HAHN-BANACH TYPE EXTENSION THEOREMS ON p-OPERATOR SPACES

Jung-Jin LeE
(Communicated by Z.-J. Ruan)

Abstract

Let $V \subseteq W$ be two operator spaces. Arveson-Wittstock-Hahn-Banach theorem asserts that every completely contractive map $\varphi: V \rightarrow \mathscr{B}(H)$ has a completely contractive extension $\tilde{\varphi}: W \rightarrow \mathscr{B}(H)$, where $\mathscr{B}(H)$ denotes the space of all bounded operators from a Hilbert space H to itself. In this paper, we show that this is not in general true for p-operator spaces, that is, we show that there are p-operator spaces $V \subseteq W$, an $S Q_{p}$ space E, and a p-completely contractive map $\varphi: V \rightarrow \mathscr{B}(E)$ such that φ does not extend to a p-completely contractive map on W. Restricting E to L_{p} spaces, we also consider a condition on W under which every completely contractive map $\varphi: V \rightarrow \mathscr{B}\left(L_{p}(\mu)\right)$ has a completely contractive extension $\tilde{\varphi}: W \rightarrow \mathscr{B}\left(L_{p}(\mu)\right)$.

1. Introduction to p-operator spaces

Throughout this paper, we assume $1<p, p^{\prime}<\infty$ with $1 / p+1 / p^{\prime}=1$, unless stated otherwise. For a Banach space X, we denote by $\mathbb{M}_{m, n}(X)$ the linear space of all $m \times n$ matrices with entries in X. By $\mathbb{M}_{n}(X)$, we will denote $\mathbb{M}_{n, n}(X)$. When $X=\mathbb{C}$, we will simply use $\mathbb{M}_{m, n}$ (respectively, \mathbb{M}_{n}) for $\mathbb{M}_{m, n}(\mathbb{C})$ (respectively, $\mathbb{M}_{n}(\mathbb{C})$). For Banach spaces X and Y, we will denote by $\mathscr{B}(X, Y)$ the space of all bounded linear operators from X to Y. We will also use $\mathscr{B}(X)$ for $\mathscr{B}(X, X)$. The ℓ_{p} direct sum of n copies of X will be denoted by $\ell_{p}^{n}(X)$.

Definition 1.1. Let $S Q_{p}$ denote the collection of subspaces of quotients of L_{p} spaces. A Banach space X is called a concrete p-operator space if X is a closed subspace of $\mathscr{B}(E)$ for some $E \in S Q_{p}$.

Let $E \in S Q_{p}$. For a concrete p-operator space $X \subseteq \mathscr{B}(E)$ and for each $n \in \mathbb{N}$, define a norm $\|\cdot\|_{n}$ on $\mathbb{M}_{n}(X)$ by identifying $\mathbb{M}_{n}(X)$ as a subspace of $\mathscr{B}\left(\ell_{p}^{n}(E)\right)$, and let $M_{n}(X)$ denote the corresponding normed space. The norms $\|\cdot\|_{n}$ then satisfy
\mathscr{D}_{∞} for $u \in M_{n}(X)$ and $v \in M_{m}(X)$, we have $\|u \oplus v\|_{M_{n+m}(X)}=\max \left\{\|u\|_{n},\|v\|_{m}\right\}$.
\mathscr{M}_{p} for $u \in M_{m}(X), \alpha \in \mathbb{M}_{n, m}$, and $\beta \in \mathbb{M}_{m, n}$, we have $\|\alpha u \beta\|_{n} \leqslant\|\alpha\|\|u\|_{m}\|\beta\|$, where $\|\alpha\|$ is the norm of α as a member of $\mathscr{B}\left(\ell_{p}^{m}, \ell_{p}^{n}\right)$, and similarly for β.

Mathematics subject classification (2010): 47L25, 46L07.
Keywords and phrases: p-operator space; Arveson-Wittstock-Hahn-Banach theorem; $S Q_{p}$ space.
The author was supported by Hutchcroft Fund, Department of Mathematics and Statistics, Mount Holyoke College.

When $p=2$, these are Ruan's axioms and 2-operator spaces are simply operator spaces because the $S Q_{2}$ spaces are exactly the same as Hilbert spaces.

As in operator spaces, we can also define abstract p-operator spaces.
DEFINITION 1.2. An abstract p-operator space is a Banach space X together with a sequence of norms $\|\cdot\|_{n}$ defined on $\mathbb{M}_{n}(X)$ satisfying the conditions \mathscr{D}_{∞} and \mathscr{M}_{p} above.

Thanks to Ruan's representation theorem [8], we do not distinguish between concrete and abstract operator spaces. Le Merdy showed that this remains true for p operator spaces.

THEOREM 1.3. [6, Theorem 4.1] An abstract p-operator space X can be isometrically embedded in $\mathscr{B}(E)$ for some $E \in S Q_{p}$ in such a way that the canonical norms on $\mathbb{M}_{n}(X)$ arising from this embedding agree with the given norms.

EXAMPLE 1.4.

a. Suppose E and F are $S Q_{p}$ spaces and let $L=E \oplus_{p} F$, the ℓ_{p} direct sum of E and F. Then L is also an $S Q_{p}$ space [4, Proposition 5] and the mapping

$$
x \mapsto\left[\begin{array}{ll}
0 & 0 \\
x & 0
\end{array}\right]
$$

is an isometric embedding of $\mathscr{B}(E, F)$ into $\mathscr{B}(L)$. Using this we can view $\mathscr{B}(E, F)$ as a p-operator space. Note that $M_{n}(\mathscr{B}(E, F))$ is isometrically isomorphic to $\mathscr{B}\left(\ell_{p}^{n}(E), \ell_{p}^{n}(F)\right)$.
b. The identification $L_{p}(\mu)=\mathscr{B}\left(\mathbb{C}, L_{p}(\mu)\right) \subseteq \mathscr{B}\left(\mathbb{C} \oplus_{p} L_{p}(\mu)\right)$ gives a p-operator space structure on $L_{p}(\mu)$ called the column p-operator space structure of $L_{p}(\mu)$, which we denote by $L_{p}^{c}(\mu)$. Similarly, the identification $L_{p^{\prime}}(\mu)=\mathscr{B}\left(L_{p}(\mu), \mathbb{C}\right)$ gives rise to p-operator space structure on $L_{p^{\prime}}(\mu)$ which we denote by $L_{p^{\prime}}^{r}(\mu)$ and call the row p-operator space structure of $L_{p^{\prime}}(\mu)$. In general, we can define E^{c} and $\left(E^{\prime}\right)^{r}$ for any $E \in S Q_{p}$, where E^{\prime} is the Banach dual space of E.

Note that a linear map $u: X \rightarrow Y$ between p-operator spaces X and Y induces a map $u_{n}: M_{n}(X) \rightarrow M_{n}(Y)$ by applying u entrywise. We say that u is p-completely bounded if $\|u\|_{p c b}:=\sup _{n}\left\|u_{n}\right\|<\infty$. Similarly, we define p-completely contractive, p-completely isometric, and p-completely quotient maps. We write $\mathscr{C} \mathscr{B}_{p}(X, Y)$ for the space of all p-completely bounded maps from X into Y.

To turn the mapping space $\mathscr{C} \mathscr{B}_{p}(X, Y)$ between two p-operator spaces X and Y into a p-operator space, we define a norm on $\mathbb{M}_{n}\left(\mathscr{C} \mathscr{B}_{p}(X, Y)\right)$ by identifying this space with $\mathscr{C} \mathscr{B}_{p}\left(X, M_{n}(Y)\right)$. Using Le Merdy's theorem, one can show that $\mathscr{C} \mathscr{B}_{p}(X, Y)$ itself is a p-operator space. In particular, the p-operator dual space of X is defined to be $\mathscr{C} \mathscr{B}_{p}(X, \mathbb{C})$. The next lemma by Daws shows that we may identify the Banach dual space X^{\prime} of X with the p-operator dual space $\mathscr{C} \mathscr{B}_{p}(X, \mathbb{C})$ of X.

Lemma 1.5. [1, Lemma 4.2] Let X be a p-operator space, and let $\varphi \in X^{\prime}$, the Banach dual of X. Then φ is p-completely bounded as a map to \mathbb{C}. Moreover, $\|\varphi\|_{p c b}=\|\varphi\|$.

If $E=L_{p}(\mu)$ for some measure μ and $X \subseteq \mathscr{B}(E)=\mathscr{B}\left(L_{p}(\mu)\right)$, then we say that X is a p-operator space on L_{p} space. These p-operator spaces are often easier to work with. For example, let $\kappa_{X}: X \rightarrow X^{\prime \prime}$ denote the canonical inclusion from a p-operator space X into its second dual. Contrary to operator spaces, κ_{X} is not always p-completely isometric. Thanks to the following theorem by Daws, however, we can easily characterize those p-operator spaces with the property that the canonical inclusion is p-completely isometric.

Proposition 1.6. [1, Proposition 4.4] Let X be a p-operator space. Then κ_{X} is a p-complete contraction. Moreover, κ_{X} is a p-complete isometry if and only if $X \subseteq \mathscr{B}\left(L_{p}(\mu)\right)$ p-completely isometrically for some measure μ.

2. Non-existence of p-Arveson-Wittstock-Hahn-Banach theorem

Let $V \subseteq W$ be two operator spaces. Arveson-Wittstock-Hahn-Banach theorem asserts that every completely bounded map $\varphi: V \rightarrow \mathscr{B}(H)$ has a completely bounded extension $\tilde{\varphi}: W \rightarrow \mathscr{B}(H)$, where H is a Hilbert space. For p-operator spaces, the following question naturally arises.

Question 2.1. Let $V \subseteq W$ be p-operator spaces and E an $S Q_{p}$ space. Does every p-completely bounded map $\varphi: V \rightarrow \mathscr{B}(E)$ have a p-completely bounded extension $\tilde{\varphi}: W \rightarrow \mathscr{B}(E)$?

To show that this question has a negative answer, let $p \neq 2$, and let E and $L_{p}(\Omega)$ such that E is a Hilbert space embedding to $L_{p}(\Omega)$. The existence of such E and $L_{p}(\Omega)$ is guaranteed by, for example, [2, Proposition 8.7]. Let $J: E \hookrightarrow L_{p}(\Omega)$ denote the isometric embedding, then we can view E as a subspace of $L_{p}(\Omega)$.

LEMMA 2.2. Let J be as above. With p-operator space structure E^{c} and $L_{p}(\Omega)^{c}$, J becomes a p-complete isometry.

Proof. From Example 1.4, we note that $M_{n}\left(E^{c}\right) \subseteq M_{n}(\mathscr{B}(\mathbb{C}, E))=\mathscr{B}\left(\ell_{p}^{n}, \ell_{p}^{n}(E)\right)$. For $\left[\xi_{i j}\right] \in M_{n}\left(E^{c}\right)$, the norm is given by

$$
\left\|\left[\xi_{i j}\right]\right\|^{p}=\sup \left\{\sum_{i=1}^{n}\left\|\sum_{j=1}^{n} \lambda_{j} \xi_{i j}\right\|_{E}^{p}: \lambda_{j} \in \mathbb{C}, \sum_{j=1}^{n}\left|\lambda_{j}\right|^{p} \leqslant 1\right\} .
$$

Since J is an isometry,

$$
\left\|J\left(\sum_{j=1}^{n} \lambda_{j} \xi_{i j}\right)\right\|_{L_{p}(\Omega)}=\left\|\sum_{j=1}^{n} \lambda_{j} \xi_{i j}\right\|_{E}
$$

and it follows that

$$
\begin{aligned}
\left\|J_{n}\left(\left[\xi_{i j}\right]\right)\right\|^{p} & =\sup \left\{\sum_{i=1}^{n}\left\|\sum_{j=1}^{n} \lambda_{j} J\left(\xi_{i j}\right)\right\|_{L_{p}(\Omega)}^{p}: \lambda_{j} \in \mathbb{C}, \sum_{j=1}^{n}\left|\lambda_{j}\right|^{p} \leqslant 1\right\} \\
& =\sup \left\{\sum_{i=1}^{n}\left\|J\left(\sum_{j=1}^{n} \lambda_{j} \xi_{i j}\right)\right\|_{L_{p}(\Omega)}^{p}: \lambda_{j} \in \mathbb{C}, \sum_{j=1}^{n}\left|\lambda_{j}\right|^{p} \leqslant 1\right\} \\
& =\left\|\left[\xi_{i j}\right]\right\|^{p} . \square
\end{aligned}
$$

Let $\tilde{E}=\mathbb{C} \oplus_{p} E$. Let $\pi: \tilde{E} \rightarrow E$ denote the projection from \tilde{E} onto E and define $\varphi: E^{c} \rightarrow \mathscr{B}(\tilde{E})$ and $\psi: \mathscr{B}(\tilde{E}) \rightarrow E^{c}$ by

$$
\varphi(\xi)=T_{\xi}, \quad T_{\xi}\left(\lambda \oplus_{p} e\right)=0 \oplus_{p} \lambda \xi, \quad \lambda \in \mathbb{C}, \quad e \in E
$$

and

$$
\psi(T)=\pi T\left(1 \oplus_{p} 0\right), \quad T \in \mathscr{B}(\tilde{E})
$$

(see the diagram below).

It is then easy to check that φ and ψ are p-complete contractions with $\psi \circ \varphi=i d_{E^{c}}$. Suppose that $\varphi: E^{c} \rightarrow \mathscr{B}(\tilde{E})$ extends to $\tilde{\varphi}: L_{p}(\Omega)^{c} \rightarrow \mathscr{B}(\tilde{E})$. Define $P: L_{p}(\Omega)^{c} \rightarrow E^{c}$ by $P=\psi \circ \tilde{\varphi}$, then it follows that P is a p-completely contractive projection onto E^{c}, meaning that E must be a 1 -complemented subspace of $L_{p}(\Omega)$. This is, however, impossible, because it would imply that a Hilbert space E is isometrically isomorphic to some L_{p} space with $p \neq 2$.

3. A predual of $\mathscr{C} \mathscr{B}_{p}\left(V, M_{n}\right)$

In this section, we define a normed space structure on $\mathbb{M}_{n}(V)$ whose Banach dual is isometrically isomorphic to $\mathscr{C} \mathscr{B}_{p}\left(V, M_{n}\right)$.

Lemma 3.1. Let $1<p, p^{\prime}<\infty$ with $1 / p+1 / p^{\prime}=1$. Let $\lambda=\left\{\lambda_{j}\right\}_{1 \leqslant j \leqslant n}$ be a finite sequence in \mathbb{C}. Then

$$
\|\lambda\|_{\ell_{p}^{n}} \leqslant n^{\left|1 / p-1 / p^{\prime}\right|} \cdot\|\lambda\|_{\ell_{p^{\prime}}}
$$

Proof. There is nothing to prove if $p=p^{\prime}=2$. If $p>p^{\prime}$, then $\|\lambda\|_{\ell_{p}^{n}} \leqslant\|\lambda\|_{\ell_{p^{\prime}}} \leqslant$ $n^{\left|1 / p-1 / p^{\prime}\right|} .\|\lambda\|_{\ell_{p^{\prime}}}$ since $n^{\left|1 / p-1 / p^{\prime}\right|} \geqslant 1$. Finally, assume $1<p<p^{\prime}$ and let $q=\frac{p^{\prime}}{p}>1$ and let q^{\prime} be the conjugate exponent to q. By Hölder's inequality,

$$
\|\lambda\|_{\ell_{p}^{n}}^{p} \leqslant\left(\sum_{j=1}^{n}\left|\lambda_{j}\right|^{p q}\right)^{1 / q} \cdot n^{1 / q^{\prime}}=\left(\sum_{j=1}^{n}\left|\lambda_{j}\right|^{p^{\prime}}\right)^{p / p^{\prime}} \cdot n^{1-p / p^{\prime}}
$$

and hence $\|\lambda\|_{\ell_{p}^{n}} \leqslant n^{\left|1 / p-1 / p^{\prime}\right|} \cdot\|\lambda\|_{\ell_{p^{\prime}}}$.
Lemma 3.2. Let $\alpha=\left[\alpha_{i j}\right] \in \mathbb{M}_{n, r}$ and $\beta=\left[\beta_{k l}\right] \in \mathbb{M}_{r, n}$. Let $1<p, p^{\prime}<\infty$ with $1 / p+1 / p^{\prime}=1$. Then we have

$$
\|\alpha\|_{\mathscr{B}\left(\ell_{p}^{r}, \ell_{p}^{n}\right)} \leqslant\|\alpha\|_{p^{\prime}} \cdot n^{\left|1 / p-1 / p^{\prime}\right|} \quad \text { and } \quad\|\beta\|_{\mathscr{B}\left(\ell_{p}^{n}, \ell_{p}^{r}\right)} \leqslant\|\beta\|_{p} \cdot n^{\left|1 / p-1 / p^{\prime}\right|}
$$

where

$$
\|\alpha\|_{p^{\prime}}=\left(\sum_{i=1}^{n} \sum_{j=1}^{r}\left|\alpha_{i j}\right|^{p^{\prime}}\right)^{1 / p^{\prime}} \quad \text { and } \quad\|\beta\|_{p}=\left(\sum_{k=1}^{r} \sum_{l=1}^{n}\left|\beta_{k l}\right|^{p}\right)^{1 / p}
$$

Proof. Suppose $\xi=\left\{\xi_{j}\right\}_{j=1}^{r}$ is a unit vector in ℓ_{p}^{r}. For each $i, 1 \leqslant i \leqslant n$, let $\eta_{i}=\left|\sum_{j=1}^{r} \alpha_{i j} \xi_{j}\right|$, then by Hölder's inequality, $\eta_{i} \leqslant\left(\sum_{j=1}^{r}\left|\alpha_{i j}\right|^{p^{\prime}}\right)^{1 / p^{\prime}}$ and by Lemma 3.1,

$$
\left(\sum_{i=1}^{n} \eta_{i}^{p}\right)^{1 / p} \leqslant n^{\left|1 / p-1 / p^{\prime}\right|} \cdot\left(\sum_{i=1}^{n} \eta_{i}^{p^{\prime}}\right)^{1 / p^{\prime}} \leqslant n^{\left|1 / p-1 / p^{\prime}\right|} \cdot\|\alpha\|_{p^{\prime}}
$$

and hence we get $\|\alpha\|_{\mathscr{B}\left(\ell_{p}^{r}, \ell_{p}^{n}\right)} \leqslant n^{1 / p-1 / p^{\prime} \mid} \cdot\|\alpha\|_{p^{\prime}}$. To prove the second inequality, let $\gamma=\beta^{T} \in \mathbb{M}_{n, r}$, the transpose of β. Then by the argument above we have

$$
\|\gamma\|_{\mathscr{B}\left(\ell_{p^{\prime}}^{r}, \ell_{p^{\prime}}^{n}\right)} \leqslant\|\gamma\|_{p} \cdot n^{\left|1 / p-1 / p^{\prime}\right|}
$$

Since $\|\gamma\|_{\mathscr{B}\left(\ell_{p^{\prime}}^{r}, \ell_{p^{\prime}}\right)}=\|\beta\|_{\mathscr{B}\left(\ell_{p}^{n}, \ell_{p}^{r}\right)}$ and $\|\gamma\|_{p}=\|\beta\|_{p}$, we get the desired inequality.
Let V be a p-operator space. Fix $n \in \mathbb{N}$ and define $\|\cdot\|_{1, n}: \mathbb{M}_{n}(V) \rightarrow[0, \infty)$ by $\|v\|_{1, n}=\inf \left\{\|\alpha\|_{p^{\prime}}\|w\|\|\beta\|_{p}: r \in \mathbb{N}, \quad v=\alpha w \beta, \quad \alpha \in \mathbb{M}_{n, r}, \quad \beta \in \mathbb{M}_{r, n}, \quad w \in M_{r}(V)\right\}$,
where $\|\cdot\|_{p^{\prime}}$ and $\|\cdot\|_{p}$ as in Lemma 3.2.

Proposition 3.3. Suppose that V is a p-operator space and $n \in \mathbb{N}$. Then $\|$. $\|_{1, n}$ defines a norm on $\mathbb{M}_{n}(V)$.

Proof. Suppose $v_{1}, v_{2} \in \mathbb{M}_{n}(V)$. Let $\varepsilon>0$. For $i=1,2$, we can find α_{i}, β_{i}, and w_{i} such that $v_{i}=\alpha_{i} w_{i} \beta_{i}$ with $\left\|w_{i}\right\| \leqslant 1$ and

$$
\begin{equation*}
\left\|\alpha_{i}\right\|_{p^{\prime}}<\left(\left\|v_{i}\right\|_{1, n}+\varepsilon\right)^{1 / p^{\prime}}, \quad\left\|\beta_{i}\right\|_{p}<\left(\left\|v_{i}\right\|_{1, n}+\varepsilon\right)^{1 / p} \tag{3.2}
\end{equation*}
$$

Let

$$
\alpha=\left[\begin{array}{ll}
\alpha_{1} & \alpha_{2}
\end{array}\right], \quad \beta=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right], \quad \text { and } \quad w=\left[\begin{array}{ll}
w_{1} & \\
& w_{2}
\end{array}\right]
$$

then $\|\alpha\|_{p^{\prime}}^{p^{\prime}}=\left\|\alpha_{1}\right\|_{p^{\prime}}^{p^{\prime}}+\left\|\alpha_{2}\right\|_{p^{\prime}}^{p^{\prime}},\|\beta\|_{p}^{p}=\left\|\beta_{1}\right\|_{p}^{p}+\left\|\beta_{2}\right\|_{p}^{p}$, and $\|w\| \leqslant 1$. Since $v_{1}+v_{2}=$ $\alpha w \beta$, it follows that

$$
\begin{aligned}
\left\|v_{1}+v_{2}\right\|_{1, n} & \leqslant\|\alpha\|_{p^{\prime}}\|\beta\|_{p} \\
(\text { Young’s inequality }) & \leqslant \frac{\|\alpha\|_{p^{\prime}}^{p^{\prime}}}{p^{\prime}}+\frac{\|\beta\|_{p}^{p}}{p} \\
& =\frac{\left\|\alpha_{1}\right\|_{p^{\prime}}^{p^{\prime}}+\left\|\alpha_{2}\right\|_{p^{\prime}}^{p^{\prime}}}{p^{\prime}}+\frac{\left\|\beta_{1}\right\|_{p}^{p}+\left\|\beta_{2}\right\|_{p}^{p}}{p} \\
(\text { by }(3.2)) & <\frac{\left\|v_{1}\right\|_{1, n}+\left\|v_{2}\right\|_{1, n}+2 \varepsilon}{p^{\prime}}+\frac{\left\|v_{1}\right\|_{1, n}+\left\|v_{2}\right\|_{1, n}+2 \varepsilon}{p} \\
& =\left\|v_{1}\right\|_{1, n}+\left\|v_{2}\right\|_{1, n}+2 \varepsilon
\end{aligned}
$$

Since $\boldsymbol{\varepsilon}$ is arbitrary, we get $\left\|v_{1}+v_{2}\right\|_{1, n} \leqslant\left\|v_{1}\right\|_{1, n}+\left\|v_{2}\right\|_{1, n}$.
For any $c \in \mathbb{C}$, if $v=\alpha w \beta$, then we have $c v=\alpha(c w) \beta$ and hence $\|c v\|_{1, n} \leqslant$ $\|\alpha\|_{p^{\prime}}|c|\|w\|\|\beta\|_{p}$. Taking the infimum, we get

$$
\begin{equation*}
\|c v\|_{1, n} \leqslant|c|\|v\|_{1, n} \tag{3.3}
\end{equation*}
$$

When $c \neq 0$, replacing c by $1 / c$ and v by $c v$ in (3.3) gives

$$
\begin{equation*}
|c|\|v\|_{1, n} \leqslant\|c v\|_{1, n} \tag{3.4}
\end{equation*}
$$

so (3.3) together with (3.4) gives $\|c v\|_{1, n}=|c|\|v\|_{1, n}$, which is obviously true when $c=0$.

Finally, suppose $\|v\|_{1, n}=0$. To show that $v=0$, it suffices to show that

$$
\begin{equation*}
\|v\| \leqslant n^{2\left|1 / p-1 / p^{\prime}\right|} \cdot\|v\|_{1, n} . \tag{3.5}
\end{equation*}
$$

Indeed, if $v=\alpha w \beta$ with $\alpha \in \mathbb{M}_{n, r}, \beta \in \mathbb{M}_{r, n}$, and $w \in M_{r}(v)$, then

$$
\begin{aligned}
\|v\| & \leqslant\|\alpha\|\|w\|\|\beta\| \\
\text { (by Lemma 3.2) } & \leqslant\|\alpha\|_{p^{\prime}} \cdot n^{\left|1 / p-1 / p^{\prime}\right|} \cdot\|w\| \cdot\|\beta\|_{p} \cdot n^{\left|1 / p-1 / p^{\prime}\right|} \\
& =n^{2\left|1 / p-1 / p^{\prime}\right|} \cdot\|\alpha\|_{p^{\prime}} \cdot\|w\| \cdot\|\beta\|_{p} .
\end{aligned}
$$

Taking the infimum, (3.5) follows.
For a p-operator space V, let $\mathscr{T}_{n}(V)$ denote the normed space $\left(\mathbb{M}_{n}(V),\|\cdot\|_{1, n}\right)$.

Lemma 3.4. For a p-operator space $V, \mathscr{T}_{n}(V)^{\prime}=M_{n}\left(V^{\prime}\right)=\mathscr{C} \mathscr{B}_{p}\left(V, M_{n}\right)$ isometrically.

Proof. The second isometric isomorphism comes from the definition of the p operator space structure on V^{\prime}. We follow the idea as in [3, §4.1]. Let $f=\left[f_{i j}\right] \in$ $M_{n}\left(V^{\prime}\right)=\mathscr{C} \mathscr{B}_{p}\left(V, M_{n}\right)$. Note that

$$
\|f\|=\sup \left\{\|\langle\langle f, \tilde{v}\rangle\rangle\|: r \in \mathbb{N}, \tilde{v}=\left[\tilde{v}_{k l}\right] \in M_{r}(V),\|\tilde{v}\| \leqslant 1\right\} .
$$

Let $D_{n \times r}^{p}$ denote the closed unit ball of $\ell_{p}^{n \times r}$, then

$$
\begin{aligned}
\|f\|= & \sup \left\{|\langle\langle\langle f, \tilde{v}\rangle\rangle \eta, \xi\rangle|: r \in \mathbb{N}, \tilde{v}=\left[\tilde{v}_{k l}\right] \in M_{r}(V),\|\tilde{v}\| \leqslant 1, \eta \in D_{n \times r}^{p}, \xi \in D_{n \times r}^{p^{\prime}}\right\} \\
= & \sup \left\{\left|\sum_{i, j, k, l} f_{i j}\left(\tilde{v}_{k l}\right) \eta_{(j, l)} \xi_{(i, k)}\right|: r \in \mathbb{N}, \tilde{v}=\left[\tilde{v}_{k l}\right] \in M_{r}(V),\|\tilde{v}\| \leqslant 1,\right. \\
& \left.\eta \in D_{n \times r}^{p}, \xi \in D_{n \times r}^{p^{\prime}}\right\} \\
= & \sup \left\{\left|\sum_{i, j=1}^{n}\left\langle f_{i j}, \sum_{k, l=1}^{r} \xi_{(i, k)} \tilde{v}_{k l} \eta_{(j, l)}\right\rangle\right|: r \in \mathbb{N}, \tilde{v}=\left[\tilde{v}_{k l}\right] \in M_{r}(V),\|\tilde{v}\| \leqslant 1,\right. \\
& \left.\eta \in D_{n \times r}^{p}, \xi \in D_{n \times r}^{p^{\prime}}\right\} .
\end{aligned}
$$

Note that $\sum_{k, l=1}^{r} \xi_{(i, k)} \tilde{v}_{k l} \eta_{(j, l)}$ is the (i, j)-entry of the matrix product $\alpha \tilde{v} \beta$, where

$$
\alpha=\left[\begin{array}{ccc}
\xi_{(1,1)} & \cdots & \xi_{(1, r)} \\
\vdots & \ddots & \vdots \\
\xi_{(n, 1)} & \cdots & \xi_{(n, r)}
\end{array}\right] \quad \text { and } \quad \beta=\left[\begin{array}{ccc}
\eta_{(1,1)} & \cdots & \eta_{(n, 1)} \\
\vdots & \ddots & \vdots \\
\beta_{(1, r)} & \cdots & \eta_{(n, r)}
\end{array}\right]
$$

so

$$
\begin{align*}
\|f\| & =\sup \left\{\left|\sum_{i, j=1}^{n}\left\langle f_{i j},(\alpha \tilde{v} \beta)_{i j}\right\rangle\right|:\|\tilde{v}\| \leqslant 1,\|\alpha\|_{p^{\prime}} \leqslant 1,\|\beta\|_{p} \leqslant 1\right\} \\
& =\sup \left\{|\langle f, v\rangle|: v=\alpha \tilde{v} \beta,\|\tilde{v}\| \leqslant 1,\|\alpha\|_{p^{\prime}} \leqslant 1,\|\beta\|_{p} \leqslant 1\right\} \\
& =\sup \left\{|\langle f, v\rangle|:\|v\|_{1, n} \leqslant 1\right\} \tag{3.6}
\end{align*}
$$

Define the scalar pairing $\Phi: M_{n}\left(V^{\prime}\right) \rightarrow \mathscr{T}_{n}(V)^{\prime}$ by $f \mapsto\langle f, \cdot\rangle$, then from (3.6) it follows that Φ is an isometric isomorphism.

Proposition 3.5. Let $V \subseteq W$ be p-operator spaces such that the inclusion $\mathscr{T}_{n}(V) \hookrightarrow \mathscr{T}_{n}(W)$ is isometric. Then every p-completely contractive map $\varphi: V \rightarrow$ $\mathscr{B}\left(L_{p}(\Omega)\right)$ has a completely contractive extension $\tilde{\varphi}: W \rightarrow \mathscr{B}\left(L_{p}(\Omega)\right)$.

Proof. Following [3, Corollay 4.1.4, Theorem 4.1.5], it suffices to assume that $\mathscr{B}\left(L_{p}(\Omega)\right)=\mathscr{B}\left(\ell_{p}^{n}\right)=M_{n}$. If the inclusion $i: \mathscr{T}_{n}(V) \hookrightarrow \mathscr{T}_{n}(W)$ is isometric, then by Lemma 3.4, the adjoint $i^{\prime}: \mathscr{C} \mathscr{B}_{p}\left(W, M_{n}\right) \rightarrow \mathscr{C} \mathscr{B}_{p}\left(V, M_{n}\right)$, which is a restriction mapping, is an exact quotient mapping.

4. ℓ_{p}-polar decomposition

Let $V \subseteq W$ be p-operator spaces. By Proposition 3.5, if the inclusion $\mathscr{T}_{n}(V) \hookrightarrow$ $\mathscr{T}_{n}(W)$ is isometric, then every p-completely contractive map $\varphi: V \rightarrow \mathscr{B}\left(L_{p}(\Omega)\right)$ has a completely contractive extension $\tilde{\varphi}: W \rightarrow \mathscr{B}\left(L_{p}(\Omega)\right)$. In this section, we consider a condition on W under which the inclusion $\mathscr{T}_{n}(V) \hookrightarrow \mathscr{T}_{n}(W)$ is isometric. Recall that the vector p-norm of $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$ is defined by

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

If we identify $\mathbb{M}_{r, n}$ with $\mathscr{B}\left(\ell_{2}^{n}, \ell_{2}^{r}\right)$, the space of all bounded linear operators from ℓ_{2}^{n} to ℓ_{2}^{r}, it is well known that every $\beta \in \mathbb{M}_{r, n}$ with $r \geqslant n$ has a polar decomposition, that is, β can be written as $\beta=\tau \beta_{0}$, where $\tau \in \mathbb{M}_{r, n}$ has orthonormal columns, that is, τ is an isometry, and $\beta_{0} \in \mathbb{M}_{n}$ is positive semidefinite [5, §7.3]. For $p \neq 2$ and $r \geqslant n$, regarding $\mathbb{M}_{r, n}$ as $\mathscr{B}\left(\ell_{p}^{n}, \ell_{p}^{r}\right)$, the space of all bounded linear operators from ℓ_{p}^{n} to ℓ_{p}^{r}, we ask if there is an ℓ_{p}-analogue of the polar decomposition. First of all, we need to define what we should mean by polar decomposition when $p \neq 2$, because, for example, if $T: \ell_{p}^{n} \rightarrow \ell_{p}^{n}$, then the adjoint T^{\prime} is from $\ell_{p^{\prime}}^{n}$ to $\ell_{p^{\prime}}^{n}$, where $1 / p+1 / p^{\prime}=1$, and therefore $T^{\prime} T$ is not defined, which in turn means we lose the concept of positive (semi)definiteness. We use the definition below as a natural p-analogue of the polar decomposition.

DEFINITION 4.1. Let $r \geqslant n$. We say that $\beta \in \mathbb{M}_{r, n}=\mathscr{B}\left(\ell_{p}^{n}, \ell_{p}^{r}\right)$ is ℓ_{p}-polar decomposible if there is an isometry $\tau \in \mathbb{M}_{r, n}$ and an operator $\beta_{0} \in \mathbb{M}_{n}$ such that $\beta=\tau \beta_{0}$. In this case, we say that $\beta=\tau \beta_{0}$ is an ℓ_{p}-polar decomposition of β. The set of all full rank ℓ_{p}-polar decomposible $r \times n$ matrices is denoted by $\mathbb{M}_{r, n}^{(p)}$.

REMARK 4.2.
a. If $r<n$, then there is no isometry in $\mathbb{M}_{r, n}=\mathscr{B}\left(\ell_{p}^{n}, \ell_{p}^{r}\right)$ and hence we only consider the case $r \geqslant n$ in Definition 4.1.
b. It is well known $[5, \S 0.4]$ that $\operatorname{rank} A B \leqslant \min \{\operatorname{rank} A, \operatorname{rank} B\}$ whenever $A B$ is defined for matrices A and B, so if $\beta=\tau \beta_{0}$ is an ℓ_{p}-polar decomposition of a full rank $r \times n$ matrix β, then

$$
n=\operatorname{rank} \beta \leqslant \min \left\{\operatorname{rank} \tau, \operatorname{rank} \beta_{0}\right\} \leqslant n
$$

and it follows that $\operatorname{rank} \tau=\operatorname{rank} \beta_{0}=n$. In particular, β_{0} is nonsingular.
c. If $\beta=\tau \beta_{0}$ is an ℓ_{p}-polar decomposition of β, then $\|\beta\|_{p}=\left\|\beta_{0}\right\|_{p}$, where $\|\cdot\|_{p}$ is as in Lemma 3.2.

To give a characterization of ℓ_{p}-polar decomposible matrices, we begin with a characterization of isometries from ℓ_{p}^{n} to ℓ_{p}^{r}. Recall that for a vector $x=\left(x_{1}, \ldots, x_{m}\right)$, we define $\operatorname{supp} x$, the support of x, by supp $x=\left\{i: 1 \leqslant i \leqslant m, \quad x_{i} \neq 0\right\}$.

LEMMA 4.3. Let $1<p<\infty, p \neq 2$, and $r \geqslant n$. Then $\tau: \ell_{p}^{n} \rightarrow \ell_{p}^{r}$ is an isometry if and only if the columns of τ have mutually disjoint supports with each vector p-norm equal to 1 .

Proof. Let $\tau_{j}=\left[\begin{array}{c}\tau_{1 j} \\ \vdots \\ \tau_{r j}\end{array}\right]$ denote the $j^{\text {th }}$ column of an $r \times n$ matrix τ. If $\tau_{1}, \ldots, \tau_{n}$ have mutually disjoint supports with each p-norm equal to 1 , then for any $x=\left(x_{1}, \ldots, x_{n}\right)$ $\in \ell_{p}^{n}$, we get

$$
\begin{aligned}
\|\tau x\|_{p}^{p} & =\sum_{i=1}^{r}\left|\sum_{j=1}^{n} \tau_{i j} x_{j}\right|^{p}=\sum_{k=1}^{n} \sum_{i \in \operatorname{supp} \tau_{k}}\left|\sum_{j=1}^{n} \tau_{i j} x_{j}\right|^{p} \\
& =\sum_{k=1}^{n} \sum_{i \in \operatorname{supp} \tau_{k}}\left|\tau_{i k} x_{k}\right|^{p}=\sum_{k=1}^{n}\left|x_{k}\right|^{p} \sum_{i \in \operatorname{supp} \tau_{k}}\left|\tau_{i k}\right|^{p} \\
& =\|x\|_{p}^{p} .
\end{aligned}
$$

Conversely, suppose $\tau: \ell_{p}^{n} \rightarrow \ell_{p}^{r}$ is an isometry. Since $\tau_{j}=\tau e_{j}$ for each j, where e_{j} denotes the unit vector in ℓ_{p}^{n} whose only non-zero entry is 1 at the $j^{\text {th }}$ place, it follows that τ_{j} is of norm 1. To show that columns of τ have mutually disjoint supports, let $j \neq k$ and consider $e_{j} \pm e_{k}$ in ℓ_{p}^{n}. Since $\left\|e_{j} \pm e_{k}\right\|_{p}=2^{1 / p}$, we get $\left\|\tau_{j} \pm \tau_{k}\right\|_{p}^{p}=2$ and the result follows from [7, Lemma 15.7.23].

REMARK 4.4. The result above remains true when $p=1$.
Let V be a p-operator space. For $v \in \mathbb{M}_{n}(V)$, we define

$$
\begin{equation*}
\|v\|_{2, n}=\inf \left\{\|\alpha\|_{p^{\prime}}\|w\|\|\beta\|_{p}: r \in \mathbb{N}, v=\alpha w \beta, \alpha^{T} \in \mathbb{M}_{r, n}^{\left(p^{\prime}\right)}, \beta \in \mathbb{M}_{r, n}^{(p)}, w \in M_{r}(V)\right\} \tag{4.1}
\end{equation*}
$$

where α^{T} denotes the transpose of α and

$$
\|\alpha\|_{p^{\prime}}=\left(\sum_{i=1}^{n} \sum_{j=1}^{r}\left|\alpha_{i j}\right|^{p^{\prime}}\right)^{1 / p^{\prime}} \quad \text { and } \quad\|\beta\|_{p}=\left(\sum_{k=1}^{r} \sum_{l=1}^{n}\left|\beta_{k l}\right|^{p}\right)^{1 / p}
$$

PROPOSITION 4.5. Let $V \subseteq W$ be p-operator spaces. If $\|w\|_{2, n}=\|w\|_{1, n}$ for all $w \in \mathbb{M}_{n}(W)$, then the inclusion $\mathscr{T}_{n}(V) \hookrightarrow \mathscr{T}_{n}(W)$ is isometric.

Proof. Let $v \in \mathbb{M}_{n}(V)$. It is clear that $\|v\|_{\mathscr{T}_{n}(W)} \leqslant\|v\|_{\mathscr{T}_{n}(V)}$. Suppose $\|v\|_{\mathscr{T}_{n}(W)}<$ 1 , then by assumption, one can find $r \in \mathbb{N}, \alpha \in \mathbb{M}_{n, r}, \beta \in \mathbb{M}_{r, n}$, and $w \in M_{r}(W)$ such that $v=\alpha w \beta, \alpha^{T} \in \mathbb{M}_{r, n}^{\left(p^{\prime}\right)}, \beta \in \mathbb{M}_{r, n}^{(p)},\|\alpha\|_{p^{\prime}}<1,\|w\|<1$, and $\|\beta\|_{p}<1$. Let $\beta=\tau \beta_{0}$ (respectively, $\alpha^{T}=\sigma \alpha_{0}$) be ℓ_{p}-(respectively, ℓ_{p}^{\prime}-) polar decomposition of β (respectively, α^{T}), and set $\tilde{w}=\sigma^{T} w \tau$, then $\|\tilde{w}\|_{M_{n}(W)}<1$. Moreover, by Remark 4.2, α_{0} and β_{0} are invertible and hence $\tilde{w}=\left(\alpha_{0}^{T}\right)^{-1} v \beta_{0}^{-1} \in M_{n}(V)$, giving that $\|\tilde{w}\|_{M_{n}(V)}<$

1. Since $v=\alpha_{0}^{T} \tilde{w} \beta_{0},\left\|\alpha_{0}^{T}\right\|_{p^{\prime}}=\|\alpha\|_{p^{\prime}}<1$, and $\left\|\beta_{0}\right\|_{p}=\|\beta\|_{p}<1$ by Remark 4.2, it follows that $\|v\|_{\mathscr{T}_{n}(V)}<1$.

For any $v \in \mathbb{M}_{n}(V)$, it is clear that $\|v\|_{1, n} \leqslant\|v\|_{2, n}$ At this moment of writing, we do not know of any nontrivial example of p-operator space V such that $\|\cdot\|_{1, n}=\|\cdot\|_{2, n}$. It is not even clear whether $\|\cdot\|_{2, n}$ defines a norm on $\mathbb{M}_{n}(V)$ for some p-operator space V (see Remark 4.7). However, thanks to Lemma 4.3, we can give a characterization of ℓ_{p}-polar decomposible matrices which may lead to finding a nontrivial example of p-operator spaces V such that $\|v\|_{1, n}=\|v\|_{2, n}$ for all $v \in \mathbb{M}_{n}(V)$.

Proposition 4.6. Let $1<p<\infty, p \neq 2$, and $r \geqslant n$. Then $\beta=\left[\begin{array}{ccc}- & u_{1} & - \\ & \vdots & \\ - & u_{r} & -\end{array}\right] \in$ $\mathbb{M}_{r, n}=\mathscr{B}\left(\ell_{p}^{n}, \ell_{p}^{r}\right)$ is ℓ_{p}-polar decomposible if and only if there are $u_{j_{1}}, u_{j_{2}}, \ldots, u_{j_{n}}$, not necessarily distinct, such that each $u_{i}(1 \leqslant i \leqslant r)$ is a scalar multiple of $u_{j_{k}}$ for some $k, 1 \leqslant k \leqslant n$.

Proof. Let $\beta=\left[\begin{array}{ccc}- & u_{1} & - \\ & \vdots & \\ - & u_{r} & -\end{array}\right] \in \mathbb{M}_{r, n}=\mathscr{B}\left(\ell_{p}^{n}, \ell_{p}^{r}\right)$. Suppose that there are
$u_{j_{1}}, u_{j_{2}}, \ldots, u_{j_{n}}$ (not necessarily distinct) such that each $u_{i}(1 \leqslant i \leqslant r)$ is a scalar multiple of $u_{j_{k}}$ for some $k, 1 \leqslant k \leqslant n$. Rearranging rows of β with an appropriate permutation if necessary, we may assume that $1=j_{1}<j_{2}<j_{3}<\cdots<j_{n} \leqslant r$ and that for i with $j_{k} \leqslant i<j_{k+1}, u_{i}=c_{i} u_{j_{k}}$ for some scalar c_{i}. For each $k, 1 \leqslant k \leqslant n$, we define $\lambda_{k}=\left(\sum_{j_{k} \leqslant i<j_{k+1}}\left|c_{i}\right|^{p}\right)^{-p}$. Note that λ_{k} is well defined since $c_{j_{k}}=1$. Define $\tau \in \mathbb{M}_{r, n}$ and $\beta_{0} \in \mathbb{M}_{n}$ by
then by Lemma 4.3, it follows that $\beta=\tau \beta_{0}$ is an ℓ_{p}-polar decomposition of β.

Conversely, assume that $\beta=\tau \beta_{0}$ is a p-polar decomposition of β. To exclude triviality, we may assume that β contains no rows of only zeros. Let τ_{k} denote the $k^{\text {th }}$ column of τ. By Lemma 4.3, $\operatorname{supp} \tau_{k} \neq \emptyset$ so we can pick $j_{k} \in \operatorname{supp} \tau_{k}$. Moreover, for each $i, 1 \leqslant i \leqslant r$, there is exactly one $k(i)$ such that $i \in \operatorname{supp} \tau_{k(i)}$ and it follows that u_{i} is a constant multiple of $u_{j_{k(i)}}$.

REMARK 4.7. Let $v_{1} \in \mathbb{M}_{n}(V)$ and $v_{2} \in \mathbb{M}_{m}(V)$ for some p-operator space V, then one can easily show that $\left\|c v_{1}\right\|_{2, n}=|c|\left\|v_{1}\right\|_{2, n}$. Moreover, the decomposition $v_{1}=\alpha_{1}^{T} w_{1} \beta_{1}$ and $v_{2}=\alpha_{2}^{T} w_{2} \beta_{2}$ gives

$$
\left[\begin{array}{ll}
v_{1} & \tag{4.2}\\
& v_{2}
\end{array}\right]=\left[\begin{array}{ll}
\alpha_{1}^{T} & \\
& \alpha_{2}^{T}
\end{array}\right]\left[\begin{array}{ll}
w_{1} & \\
& w_{2}
\end{array}\right]\left[\begin{array}{ll}
\beta_{1} & \\
& \beta_{2}
\end{array}\right]
$$

which, combined with Proposition 4.6 , shows that $\left\|v_{1} \oplus v_{2}\right\|_{2, n+m} \leqslant\left\|v_{1}\right\|_{2, n}+\left\|v_{2}\right\|_{2, m}$.

REFERENCES

[1] MATthew Daws, p-operator spaces and Figà-Talamanca-Herz algebras, J. Opeator Theory, 63: 47-83, 2010.
[2] A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland, 1993.
[3] E. Effros and Z.-J. Ruan, Operator Spaces, Oxford Science Publications, 2000.
[4] C. HERZ, The theory of p-spaces with an application to convolution operators, Trans. Amer. Math. Soc., 154: 69-82, 1971.
[5] Roger A. Horn and Charles R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1990. Corrected reprint of the 1985 original.
[6] Christian LeMerdy, Factorization of p-completely bounded multilinear maps, Pacific Journal of Mathematics, 172: 187-213, 1996.
[7] H. L. Royden, Real analysis, Macmillan Publishing Company, New York, third edition, 1988.
[8] Z.-J. Ruan, Subspaces of C^{*}-algebras, J. Funct. Anal., 76: 217-230, 1988.

