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RANDOM WALKS RELATIVE TO MULTIPLE TRANSITION MATRICES

ANTONIJA PRŠLJA

(Communicated by Jeffrey Hunter)

Abstract. Given the cost matrix corresponding to transitions between states, the mean of the
cost along a random walk of a prescribed length needs to be computed in many applications.
We introduce a generalization of the model for multiple transition and cost matrices and propose
Monte Carlo techniques to solve it. Experiments on artificial data and a small example of simu-
lated bike sharing system are conducted to evaluate the performance of the presented approaches
in comparison with the ones based on computing powers of matrices.

1. Introduction

Let S = {s1,s2, . . . ,sn} be a finite set of states, and let P be the n× n transition
matrix with (i, j)-entry equal to the transition probability pi j ∈ [0,1] from state si to
s j . In discrete time 0,1, . . . ,k , starting at a specified state s j0 , a particle travels between
states such that, at each time step, the next state to be visited is chosen according to the
transition matrix P : if the current state is si , then the particle moves to the state s j with
the probability pi j . The (random) sequence WP = s j0s j1 · · · s jk of states selected this
way is a random walk of length k governed by P . In the literature it is also referred to as
a discrete-time Markov chain [21]. Its probability pWP is equal to p j0 j1 p j1 j2 · · · p jk−1 jk .
Further, let C be the n× n cost matrix with (i, j)-entry equal to the cost ci j ∈ R of
the transition from state si to state s j . Then the cost along WP = s j0s j1 · · · s jk−1s jk is
cWP = c j0 j1 + c j1 j2 + · · ·+ c jk−1 jk . Let the random variable X denote the cost along a
random walk WP of length k starting at s j0 , and let Sk

j0
be the set of all walks of length

k starting at s j0 . The mean

E(X) = ∑
WP∈Sk

j0

cWP pWP

of a random variable X needs to be computed in many applications.
For exact computation of the mean there is the problem that in general the car-

dinality of the set of all random walks of length k starting at s j0 grows exponentially
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with k . What is more, in practice the cardinality of S can be large as well. Thus, with
increasing k and n , explicit computation of the mean becomes impractical in terms of
both time and space. It is then reasonable to provide a way to approximate the mean.
Describing efficient methods for estimating the mean of X is the main objective of this
paper.

This problem has been briefly discussed in [14]. Their approach involves tak-
ing an appropriate integral form, discretizing it within some specified error, and then
computing each term of discretization, again within a specified error, using diffusion
wavelets method for computing powers of matrices that is proposed in [7]. It is impor-
tant to stress that diffusion wavelets method behaves satisfactorily when a matrix has
low numerical rank and a power is of the form 2p for some positive integer p .

In this paper, a different approach is proposed that can be used for an arbitrary
transition matrix as well as for an arbitrary k . The key idea is to exploit Monte Carlo
techniques that allow us to get approximate value by using randomnumbers and simula-
tion [21]. More about Monte Carlo approximation and the computation of the expected
cost can also be found in [21]. These techniques are very commonly used in many dif-
ferent fields, such as physics, physical chemistry, computational biology, finance [13]
and Bayesian statistical inference [12]. For more information on Monte Carlo methods,
integration and Markov chain Monte Carlo methods we refer the reader to [17, 4, 6, 20].

The intention of this paper is twofold. Firstly, to introduce a generalization of the
above model for multiple transition and cost matrices. And secondly, to provide differ-
ent possible approaches for solving the basic as well as the generalized problem. As
already mentioned, the key step in all our approaches is to use Monte Carlo techniques.

The rest of the paper is structured as follows. In Section 2 we present a motivation
application. In Section 3 we give a formal description of generalized model. In Sec-
tion 4 we devise approaches for solving the basic problem as well as the general case.
A detailed description of the approach from [14] is presented in Section 5. Section 6
presents performances of our approaches in comparison with that from [14] over some
synthetic data, along with the evaluation results. Possible future work is discussed in
Section 7.

2. Motivation application

In various big cities, such as Paris, Ljubljana, Venice, bike sharing systems have
become very popular way of transport. Each city has certain number of bike stations
that are distributed around the city and each station contains a fixed number of bikes. A
registered user can pick up a bike at any station and return it at any other station where
a stand is available for a bike to be locked. Rides of different bicycles are repeated a
number of times daily by different users. Availability of bikes or lockers at any station
is different at a different period of a day.

When a bike user comes to desirable station to return (or rent) a bike, there should
be enough free lockers (or bikes) to return (or rent) the bicycle. This problem in bike
sharing systems is dealt with a redistribution of bikes using trucks to rebalance bikes
between stations that are emptying and those that are filling up and with this action



RANDOM WALKS RELATIVE TO MULTIPLE TRANSITION MATRICES 699

allowing the users to rent and return the bicycles to their desired station (for more see
[23, 5, 8] and references therein). The problem of demand for bicycles at each station
is similar to the problem of available beds in hospitals, where the patients are requested
to go elsewhere because of hospital overcrowding [3, 2]. Also the problem of deciding
how to assign movies to multiple disks (servers) known as video-on-demand system is
discussed in [15, 16] and is quite similar to bikes being transported to different stations.

In this paper, we consider the following problem in bike sharing system. Suppose,
for every bicycle, that we know the exact time and station at which it was picked up
and returned back. We observe their rides and after sufficiently long period of time we
calculate their frequencies of their movements from each station to any other station.
We can than construct the transition matrix from gathered data. The use of bikes is
usually distributed differently in the morning, afternoon, or in the evening. Treating
rides of all bicycles in three time periods per day separately, we can construct three
different transition matrices. The corresponding cost matrices may be, for example,
the distance between stations on marked bicycle routes. We are interested in average
mileage of a bike after a given number of rides with transitions determined by three
transition matrices.

3. Generalization of the basic model

Now we give a formal description of the generalized problem. Suppose we have
transition matrices P , P′ along with cost matrices C , C′ , and that in discrete time
0,1, . . . ,(l + l′)k , starting at s j0 , a particle makes first l steps with transition probabil-
ities in P , then next l′ steps with transition probabilities in P′ , and then again l steps
with transition probabilities in P , and so on. This constitutes a random walk

WP,P′
=

k

∏
j=1

WP
2 j−1W

P′
2 j (1)

of length (l + l′)k governed by P and P′ . Then its probability is equal to pWP,P′ =
∏k

j=1 pWP
2 j−1

p
WP′

2 j
, while its cost is cWP,P′ = ∑k

j=1 cWP
2 j−1

+c
WP′

2 j
. Let the random variable

Y denote the cost along random walk WP,P′
of the form (1) with initial state being s j0 .

We are interested in efficiently estimating the mean

E(Y ) = ∑
WP,P′ ∈S

(l+l′)k
j0

cWP,P′ pWP,P′ . (2)

We generalize this idea in obvious way using multiple random transition matrices.

4. Monte Carlo approach

We shall describe how to use Monte Carlo approach in order to compute the esti-
mate of the mean of a random variable. We shall first discuss the case in which we have
only one transition matrix, and deal with the general case later.
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4.1. Basic algorithm for one transition matrix

Let P be a given transition matrix, k a positive integer and s j0 an initial state. As
is usually the case in Monte Carlo approach, we generate N random walks WP

1 , . . . ,WP
N

of length k starting at s j0 , compute their costs cWP
1
, . . . ,cWP

N
, and get the estimate

E(X) ≈ 1
N

N

∑
i=1

cWP
i
. (3)

In order to generate a random walk WP of length k , we describe how to construct
a new state. First, we calculate cumulative matrix Q according to P : every row i of
matrix Q is a cumulative distribution function of every row i of matrix P . Suppose si

is the current state. We generate a random number r ∈ [0,1] . Let ai be the index such
that Q[i,ai] > r and Q[i,ai − 1] � r . In other words, ai is such index that Q[i,ai] > r
holds for the first time. The index of the new state is set to ai . Starting at s j0 and
repeating the above construction k times we obtain a random walk at s j0 of length k .
The cost along the constructed walk is computed simultaneously with the construction
itself. Formal code for simulation of a random walk and its cost along is given in the
COSTWALK. Using the COSTWALK we generate N random walks WP

1 , . . . ,WP
N of

length k starting at state s j0 , compute their costs and get the estimate μ̂ for μ = E(X)
as in (3).

COSTWALK
Input: P ∈ R

n×n {transition matrix},
C ∈ R

n×n {cost matrix corresponding to transitions between states},
j0 ∈ {1, . . . ,n} {initial state s j0 },
k ∈ Z

+ {length of random walk}
Output: c ∈ R {Cost along generated random walk WP of length k starting at state

s j0 .}
Compute cumulative matrix Q ∈ R

n×n according to P .
Set i = j0 and c = 0.
for j = 1 to k do

Generate a random number r ∈ [0,1] .
Let ai be the index such that Q[i,ai] > r for the first time.
Set c = c+C(i,ai) .
Set i = ai .

end for
Return c .

For considering the accuracy of the COSTWALK, note that as the Monte Carlo
method is a stochastic method, different runs of the Monte Carlo method typically
lead to different results. Thus, we have to deal with stochastic error. Let σ denote the
standard deviation of X . In practice σ is almost never known a priori. For this purpose,

we estimate it with S =
√

1/(N−1)∑N
i=1(cWP

i
− μ̂)2 and then from the central limit
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theorem we obtain an approximate (1−α)-confidence interval for μ[
μ̂ − t∗

S√
N

, μ̂ + t∗
S√
N

]
. (4)

The parameter t∗ is known and is determined by P(−t∗ � T � t∗) = 1−α , where
random variable T has a Student’s t-distribution with N−1 degrees of freedom.

Now we need to find the appropriate number of simulations N in terms of the
desired accuracy and the confidence interval on the accuracy. Assume that one desires
a final approximate confidence interval with half-width ε|μ | , that is, with relative error
being ε . It follows then from (4), that ε|μ | = (t∗S)/

√
N. Finally, since μ ≈ μ̂ , we get

an approximation for N

N ≈
(

t∗S
εμ̂

)2

. (5)

In practice the number N is typically selected by running a small number of trials
runs N0 . The value t∗ is calculated corresponding to N0 and given α . First, we
use the COSTWALK to generate random walks WP

1 ,WP
2 , . . . ,WP

N0
and to compute their

costs cWP
1
,cWP

2
, . . . ,cWP

N0
. Then we calculate estimate μ̂0 and sample variance S2

0 to

get approximation (5) for N . Finally, for computed N we execute the COSTWALK
to generate N new random walks. For simplicity let BALG denote the basic algorithm
for one transition matrix in other words Monte Carlo method using COSTWALK to
generate a random walk.

REMARK 1. Consider the problem of one transition matrix. Then the random
variable X can be written as a sum over transitions as follows. Let Ti j(WP) be the
random variable denoting the number of transitions from the state si to the state s j in
a specific random walk WP . Then X = ∑n

i=1 ∑n
j �=i ci jTi j(WP). To calculate E(X) we

now need to calculate E(Ti j(WP)) . Taking into account the condition on the final state
s jk of WP we can write E(Ti j(WP)) as the sum of conditional means E(Ti j(WP) | jk) ,
where jk ranges over all indices 1,2, . . . ,n . Of course, explicit computations of such
conditional means are rather hopeless for large n and k , and thus we would like to
at least find approximations. For this purpose, we can apply different algorithms for
endpoint conditional simulation from Markov chains [11, 18, 19].

REMARK 2. Consider the problem of one transition matrix and suppose we esti-
mate the mean E(X) using Monte Carlo method. Instead of using Monte Carlo method
one would think of using the variance reduction method called importance sampling.
This method tries to produce an estimator for E(X) with smaller variance than the one
provided with Monte Carlo method. But importance sampling is quite inefficient in
high-dimensional spaces because the variance of the likelihood ratio blows up [1].

4.2. Use of basic algorithm for multiple transition matrices

We use the same idea to solve the generalized problem. To be precise, given
transition matrices P , P′ and their cost matrices C ,C′ , we generate N random walks
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WP,P′
1 , . . . ,WP,P′

N of length (l + l′)k starting at initial state s j0 , calculate their costs, and
estimate (2) as:

E(Y ) ≈
N

∑
i=1

c
WP,P′

i
. (6)

We give three different approaches how to generate random walks of the form (1) and
compute their costs. In some way or another, all these approaches exploit the COST-
WALK.

First approach (APP1). We first calculate cumulative matrices Q , Q′ according to P ,
P′ . Then from the COSTWALK we use construction to select the new state from a
current state. First l states are selected according to cumulative matrix Q and next
l′ states according to Q′ . Repeating this k times we obtain a random walk WP,P′

starting at s j0 of length (l+ l′)k and its cost cWP,P′ . Then we generate N random walks

WP,P′
1 ,WP,P′

2 , · · · ,WP,P′
N of length (l + l′)k starting at state s j0 , compute their costs and

get the estimate μ̂ in (6).

Second approach (APP2). First, for transition matrices P , P′ we calculate their powers
Pl , (P′)l′ and cumulative matrices Q , Q′ according to Pl , (P′)l′ . For new transition
matrices Pl , (P′)l′ we calculate their cost matrices Cl , Cl′ as follows. For every state
si , i = 1,2, . . . ,n , we find all possible walks starting at si of length l using modified
breadth-first search [9]. Let si be an arbitrary initial state. With modified breadth-first
search we find all walks starting at si of length l and for every walk we store finite
state. Let WP

1 ,WP
2 , · · · ,WP

u be all walks of length l starting at si and having finite state
j . We can define cost cl

i j from state si to state s j for (i, j)-entry of cost matrix Cl

according to transition matrix P as

cl
i j = pWP

1
cWP

1
+ pWP

2
cWP

2
+ · · ·+ pWP

u
cWP

u
. (7)

Using formula (7) we calculate every entry of cost matrix Cl according to transition
matrix P . The same way we calculate cost matrix Cl′ according to P′ . Now we have
cost matrices Cl , Cl′ according to F = Pl and F ′ = Pl′ . Again using construction from
the COSTWALK we select first state according to cumulative matrix Q and second
state according to cumulative matrix Q′ . Repeating this for k times we obtain random
walk WF,F ′

of length 2k and its cost cWF,F ′ . Then we generate N random walks, their
cost and we get the estimate μ̂ in (6).

Third approach (APP3). As in second approach we first calculate F = Pl , F ′ = (P′)l′

and their corresponding cost matrices Cl , Cl′ . We calculate new transition matrix Z =
F ·F ′ and its corresponding cost matrix CZ . As in second approach, for every state we
find all possible walks of length 2 using modified breadth-first search. We use formula
(7) to calculate every element of cost matrix CZ . Now using the COSTWALK we
generate N random walks WZ

1 ,WZ
2 , · · · ,WZ

N of length k and their cost cWZ
1
,cWZ

2
, · · · ,cWZ

N
we get the estimate in (6).

All three approaches can be generalized for three or more transition matrices. In
the third approach we can also apply approach using diffusion wavelets method pre-
sented in [14], where the diffusion wavelets method by [7] is used for calculating dyadic
powers of transition matrix Z .
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5. Approach using diffusion wavelets method (ADW)

In this section we discuss another approach which was proposed in [14] and is
based on diffusion wavelets method for computing powers of matrices treated in [7].
Later we compare method ADW with our methods introduced in Section 4.

Let f : R → R be a function and let X be a random variable as defined above. For
implementation purpose, we here describe, in some details, the approach for estimating

E( f (X)) = ∑
j1, j2,..., jk∈S

f (c j0 j1 + · · ·+ c jk−1 jk ) p j0 j1 · · · p jk−1 jk , (8)

that is proposed in [14].
First, the idea is to rewrite the sum into an integral form. Let PC(t) be n×n matrix

function of real t with the elements of the form exp(�ci jt)pi j . Denote by 1 a n× 1
column vector of ones and by eT

j0
a 1×n row vector with the j0 -th component equal to

1, and all the others 0. Note that (u,v)-th entry of n×n matrix [PC(t)]k is of the form
∑ j1, j2,..., jk−1

exp(�(cu j1 + c j1 j2 + · · ·+ c jk−1v)t) pu j1 p j1 j2 · · · p jk−1v. By computation we
obtain that

eT
j0 [PC(t)]k1 = ∑

j1, j2,..., jk−1, jk∈S

exp(�(c j0 j1 + · · ·+ c jk−1 jk )t)p j0 j1 · · · p jk−1 jk . (9)

Using non-unitary inverse Fourier transform f (x) = 1
2π

∫ ∞
−∞ f̂ (t)exp(�xt)dt together

with (9) we see that

E( f (X)) =
1
2π

∫ ∞

−∞
f̂ (t)eT

j0 [PC(t)]k1dt. (10)

Having written E( f (X)) in an integral form the authors in [14] further suggest to
discretize it within some specified error and then compute each term of discretization,
again within a specified error, using diffusion wavelets approach given in [7].

Taking f (x) = x we get our initial problem. In this case the Fourier transform
is f̂ (t) = 2π�δ ′(t) , where δ ′ is a first derivative of Dirac delta function. Since Dirac
delta function is zero everywhere except at zero, the discretization is trivial. Using the
following property

∫ ∞
−∞ δ ′(t)g(t)dt = −g′(0), we have that

E(X) = eT
j0

[
k

∑
i=1

PC(0)i−1(DPC(t))
∣∣
t=0PC(0)k−i

]
1, (11)

where D denotes the operator 1
�

d
dt , with the elements of matrix DPC(t) being equal to

exp(�ci jt)ci j pi j .
As suggested in [14] let k = 2p for some p > 0. Then the sum (11) can be reduced

to

E(X) = eT
j0

k/2

∑
i=1

(
PC(0)i−1DPC(t)|t=0PC(0)k−i +PC(0)k−iDPC(t)|t=0PC(0)i−1

)
1. (12)



704 A. PRŠLJA

Powers PC(0) j of matrix PC(0) in the upper sum are calculated as follows. First, the
power j is written as the sum of powers of 2: j = 2p1 + 2p2 + · · ·+ 2pr . Then each
dyadic power of PC(0) is computed as in [7]. Finally, we compute PC(0) j as PC(0) j =
PC(0)2p1 PC(0)2p2 · · ·PC(0)2pr

. Note that for computing the largest power PC(0)2p−1 we
need to compute all dyadic powers PC(0)2i

for each i = 1, . . . , p− 1. In order to save
time we therefore first compute all dyadic powers and then store them so they can be
reused again when computing other powers.

6. Experiments

In order to demonstrate the capabilities of all proposed approaches BALG, APP3,
APP2, and APP1 we compared their performances with approach ADW. We have im-
plemented all approaches in MATLAB. In our implementation of ADW we used already
implemented MATLAB code for computing dyadic power of a matrix [7].

6.1. Data simulation

For experimental purpose, we generated a database, consisting of transition and
cost matrices. We first describe how we generated a database for artificial examples
and for example describing bike sharing system in Ljubljana.

Artificial database.

Random transition matrix. We generate n× n random transition matrix P such that
each entry is nonzero with probability 1√

n , and for each i , ∑ j pi j = 1. Further, we
require that every element of matrix Pn is nonzero. In our approaches we can use
transition matrix generated as described above. However, the ADW approach requires
matrices with low numerical rank, because it uses diffusion wavelets method. For this
purpose, we do additional test in order to ensure that a simulated transition matrix has
low numerical rank with some specified tolerance.

Cost matrix. For every nonzero (i, j)-entry of P we describe how to generate the
(i, j)-entry of the corresponding cost matrix C . Of course, if the (i, j)-entry of P is
equal to zero, then the (i, j)-entry of C is zero. We define a random variable Y = c ·
| log(X)|−d , where c,d > 0, X ∼U(0,1) is the continuous uniform random variable.
Then c| log(X)| ∼ exp( 1

c ) . For x generated from continuous uniform distribution we
generate (i, j)-entry of C as the value generated from exponentially distributions with
parameter 1

c and shift that value for a constant −d , so some of the entries have negative
value.

As explained above, we prepared the database including two basic cases with sin-
gle transition and cost matrix, namely one of dimension 411× 411 and another of
dimension 1000× 1000, and two general cases with double transition and cost matri-
ces, namely one of dimension 235×235 with l = 2, l′ = 3 and another of dimension
500×500 with l = 2, l′ = 1. As for simulating cost matrices, in all four artificial cases
the following values of parameters were selected: c = 100 and d = 10.
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Bike database.

We present an example of a bike sharing system in Ljubljana, Slovenia, where
currently there are 36 bike stations.

Transition matrix. The bicycles demand is distributed so that the stations in the city
center are mostly arrival stations during the morning (and early afternoon) and mainly
departure stations in the late afternoon (and the rest of the day). We assume that most
people tend to travel for short distances, so the longer trips are less likely to occur.
In light of these assumptions we simulate two transition matrices describing demand of
bikes in the morning and the late afternoon. In the morning the probability from stations
in suburban areas to stations in the city center are higher then the probability for a bike
to travel from the center to suburban stations. The reverse happens in the afternoon.
More precisely, we first generate two random matrices Q1 and Q2 . Each entry qi j

of both matrices Q1 and Q2 is drawn from the uniform distribution on the interval
[a,b] , where the interval [a,b] is chosen according to locations of the stations. For
this purpose, we cluster all stations into five groups: the center group (in Figure 1 the
group of stations marked with a circle) and four suburban groups (in Figure 1 groups of
stations marked with a cross, a triangle, a square, and a star, respectively). The intervals
are then determined as follows:

• if both stations are in the center group, then a = 0.6 and b = 0.9,

• if one station is in one suburban group, while the other is in the another suburban
group, then a = 0 and b = 0.01,

• if both stations are in the same suburban group, then a = 0 and b = 0.2.

Also, the probability for a bike to return back to the same station is nonzero (a = 0.01
and b = 0.35). In the morning, transitions between stations from the center (suburban)
to the suburban (center) stations are drawn on the interval [0,0.3] ( [0.7,1]). The re-
verse happens in the afternoon. With Q1 and Q2 determined, we then normalize each
row of Q1 (Q2) and obtain the transition matrix P1 (P2 ) for the morning (afternoon)
movements of bikes.

Notice that for this real application the transition matrices have all entries nonzero
and we can not guarantee that the matrices have low numerical rank as ADW method
requires.

Cost matrix. In this case the cost matrix is a matrix of distances between stations
on marked bicycle routes. To determine distances we used google map to find the
shortest paths between all stations. Note that these paths are not air distances but are
geographical routes between stations. Since the probability for a bike to return back to
the same station is nonzero, we generate a random distance on the interval [1.1,2.2] for
the values cii .

6.2. Comparison and evaluation

All approaches have been compared with respect to execution time. Experimental
results are gathered in Tables 1–3. The first column shows the length k of generated
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Table 1: Performance comparison of BALG and ADW methods for a transition matrix and its
corresponding cost matrix both of dimensions 411×411 , where N0 = 104 .

k Alg. μ̂ t(s) N

25 BALG 2867.0076 7 252622
ADW 2869.9788 204 -

26 BALG 5761.6416 7 124962
ADW 5762.4474 252 -

27 BALG 11501.5905 7 64222
ADW 11504.7264 301 -

28 BALG 23057.6052 7 31737
ADW 23048.1894 366 -

29 BALG 46138.7667 7 15791
ADW 46114.1666 420 -

210 BALG 92259.0426 7 7972
ADW 92243.1721 515 -

Table 2: Performance comparison of BALG and ADW methods for a transition matrix and its
corresponding cost matrix both of dimensions 1000×1000 , where N0 = 104 .

k Alg. μ̂ t(s) N

25 BALG 2907.3761 903 25980000
ADW 2908.1305 1806 -

26 BALG 5796.9135 1025 12892788
ADW 5797.5404 2167 -

27 BALG 11640.7266 1111 6604388
ADW 11639.3477 2715 -

28 BALG 23255.1055 1085 3211753
ADW 23255.3864 3215 -

29 BALG 46532.6303 1115 1627952
ADW 46531.0292 3962 -

210 BALG 92963.1209 1090 806173
ADW 92967.9280 5336 -

random walks, while the second one describes possible methods: BALG, APP1, APP2,
APP3, ADW. The third column represents results μ̂ returned by the methods. Execu-
tion times given in seconds for each method are displayed in the fourth column. The
last column presents the number of trials N for BALG, APP1, APP2 and APP3. The
initial number of trials N0 is specified for each example separately. According to our
work, we use the following values of parameters: α = 0.01 (in all cases), ε = 10−3 (in
the first artificial case) and ε = 10−4 (in all the other artificial cases). We have another
two columns in the case of a bike sharing system, one presenting the initial number
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of trials N0 and the other presenting the relative error ε for methods BALG, APP1,
APP2, APP3. The precision used in diffusion wavelet method is the number 2.2 ·10−16

integrated in MATLAB.
As can be seen from Tables 1–2, it is clear that BALG outperformed the ADW

method. For a result μ̂ in Table 1 calculated with BALG, there is a 1% probability that
the value μ̂ differs from the true value in a third digit (ε = 10−3 ). In Table 2 the value
μ̂ differs from the true value in the fourth digit (ε = 10−4 ) with probability 1%.

Considering approximations calculated with two methods ADW and BALG, it
can be seen that the results of both are very similar but the ADW method has longer
execution time. With k increasing execution times of ADW also increase, while the
execution times of BALG are rather constant for specified relative error ε and fixed
uncertainty α .

The value μ̂ in Tables 3 differs from the true value in the fourth digit (ε = 10−4 )
with probability 1% for APP1, APP2, APP3 methods. Between the results calculated
with our approaches and ADW there are relatively small deviation.

Considering execution times, it is clear that APP3 outperformed all other ap-
proaches APP1, APP2, and ADW. The APP3 method is faster then APP2 and APP1,
because it generates N random walks of length k , while APP2 and APP1 generate N
random walks of length 2k and (l + l′)k , respectively. For small k and n ADW ap-
proach is better then APP1 and APP2, however, they become faster then ADW with k
and n increasing.

For the last artificial example we tried to find the error which gives the break-even
point so that all methods are comparable in time.

Table 3: Performance comparison of APP1, APP2, APP3 and ADW methods for double transi-
tion matrices and its corresponding cost matrices of dimensions 500× 500 with l = 2 , l′ = 1 ,
where N0 = 103 .

k Alg. μ̂ t(s) N

210

APP1 275223.5792 864 286466
APP2 275223.1383 416 226185
APP3 275217.7672 28 38750
ADW 275219.5776 603 -

211

APP1 550461.3854 812 132737
APP2 550477.7314 421 111098
APP3 550483.9229 30 19300
ADW 550477.8523 936 -

212

APP1 1100930.7115 850 69922
APP2 1100930.7105 444 54899
APP3 1100917.4028 30 9650
ADW 1100967.0968 1397 -
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Table 4: Performance comparison of APP1, APP2, APP3 and ADW methods for double transi-
tion matrices and its corresponding cost matrices of dimensions 235×235 with l = 2 , l′ = 3 .

k Alg. μ̂ t(s) N N0 ε

210

APP1 461648.4380 61 18409 104 2.93 ·10−4

APP2 461647.1741 62 55591 104 1.13 ·10−4

APP3 461692.2653 61 103842 105 2.55 ·10−5

ADW 461695.8276 63 - - -

211

APP1 923446.5778 93 14765 104 2.33 ·10−4

APP2 923465.0158 99 46237 2 ·104 8.74 ·10−5

APP3 923424.5938 94 78929 3 ·105 2.06 ·10−5

ADW 923421.5854 96 - - -

212

APP1 1846831.9009 162 11630 104 1.85 ·10−4

APP2 1846800.4467 169 29525 104 7.75 ·10−5

APP3 1846833.2154 167 60360 3 ·104 1.66 ·10−5

ADW 1846830.5176 168 - - -

Table 5: Performance comparison of APP1, APP2, APP3 and ADW methods for double transi-
tion matrices and its corresponding cost matrices of dimensions 36×36 with l = 7 , l′ = 5 .

k Alg. μ̂ t(s) N N0 ε

28

APP1 4856.7788 0.415721 282 102 2.2 ·10−3

APP2 4854.4233 0.463033 2697 103 3.4 ·10−4

APP3 4855.6444 0.432111 4810 103 2.4 ·10−4

ADW 4855.0656 0.588918 - - -

210

APP1 19416.1202 0.457121 76 10 2.5 ·10−3

APP2 19421.8255 0.451192 652 102 3.5 ·10−4

APP3 19421.3344 0.412310 1135 103 2.5 ·10−4

ADW 19422.7111 0.983146 - - -

212

APP1 77659.5380 1.391270 59 102 1.5 ·10−3

APP2 77696.4150 1.015229 372 2 ·102 2.3 ·10−4

APP3 77696.7678 1.532646 1096 4 ·102 1.3 ·10−4

ADW 77696.7809 2.333481 - - -

Result for average mileage of a bike starting at some specified station after a given
number of rides are presented in Table 5. Theoretically we have already noted that the
number of trials for APP1, APP2, APP3 methods using Monte Carlo techniques grow
as the error bound decreases. However, in real time rather than finding very accurate
estimates for an average mileage (or mean cost) it is more important to get a quick
approximation. For instance, if a bike should be taken to maintenance or service for
repair after making some specified average mileage it is not important, if we make a
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one percentage error. Of course, there are fields where one might need more accurate
estimate and where ADW method could be more useful than Monte Carlo methods.

Figure 1: Left figure presents real positions of bike stations and main rows in Ljubljana, while
right figure presents division into five subareas.

In bigger cities like Taiyuan (1000 stations), Montreal (411 stations), Changwon
(235 stations), Barcelona (424 stations) which have large bike sharing networks the
methods APP1, APP2 and APP3 are more useful than ADW regarding computational
time needed for calculating the average mileage. That can be seen from our artificial
examples, where APP3 outperformed ADW in all cases.

7. Further work

In this section we shall briefly discuss our future work. Although Monte Carlo
methods are conceptually simple, versatile, flexible, and easy to use, their slow conver-
gence can be a deficiency in computations involving high accuracy. By the central limit
theorem, the rate of convergence is roughly of order N−1/2 in the sample size N un-
dertaken. In order to improve the convergence, a possible strategy is to replace random
numbers by quasirandom numbers. This leads to Quasi-Monte Carlo methods [22, 10]
that can achieve convergence of order N−1 in certain cases.

In generalized model we used a constant number of steps l and l′ relative to tran-
sition matrices P and P′ . Applying this model to bike sharing system it would be more
interesting to have a variable number of rentals for different time periods within a day.
Implementing this for APP1 method it is not so difficult, if we can choose l , l′ suc-
cessively from some given prior distribution. Modifying methods APP2 and APP3 in
this direction will slightly increase computation time and may increase memory space,
while the method ADW most likely can not be modified for l and l′ constantly chang-
ing. Our further work will concentrate in that direction.
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