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MULTIVARIABLE BESSEL GABOR TRANSFORM AND APPLICATIONS

HATEM MEJJAOLI, MOURAD JELASSI AND YOUSSEF OTHMANI

(Communicated by R. Curto)

Abstract. In this paper we consider multivariable Bessel operator. We define and study the
multivariable Bessel Gabor transform. We prove a Plancherel formula, an inversion formula
and a weak uncertainty principle for it. As applications, an analog of Heisenberg’s inequality
is obtained. At the end, we give an application of the theory of reproducing kernels to the
Tikhonov regularization on the generalized Sobolev spaces associated with the multivariable
Bessel operator.

1. Introduction
The multivariable Bessel operator %, on Qg = (0,)¢ is defined by:

Lo =Ly @... Ly,

where & = (04,...,04) € (—1/2,50)¢ and £, is the Bessel operator on Q; given by
& 20+1d
lbyy=—+——, i=1,...,d.
% dx? x;  dx; PSS

The operator %, is introduced by Chettaoui and Othmani in [2], in which the
authors have studied the harmonic analysis associated with this operator. In particular
they have defined the multivariable Bessel transform .%p on Qg , for a regular function

f, by

VA ERY, Fpf(d) = /Q F ) A (2 3)d 1 () (L.1)

where Aq(2,x) represents the multivariable Bessel kernel on C¢ x R? and du, the
measure given by
d ‘ xi‘2a,-+1

d =\ | =—=—+dx.
Ha(x) 1-1120"'1—‘(0(,-4—1) X

Mathematics subject classification (2010): Primary 35L05; Secondary 42B10.
Keywords and phrases: Multivariable Bessel operator, generalized Gabor transform, generalized
Sobolev spaces, theory of reproducing kernels.

The authors are deeply indebted to the referees for providing constructive comments and helps in improving the
contents of this article.

© depay, Zagreb 637
Paper OaM-09-38


http://dx.doi.org/10.7153/oam-09-38

638 H. MEJJAOLI, M. JELASSI AND Y. OTHMANI

Moreover, they have proved real Paley-Wiener theorems for the transform .Zp.

In this work we are interested to the study of a generalized Gabor transform asso-
ciated with the multivariable Bessel operator. More precisely, we establish generalized
Plancherel and L? inversion formulas and we give some applications. In the classical
case the Gabor transform is very fundamental and has many applications to Mathemat-
ical Sciences. In fact, Dennis Gabor [3] was the first to introduce the Gabor transform,
in which he uses translations and modulations of a single Gaussian to represent one
dimensional signal. Other names for this transform used in literature are: short time
Fourier transform, Weyl-Heisenberg transform and windowed Fourier transform. In
[6], Trimeche defined and studied the windowed Fourier transform for Gelfand pairs.

The paper is organized as follows. In §2, we recall the main results about the
harmonic analysis related to the multivariable Bessel operator. In §3, we introduce
the analog of the continuous Gabor transform associated with the multivariable Bessel
operator and we give some harmonic properties for it (Plancheral formula, L2, inverse
formula). The §4 is devoted to prove the analogue of Heisenberg’s inequality for the
generalized continuous Gabor transform. In §5 using the reproducing kernel theory
given by Saitoh [5] we study the problem of approximative concentration. In the last
section we give an application of the Tikhonov regularization method on the generalized
Sobolev spaces associated with the multivariable Bessel operator, and we study the
extremal function for the multivariable Bessel Gabor transform.

2. Preliminaries

For 3 j (B1,--.,Ba) € N¢, we denote by .ff the operator .ff = zﬁ‘l ®... ®£§3
and Ay = Zﬁai. Let j, be the normalized Bessel function defined for 4; € C and
i=1
x; € R by
: S (=D (Aax)
X 2,,‘ i =T i 1 .
Jai(Aixi) = T0i+ )Z;) 220 (n+ o+ 1)

The multivariable Bessel kernel Ay (A,x) defined by

d
Aa(x»x) = HjOC,' (Ai-xi)v
i=1

where A = (A1,...,44) € C¢, x = (x1,...,x4) € Qq, is a solution of the equation

ZBu(x) = (—1)BIA2By(x)
u(0) =1, %u(x) =0, i=1,...,d.

From the properties of the function j, (cf. [6]), we deduce that the function Ay
satisfies the following properties

i) For all A € C?, the function (xi,...,x7) — Ag(A, (x1,...,x4)) is of class €
on RY and even with respect to each variable.
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ii) For all x € R?, the function (A1,...,44) — Ag((A1,...,Aq),x) is entire on C?
and even with respect to each variable.

iii) Forall A € C¢ and x € R?, the function A, admits the following integral repre-
sentation

=TT e iy, 0 eostunn

iv) Forall ve N? x € R?, A € C? we have
DY A (A,x)] < [l exp(||x|]. [ Zm(A)]]). (2.2)

In particular for all A € R? we have [Aq(A,x)| < 1.

2.1. Multivariable Bessel transform on

In this subsection we recall some basic results related to the multivariable Bessel
transform on €.

NOTATIONS. We denote by

x%=x{ . x4, forall x € RY and forall o := (ay,...,0) € N7,

lo| := oy + ...+ oy, forall a:=(aq,...,05) €RY.

%, () the space of continuous functions on €, and even with respect to each
variable.

C.(RY) (resp €, .(R?)) the space of continuous functions on R? (resp with com-
pact support), even with respect to each variable.

S.(R?) the space of € -functions on R, rapidly decreasing together with their
derivatives which are even with respect to each variable.

D.(R?) the space of € -functions on R¢, with compact support and even with
respect to each variable.

L5(Q4),1 < p < o, the space of measurable functions f on €, such that

1/r
gy = ([, P dat) <o 1<p<es

Hf||L:;(Qd) =ess sup |f(x)| <o, p=co.
XEQd

PROPOSITION 1. i) For all f in LL(Qy), the function Fp(f) given by (1.1), is
continuous on R?, goes to zero at infinity and we have

175 lz@n < 1y q, @3
it) For all f in D.(R?), we have

VA ERY, Fp(Lh)(x) = (~1)PIAP Z5(f)(2) 2.4)
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VA eR!, Z8(Fs(N)(A) = (~)PL.FZ( 1)) (2.5)
iii) For all f in L%, (Qy), if Zp(f) belongs to L\, (Qy), then

fo) = [ Fp(f)0)AXy)due(x), ae. (2.6)

Qy

PROPOSITION 2. Let f be in D.(R?), then we have the inversion formula

Vx€Qq fx)= | F()A)Aa(dx)dla(R). 2.7)

PROPOSITION 3. The multivariable Bessel transform Fg is a topological iso-
morphism from S.(R?) onto itself

THEOREM 1. (i) (Plancherel formula). For all f,g in S.(R?). We have
/ (0 Pdptx / 1 Z(F) (2 Pdpa(L). 2.8)

(ii) The transform Fp can be extended to an isometric isomorphism of L2,(Qy)
onto itself.
2.2. Generalized convolution product associated with the Bessel operator on Q

DEFINITION 1. The generalized translation operators 7,,x € R, associated with
the multivariable Bessel operator on R4, are defined for fin %, (Rd) by

_ 2 2 _ 2 2 _
T.f(y) = cm/[(m]df(\/)c1 +y7 —2x1y1 005017...,\/xd+yd 2x4y4c086,)
X (sin0)?™ ... (sin 6,)%*%d0; ...d6,, (2.9)
1
Wherex: (xl,...,xd), y= (y17 7yd and Co = H\/_Faal—l—:—l)/Z)

By using the multivariable Bessel kernel, we can also define a generalized transla-
tion. For a function f € L2(Q,) and y € Qg, the generalized translation 7,f is defined
by the following relation:

Tp(1,f)(x) = A(x,y) Fp(f) (x). (2.10)

DEFINITION 2. The generalized convolution product associated with the multi-
variable Bessel operator in Q of f and g in €..(RY) is defined by

VxeR!, [ ang() = [ 5f(0)e0)dbaly) 2.11)
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PROPOSITION 4. i) Let f be in L., (Qy). Then for all x € Qq, we have
VA eRY, Zp(tf)(A) = Ag(A,x)Z5(f)(A). (2.12)

ii) Let f € LL(Q) and g € L%(Qy) then f xpg is defined almost every where,
belongs to L2,(Qy) and we have

Fp(f *8) = FB(f)FB(8). (2.13)
PROPOSITION 5. i) Let f be in L (Qy) and g in L3(Q,). Then we have
1 88l @) < 1Ly, I8 g @0)- (2.14)
ii) Let g be in LL,(Qy) and f in L5, (Q4) 1 < p < oo, then
I1f *8 8lliz@, < Iz lgliy o, (2.15)

iii) Let p,q,r € [1,o0| such that 11—7—1-5 =1+1.If fisin Ly (Qy), g in LE(Qy).
Then f xpg € L, () and we have

1 #88ll g0 < 111 g0 l€llis 0 2.16)

3. The multivariable Bessel Gabor transform

NOTATIONS. We denote by:
XY, p € [1,] the space of measurable functions f on Q  x Q; with respect to
the measure d g (x,y) = dliq(x)d iy (y) such that

P
”f PsMa = (/Q <0 f(x,y)”da)a(x,y)> <o, 1 <p<oo
d d

= esssu X < oo,
11, 2= esssup )] <

DEFINITION 3. For any function g in L2(Q,) and any v € Q,, we define the
modulation of g by v as:

tyg:=gv =T\ nlg?), (3.17)
where 7, , y € £, are the generalized translation operators given by (2.10).
REMARK 1. For g in L2,(Qy), we have
levll, o = 8l
For v,y € Q4, we denote by gy, the function defined on €, by

8vy = Ty8v



642 H. MEJJAOLI, M. JELASSI AND Y. OTHMANI

DEFINITION 4. Let g be in L2(€y). For a function f in L2(Q,) we define its
continuous generalized Gabor transform by

Gef 0y v / f(x)gv.y(x)due(x), (3.18)
which can also be written in the form
Gof (0 V) = fxpgv(y)- (3.19)

PROPOSITION 6. Let f,g € L%(Qy). Then fxpg € L2,(Qq) if and only if
Fp(f)TFp(g) belongsto L%(Qy), and in this case we have

Tp(f*88) = FB(f)FB(8)
The proof of this proposition is a consequence of the following two lemmas.

LEMMA 1. Let f € Lj(Qq),g € LY(Qq) and assume that for all y € L}, (Q4)N
L2(Q,) we have

[ FORONHa0) = [ 8 FoGEatalS)

Then f € L2(Q,) ifand only if g € L2,(Qy), and in this case we have

Fp(f)=g ae.
Proof. This follows from an easy application of the Plancherel formula. [

LEMMA 2. Let f,g € L2,(Qq), x € LY (Qq) NL2,(Qy) we have

L, £ X0Mmals) = [ Fo()(E)Z0(6)(E)Fo) E el

Proof. First note the following general fact: if f € L}(Qq)NL2(Q,) and g €
L2,(Qy) then
Tp(f+p8) = F8(f)TB(g) ae.

This follows from the analogue fact for L}, (€,) functions and the possibility to ap-
proximate g in L2 (€,) with functions in L} (Qy) NL%(Qy).
Next fix g € L2(Q,) and define on LL,(Q) NL2,(Qy) the two functionals

/ frpgly d.ua( ),
Sa(f) = A Fp(f)(&)Fp(8)(E)Fp(x)(E)dua(S).

By the previous fact and Plancherel’s identity, S and S, coincide on LY, (Q4)NL2,(Qy).
It is easy to show that both functionals are bounded with respect to the L2 norm, and
therefore can be extended to the whole space L2 (€2,), where they still coincide. [

An immediate consequence of Proposition 6 and the Plancherel formula that will
be used in the next section is the following.
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PROPOSITION 7. Let f and g be in L2,(Qq). Then, we have

1 =P dnat) = [ 175()EPIZo(0) @ duals)  (320)

where both sides are finite or infinite.

THEOREM 2. (L2 inversion formula) Let g be in (L% (Qy) MLy (Q4))\ {0} such
that [18(,2 q,) = 1. Then, for any function f in L2,(Qy), we have

x) :/Bd o) ngg(f)(y,V)Tygv(x)dwa(v,y) (3.21)

in Lg(Qq) and satisfies
Tim [1f = full 2,0, = 0

where
BL(0,n) = {x€Qy: ||x|]| <n}.

To prove this theorem we need the following Lemmas.

LEMMA 3. Let g be as above. For any positive integer n define the two functions
9= [ gy oy MEDIZ(60) ) dba(V)dbal©). e O
(0.n) JQq

and
(&)= | s oy | ZBEN ) PilaV), € 0

Then
G, €L2(Qy), H,€LL(Q)NLE(Qy) and F5(G,) = H,.

Proof. Using the Cauchy-Schwartz inequality we obtain
2
G < ([, dua) [ | [ AEIFale0)(E) PapalE)] dutav)
BY (0,n) BY (0.n) 1 JQy

2
<cf, ] MG Fae0)(E) Paua(&)] dua(v).
B+(Ovn) Qd

Therefore by Fubini theorem, the inversion theorem, the Plancherel formula we get
2
L@y <c [ [ | A1 Fa50) ) Pl dbaV)dbta
B 0 }’1 Qd Qd
/ o 175 (1 Z3(0) )0 PV
<c/, / 7 1¢*(8) Pdpa(V)dHa ()
BY (0,n)

<C ‘ T dg (v
B4 (0.0) L)l anHelY)
< C/ 181?12 dla (V) < oo
Bi(o,n)H vIgl Mz () dMa (V)
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On the other hand, one can easily see that H, € L}, (Q4) NL;(Qy) and using Fubini’s
theorem we deduce

F5 (H)0) = [, HiEINEdnal@)
- / () [, 0,y | F5(80) (&) Paltta(v)ata(E)

BL(0.n) JQ (é )|JB(8V)(§)|2dﬂa(v)dﬂa(§):Gn(y). O

LEMMA 4. Let g be as above. For any positive integer n the function

/d / X)|Z5(gv)(8)Pdua(§)dpa(v),
B4 (0.n) JQy

can be written
G = [, svingy(dualv).
B+(O,n)

Proof. From Proposition 6 we have

() = / d / (0)(8) Pt (V)dHa ()
B On Qd
v T (1Fa(en)P (V)
B(0, n)

= 54 (0 )(gv*Bgv(x)>dﬂa(V)~ U
“(0,n

LEMMA 5. Let g be in (L%(Qq) NLZ(Qy)) \ {O}. Then, for any function f in
L2(Qy), we have

fn =Gy *Bf~ (3.22)

Proof. We have

30 = [y oo B0V () a(v.)
= [y (%0 80) Wdbalv)
= [, Frmgvingy(9dua(v)

B (0.n)

= /Bd( | T f (v)(gv *Bgv)(y)dwe(V,y)

I
S
~
P
NS
~—
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On the follow we justify the use of Fubini’s theorem in the last sequence of equalities
observe that

|/ o I S0 0) 0)dan(v.y)] < /

BL(0.n)

fF*B8v*B8v(x)|dla(V).

Now, using Proposition 6 and hypothesis on g we see that gy *p gy € lex (Q4). Next
using Young’s inequality and Parseval theorem we obtain

|lf *Bgv B8Vl (0, < HfHL(ZX(Qd)HgV *BgVHL%‘(Qd) < |‘f‘|L(21(Qd)”g”L%‘(Qd)Hg|‘L‘E(Qd)
and

/Bi (0,n)

The proof is complete. []

frngvsngy)|aua(v) < ([ . )duaw))\|f|\Lg(Qd>\|g\|Lg(Qd>\|g\|L;(gd>.
4 (0,n

Proof of Theorem 2. Tt follows from Proposition 6 and Lemma 3 that f,, € L2,(Q)
and

Fp(fn) = HaFp(f).
By this, the Plancherel formula, the fact that H, — 1 pointwise as n — oo, and the
dominated convergence theorem, it follows that

1= hlly ) = [, 1ZBU(E) (&) Zo(1) (&) Pebia(&)
= | 1Za( )1 - Ha(E)Pdpa(E) — 0

Qg
as n — oo which achieves the proof. [

PROPOSITION 8. For f in L2(Qy) and g in L2%(Qy) we have
Hgngw#a < ”fHL%‘(Qd)HgHL(ZX(Qd)' (3.23)
PROPOSITION 9. (Plancherel formula) Let g be in L%(Qy). Then, for all f in

L2(Q,), we have
1%, f]

e =lel, o A1, (.24

Proof. Using relation (3.20), Fubini’s theorem and Plancherel’s formula for the
multivariable Bessel transform, we have

Jo o smsP )i )da(v)
= [ 170 P a0 ) Pl € ()
S A G RIS
B /Qd /gd | Zf (8P e (I8*) (v)dbta (V)dha(£)

= 1£1B; 0, I8 ) O
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As in the classical case, the multivariable Bessel Gabor transform preserves the
orthogonality relation. However, we have the following result.

COROLLARY 1. Let g be in L2,(Qy). Then, for all f,h in L2,(Q4), we have

L [ 4s0ZhoViduadiav) = lgl, [ fhduato. 3:25)
Q. /o, Q) Jo,

4. Uncertainty principles of Heisenberg type

In this section we will prove the Heisenberg inequality for the multivariable Bessel
Gabor transform.

PROPOSITION 10. (Uncertainty principle of Heisenberg type for .%p) Let [ be
in L%(Qy), the following inequality holds

1

( IZa00Rauao) ([ 1IP0I Pabah)) > (o + 11

Proof. By a similar arguments as in [4] and using the Heisenberg inequality for
the Fourier-Bessel transform on €, we obtain the result. [

THEOREM 3. (Uncertainty principles of Heisenberg Type for ¢,) Let g be in
L2(Qy). Then, forall f in L2,(Qy), the following inequality holds

(f, ImP1ZarwPae ) ([ [ IR omPdou )
> (el +d)lgll . 1172 q,)- (4.26)

L
2

Proof. Let us assume the non-trivial case that both integrals on the left hand side
of (4.26) are finite. Fixing v arbitrary, Heisenberg’s inequality for the multivariable
Bessel transform gives that

([, 1P 7 0)Pama() ([, 10170 Pt

> (o +d) [ s .v)Pdia).
d
Integrating over v and using Cauchy Schwartz inequality we obtain

1
2

</Qd /Qd|y|2|93(ggf(-,V))(y)|2dya(y)dua(v)>

: (/Q I |>’|2%f(y7\’)|2dwa(y,v))%
> (|a|+d)/gd/gd G f (5, V) Pd @ (3, V).
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Thus, using the fact that
[ IIPIZ0( e () 0) Pita0)dita(v) = 815 g, [ ID1P170f ) Pptal),
Qq JQq “ Qq

we obtain

leligia ([, IXIP1Z07 0 Patals ) (f, [ 1P Paantny >)é

> (ol +d) [ [ 19 0v)Pdou(,v) = (ol + ) lg )11 )
d d

This proves the result. []

5. Reproducing kernel

COROLLARY 2. (Reproducing kernel) Let g be in (L%(Q4) NL;(4)) \ {0}.
Then, 9,(L%(Qy)) is a reproducing kernel Hilbert space in X2 with kernel function

1
Wg()’/»vl§y7v) = || ||2 / Tygv(x)’ty/gvr(x)dua(x)
8Ly 7
H H TVgV *Bgv’()’/)~ (527)
L3(Qy)
The kernel is pointwise bounded:
[Ze( Viy VIS L forall (Y,V), (v,v) € Qux Qq. (5.28)

Proof. We have

gf »v / f gv7y )d.ua()

Using the relation (3.25), we obtain

G0 = - H /Q/Q 1V 80 ) 7V ) (5)dpa ().

On the other hand using Proposition 6, one can easily see that for every y,v,v' € Qg ,
the function

1

N 1
2 gg(gwy)(xa V) = T W8v*B gv (%)
6l el

belongs to L2,(€,). Therefore, the result is obtained. [
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In the following theorem, we will show that the portion of the multivariable Bessel
Gabor transform lying outside some sufficiently small set of finite measure cannot be
arbitrarily too small. Then, in order to prove a concentration result of the multivariable
Bessel Gabor transform, we need the following notations:

P, : X2 — X2 the orthogonal projection from X2 onto %, (L2(Q,)).

Py : X2 — X2 the orthogonal projection from X2 onto the subspace of function
supported in the subset U C Qg x Q; with @y (U) < eo.

We put

1PuPell = sup { PP 2 v € X5 Vll2e =1 (5.29)
The essential result of this section is the following.

THEOREM 4. (Concentration of %, f in small sets) Let g be in (L2,(Q4)NL5(Qqg))
\ {0} and U C Q4 x Qy with wg(U) < 1. Then, for all f in L% (Q,) we have

19ef = v f 2o = (1 Y Woc(U)) HgHL%,(Qd)”fHL%,(Qd)' (5.30)

Proof. From the definition of Py and P, we have

19 f — xv%efll2 e = || = PuPy) % fll2,0-
Then, using the Proposition 9 we get
19ef = v fllo e 2 19 1|20 (1= [|PuP]]) (5.31)
2 ||g||Lgx(Qd)Hf||Lgx(gd)(1 — [|PuPel]). (5.32)

As P, is a projection onto a reproducing kernel Hilbert space, then, from Saitoh [5], P,
can be represented by

PgF(YaV) :/Q <O F(y/aV/)V/g(y/aV/Q}’aV)dWa(y/aV/)a
d d

with %, defined by (5.27). Hence, for F € Xé arbitrary, we have
PyPyF(y,v) =/Q 5 2o VIE G V)W (Y Vs, v)dog (Y, V')
d X2

and its Hilbert-Schmidt norm

1PuPls = ( [,

d><

Nl—

o \xU(y,V)Vl%(y’,V’;y,V)Izdwa(y’,V’)dwa(y,V))
d
By the Cauchy-Schwartz inequality we see that
||PUPg||HS> HPUPgH- (5.33)
On the other hand, from (5.27) and Fubini’s theorem, it is easy to see that

|PuPylls < vVwa(U). (5.34)
Thus, from the relations (5.32),(5.33) and (5.34) we obtain the result. [
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6. Extremal functions on the generalized Sobolev spaces

6.1. Reproducing kernel

In this subsection we give reproducing kernel for the generalized Sobolev spaces
associated with the multivariable Bessel operator.
Let s € R. We define the space Hj,(€;) by

H;(Qa) 1= { 1 € 12(Qu)  (1+1E1P) 270 (1) € L)}

The space Hj(Q,) provided with the inner product
8oy = [ A+IEIR Zo()ETaE@(E)dual). 639
d

and the norm ||fH%Ii§z(Qd) = (f,f)us,0,) - is a Hilbert space.

d
PROPOSITION 11. For s > 5 the Hilbert space H(Qg) admits the following

reproducing kernel:

[ AEDAE)dua(E)
Ko = [ ST

that is
(i) For all y € Qg, the function x — Ky (x,y) belongs to Hy,(£y;).
(ii) The reproducing property: for all f € H},(Qy) and y € Qg,

FO) = (K (,9)) 1y @)

Proof. 1t can be easily observed, from the properties of the normalized Bessel
function j, that the function

d
(S, x) — [H(éxi)“f+% A(E,x), (&%) € Qux Qu, (6.36)

i=1

is bounded.
1) It is clear that, for y € Q, the function
A(E.y)
Er— —2 (6.37)
(L+1E]12)*

belongs to L}, (Q4) NL2,(€,). Then the function Kj(.,y) is well defined and by (2.6)
we have
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From Theorem 1 (ii), it follows that K;(.,y) belongs to L2,(€), and we have

A(.,y)
(LH][I2)s

Therefore, by using relations (6.36) and (6.38), we obtain

d dé
K93 0,y < C° [Ty 2% / axepy =
K (o) s @) lH o, (1+]I&]2)

T (K (. ,y)> (6.38)

i=1

This proves that for all y € Q the function K,(.,y) belongs to HS,(£2y).
(ii) Let f be in H}(€,) and y in ;. Then by (6.35) and (6.38) we get

K = |, ZoEMENdHalE), (6.39)
and from inversion formula, we obtain the reproducing property

FO) = (K (x,9)) 1y @)

This completes the proof of the theorem. [

d
COROLLARY 3. For s >3 , the Hilbert space HY(Q) is embedded in C.(Ly).

REMARK 2. From the proof of Proposition 11 and using inequality (2.2), it can

be observed that for all s > 3 there exists a positive constant Cy such that

d
d
C 20 for — <s<|a|+d
1K () ) < CT0) = SLH” ] <ol
Cs for |o|+d <.

PROPOSITION 12. Let g be a function in L%(Qy) L5 (Qy), and v € Qq. The
integral transform 9,(.,Vv), is a bounded linear operator from Hy(€,), s in Ry, into
L2,(Qy), and we have

19/ (V)2 0, < I8llig @11 @0)-
Proof. Let f bein Hj(Q4). Using Theorem 1 (ii) we have
1% (V)2 ) = | F8( S (V)2
Invoking the relation ships (3.19) and (3.20) we can write

196 )= [, 1250 @ T (%) EabaE).

Therefore
1%ef (V2 0, < I8zt I/ lagy@p)- O



MULTIVARIABLE BESSEL GABOR TRANSFORM AND APPLICATIONS 651

DEFINITION 5. Let g be a functionin L2 (Q) L5 (Qy). Let r >0, v € Qy and
s € R. We define the Hilbert space Hg' (€2;) as the subspace of H,(€;) with the
inner product:

<fv > ” _r<fa >Ha Qd <ggf('7v>7ggh('7v)>L%!(Qd)7 faheH&(Qd)

The norm associated to the inner product is defined by:

1A = 7 g + IS V)22 -

d
PROPOSITION 13. Let g be a function in L%(Qy) NL3(Q4). For s > 5 the
Hilbert space Hy' (Qy) admits the following reproducing kernel:

o ACDAE) ()
Hrle) = || TR (B

Proof. 1) Let y be in Q. Using inequality (6.36) and Theorem 1 (ii) it can be
deduced, as in Proposition 11, that there exists a function x — 7 ,(x,y) belongs to
L2,(Q,) such that we have

. _ A(,y)
#5(%r9) = SR ) (640
On the other hand we have
Fo(FHer(D) (V) =\ 0 (8P) Fp(Her(3) N L2(Q). (64D)

Hence from Theorem 1 (ii), we obtain

196 Hr (D) ) = [, B 8PHEN T (Hpr(9)) (6)Plta(E)

C [ wlgP)EIAE )P
SE o, (rlEpE e <

Therefore we conclude that || % (., y)||12q,y < oo,
i) Let f bein Hy'(Qy) and y in Q. Then

(f Her () gy = rh + Do, (6.42)
where
L= (f,Her(Y)ng 0, and b= (G f(,v).Ge(Hr(-3) (V)12 0,
From (6.35) and (6.40), we have

11:/ L+ [EIP) TB(N)(E)AE.y)dua(E)
o  r0+EIP+o (e (&)

(6.43)



652 H. MEJJAOLI, M. JELASSI AND Y. OTHMANI

From (6.40), (6.41) and Proposition 6, we have

_ [ 8P T(NEAE.)dHa()
b= T s @ (049

Using relation (6.42) and combining (6.43) and (6.44), we deduce that
<f7‘}gg,r(~»y)>ﬂg“ =f(), ae. O
COROLLARY 4. The kernel Jt, , satisfies the following properties:
(i) || (3 gy < 2
(i) 1 (|3 ) <

N
(iti) |9 GgHoe.r () |1z () < Cs (),

where 9 L2(Qy) — H5,(Qy) is the adjoint operator of 9, given by

q\

(Gl M) 30, = oG Mg, T € Hy(Qa), h € L (Qa).

Proof. From the previous proposition, we have
FO) = Hgr (3 -

= r{fs Hgr (Y ms @) + (G f s Yo Her (V) 120,
= (i ("l +9,) Ko r (2 3) sy (00)-

Thus,
(rI+9,%) Hg (- y) = K (). (6.45)

Furthermore, the previous identity implies that
72\|f,r(~»y)||%1;(Qd)+2”\|gg'%/g,r(~»y)||igx(gd) + Hg;gg%,r(wy)ﬂ%{g(gd)
= |\Kv(~,Y)||%1;(Qd)~

From this relation and using the fact that

1K () a5 (00) < Cs (),

we obtain the properties (i), (ii) and (iii). O

6.2. Tikhonov regularization on H; (Q,)

In this subsection we shall give an application of the theory of reproducing kernels
to the Tikhonov regularization, which gives the approximate solutions for a bounded
linear operator equations on the Hilbert spaces Hj, (Qy).
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More precisely, we prove for a given function g in L2,(Qq)( L () that the
infinitum of

{7y + =St (V)22 g, f € HaQa)}

is attained at some function denoted by f,, which is unique, called the extremal func-
tion. We start it with the following fundamental theorem (cf. [5]).

THEOREM 5. Let Hy be a Hilbert space admitting the reproducing kernel K(p,q)
ona set E and H a Hilbert space. Let L : Hx — H be a bounded linear operator on
Hg into H. For r > 0, we introduce the inner product in Hx and we call it Hg, as

(1, 2) g, = r{f1, 2)mg + (Lf1,Lf2)n-
Then:
i) Hg, is a Hilbert space with the reproducing kernel K,(p,q) on E and satisfying
the equation
K(.,q) = (rl+L"L)K:(.,q),

where L* is the adjoint operatorof L: Hx — H.
ii) For any r > 0 and for any h in H, the infimum

. 2 2
Jnt Lol A+ L7 il }

is attained by a unique function f, in Hg and this extremal function is given by
Jen(p) = (h, LK, (., p)) - (6.46)

We can now state the main result of this paragraph.

d
THEOREM 6. Let g be a function in L2,(Qq) L5 (Qy). Let s > 5 Forany h in
L2(Qy) and for any r >0,
(i) the infimum

. 2 . 2
ont A g + V=Gl (), } (6.47)

is attained by a unique function f, given by

a0 = [ h)Q () dpa(y) (648)
where

T (1) (S)A(S,)A(E,y)
L+IEIP) + o (1g*)(8)

(ii) The extremal function f: , satisfies the following inequality:

N C
nmo<j%M@@y

0fey) = 0nley) = [ da(E). (649
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Proof. (i) By Proposition 13 and Theorem 5 ii), the infimum given by (6.47) is
attained by a unique function f;’,, and the extremal function f)', is represented by

2400 = (G Hor (D) (V2 0y ¥ E Qs

where 7, is the kernel given by Proposition 13.
On the other hand we have

Gof(x,v) /\/ (Ig*)( ,X)dug (&), forallx € Q.

Hence by (6.40), we obtain

o (g (E)A(E, X)A(E,y)
AR / d
(ool Ja, r+ ) e
= r x y
This gives (6.49).
(i1) From Corollary 4 (ii), we have
; Cs
O <l 1% (Har() ) 130 < ? 12 -

Thus the theorem is proved. [

d
COROLLARY 5. Let g be a function in L% (Qy) Ly (Qq4), s> =; 1,6 >0 and

2
h,hs in L2,(Qy) such that
1= hsll 120, < O
Then
s sk 6
fn = Srng | g () < NG
Proof. Ttis clear, from (6.49), that
o (lg)A(,x)
Qr('xuy):yB (y)
r(L+[1112)* + v (|gl?)
then, using the fact that
[ 1O Z5(Q (5 NIt () = [ Fa)()0: s ¥)dbtel)
d

it follows, by (6.48), that

fipto) = [, VLS IR gy

1+ |I€H ) +Tv(|g|2)(§)
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and so

v ([gl)(§) ZB(h)(E)
r(L+ 118117 +w((gl?)(E)

ey = YOUEPIE) Zalh—he) )

Ts(frn—1r : :
b r(L+[1817)* + 7 (1g1*)(8)
Using the inequality (x+y)? > 4xy, we obtain

Fp(frn) (&) =

(6.50)

Hence

1

(I IEIRY [ 2o~ Fng @ < 1 Z(h—ha) (&P

Thus, and from Theorem 1 (ii), we obtain

10 = Fins g (20) WB(h ho)l72 q,) = Hh hsl72 q,):

which gives the desired result. [

d
COROLLARY 6. Let g be a function in L2(Q,) (L5 (Qy). Let s > 5 and r > 0.
If fisin Hy(Qq) and h=9,f(.,v). Then

||f:h—fH%-zg,(gd) —0 asr—0.

Proof. From (6.49), we have

P — Vollgl?) (&) Fs(h)(E)
T &) = e Ry + o (P (&)
Hence
yB(f*h_f)(é) _ —7‘(1 + Hé”z)sgB(f)(é)

r(L+11E11P) + w(lgl?)(E)

Then we obtain

10— My = [, eI Fo((E) Plbta(E),

+

e AL+ €1
hrJ,S(g) = 3"
(r(1+ 1EN2) + (18P (&)
Since
,1,5% hr,t,s(é) =0
and

By s (E)] < (14 [IE]1P),

we obtain the result from the dominated convergence theorem. [
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d
COROLLARY 7. Let g be a function in L (Q,)\Ly(Qy). Let s > 5 and r > 0.

If fisin Hy(Qq) and h=9,f(.,v). Then
(i) f(y) = lim £, ().
(i) 1f () = Fia W) S GOl 2, -
(iii) |£5 D] < GO g, 00) -

Proof. Let f isin HY(Ly).
(i) Then

f:h (y) = <f7 gg*gg'%{g,r('?y»Ha ()
But from (6.45), we have

lim 4%, % ,(.,y) = Ks(.,y).

r—0t 8

Thus
rl_iggf:h(y) = (£, Ks (0D my ) = F ()

(ii) From (6.45) and (6.51), the extremal function f;, satisfies

L) = F) = r{fs Ao (3 9)) 13, 0) -

Thus and by Corollary 4 (i) we obtain

|f:h(}’) —f)] < r||f|‘H&(Qd)H%J(-ay)HHa(Qd) < Cs'(}’)Hf”Hg;(Qd)'

(iii) From (6.51) and Corollary 4 (iii), the extremal function f:h satisfies

oW < A Vg (00119 Do Ao r () g 00) < GO Ny 0, B

6.51)
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