant \rho=n_{4}+1$. In consequence, as $0 \notin \Lambda(\tilde{A})$, we infer that there is no matrix $X_{0} \in \mathbb{C}^{1 \times 1}$ such that $\mathrm{m}\left(0, M\left(\alpha, X_{0}\right)\right) \geqslant 2$.

5. Subcase (a-4)

Let $\alpha_{4}=\left(A_{4}, B_{4}, C_{4}\right)$. Since 0 is not an eigenvalue of \tilde{A}, from (5) we deduce the following assertion: Given a matrix $X \in \mathbb{C}^{m \times m}$, then 0 is a multiple eigenvalue of $M(\alpha, X)$ if and only if 0 is a multiple eigenvalue of $M\left(\alpha_{4}, X\right)$. For this reason $\mathcal{M}_{2}(0, \alpha)=\mathcal{M}_{2}\left(0, \alpha_{4}\right)$, and if this set is nonempty,

$$
\min _{X \in \mathcal{M}_{2}(0, \alpha)}\|X-D\|=\min _{X \in \mathcal{M}_{2}\left(0, \alpha_{4}\right)}\|X-D\|
$$

The pairs $\left(A_{4}, B_{4}\right)$ and $\left(C_{4}, A_{4}\right)$ are controllable and observable, respectively, and 0 is an eigenvalue of A_{4}. Therefore, a solution to the Problems is given by means of the forthcoming Theorem 14. To ease the meaning of this theorem we need the following three results.

Proposition 11. Let any $\alpha=(A, B, C) \in L_{n m}$ with $m>1$. Then for every $z_{0} \in$ $\mathbb{C} \backslash \Lambda(A)$, the set $\mathcal{M}_{2}\left(z_{0}, \alpha\right)$ is nonempty.

Proof. As

$$
\begin{aligned}
&\left(\begin{array}{cc}
I_{n}\left(A-z_{0} I_{n}\right)^{-1} B \\
O & I_{m}
\end{array}\right)\left(\begin{array}{cc}
A & B \\
C & z_{0} I_{m}+C\left(A-z_{0} I_{n}\right)^{-1} B
\end{array}\right)\left(\begin{array}{cc}
I_{n}-\left(A-z_{0} I_{n}\right)^{-1} B \\
O & I_{m}
\end{array}\right) \\
&=\left(\begin{array}{cc}
A+\left(A-z_{0} I_{n}\right)^{-1} B C & O \\
C & z_{0} I_{m}
\end{array}\right)
\end{aligned}
$$

and $m>1$, it follows that z_{0} is a multiple eigenvalue of the matrix

$$
M\left(\alpha, z_{0} I_{m}+C\left(A-z_{0} I_{n}\right)^{-1} B\right)
$$

Corollary 12. Let $\alpha=(A, B, C) \in L_{n m}$ where A is invertible and $m>1$. Then $\mathcal{M}_{2}(0, \alpha) \neq \emptyset$.

Let us remind the following theorem about the minimum distance from a given matrix D to the matrices X in the set $\mathcal{M}_{2}(0, \alpha)$, which the second and third authors showed in [5, Theorem 25, page 1205].

THEOREM 13. Let $\alpha=(A, B, C) \in L_{n m}$ where A is invertible and $m>1$. Let $D \in \mathbb{C}^{m \times m}$. Then

$$
\sup _{t \in \mathbb{R}} \sigma_{2 m-1}\left(\begin{array}{cc}
D-C A^{-1} B & t\left(I_{m}+C A^{-2} B\right) \\
O & D-C A^{-1} B
\end{array}\right)=\min _{X \in \mathcal{M}_{2}(0, \alpha)}\|X-D\|
$$

Now we are prepared to establish the main result in this paper.
THEOREM 14. Let any triple $\alpha=(A, B, C) \in L_{n m}$ with $m>1$. Let us assume that the pair (A, B) is controllable and the pair (C, A) is observable. Let $\left\{\alpha_{q}=\right.$ $\left.\left(A_{q}, B_{q}, C_{q}\right)\right\}_{q=1}^{\infty}$ be a sequence of triples of matrices in $L_{n m}$ that converges to α when $q \rightarrow \infty$, and where for every q the matrix A_{q} is invertible. Then there exists the limit

$$
\lim _{q \rightarrow \infty} \min _{X \in \mathcal{M}_{2}\left(0, \alpha_{q}\right)}\|X\|
$$

finite $(\ell \in \mathbb{R})$ or infinite (∞). Also,

$$
\lim _{q \rightarrow \infty} \min _{X \in \mathcal{M}_{2}\left(0, \alpha_{q}\right)}\|X\|=\left\{\begin{array}{lll}
\ell \in \mathbb{R} & \Longleftrightarrow & \mathcal{M}_{2}(0, \alpha) \neq \emptyset \\
\infty & \Longleftrightarrow & \mathcal{N}_{2}(0, \alpha)=\emptyset
\end{array}\right.
$$

Moreover, when this limit is $\ell<\infty$ then

$$
\min _{X \in \mathcal{M}_{2}(0, \alpha)}\|X\|=\ell
$$

REMARK 15. Let us make the following observations about the statement of this theorem:

1. The matrix A can be invertible or not.
2. The convergence of $\min _{X \in \mathcal{M}_{2}\left(0, \alpha_{q}\right)}\|X\|$ to a real number ℓ (to ∞, respectively), and this limit, is independent of the choice of the sequence $\left\{\alpha_{q}\right\}_{q=1}^{\infty}$ converging to α.
3. The invertibility of the matrices A_{q} guarantees the existence of the minimum $\min _{X \in \mathcal{M}_{2}\left(0, \alpha_{q}\right)}\|X\|$ and the computation of its value.
4. The sequence of nonnegative numbers

$$
\left\{\min _{X \in \mathcal{M}_{2}\left(0, \alpha_{q}\right)}\|X\|\right\}_{q=1}^{\infty}
$$

does not oscillate; more precisely,

$$
\liminf _{q \rightarrow \infty} \min _{X \in \mathcal{M}_{2}\left(0, \alpha_{q}\right)}\|X\|=\limsup _{q \rightarrow \infty} \min _{X \in \mathcal{M}_{2}\left(0, \alpha_{q}\right)}\|X\| .
$$

Before the proof of this theorem we are going to prove a proposition and a lemma. With the hypotheses of Theorem 14 for the triple $\alpha=(A, B, C) \in L_{n m}$, let us assume that there exists a matrix $X_{0} \in \mathbb{C}^{m \times m}$ such that $\mathrm{m}\left(0, M\left(\alpha, X_{0}\right)\right) \geqslant 2$. Therefore, there exist vectors $u_{1}, v_{1} \in \mathbb{C}^{n \times 1}, u_{2}, v_{2} \in \mathbb{C}^{m \times 1}$ and a complex number β such that

$$
\operatorname{rank}\left(\begin{array}{ll}
u_{1} & v_{1} \tag{7}\\
u_{2} & v_{2}
\end{array}\right)=2
$$

and

$$
\left(\begin{array}{cc}
A & B \tag{8}\\
C & X_{0}
\end{array}\right)\left(\begin{array}{ll}
u_{1} & v_{1} \\
u_{2} & v_{2}
\end{array}\right)=\left(\begin{array}{ll}
u_{1} & v_{1} \\
u_{2} & v_{2}
\end{array}\right)\left(\begin{array}{ll}
0 & \beta \\
0 & 0
\end{array}\right) .
$$

That is

$$
\begin{gather*}
A u_{1}+B u_{2}=0 \tag{9a}\\
C u_{1}+X_{0} u_{2}=0 \tag{9b}\\
A v_{1}+B v_{2}-u_{1} \beta=0 \tag{9c}\\
C v_{1}+X_{0} v_{2}-u_{2} \beta=0 \tag{9d}
\end{gather*}
$$

We have the following result.

PROPOSITION 16. $u_{2} \neq 0$.
Proof. Suppose, contrary to our claim, that $u_{2}=0$. Then, by (9a) and (9b), $A u_{1}=$ 0 and $C u_{1}=0$. Since (C, A) is an observable pair, then $u_{1}=0$. Hence $\binom{u_{1}}{u_{2}}=0$. This contradicts (7).

Lemma 17. Let $\alpha=(A, B, C) \in L_{n m}$ be any triple of matrices, with $m>1$. Let us assume that (A, B) is controllable and (C, A) is observable. Let us suppose that there is a matrix $X_{0} \in \mathbb{C}^{m \times m}$ such that 0 is a multiple eigenvalue of $M\left(\alpha, X_{0}\right)$. Let $\left\{\alpha_{q}\right\}_{q=1}^{\infty}$ be a sequence in $L_{n m}$ that converges to α when $q \rightarrow \infty$. Then there exist a sequence of matrices $\left\{X_{q}\right\}_{q=1}^{\infty}$ converging to X_{0} when $q \rightarrow \infty$, such that 0 is a multiple eigenvalue of $M\left(\alpha_{q}, X_{q}\right)$, for each q.

Proof. Since 0 is a multiple eigenvalue of $M\left(\alpha, X_{0}\right)$, there exist vectors $u_{1}, v_{1} \in$ $\mathbb{C}^{n \times 1}, u_{2}, v_{2} \in \mathbb{C}^{m \times 1}$ and a complex number β such that (7) and (8) are satisfied. Let $\alpha_{q}:=\left(A+\Delta_{1}^{q}, B+\Delta_{2}^{q}, C+\Delta_{3}^{q}\right)$.

The proof of this lemma will be ended once we have proved the existence of sequences of matrices $\left\{\Delta_{4}^{q}\right\}_{q=1}^{\infty}$ and sequences of vectors $\left\{s_{i}^{q}\right\}_{q=1}^{\infty}, i=1,2,3,4$, of adequate sizes, converging to O and 0 when $q \rightarrow \infty$, such that for each q,

$$
\left(\begin{array}{l}
A+\Delta_{1}^{q}
\end{array} B+\Delta_{2}^{q}\right)\left(\begin{array}{ll}
u_{1}+s_{1}^{q} & v_{1}+s_{2}^{q} \tag{10}\\
C+\Delta_{3}^{q} X_{0}+\Delta_{4}^{q}
\end{array}\right)=\left(\begin{array}{ll}
u_{1}+s_{1}^{q} & v_{1}+s_{2}^{q} \\
u_{2}+s_{3}^{q} & v_{2}+s_{4}^{q}
\end{array}\right)\left(\begin{array}{ll}
0 & \beta \\
u_{2}+s_{3}^{q} & v_{2}+s_{4}^{q}
\end{array}\right) .
$$

Case 1 . We assume that u_{2} and v_{2} are linearly independent. Operating by blocks in (10), our problem is reduced to find sequences $\left\{\Delta_{4}^{q}\right\}_{q=1}^{\infty}$ and $\left\{s_{i}^{q}\right\}_{q=1}^{\infty}$ converging to O and 0 when $q \rightarrow \infty$, such that for each q,

$$
\left\{\begin{array}{l}
\left(A+\Delta_{1}^{q}\right)\left(u_{1}+s_{1}^{q}\right)+\left(B+\Delta_{2}^{q}\right)\left(u_{2}+s_{3}^{q}\right)=0 \tag{11}\\
\left(C+\Delta_{3}^{q}\right)\left(u_{1}+s_{1}^{q}\right)+\left(X_{0}+\Delta_{4}^{q}\right)\left(u_{2}+s_{3}^{q}\right)=0 \\
\left(A+\Delta_{1}^{q}\right)\left(v_{1}+s_{2}^{q}\right)+\left(B+\Delta_{2}^{q}\right)\left(v_{2}+s_{4}^{q}\right)-\left(u_{1}+s_{1}^{q}\right) \beta=0 \\
\left(C+\Delta_{3}^{q}\right)\left(v_{1}+s_{2}^{q}\right)+\left(X_{0}+\Delta_{4}^{q}\right)\left(v_{2}+s_{4}^{q}\right)-\left(u_{2}+s_{3}^{q}\right) \beta=0
\end{array}\right.
$$

To solve this question, we are going to take into account Lemma 3. Let $P_{n, m}$ be the product space

$$
\mathbb{C}^{n \times n} \times \mathbb{C}^{n \times m} \times \mathbb{C}^{m \times n} \times \mathbb{C}^{n \times 1} \times \mathbb{C}^{n \times 1} \times \mathbb{C}^{n \times 1} \times \mathbb{C}^{n \times 1} \times \mathbb{C}^{m \times m}
$$

Let $f_{1}: P_{n, m} \rightarrow \mathbb{C}^{n \times 1}, f_{2}: P_{n, m} \rightarrow \mathbb{C}^{m \times 1}, f_{3}: P_{n, m} \rightarrow \mathbb{C}^{n \times 1}, f_{4}: P_{n, m} \rightarrow \mathbb{C}^{m \times 1}$ be the maps defined by

$$
\begin{aligned}
& f_{1}\left(\Delta_{1}, \Delta_{2}, \Delta_{3}, s_{1}, s_{2}, s_{3}, s_{4}, \Delta_{4}\right):=\left(A+\Delta_{1}\right)\left(u_{1}+s_{1}\right)+\left(B+\Delta_{2}\right)\left(u_{2}+s_{3}\right) \\
& f_{2}\left(\Delta_{1}, \Delta_{2}, \Delta_{3}, s_{1}, s_{2}, s_{3}, s_{4}, \Delta_{4}\right):=\left(C+\Delta_{3}\right)\left(u_{1}+s_{1}\right)+\left(X_{0}+\Delta_{4}\right)\left(u_{2}+s_{3}\right) \\
& f_{3}\left(\Delta_{1}, \Delta_{2}, \Delta_{3}, s_{1}, s_{2}, s_{3}, s_{4}, \Delta_{4}\right):=\left(A+\Delta_{1}\right)\left(v_{1}+s_{2}\right)+\left(B+\Delta_{2}\right)\left(v_{2}+s_{4}\right)-\left(u_{1}+s_{1}\right) \beta \\
& f_{4}\left(\Delta_{1}, \Delta_{2}, \Delta_{3}, s_{1}, s_{2}, s_{3}, s_{4}, \Delta_{4}\right):=\left(C+\Delta_{3}\right)\left(v_{1}+s_{2}\right)+\left(X_{0}+\Delta_{4}\right)\left(v_{2}+s_{4}\right)-\left(u_{2}+s_{3}\right) \beta,
\end{aligned}
$$

for

$$
\left(\Delta_{1}, \Delta_{2}, \Delta_{3}, s_{1}, s_{2}, s_{3}, s_{4}, \Delta_{4}\right) \in P_{n, m}
$$

First, by (9) we deduce that

$$
f_{i}(O, O, O, 0,0,0,0, O)=0
$$

for $i=1,2,3,4$. Second, due to Lemma 2, the partial Jacobian matrix

$$
\frac{\partial\left(f_{1}, f_{2}, f_{3}, f_{4}\right)}{\partial\left(s_{1}, s_{2}, s_{3}, s_{4}, \Delta_{4}\right)}
$$

evaluated at the point $(O, O, O, 0,0,0,0, O) \in P_{n, m}$, is the matrix

$$
\mathscr{J}=\left(\begin{array}{ccccc}
A & O & B & O & O \\
C & O & X_{0} & O & I_{m} \otimes u_{2}^{\mathrm{T}} \\
-\beta I_{n} & A & O & B & O \\
O & C & -\beta I_{m} & X_{0} & I_{m} \otimes v_{2}^{\mathrm{T}}
\end{array}\right) .
$$

To finish the proof, it suffices to see that the $(2 n+2 m) \times(2 n+3 m)$ matrix \mathscr{J} has rank $2 n+2 m$. Note that

$$
\text { rank } \mathscr{J}=2 m+\operatorname{rank}\left(\begin{array}{cccc}
A & B & O & O \\
-\beta I_{n} & O & A & B
\end{array}\right)
$$

because u_{2} and v_{2} are linearly independent. Finally, since (A, B) is a controllable pair we conclude that

$$
\operatorname{rank}\left(\begin{array}{cccc}
A & B & O & O \\
-\beta I_{n} & O & A & B
\end{array}\right)=2 n
$$

Thus, rank $\mathscr{J}=2 m+2 n$.
Case 2. We assume that u_{2} and v_{2} are linearly dependent. Then, by Proposition 16, since $u_{2} \neq 0$ we see that $v_{2}=\lambda u_{2}$ for some $\lambda \in \mathbb{C}$. From (8), we deduce that

$$
\left(\begin{array}{ll}
A & B \\
C & X_{0}
\end{array}\right)\left(\begin{array}{ll}
u_{1} & v_{1} \\
u_{2} & v_{2}
\end{array}\right)\left(\begin{array}{cc}
1 & -\lambda \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
u_{1} & v_{1} \\
u_{2} & v_{2}
\end{array}\right)\left(\begin{array}{cc}
1 & -\lambda \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & \lambda \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & \beta \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & -\lambda \\
0 & 1
\end{array}\right)
$$

that is

$$
\left(\begin{array}{cc}
A & B \\
C & X_{0}
\end{array}\right)\left(\begin{array}{cc}
u_{1} & v_{1}-\lambda u_{1} \\
u_{2} & 0
\end{array}\right)=\left(\begin{array}{cc}
u_{1} & v_{1}-\lambda u_{1} \\
u_{2} & 0
\end{array}\right)\left(\begin{array}{ll}
0 & \beta \\
0 & 0
\end{array}\right) .
$$

Given that u_{2} and v_{2} are linearly dependent, there is no loss of generality in considering that $v_{2}=0$. Then, by (8),

$$
\left(\begin{array}{cc}
A & B \tag{12}\\
C & X_{0}
\end{array}\right)\left(\begin{array}{cc}
u_{1} & v_{1} \\
u_{2} & 0
\end{array}\right)=\left(\begin{array}{cc}
u_{1} & v_{1} \\
u_{2} & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \beta \\
0 & 0
\end{array}\right)
$$

where u_{2} and v_{1} are nonzero vectors. Let $\left\{T_{p}\right\}_{p=0}^{\infty}$ be a sequence of matrices in $\mathbb{C}^{m \times n}$ such that for each $p \operatorname{rank}\left(u_{2}+T_{p} u_{1}, T_{p} v_{1}\right)=2,\left(A-B T_{p}, B\right)$ is a controllable pair,
$\left(C+T_{p} A-X_{0} T_{p}-T_{p} B T_{p}, A-B T_{p}\right)$ is observable, and $\left\|T_{p}\right\|<1 / p$. By (12) we see that

$$
\left(\begin{array}{cc}
I_{n} & O \\
T_{p} & I_{m}
\end{array}\right)\left(\begin{array}{ll}
A & B \\
C & X_{0}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & O \\
-T_{p} & I_{m}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & O \\
T_{p} & I_{m}
\end{array}\right)\left(\begin{array}{ll}
u_{1} & v_{1} \\
u_{2} & 0
\end{array}\right)=\left(\begin{array}{cc}
I_{n} & O \\
T_{p} & I_{m}
\end{array}\right)\left(\begin{array}{ll}
u_{1} & v_{1} \\
u_{2} & 0
\end{array}\right)\left(\begin{array}{ll}
0 & \beta \\
0 & 0
\end{array}\right)
$$

that is

$$
\begin{aligned}
&\left(\begin{array}{cc}
A-B T_{p} & B \\
C+T_{p} A-X_{0} T_{p}-T_{p} B T_{p} X_{0}+T_{p} B
\end{array}\right)\left(\begin{array}{cc}
u_{1} & v_{1} \\
u_{2}+T_{p} u_{1} & T_{p} v_{1}
\end{array}\right) \\
&=\left(\begin{array}{cc}
u_{1} & v_{1} \\
u_{2}+T_{p} u_{1} & T_{p} v_{1}
\end{array}\right)\left(\begin{array}{ll}
0 & \beta \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

Since $\operatorname{rank}\left(u_{2}+T_{p} u_{1}, T_{p} v_{1}\right)=2,\left(A-B T_{p}, B\right)$ is a controllable pair, and $(C+$ $\left.T_{p} A-X_{0} T_{p}-T_{p} B T_{p}, A-B T_{p}\right)$ is observable, by the already proved in Case 1 and given that the sequence of $\left\{\left(\Omega_{1}^{p, q}, \Omega_{2}^{p, q}, \Omega_{3}^{p, q}\right)\right\}_{q=1}^{\infty}$ converges to $O \in L_{n m}$ when $q \rightarrow \infty$, we infer that there exist sequences $\left\{E_{q}^{p}\right\}_{q=1}^{\infty},\left\{s_{i}^{p, q}\right\}_{q=1}^{\infty}$ of adequate sizes converging to 0 , such that for each q,

$$
\begin{align*}
& \left(\begin{array}{cc}
A-B T_{p}+\Omega_{1}^{p, q} & B+\Omega_{2}^{p, q} \\
C+T_{p} A-X_{0} T_{p}-T_{p} B T_{p}+\Omega_{3}^{p, q} X_{0}+T_{p} B+E_{q}^{P}
\end{array}\right) \\
& \times\left(\begin{array}{cc}
u_{1}+s_{1}^{p, q} & v_{1}+s_{2}^{p, q} \\
u_{2}+T_{p} u_{1}+s_{3}^{p, q} & T_{p} v_{1}+s_{4}^{p, q}
\end{array}\right) \\
& \quad=\left(\begin{array}{cc}
u_{1}+s_{1}^{p, q} & v_{1}+s_{2}^{p, q} \\
u_{2}+T_{p} u_{1}+s_{3}^{p, q} & T_{p} v_{1}+s_{4}^{p, q}
\end{array}\right)\left(\begin{array}{ll}
0 & \beta \\
0 & 0
\end{array}\right) . \tag{13}
\end{align*}
$$

Defining

$$
\Omega_{1}^{q, q}:=\Delta_{1}^{q}+B T_{q}, \Omega_{2}^{q, q}:=\Delta_{2}^{q}, \Omega_{3}^{q, q}:=\Delta_{3}^{q}-T_{q} A+X_{0} T_{q}+T_{q} B T_{q}
$$

$s_{3}^{q}:=T_{q} s_{3}^{q, q}$ and $s_{i}^{q}:=s_{i}^{q, q} i=\{1,2,4\}$, from (13) we conclude the proof in this case. Observe that $\Delta_{4}^{q}=T_{q} B+E_{q}^{q} \rightarrow O$.

We are in a position to prove Theorem 14.

Proof of Theorem 14. Let us consider an arbitrary sequence of triples of matrices $\left\{\alpha_{q}=\left(A_{q}, B_{q}, C_{q}\right)\right\}_{q=1}^{\infty}$ converging to α, such that for each q, A_{q} is invertible. Since A_{q} is invertible, from Corollary 12 and Theorem 13 we see that there exists a sequence of matrices $\left\{Y_{q}\right\}_{q=1}^{\infty}$ such that for each $q=1,2, \ldots$,

$$
\begin{equation*}
\mu_{q}:=\min _{\substack{X \in \mathbb{C}^{m \times m} \\ \mathrm{~m}\left(0, M\left(\alpha_{q}, X\right)\right) \geqslant 2}}\|X\|=\left\|Y_{q}\right\|, \tag{14}
\end{equation*}
$$

where $\mathrm{m}\left(0, M\left(\alpha_{q}, Y_{q}\right)\right) \geqslant 2$.

Case 1. Let us assume that $\mathcal{M}_{2}(0, \alpha) \neq \emptyset$. Let X_{0} be such that $\mathrm{m}\left(0, M\left(\alpha, X_{0}\right)\right) \geqslant 2$ and

$$
\begin{equation*}
\mu_{0}:=\left\|X_{0}\right\|=\min _{\substack{X \in \mathbb{C}^{m \times m} \\ \mathrm{~m}(0, M(\alpha, X)) \geqslant 2}}\|X\| . \tag{15}
\end{equation*}
$$

Since $\left\{\alpha_{q}\right\}_{q=1}^{\infty}$ converges to α, by Lemma 17 there exists a sequence $\left\{X_{q}\right\}_{q=1}^{\infty}$ converging to X_{0}, such that for each $q, 0$ is a multiple eigenvalue of $M\left(\alpha_{q}, X_{q}\right)$. Let

$$
\begin{equation*}
\hat{\mu}_{q}:=\left\|X_{q}\right\| . \tag{16}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim _{q \rightarrow \infty} \hat{\mu}_{q}=\mu_{0} \tag{17}
\end{equation*}
$$

Since $\mu_{q} \leqslant \hat{\mu}_{q}$, by (17)

$$
\begin{equation*}
\limsup _{q \rightarrow \infty} \mu_{q} \leqslant \limsup _{q \rightarrow \infty} \hat{\mu}_{q}=\mu_{0} \tag{18}
\end{equation*}
$$

Let $\left\{\mu_{q_{k}}\right\}_{k=1}^{\infty}$ be a subsequence of $\left\{\mu_{q}\right\}_{q=1}^{\infty}$ such that

$$
\begin{equation*}
\liminf _{q \rightarrow \infty} \mu_{q}=\lim _{k \rightarrow \infty} \mu_{q_{k}} \tag{19}
\end{equation*}
$$

Since $\left\{Y_{q_{k}}\right\}_{k=1}^{\infty}$ is bounded, there exists a subsequence $\left\{Y_{q_{k_{i}}}\right\}_{i=1}^{\infty}$ that converges to a matrix \hat{Y}_{0}. As 0 is a multiple eigenvalue of $M\left(\alpha_{q_{k_{i}}}, Y_{q_{k}}\right), 0$ is a multiple eigenvalue of $M\left(\alpha, \hat{Y}_{0}\right)$. By (19), (14) and (15), we see that

$$
\begin{equation*}
\liminf _{q \rightarrow \infty} \mu_{q}=\lim _{i \rightarrow \infty} \mu_{q_{k_{i}}}=\lim _{i \rightarrow \infty}\left\|Y_{q_{k_{i}}}\right\|=\left\|\hat{Y}_{0}\right\| \geqslant \mu_{0} \tag{20}
\end{equation*}
$$

Combining inequalities (20) and (18) we conclude that

$$
\mu_{0} \leqslant \liminf _{q \rightarrow \infty} \mu_{q} \leqslant \limsup _{q \rightarrow \infty} \mu_{q} \leqslant \mu_{0}
$$

that is

$$
\lim _{q \rightarrow \infty} \mu_{q}=\mu_{0}
$$

Case 2. Let us suppose that $\mathcal{M}_{2}(0, \alpha)=\emptyset$. We are going to prove that $\lim _{q \rightarrow \infty} \mu_{q}=$ ∞. Let us assume the opposite. Then, it follows from (14) that there exist convergent subsequences $\left\{\mu_{q_{j}}\right\}_{j=1}^{\infty}$ and $\left\{Y_{q_{j}}\right\}_{j=1}^{\infty}$ of $\left\{\mu_{q}\right\}_{q=1}^{\infty}$ and $\left\{Y_{q}\right\}_{q=1}^{\infty}$, respectively. Let us call

$$
\hat{Z}_{0}:=\lim _{j \rightarrow \infty} Y_{q_{j}}
$$

As 0 is a multiple eigenvalue of $M\left(\alpha_{q_{j}}, Y_{q_{j}}\right)$ for each j, then 0 is a multiple eigenvalue of $M\left(\alpha, \hat{Z}_{0}\right)$; a contradiction.

REMARK 18. A careful analysis of the proof of this theorem let us see that the following assertions are true:

1. If the limit

$$
\lim _{q \rightarrow \infty} \min _{X \in \mathcal{M}_{2}\left(0, \alpha_{q}\right)}\|X\|
$$

is finite (infinite, respectively), the same holds for the limit

$$
\lim _{q \rightarrow \infty} \min _{X \in \mathcal{M}_{2}\left(0, \alpha_{q}\right)}\|X-D\|
$$

whatever the matrix $D \in \mathbb{C}^{m \times m}$ is.
2. The value of the limit

$$
\lim _{q \rightarrow \infty} \min _{X \in \mathcal{M}_{2}\left(0, \alpha_{q}\right)}\|X-D\|
$$

depends only on D, but it does not depend on the sequence $\left\{\alpha_{q}\right\}_{q=1}^{\infty}$ converging to α.

COROLLARY 19. Let any triple $\alpha=(A, B, C) \in L_{n m}$ with $m>1$, controllable (A, B) and observable (C, A). Let $\left\{\alpha_{q}=\left(A_{q}, B_{q}, C_{q}\right)\right\}_{q=1}^{\infty}$ be a sequence of triples of matrices in $L_{n m}$ that converges to α when $q \rightarrow \infty$, and where for every q the matrix A_{q} is invertible. Then

- $\mathcal{M}_{2}(0, \alpha) \neq \emptyset \Longleftrightarrow \lim _{q \rightarrow \infty} \min _{X \in \mathcal{M}_{2}\left(0, \alpha_{q}\right)}\|X\|$ is finite.
- $\mathcal{M}_{2}(0, \alpha)=\emptyset \Longleftrightarrow \lim _{q \rightarrow \infty} \min _{X \in \mathcal{M}_{2}\left(0, \alpha_{q}\right)}\|X\|$ is infinite.

COROLLARY 20. Let any triple $\alpha=(A, B, C) \in L_{n m}$ with $m>1$, controllable (A, B) and observable (C, A). Let $\left\{\alpha_{q}=\left(A_{q}, B_{q}, C_{q}\right)\right\}_{q=1}^{\infty}$ be a sequence of triples of matrices in $L_{n m}$ that converges to α when $q \rightarrow \infty$, and where for every q the matrix A_{q} is invertible. In case of $\mathcal{M}_{2}(0, \alpha) \neq \emptyset$, then for any $D \in \mathbb{C}^{m \times m}$,

$$
\min _{X \in \mathcal{M}_{2}(0, \alpha)}\|X-D\|=\lim _{q \rightarrow \infty} \min _{X \in \mathcal{M}_{2}\left(0, \alpha_{q}\right)}\|X-D\| .
$$

Concluding remarks

1. Let $\alpha=(A, B, C) \in L_{n m}$ and $z_{0} \in \mathbb{C}$ such that z_{0} is a defective eigenvalue of A. The set $\mathcal{M}_{2}\left(z_{0}, \alpha\right)$ of matrices $X \in \mathbb{C}^{m \times m}$ such that z_{0} is a multiple eigenvalue of the matrix

$$
\left(\begin{array}{ll}
A & B \\
C & X
\end{array}\right)
$$

can be empty. Let α^{\prime} denote $\left(A-z_{0} I_{n}, B, C\right)$. Reducing the matrix $M\left(\alpha^{\prime}, O\right)$, instead of $M(\alpha, O)$, to the form (2), and using the same notations as in Lemma 5 for A_{4}, B_{4}, C_{4} and \tilde{A}, where $\left(A_{4}, B_{4}\right)$ is controllable and $\left(C_{4}, A_{4}\right)$ is observable, we deduce that $\mathcal{M}_{2}\left(z_{0}, \alpha\right)=\emptyset$ just in the cases when

- 0 is a simple eigenvalue of \tilde{A} and $m<v\left(A_{4}\right)+1$ (special case of (a-2));
- $0 \notin \Lambda(\tilde{A})$ and $m=1$ (case (a-3));
- $0 \notin \Lambda(\tilde{A}), m>1$ and

$$
\lim _{q \rightarrow \infty} \min _{X \in \mathcal{M}_{2}\left(0, \alpha_{q}\right)}\|X\|=\infty
$$

where $\left\{\alpha_{q}=\left(A_{q}, B_{q}, C_{q}\right)\right\}_{q=1}^{\infty}$ is any sequence of triples of matrices of adequate sizes, with invertible A_{q} for every q, converging to (A_{4}, B_{4}, C_{4}) (special case of (a-4)).

In the two first items the small value of m restricts the number of entries of $\left(\begin{array}{cc}A & B \\ C & X\end{array}\right)$ we may choose to do multiple the eigenvalue z_{0}.
2. Moreover, let $D \in \mathbb{C}^{m \times m}$ be a fourth matrix. With this paper we complete a solution of the problems of feasibility and finding the minimum distance

$$
\min _{X \in \mathcal{M}_{2}\left(z_{0}, \alpha\right)}\|X-D\|,
$$

whatever the complex number z_{0} is related to the spectrum of A, which the second and third authors began in [5] and [6].

Summing up, when

- z_{0} is not an eigenvalue of A, see [5];
- z_{0} is a semisimple eigenvalue of A, see [6];
- z_{0} is a nonsemisimple eigenvalue of A, see the current paper.

REFERENCES

[1] R. G. Bartle, The Elements of Real Analysis, Second Edition, Wiley, New York, 1976.
[2] S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Pitman, London, 1979.
[3] J. DEMMEL, The smallest perturbation of a submatrix which lowers the rank and constrained total least squares problems, SIAM J. Numer. Anal., 24 (1) (1987) 199-206,
[4] J. M. González de Durana and J. M. Gracia, Geometric multiplicity margin for a submatrix, Linear Algebra Appl., 349 (2002) 77-104.
[5] J. M. Gracia and F. E. Velasco, Nearest southeast submatrix that makes multiple a prescribed eigenvalue, Part 1, Linear Algebra Appl., 430 (2009) 1196-1215.
[6] J. M. Gracia and F. E. Velasco, Nearest southeast submatrix that makes multiple an eigenvalue of the normal northwest submatrix, Operators and Matrices, 430 (1) (2012) 1-35.
[7] J. R. Magnus and H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics, Revised Edition, John Wiley and Sons, New York, 1999.
[8] G. Marsaglia and G. P. Styan, Equalities and inequalities for ranks of matrices, Linear Multilinear Algebra, 2 (1974) 269-292.
[9] G. S. Rogers, Matrix Derivatives, Lectures Notes in Statistics, Vol. 2, Marcel Dekker, Inc., New York, 1980.
[10] W. Wasow, Linear Turning Point Theory, Springer-Verlag, Berlin, 1985.
[11] M. Wei, Perturbation theory for the Eckart-Young-Mirsky theorem and the constrained total least squares problem, Linear Algebra Appl., 280 (1998) 267-287.

Gorka Armentia
Department of Mathematics and Computer Engineering Public University of Navarre Campus de Arrosadía, 31006 Pamplona, Spain
e-mail: gorka.armentia@unavarra.es
Juan-Miguel Gracia
Department of Applied Mathematics and Statistics
University of the Basque Country UPV/EHU, Faculty of Pharmacy
7 Paseo de la Universidad, 01006 Vitoria-Gasteiz, Spain
e-mail: juanmigue1.gracia@ehu.es
Francisco E. Velasco
Department of Applied Mathematics and Statistics
University of the Basque Country UPV/EHU, Faculty of Pharmacy
7 Paseo de la Universidad, 01006 Vitoria-Gasteiz, Spain
e-mail: franciscoenrique.velasco@ehu.es

[^0]: Mathematics subject classification (2010): 15A18, 15A60, 15A09, 93B10.
 Keywords and phrases: Nearest matrix, multiple eigenvalues, controllable, observable, MoorePenrose, surjective mapping theorem, nonsemisimple.

 This work was supported by the Spanish Ministry of Education and Science Project MTM2010-19356-C02-01, and the Basque Government Projects GIC10/169-IT-361-10 and GIC13/IT-710-13.

