HAHN-BANACH TYPE EXTENSION THEOREMS ON *p*-OPERATOR SPACES

JUNG-JIN LEE

(Communicated by Z.-J. Ruan)

Abstract. Let $V \subseteq W$ be two operator spaces. Arveson-Wittstock-Hahn-Banach theorem asserts that every completely contractive map $\varphi: V \to \mathscr{B}(H)$ has a completely contractive extension $\tilde{\varphi}: W \to \mathscr{B}(H)$, where $\mathscr{B}(H)$ denotes the space of all bounded operators from a Hilbert space H to itself. In this paper, we show that this is not in general true for p-operator spaces, that is, we show that there are p-operator spaces $V \subseteq W$, an SQ_p space E, and a p-completely contractive map $\varphi: V \to \mathscr{B}(E)$ such that φ does not extend to a p-completely contractive map on W. Restricting E to L_p spaces, we also consider a condition on W under which every completely contractive map $\varphi: V \to \mathscr{B}(L_p(\mu))$ has a completely contractive extension $\tilde{\varphi}: W \to \mathscr{B}(L_p(\mu))$.

1. Introduction to *p*-operator spaces

Throughout this paper, we assume $1 < p, p' < \infty$ with 1/p + 1/p' = 1, unless stated otherwise. For a Banach space X, we denote by $\mathbb{M}_{m,n}(X)$ the linear space of all $m \times n$ matrices with entries in X. By $\mathbb{M}_n(X)$, we will denote $\mathbb{M}_{n,n}(X)$. When $X = \mathbb{C}$, we will simply use $\mathbb{M}_{m,n}$ (respectively, \mathbb{M}_n) for $\mathbb{M}_{m,n}(\mathbb{C})$ (respectively, $\mathbb{M}_n(\mathbb{C})$). For Banach spaces X and Y, we will denote by $\mathscr{B}(X,Y)$ the space of all bounded linear operators from X to Y. We will also use $\mathscr{B}(X)$ for $\mathscr{B}(X,X)$. The ℓ_p direct sum of n copies of X will be denoted by $\ell_p^n(X)$.

DEFINITION 1.1. Let SQ_p denote the collection of subspaces of quotients of L_p spaces. A Banach space X is called a *concrete* p-operator space if X is a closed subspace of $\mathscr{B}(E)$ for some $E \in SQ_p$.

Let $E \in SQ_p$. For a concrete *p*-operator space $X \subseteq \mathscr{B}(E)$ and for each $n \in \mathbb{N}$, define a norm $\|\cdot\|_n$ on $\mathbb{M}_n(X)$ by identifying $\mathbb{M}_n(X)$ as a subspace of $\mathscr{B}(\ell_p^n(E))$, and let $M_n(X)$ denote the corresponding normed space. The norms $\|\cdot\|_n$ then satisfy

 \mathscr{D}_{∞} for $u \in M_n(X)$ and $v \in M_m(X)$, we have $||u \oplus v||_{M_{n+m}(X)} = \max\{||u||_n, ||v||_m\}$.

 \mathcal{M}_p for $u \in M_m(X)$, $\alpha \in \mathbb{M}_{n,m}$, and $\beta \in \mathbb{M}_{m,n}$, we have $\|\alpha u\beta\|_n \leq \|\alpha\|\|u\|_m\|\beta\|$, where $\|\alpha\|$ is the norm of α as a member of $\mathscr{B}(\ell_p^m, \ell_p^n)$, and similarly for β .

© CENN, Zagreb Paper OaM-09-40

Mathematics subject classification (2010): 47L25, 46L07.

Keywords and phrases: p-operator space; Arveson-Wittstock-Hahn-Banach theorem; SQ_p space. The author was supported by Hutchcroft Fund, Department of Mathematics and Statistics, Mount Holyoke College.

When p = 2, these are Ruan's axioms and 2-operator spaces are simply operator spaces because the SQ_2 spaces are exactly the same as Hilbert spaces.

As in operator spaces, we can also define abstract p-operator spaces.

DEFINITION 1.2. An *abstract p*-operator space is a Banach space *X* together with a sequence of norms $\|\cdot\|_n$ defined on $\mathbb{M}_n(X)$ satisfying the conditions \mathscr{D}_{∞} and \mathscr{M}_p above.

Thanks to Ruan's representation theorem [8], we do not distinguish between concrete and abstract operator spaces. Le Merdy showed that this remains true for p-operator spaces.

THEOREM 1.3. [6, Theorem 4.1] An abstract p-operator space X can be isometrically embedded in $\mathscr{B}(E)$ for some $E \in SQ_p$ in such a way that the canonical norms on $\mathbb{M}_n(X)$ arising from this embedding agree with the given norms.

EXAMPLE 1.4.

a. Suppose *E* and *F* are SQ_p spaces and let $L = E \oplus_p F$, the ℓ_p direct sum of *E* and *F*. Then *L* is also an SQ_p space [4, Proposition 5] and the mapping

$$x \mapsto \begin{bmatrix} 0 & 0 \\ x & 0 \end{bmatrix}$$

is an isometric embedding of $\mathscr{B}(E,F)$ into $\mathscr{B}(L)$. Using this we can view $\mathscr{B}(E,F)$ as a *p*-operator space. Note that $M_n(\mathscr{B}(E,F))$ is isometrically isomorphic to $\mathscr{B}(\ell_p^n(E), \ell_p^n(F))$.

b. The identification $L_p(\mu) = \mathscr{B}(\mathbb{C}, L_p(\mu)) \subseteq \mathscr{B}(\mathbb{C} \oplus_p L_p(\mu))$ gives a *p*-operator space structure on $L_p(\mu)$ called the *column p*-operator space structure of $L_p(\mu)$, which we denote by $L_p^c(\mu)$. Similarly, the identification $L_{p'}(\mu) = \mathscr{B}(L_p(\mu), \mathbb{C})$ gives rise to *p*-operator space structure on $L_{p'}(\mu)$ which we denote by $L_{p'}^r(\mu)$ and call the *row p*-operator space structure of $L_{p'}(\mu)$. In general, we can define E^c and $(E')^r$ for any $E \in SQ_p$, where E' is the Banach dual space of *E*.

Note that a linear map $u: X \to Y$ between *p*-operator spaces *X* and *Y* induces a map $u_n: M_n(X) \to M_n(Y)$ by applying *u* entrywise. We say that *u* is *p*-completely bounded if $||u||_{pcb} := \sup_n ||u_n|| < \infty$. Similarly, we define *p*-completely contractive, *p*-completely isometric, and *p*-completely quotient maps. We write $\mathscr{CB}_p(X,Y)$ for the space of all *p*-completely bounded maps from *X* into *Y*.

To turn the mapping space $\mathscr{CB}_p(X,Y)$ between two *p*-operator spaces *X* and *Y* into a *p*-operator space, we define a norm on $\mathbb{M}_n(\mathscr{CB}_p(X,Y))$ by identifying this space with $\mathscr{CB}_p(X,M_n(Y))$. Using Le Merdy's theorem, one can show that $\mathscr{CB}_p(X,Y)$ itself is a *p*-operator space. In particular, the *p*-operator dual space of *X* is defined to be $\mathscr{CB}_p(X,\mathbb{C})$. The next lemma by Daws shows that we may identify the Banach dual space *X'* of *X* with the *p*-operator dual space $\mathscr{CB}_p(X,\mathbb{C})$ of *X*.

LEMMA 1.5. [1, Lemma 4.2] Let X be a p-operator space, and let $\varphi \in X'$, the Banach dual of X. Then φ is p-completely bounded as a map to \mathbb{C} . Moreover, $\|\varphi\|_{pcb} = \|\varphi\|$.

If $E = L_p(\mu)$ for some measure μ and $X \subseteq \mathscr{B}(E) = \mathscr{B}(L_p(\mu))$, then we say that X is a *p*-operator space on L_p space. These *p*-operator spaces are often easier to work with. For example, let $\kappa_X : X \to X''$ denote the canonical inclusion from a *p*-operator space X into its second dual. Contrary to operator spaces, κ_X is *not* always *p*-completely isometric. Thanks to the following theorem by Daws, however, we can easily characterize those *p*-operator spaces with the property that the canonical inclusion is *p*-completely isometric.

PROPOSITION 1.6. [1, Proposition 4.4] Let X be a p-operator space. Then κ_X is a p-complete contraction. Moreover, κ_X is a p-complete isometry if and only if $X \subseteq \mathscr{B}(L_p(\mu))$ p-completely isometrically for some measure μ .

2. Non-existence of *p*-Arveson-Wittstock-Hahn-Banach theorem

Let $V \subseteq W$ be two operator spaces. Arveson-Wittstock-Hahn-Banach theorem asserts that every completely bounded map $\varphi: V \to \mathscr{B}(H)$ has a completely bounded extension $\tilde{\varphi}: W \to \mathscr{B}(H)$, where *H* is a Hilbert space. For *p*-operator spaces, the following question naturally arises.

QUESTION 2.1. Let $V \subseteq W$ be *p*-operator spaces and *E* an SQ_p space. Does every *p*-completely bounded map $\varphi: V \to \mathscr{B}(E)$ have a *p*-completely bounded extension $\tilde{\varphi}: W \to \mathscr{B}(E)$?

To show that this question has a negative answer, let $p \neq 2$, and let E and $L_p(\Omega)$ such that E is a Hilbert space embedding to $L_p(\Omega)$. The existence of such E and $L_p(\Omega)$ is guaranteed by, for example, [2, Proposition 8.7]. Let $J : E \hookrightarrow L_p(\Omega)$ denote the isometric embedding, then we can view E as a subspace of $L_p(\Omega)$.

LEMMA 2.2. Let J be as above. With p-operator space structure E^c and $L_p(\Omega)^c$, J becomes a p-complete isometry.

Proof. From Example 1.4, we note that $M_n(E^c) \subseteq M_n(\mathscr{B}(\mathbb{C}, E)) = \mathscr{B}(\ell_p^n, \ell_p^n(E))$. For $[\xi_{ij}] \in M_n(E^c)$, the norm is given by

$$\|[\xi_{ij}]\|^p = \sup\left\{\sum_{i=1}^n \left\|\sum_{j=1}^n \lambda_j \xi_{ij}\right\|_E^p : \lambda_j \in \mathbb{C}, \ \sum_{j=1}^n |\lambda_j|^p \leqslant 1\right\}.$$

Since J is an isometry,

$$\left\|J\left(\sum_{j=1}^n \lambda_j \xi_{ij}\right)\right\|_{L_p(\Omega)} = \left\|\sum_{j=1}^n \lambda_j \xi_{ij}\right\|_E$$

and it follows that

$$\begin{split} \|J_n([\xi_{ij}])\|^p &= \sup\left\{\sum_{i=1}^n \left\|\sum_{j=1}^n \lambda_j J(\xi_{ij})\right\|_{L_p(\Omega)}^p : \lambda_j \in \mathbb{C}, \ \sum_{j=1}^n |\lambda_j|^p \leqslant 1\right\} \\ &= \sup\left\{\sum_{i=1}^n \left\|J\left(\sum_{j=1}^n \lambda_j \xi_{ij}\right)\right\|_{L_p(\Omega)}^p : \lambda_j \in \mathbb{C}, \ \sum_{j=1}^n |\lambda_j|^p \leqslant 1\right\} \\ &= \|[\xi_{ij}]\|^p. \quad \Box \end{split}$$

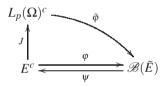
Let $\tilde{E} = \mathbb{C} \oplus_p E$. Let $\pi : \tilde{E} \to E$ denote the projection from \tilde{E} onto E and define $\varphi : E^c \to \mathscr{B}(\tilde{E})$ and $\psi : \mathscr{B}(\tilde{E}) \to E^c$ by

$$arphi(\xi) = T_{\xi}, \quad T_{\xi}(\lambda \oplus_p e) = 0 \oplus_p \lambda \xi, \quad \lambda \in \mathbb{C}, \quad e \in E$$

and

$$\psi(T) = \pi T(1 \oplus_p 0), \quad T \in \mathscr{B}(\tilde{E})$$

(see the diagram below).



It is then easy to check that φ and ψ are *p*-complete contractions with $\psi \circ \varphi = id_{E^c}$. Suppose that $\varphi : E^c \to \mathscr{B}(\tilde{E})$ extends to $\tilde{\varphi} : L_p(\Omega)^c \to \mathscr{B}(\tilde{E})$. Define $P : L_p(\Omega)^c \to E^c$ by $P = \psi \circ \tilde{\varphi}$, then it follows that *P* is a *p*-completely contractive projection onto E^c , meaning that *E* must be a 1-complemented subspace of $L_p(\Omega)$. This is, however, impossible, because it would imply that a Hilbert space *E* is isometrically isomorphic to some L_p space with $p \neq 2$.

3. A predual of $\mathscr{CB}_p(V, M_n)$

In this section, we define a normed space structure on $\mathbb{M}_n(V)$ whose Banach dual is isometrically isomorphic to $\mathscr{CB}_p(V, M_n)$.

LEMMA 3.1. Let $1 < p, p' < \infty$ with 1/p + 1/p' = 1. Let $\lambda = {\lambda_j}_{1 \le j \le n}$ be a finite sequence in \mathbb{C} . Then

$$\|\lambda\|_{\ell_p^n} \leqslant n^{|1/p-1/p'|} \cdot \|\lambda\|_{\ell_{p'}^n}$$

Proof. There is nothing to prove if p = p' = 2. If p > p', then $\|\lambda\|_{\ell_p^n} \le \|\lambda\|_{\ell_{p'}^n} \le n^{|1/p-1/p'|} \cdot \|\lambda\|_{\ell_{p'}^n} \le n^{|1/p-1/p'|} \ge 1$. Finally, assume $1 and let <math>q = \frac{p'}{p} > 1$ and let q' be the conjugate exponent to q. By Hölder's inequality,

$$\|\lambda\|_{\ell_p^n}^p \leqslant \left(\sum_{j=1}^n |\lambda_j|^{pq}\right)^{1/q} \cdot n^{1/q'} = \left(\sum_{j=1}^n |\lambda_j|^{p'}\right)^{p/p'} \cdot n^{1-p/p}$$

and hence $\|\lambda\|_{\ell_p^n} \leq n^{|1/p-1/p'|} \cdot \|\lambda\|_{\ell_{p'}^n}$. \Box

LEMMA 3.2. Let $\alpha = [\alpha_{ij}] \in \mathbb{M}_{n,r}$ and $\beta = [\beta_{kl}] \in \mathbb{M}_{r,n}$. Let $1 < p, p' < \infty$ with 1/p + 1/p' = 1. Then we have

$$\|\alpha\|_{\mathscr{B}(\ell_p^r,\ell_p^n)} \leqslant \|\alpha\|_{p'} \cdot n^{|1/p-1/p'|} \quad and \quad \|\beta\|_{\mathscr{B}(\ell_p^n,\ell_p^r)} \leqslant \|\beta\|_p \cdot n^{|1/p-1/p'|}$$

where

$$\|\alpha\|_{p'} = \left(\sum_{i=1}^{n} \sum_{j=1}^{r} |\alpha_{ij}|^{p'}\right)^{1/p'} \quad and \quad \|\beta\|_{p} = \left(\sum_{k=1}^{r} \sum_{l=1}^{n} |\beta_{kl}|^{p}\right)^{1/p}.$$

Proof. Suppose $\xi = \{\xi_j\}_{j=1}^r$ is a unit vector in ℓ_p^r . For each $i, 1 \le i \le n$, let $\eta_i = \left|\sum_{j=1}^r \alpha_{ij}\xi_j\right|$, then by Hölder's inequality, $\eta_i \le \left(\sum_{j=1}^r |\alpha_{ij}|^{p'}\right)^{1/p'}$ and by Lemma 3.1,

$$\left(\sum_{i=1}^{n} \eta_{i}^{p}\right)^{1/p} \leqslant n^{|1/p-1/p'|} \cdot \left(\sum_{i=1}^{n} \eta_{i}^{p'}\right)^{1/p'} \leqslant n^{|1/p-1/p'|} \cdot \|\alpha\|_{p'}$$

and hence we get $\|\alpha\|_{\mathscr{B}(\ell_p^r,\ell_p^n)} \leq n^{|1/p-1/p'|} \cdot \|\alpha\|_{p'}$. To prove the second inequality, let $\gamma = \beta^T \in \mathbb{M}_{n,r}$, the transpose of β . Then by the argument above we have

$$\|\gamma\|_{\mathscr{B}(\ell^r_{p'},\ell^n_{p'})} \leqslant \|\gamma\|_p \cdot n^{|1/p-1/p'|}.$$

Since $\|\gamma\|_{\mathscr{B}(\ell_{p'}^r,\ell_{p'}^n)} = \|\beta\|_{\mathscr{B}(\ell_p^n,\ell_p^r)}$ and $\|\gamma\|_p = \|\beta\|_p$, we get the desired inequality. \Box

Let *V* be a *p*-operator space. Fix $n \in \mathbb{N}$ and define $\|\cdot\|_{1,n} : \mathbb{M}_n(V) \to [0,\infty)$ by $\|v\|_{1,n} = \inf\{\|\alpha\|_{p'}\|w\|\|\beta\|_p : r \in \mathbb{N}, v = \alpha w\beta, \alpha \in \mathbb{M}_{n,r}, \beta \in \mathbb{M}_{r,n}, w \in M_r(V)\},$ (3.1) where $\|\cdot\|_{p'}$ and $\|\cdot\|_p$ as in Lemma 3.2.

PROPOSITION 3.3. Suppose that V is a p-operator space and $n \in \mathbb{N}$. Then $\|\cdot\|_{1,n}$ defines a norm on $\mathbb{M}_n(V)$.

Proof. Suppose $v_1, v_2 \in \mathbb{M}_n(V)$. Let $\varepsilon > 0$. For i = 1, 2, we can find α_i , β_i , and w_i such that $v_i = \alpha_i w_i \beta_i$ with $||w_i|| \leq 1$ and

$$\|\alpha_i\|_{p'} < (\|v_i\|_{1,n} + \varepsilon)^{1/p'}, \quad \|\beta_i\|_p < (\|v_i\|_{1,n} + \varepsilon)^{1/p}.$$
(3.2)

Let

$$\alpha = [\alpha_1 \ \alpha_2], \quad \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}, \text{ and } w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix},$$

then $\|\alpha\|_{p'}^{p'} = \|\alpha_1\|_{p'}^{p'} + \|\alpha_2\|_{p'}^{p'}$, $\|\beta\|_p^p = \|\beta_1\|_p^p + \|\beta_2\|_p^p$, and $\|w\| \le 1$. Since $v_1 + v_2 = \alpha w \beta$, it follows that

$$\|v_{1} + v_{2}\|_{1,n} \leq \|\alpha\|_{p'} \|\beta\|_{p}$$
(Young's inequality) $\leq \frac{\|\alpha\|_{p'}^{p'}}{p'} + \frac{\|\beta\|_{p}^{p}}{p}$

$$= \frac{\|\alpha_{1}\|_{p'}^{p'} + \|\alpha_{2}\|_{p'}^{p'}}{p'} + \frac{\|\beta_{1}\|_{p}^{p} + \|\beta_{2}\|_{p}^{p}}{p}$$
(by (3.2)) $< \frac{\|v_{1}\|_{1,n} + \|v_{2}\|_{1,n} + 2\varepsilon}{p'} + \frac{\|v_{1}\|_{1,n} + \|v_{2}\|_{1,n} + 2\varepsilon}{p}$

$$= \|v_{1}\|_{1,n} + \|v_{2}\|_{1,n} + 2\varepsilon.$$

Since ε is arbitrary, we get $||v_1 + v_2||_{1,n} \le ||v_1||_{1,n} + ||v_2||_{1,n}$.

For any $c \in \mathbb{C}$, if $v = \alpha w \beta$, then we have $cv = \alpha(cw)\beta$ and hence $||cv||_{1,n} \leq ||\alpha||_{p'}|c|||w|| ||\beta||_p$. Taking the infimum, we get

$$\|cv\|_{1,n} \le |c| \|v\|_{1,n}. \tag{3.3}$$

When $c \neq 0$, replacing c by 1/c and v by cv in (3.3) gives

$$|c| \|v\|_{1,n} \leqslant \|cv\|_{1,n}, \tag{3.4}$$

so (3.3) together with (3.4) gives $||cv||_{1,n} = |c|||v||_{1,n}$, which is obviously true when c = 0.

Finally, suppose $||v||_{1,n} = 0$. To show that v = 0, it suffices to show that

$$\|v\| \leqslant n^{2|1/p - 1/p'|} \cdot \|v\|_{1,n}.$$
(3.5)

Indeed, if $v = \alpha w \beta$ with $\alpha \in \mathbb{M}_{n,r}$, $\beta \in \mathbb{M}_{r,n}$, and $w \in M_r(v)$, then

$$\|v\| \le \|\alpha\| \|w\| \|\beta\|$$

(by Lemma 3.2)
$$\le \|\alpha\|_{p'} \cdot n^{|1/p-1/p'|} \cdot \|w\| \cdot \|\beta\|_p \cdot n^{|1/p-1/p'|}$$
$$= n^{2|1/p-1/p'|} \cdot \|\alpha\|_{p'} \cdot \|w\| \cdot \|\beta\|_p.$$

Taking the infimum, (3.5) follows.

For a *p*-operator space *V*, let $\mathscr{T}_n(V)$ denote the normed space $(\mathbb{M}_n(V), \|\cdot\|_{1,n})$.

LEMMA 3.4. For a p-operator space V, $\mathscr{T}_n(V)' = M_n(V') = \mathscr{CB}_p(V, M_n)$ isometrically.

Proof. The second isometric isomorphism comes from the definition of the *p*-operator space structure on V'. We follow the idea as in [3, §4.1]. Let $f = [f_{ij}] \in M_n(V') = \mathscr{CB}_p(V, M_n)$. Note that

$$|f|| = \sup\{\|\langle\langle f, \tilde{v}\rangle\rangle\| : r \in \mathbb{N}, \ \tilde{v} = [\tilde{v}_{kl}] \in M_r(V), \ \|\tilde{v}\| \leq 1\}.$$

Let $D_{n \times r}^p$ denote the closed unit ball of $\ell_p^{n \times r}$, then

$$\begin{split} \|f\| &= \sup\{|\langle\langle\langle f, \tilde{v}\rangle\rangle \eta, \xi\rangle| : r \in \mathbb{N}, \ \tilde{v} = [\tilde{v}_{kl}] \in M_r(V), \ \|\tilde{v}\| \leqslant 1, \ \eta \in D_{n \times r}^p, \ \xi \in D_{n \times r}^{p'}\} \\ &= \sup\left\{\left|\sum_{i,j,k,l} f_{ij}(\tilde{v}_{kl})\eta_{(j,l)}\xi_{(i,k)}\right| : r \in \mathbb{N}, \ \tilde{v} = [\tilde{v}_{kl}] \in M_r(V), \ \|\tilde{v}\| \leqslant 1, \\ \eta \in D_{n \times r}^p, \ \xi \in D_{n \times r}^{p'}\right\} \\ &= \sup\left\{\left|\sum_{i,j=1}^n \left\langle f_{ij}, \sum_{k,l=1}^r \xi_{(i,k)}\tilde{v}_{kl}\eta_{(j,l)}\right\rangle\right| : r \in \mathbb{N}, \ \tilde{v} = [\tilde{v}_{kl}] \in M_r(V), \ \|\tilde{v}\| \leqslant 1, \\ \eta \in D_{n \times r}^p, \ \xi \in D_{n \times r}^{p'}\right\}. \end{split}$$

Note that $\sum_{k,l=1}^{r} \xi_{(i,k)} \tilde{v}_{kl} \eta_{(j,l)}$ is the (i, j)-entry of the matrix product $\alpha \tilde{v} \beta$, where

$$\alpha = \begin{bmatrix} \xi_{(1,1)} \cdots \xi_{(1,r)} \\ \vdots & \ddots & \vdots \\ \xi_{(n,1)} \cdots & \xi_{(n,r)} \end{bmatrix} \text{ and } \beta = \begin{bmatrix} \eta_{(1,1)} \cdots & \eta_{(n,1)} \\ \vdots & \ddots & \vdots \\ \beta_{(1,r)} & \cdots & \eta_{(n,r)} \end{bmatrix},$$

so

$$||f|| = \sup\left\{ \left| \sum_{i,j=1}^{n} \langle f_{ij}, (\alpha \tilde{\nu} \beta)_{ij} \rangle \right| : ||\tilde{\nu}|| \leq 1, ||\alpha||_{p'} \leq 1, ||\beta||_{p} \leq 1 \right\}$$

= $\sup\left\{ |\langle f, \nu \rangle| : \nu = \alpha \tilde{\nu} \beta, ||\tilde{\nu}|| \leq 1, ||\alpha||_{p'} \leq 1, ||\beta||_{p} \leq 1 \right\}$
= $\sup\left\{ |\langle f, \nu \rangle| : ||\nu||_{1,n} \leq 1 \right\}.$ (3.6)

Define the scalar pairing $\Phi: M_n(V') \to \mathscr{T}_n(V)'$ by $f \mapsto \langle f, \cdot \rangle$, then from (3.6) it follows that Φ is an isometric isomorphism. \Box

PROPOSITION 3.5. Let $V \subseteq W$ be *p*-operator spaces such that the inclusion $\mathscr{T}_n(V) \hookrightarrow \mathscr{T}_n(W)$ is isometric. Then every *p*-completely contractive map $\varphi : V \to \mathscr{B}(L_p(\Omega))$ has a completely contractive extension $\tilde{\varphi} : W \to \mathscr{B}(L_p(\Omega))$.

Proof. Following [3, Corollay 4.1.4, Theorem 4.1.5], it suffices to assume that $\mathscr{B}(L_p(\Omega)) = \mathscr{B}(\ell_p^n) = M_n$. If the inclusion $i : \mathscr{T}_n(V) \hookrightarrow \mathscr{T}_n(W)$ is isometric, then by Lemma 3.4, the adjoint $i' : \mathscr{CB}_p(W, M_n) \to \mathscr{CB}_p(V, M_n)$, which is a restriction mapping, is an exact quotient mapping. \Box

4. ℓ_p -polar decomposition

Let $V \subseteq W$ be *p*-operator spaces. By Proposition 3.5, if the inclusion $\mathscr{T}_n(V) \hookrightarrow \mathscr{T}_n(W)$ is isometric, then every *p*-completely contractive map $\varphi : V \to \mathscr{B}(L_p(\Omega))$ has a completely contractive extension $\tilde{\varphi} : W \to \mathscr{B}(L_p(\Omega))$. In this section, we consider a condition on *W* under which the inclusion $\mathscr{T}_n(V) \hookrightarrow \mathscr{T}_n(W)$ is isometric. Recall that the vector *p*-norm of $x = (x_1, \ldots, x_n) \in \mathbb{C}^n$ is defined by

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

If we identify $\mathbb{M}_{r,n}$ with $\mathscr{B}(\ell_2^n, \ell_2^r)$, the space of all bounded linear operators from ℓ_2^n to ℓ_2^r , it is well known that every $\beta \in \mathbb{M}_{r,n}$ with $r \ge n$ has a *polar decomposition*, that is, β can be written as $\beta = \tau \beta_0$, where $\tau \in \mathbb{M}_{r,n}$ has orthonormal columns, that is, τ is an isometry, and $\beta_0 \in \mathbb{M}_n$ is positive semidefinite [5, §7.3]. For $p \ne 2$ and $r \ge n$, regarding $\mathbb{M}_{r,n}$ as $\mathscr{B}(\ell_p^n, \ell_p^r)$, the space of all bounded linear operators from ℓ_p^n to ℓ_p^r , we ask if there is an ℓ_p -analogue of the polar decomposition. First of all, we need to define what we should mean by polar decomposition when $p \ne 2$, because, for example, if $T : \ell_p^n \rightarrow \ell_p^n$, then the adjoint T' is from $\ell_{p'}^n$ to $\ell_{p'}^n$, where 1/p + 1/p' = 1, and therefore T'T is not defined, which in turn means we lose the concept of positive (semi)definiteness. We use the definition below as a natural *p*-analogue of the polar decomposition.

DEFINITION 4.1. Let $r \ge n$. We say that $\beta \in \mathbb{M}_{r,n} = \mathscr{B}(\ell_p^n, \ell_p^r)$ is ℓ_p -polar decomposible if there is an isometry $\tau \in \mathbb{M}_{r,n}$ and an operator $\beta_0 \in \mathbb{M}_n$ such that $\beta = \tau \beta_0$. In this case, we say that $\beta = \tau \beta_0$ is an ℓ_p -polar decomposition of β . The set of all full rank ℓ_p -polar decomposible $r \times n$ matrices is denoted by $\mathbb{M}_{r,n}^{(p)}$.

Remark 4.2.

- a. If r < n, then there is no isometry in $\mathbb{M}_{r,n} = \mathscr{B}(\ell_p^n, \ell_p^r)$ and hence we only consider the case $r \ge n$ in Definition 4.1.
- b. It is well known [5, §0.4] that rank $AB \leq \min\{\operatorname{rank} A, \operatorname{rank} B\}$ whenever AB is defined for matrices A and B, so if $\beta = \tau \beta_0$ is an ℓ_p -polar decomposition of a full rank $r \times n$ matrix β , then

$$n = \operatorname{rank} \beta \leq \min \{\operatorname{rank} \tau, \operatorname{rank} \beta_0\} \leq n$$

and it follows that rank $\tau = \operatorname{rank} \beta_0 = n$. In particular, β_0 is nonsingular.

c. If $\beta = \tau \beta_0$ is an ℓ_p -polar decomposition of β , then $\|\beta\|_p = \|\beta_0\|_p$, where $\|\cdot\|_p$ is as in Lemma 3.2.

To give a characterization of ℓ_p -polar decomposible matrices, we begin with a characterization of isometries from ℓ_p^n to ℓ_p^r . Recall that for a vector $x = (x_1, \dots, x_m)$, we define supp*x*, the *support* of *x*, by supp $x = \{i : 1 \le i \le m, x_i \ne 0\}$.

LEMMA 4.3. Let $1 , <math>p \neq 2$, and $r \ge n$. Then $\tau : \ell_p^n \to \ell_p^r$ is an isometry if and only if the columns of τ have mutually disjoint supports with each vector p-norm equal to 1.

Proof. Let
$$\tau_j = \begin{bmatrix} \tau_{1j} \\ \vdots \\ \tau_{rj} \end{bmatrix}$$
 denote the *j*th column of an $r \times n$ matrix τ . If τ_1, \ldots, τ_n

have mutually disjoint supports with each *p*-norm equal to 1, then for any $x = (x_1, ..., x_n) \in \ell_p^n$, we get

$$\begin{aligned} \|\tau x\|_{p}^{p} &= \sum_{i=1}^{r} \left| \sum_{j=1}^{n} \tau_{ij} x_{j} \right|^{p} = \sum_{k=1}^{n} \sum_{i \in \text{supp } \tau_{k}} \left| \sum_{j=1}^{n} \tau_{ij} x_{j} \right|^{p} \\ &= \sum_{k=1}^{n} \sum_{i \in \text{supp } \tau_{k}} |\tau_{ik} x_{k}|^{p} = \sum_{k=1}^{n} |x_{k}|^{p} \sum_{i \in \text{supp } \tau_{k}} |\tau_{ik}|^{p} \\ &= \|x\|_{p}^{p}. \end{aligned}$$

Conversely, suppose $\tau : \ell_p^n \to \ell_p^r$ is an isometry. Since $\tau_j = \tau e_j$ for each j, where e_j denotes the unit vector in ℓ_p^n whose only non-zero entry is 1 at the j^{th} place, it follows that τ_j is of norm 1. To show that columns of τ have mutually disjoint supports, let $j \neq k$ and consider $e_j \pm e_k$ in ℓ_p^n . Since $||e_j \pm e_k||_p = 2^{1/p}$, we get $||\tau_j \pm \tau_k||_p^p = 2$ and the result follows from [7, Lemma 15.7.23]. \Box

REMARK 4.4. The result above remains true when p = 1.

Let *V* be a *p*-operator space. For $v \in M_n(V)$, we define

 $\|v\|_{2,n} = \inf\{\|\alpha\|_{p'} \|w\| \|\beta\|_{p} : r \in \mathbb{N}, \ v = \alpha w \beta, \ \alpha^{T} \in \mathbb{M}_{r,n}^{(p')}, \ \beta \in \mathbb{M}_{r,n}^{(p)}, \ w \in M_{r}(V)\},$ (4.1)

where α^T denotes the transpose of α and

$$\|\alpha\|_{p'} = \left(\sum_{i=1}^{n} \sum_{j=1}^{r} |\alpha_{ij}|^{p'}\right)^{1/p'}$$
 and $\|\beta\|_{p} = \left(\sum_{k=1}^{r} \sum_{l=1}^{n} |\beta_{kl}|^{p}\right)^{1/p}$

PROPOSITION 4.5. Let $V \subseteq W$ be *p*-operator spaces. If $||w||_{2,n} = ||w||_{1,n}$ for all $w \in \mathbb{M}_n(W)$, then the inclusion $\mathcal{T}_n(V) \hookrightarrow \mathcal{T}_n(W)$ is isometric.

Proof. Let $v \in \mathbb{M}_n(V)$. It is clear that $\|v\|_{\mathscr{T}_n(W)} \leq \|v\|_{\mathscr{T}_n(V)}$. Suppose $\|v\|_{\mathscr{T}_n(W)} < 1$, then by assumption, one can find $r \in \mathbb{N}$, $\alpha \in \mathbb{M}_{n,r}$, $\beta \in \mathbb{M}_{r,n}$, and $w \in M_r(W)$ such that $v = \alpha w \beta$, $\alpha^T \in \mathbb{M}_{r,n}^{(p')}$, $\beta \in \mathbb{M}_{r,n}^{(p)}$, $\|\alpha\|_{p'} < 1$, $\|w\| < 1$, and $\|\beta\|_p < 1$. Let $\beta = \tau \beta_0$ (respectively, $\alpha^T = \sigma \alpha_0$) be ℓ_p -(respectively, ℓ'_p -) polar decomposition of β (respectively, α^T), and set $\tilde{w} = \sigma^T w \tau$, then $\|\tilde{w}\|_{M_n(W)} < 1$. Moreover, by Remark 4.2, α_0 and β_0 are invertible and hence $\tilde{w} = (\alpha_0^T)^{-1} v \beta_0^{-1} \in M_n(V)$, giving that $\|\tilde{w}\|_{M_n(V)} < 1$

1. Since $v = \alpha_0^T \tilde{w} \beta_0$, $\|\alpha_0^T\|_{p'} = \|\alpha\|_{p'} < 1$, and $\|\beta_0\|_p = \|\beta\|_p < 1$ by Remark 4.2, it follows that $\|v\|_{\mathcal{F}_n(V)} < 1$. \Box

For any $v \in \mathbb{M}_n(V)$, it is clear that $||v||_{1,n} \leq ||v||_{2,n}$ At this moment of writing, we do not know of any nontrivial example of *p*-operator space *V* such that $||\cdot||_{1,n} = ||\cdot||_{2,n}$. It is not even clear whether $||\cdot||_{2,n}$ defines a norm on $\mathbb{M}_n(V)$ for some *p*-operator space *V* (see Remark 4.7). However, thanks to Lemma 4.3, we can give a characterization of ℓ_p -polar decomposible matrices which may lead to finding a nontrivial example of *p*-operator space *V* such that $||v||_{1,n} = ||v||_{2,n}$ for all $v \in \mathbb{M}_n(V)$.

PROPOSITION 4.6. Let
$$1 , $p \neq 2$, and $r \ge n$. Then $\beta = \begin{bmatrix} -u_1 & -u_1 \\ \vdots \\ -u_r & -u_r \end{bmatrix} \in$$$

 $\mathbb{M}_{r,n} = \mathscr{B}(\ell_p^n, \ell_p^r)$ is ℓ_p -polar decomposible if and only if there are $u_{j_1}, u_{j_2}, \dots, u_{j_n}$, not necessarily distinct, such that each u_i $(1 \le i \le r)$ is a scalar multiple of u_{j_k} for some $k, 1 \le k \le n$.

Proof. Let
$$\beta = \begin{bmatrix} -u_1 & - \\ \vdots & \\ -u_r & - \end{bmatrix} \in \mathbb{M}_{r,n} = \mathscr{B}(\ell_p^n, \ell_p^r)$$
. Suppose that there are

 $u_{j_1}, u_{j_2}, \ldots, u_{j_n}$ (not necessarily distinct) such that each u_i $(1 \le i \le r)$ is a scalar multiple of u_{j_k} for some k, $1 \le k \le n$. Rearranging rows of β with an appropriate permutation if necessary, we may assume that $1 = j_1 < j_2 < j_3 < \cdots < j_n \le r$ and that for i with $j_k \le i < j_{k+1}, u_i = c_i u_{j_k}$ for some scalar c_i . For each k, $1 \le k \le n$, we define $\lambda_k = \left(\sum_{j_k \le i < j_{k+1}} |c_i|^p\right)^{-p}$. Note that λ_k is well defined since $c_{j_k} = 1$. Define $\tau \in \mathbb{M}_{r,n}$ and $\beta_0 \in \mathbb{M}_n$ by

$$\tau = \begin{bmatrix} c_1 \lambda_1 & 0 & 0 \cdots & 0 \\ c_2 \lambda_1 & 0 & 0 \cdots & 0 \\ \vdots & \vdots & \vdots \ddots & \vdots \\ c_{j_2-1} \lambda_1 & 0 & 0 \cdots & 0 \\ 0 & c_{j_2} \lambda_2 & 0 \cdots & 0 \\ 0 & c_{j_2+1} \lambda_2 & 0 \cdots & 0 \\ \vdots & \vdots & \vdots \ddots & \vdots \\ 0 & c_{j_3-1} \lambda_2 & 0 \cdots & 0 \\ \vdots & \vdots & \vdots \ddots & \vdots \\ 0 & 0 & 0 & \cdots & c_{j_n} \lambda_n \\ 0 & 0 & 0 & \cdots & c_{j_n+1} \lambda_n \\ \vdots & \vdots & \vdots \ddots & \vdots \\ 0 & 0 & 0 & \cdots & c_r \lambda_n \end{bmatrix} \text{ and } \beta_0 = \begin{bmatrix} - & \frac{1}{\lambda_1} u_{j_1} & - \\ - & \frac{1}{\lambda_2} u_{j_2} & - \\ \vdots \\ - & \frac{1}{\lambda_n} u_{j_n} & - \end{bmatrix},$$

then by Lemma 4.3, it follows that $\beta = \tau \beta_0$ is an ℓ_p -polar decomposition of β .

Conversely, assume that $\beta = \tau \beta_0$ is a *p*-polar decomposition of β . To exclude triviality, we may assume that β contains no rows of only zeros. Let τ_k denote the k^{th} column of τ . By Lemma 4.3, $\sup \tau_k \neq \emptyset$ so we can pick $j_k \in \sup \tau_k$. Moreover, for each $i, 1 \leq i \leq r$, there is exactly one k(i) such that $i \in \sup \tau_{k(i)}$ and it follows that u_i is a constant multiple of $u_{j_{k(i)}}$. \Box

REMARK 4.7. Let $v_1 \in \mathbb{M}_n(V)$ and $v_2 \in \mathbb{M}_m(V)$ for some *p*-operator space *V*, then one can easily show that $||cv_1||_{2,n} = |c|||v_1||_{2,n}$. Moreover, the decomposition $v_1 = \alpha_1^T w_1 \beta_1$ and $v_2 = \alpha_2^T w_2 \beta_2$ gives

$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} \alpha_1^T \\ \alpha_2^T \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix},$$
(4.2)

which, combined with Proposition 4.6, shows that $||v_1 \oplus v_2||_{2,n+m} \leq ||v_1||_{2,n} + ||v_2||_{2,m}$.

REFERENCES

- [1] MATTHEW DAWS, *p*-operator spaces and Figà-Talamanca-Herz algebras, J. Opeator Theory, **63**: 47–83, 2010.
- [2] A. DEFANT AND K. FLORET, Tensor Norms and Operator Ideals, North-Holland, 1993.
- [3] E. EFFROS AND Z.-J. RUAN, Operator Spaces, Oxford Science Publications, 2000.
- [4] C. HERZ, The theory of p-spaces with an application to convolution operators, Trans. Amer. Math. Soc., 154: 69–82, 1971.
- [5] ROGER A. HORN AND CHARLES R. JOHNSON, *Matrix analysis*, Cambridge University Press, Cambridge, 1990. Corrected reprint of the 1985 original.
- [6] CHRISTIAN LEMERDY, Factorization of p-completely bounded multilinear maps, Pacific Journal of Mathematics, 172: 187–213, 1996.
- [7] H. L. ROYDEN, Real analysis, Macmillan Publishing Company, New York, third edition, 1988.
- [8] Z.-J. RUAN, Subspaces of C* -algebras, J. Funct. Anal., 76: 217–230, 1988.

(Received August 27, 2014)

Jung-Jin Lee Department of Mathematics and Statistics Mount Holyoke College South Hadley, MA 01075, USA e-mail: jjlee@mtholyoke.edu