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Abstract. We discuss the structure of additive transformations on B(H) that are strongly mono-

tone with respect to the
�
� -order and characterize them under the assumption of bijectivity. We

also characterize bijective transformations on the sets of linear combinations of idempotents in

B(H) that are strongly monotone with respect to the
�
� -order.

1. Introduction

Let F be a field of real or complex numbers and H denote a Hilbert space on the
field F . Let Mn(F) denote the space of square matrices of order n with coefficients
from the field F . We denote by B(H) the space of linear bounded operators on the
space H .

DEFINITION 1.1. A matrix A ∈ Mn(F) has the index l ( IndA = l ) if rkAl =
rkAl+1 and l is the smallest positive number with this property.

In particular, we note that any diagonalizable matrix A has index 1, i.e. rkA =
rkA2 .

DEFINITION 1.2. [22] Let A ∈ Mn(F) . The system of matrix equations

AXA = A, XAX = X , AX = XA

has a solution X if and only if IndA = 1. This solution is unique. It is called the group
inverse of A and is denoted by A� .

Group inverse is one of the matrix generalized inverses, which have many useful
properties and applications. A more detailed description of this topic can be found for
example in [2, 23]. An interesting application of generalized inverses is the fact that
they can be utilized to introduce order relations on matrices. In particular, the group
inverse leads to the following order relation called the sharp order and denoted by the

symbol
�
� .
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DEFINITION 1.3. [22] Let A,B ∈ Mn(F) . Then A
�
� B if and only if A = B or

IndA = 1 and AA� = BA� = A�B . Moreover, if A
�
� B and A �= B , then A

�
< B .

We remark that there are many orders that can be introduced on the matrix algebra.
In particular, well-known minus order defined below is related to the introduced order,
see [23].

DEFINITION 1.4. [17] Let A,B ∈ Mn(F) . Then A�B if and only if rk(B−A) =
rkB− rkA .

Let us note that
�
� -order is stronger than �-order.

LEMMA 1.5. [18], [23, Chapter 4] Let A,B ∈ Mn(F) , A
�
� B. Then A�B.

The detailed and self-contained information on the matrix partial orders can be
found in [23].

Recently Šemrl [29] extended the minus partial order from Mn(F) to B(H) . More
precisely, he defined this order on B(H) in the following way: for A,B∈ B(H) we have
A�B if and only if there exist idempotent operators P,Q∈B(H) such that ImP = ImA ,
KerQ = KerA , PA = PB and AQ = BQ . It is proved in [29] that this definition reduces
to the standard definition (see Definition 1.4) in the finite dimensional case.

Several other matrix partial orders have been generalized to linear bounded opera-
tors on the Hilbert or Banach spaces, see [8, 9]. The analog of the sharp order in infinite
dimensional case was introduced recently in [12] by the first author.

If we have a partially ordered set, it is natural to ask about its automorphisms, i.e.
those maps on this set which keep the order relation invariant.

Let � be a certain partial order relation on the set S .

DEFINITION 1.6. A map T : S → S is called monotone with respect to � -order,
if for arbitrary two elements A,B ∈ S it holds that A � B implies T (A) � T (B) .

DEFINITION 1.7. A map T : S → S is called strongly monotone with respect to
� -order, if for arbitrary two elements A,B ∈ S it holds that the conditions A � B and
T (A) � T (B) are equivalent.

Monotone transformations were investigated during recent decades, see for exam-
ple [1, 3, 10, 11, 12, 13, 14, 19, 20, 26, 28] and references therein for finite dimensional
case. In particular, monotone transformations on matrices defined via the group inverse
were also previously characterized in [3, 10, 11, 13, 14].

In parallel, the study of monotone maps was continued in the infinite dimensional
case, in particular, monotone transformations of operators on Hilbert spaces are inves-
tigated intensively. Ovchinnikov in [25] obtained the characterization of bijective maps
on the sets of skew projectors on Hilbert spaces, which are monotone with respect to
minus order, see Theorem 3.6 below. In [29] Šemrl extended this result to the whole
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space B(H) . Recently in the work [7] Dolinar, Marovt and the second author character-
ized bijective additive continuous maps on the set of compact operators on the Hilbert
space which are strongly monotone with respect to the Drazin star partial order. In [8]
they obtain the characterization of bijective additive maps on B(H) which are strongly
monotone with respect to either left star or right star orders. Characterizations of the
partial orderings for bounded operators were also studied in [6] by Deng and Wang.
In [21] Marovt, Rakić, and Djordjević investigated star, left-star, and right-star partial
orders in Rickart ∗ -rings. Bohata and Hamhalter classified nonlinear maps on von
Neumann algebras preserving the star order in [4] and investigated star order on JBW
algebras in [5]. There are several interesting results by Rakić and Djordjević concerning
the space pre-order and minus partial order for operators on Banach spaces, see [27]; by
Hamhalter concerning isomorphisms of ordered structures of abelian C∗ -subalgebras
of C∗ -algebras, see [15]; and by Hamhalter and Turilova concerning automorphisms of
order structures of abelian parts of operator algebras and their applications in quantum
theory, see [16].

At the same time,
�
� -order and corresponding monotone transformations, which

were investigated a lot in finite dimensional case, see the monographs [2, 23], were not
studied in infinite dimension. The first author in the paper [11] defined an analog of the
�
� -order in the infinite dimensional case. The aim of the present paper is to study the
corresponding monotone transformations. Our paper contains the characterization of
bijective additive transformations on B(H) that are strongly monotone with respect to

the
�
� -order. We also characterize bijective not necessarily additive transformations on

finite linear combinations of idempotents from B(H) that are strongly monotone with

respect to the
�
� -order. Observe that in the first case we obtain as a corollary that the

maps are automatically semi-linear.

Our paper is organized as follows. In Section 2 we introduce
�
� -order for linear

bounded operators on Hilbert spaces and recall several its properties. Section 3 is de-
voted to the characterization of monotone additive bijective maps. Section 4 deals with
the bijective monotone transformations on the finite linear combinations of idempotent
operators. In Section 5 we collect several examples showing that our assumptions are
indispensable and further problems.

2. Definition of the sharp order

DEFINITION 2.1. The operator P ∈ B(H) is called an idempotent if P2 = P . By
I = {P∈ B(H) | P2 = P} we denote the set of all idempotents. By I ∈ I we denote the
identity operator.

For bounded linear operators over Hilbert space the following analog of the minus
order was introduced by Šemrl [29]:

DEFINITION 2.2. [29] Let A,B ∈ B(H) . It is said that A�B if there exist idem-
potents P,Q ∈ B(H) such that ImA = ImP , KerA = KerQ , PA = PB , AQ = BQ .
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The analog of
�
� -order for linear bounded operators was defined in [12]. We

provide definitions and several results from that paper, without proofs.

DEFINITION 2.3. [12, Definition 6] Let A,B∈ B(H) . We say that A
�
� B if A = B

or there exists an idempotent P ∈ B(H) such that ImA = ImP , KerA = KerP , PA =
PB , AP = BP .

The following lemma is straightforward.

LEMMA 2.4. [12, Lemma 1] Let A,P ∈ B(H) and P be an idempotent ImA =
ImP, KerA = KerP. Then AP = PA = A.

For the
�
� -order in the finite-dimensional case we have:

PROPOSITION 2.5. [12, Statement 1] If H is finite-dimensional, then Definitions
1.3 and 2.3 are equivalent.

The following lemma is analogous to the corresponding matrix result (see [2]).

THEOREM 2.6. [12, Lemma 2] Let H be a Hilbert space, A,B ∈ B(H) , A
�
� B.

Then A�B.

We denote by G the set of A ∈ B(H) such that there exists an idempotent P
satisfying the condition ImA = ImP, KerA = KerP . An idempotent is completely
determined by its image and kernel. Hence for any A∈G the idempotent P is uniquely
determined. Let us denote this idempotent P by π(A) .

Further we denote ◦
G= {A ∈ G | KerA �= 0},

◦
I= {P ∈ I | KerP �= 0} = I\ {I}.

LEMMA 2.7. [12, Lemma 3] Let A ∈ B(H) . Then A ∈ G iff ImA⊕KerA = H .

Now we define the orthogonality relation for operators.

DEFINITION 2.8. Operators A,B∈B(H) are orthogonal (A⊥B) if AB= BA = 0.

Similarly to the matrix case the
�
� -order has the following characterization in

terms of orthogonality and direct decompositions:

THEOREM 2.9. [12, Theorem 1] Let A,B ∈ B(H) . Then the following conditions
are equivalent:

1) A
�
� B;
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2) A = B or there exists a direct decomposition of the space H into the sum of
its closed subspaces H = X1⊕X2 such that linear operators A,B : X1⊕X2 → X1 ⊕X2

allow the representations:

A = A1⊕O, B = A1⊕B1,

where A1 : X1 → X1 and B1 : X2 → X2 are bounded linear operators, the operator A1

is injective and ImA = X1 , O : X2 → X2 is a zero operator;
3) A = B or A ∈ G , A ⊥ (B−A) .

LEMMA 2.10. [12, Lemma 4] Let A,B,C ∈ B(H) , A
�
� B, B ⊥C. Then A ⊥C.

THEOREM 2.11. [12, Theorem 2] The relation
�
� is a partial order.

Let us prove several supplementary statements for the set of operators that are
orthogonal to a given operator. For A ∈ B(H) we denote

O(A) = {C ∈ B(H) |C ⊥ A},

OG(A) = O(A)∩G, O ◦
G

(A) = O(A)∩ ◦
G,

OI(A) = O(A)∩I, O ◦
I
(A) = O(A)∩ ◦

I .

LEMMA 2.12. Let A,B∈G , dimH > 1 . Then the following conditions are equiv-
alent:

1) π(A) = π(B);
2) ImA = ImB and KerA = KerB;
3) O(A) = O(B);
4) OG(A) = OG(B);
5) O ◦

G
(A) = O ◦

G
(B);

6) O ◦
I
(A) = O ◦

I
(B);

7) OI(A) = OI(B) .

Proof.
1 → 2. Imπ(A) = ImA and Kerπ(A) = KerA by the definition of idempotents.

Also Imπ(B) = ImB and Kerπ(B) = KerB . Then ImA = ImB , KerA = KerB .
2 → 3. Since KerC = KerC for any C ∈ B(H) the following sequence of equali-

ties holds:

O(A) = {C ∈ B(H) |C ⊥ A}
= {C ∈ B(H) | ImC ⊆ KerA, ImA ⊆ KerC}
= {C ∈ B(H) | ImC ⊆ KerA, ImA ⊆ KerC}
= {C ∈ B(H) | ImC ⊆ KerB, ImB ⊆ KerC}
= {C ∈ B(H) |C ⊥ B} = O(B).



716 M. A. EFIMOV AND A. E. GUTERMAN

3 → 4.
OG(A) = O(A)∩G = O(B)∩G = OG(B).

4 → 5.

O ◦
G

(A) = OG(A)∩ ◦
G= OG(B)∩ ◦

G= O ◦
G

(B).

5 → 6.
O ◦

I
(A) = O ◦

G
(A)∩I = O ◦

G
(B)∩I = O ◦

I
(B).

6 → 7. Let O ◦
I
(A) = O ◦

I
(B) . Observe that for any operator C we have: OI(C) ⊆

O ◦
I
(C)∪{I} .

Assume in the contrary that OI(A) �= OI(B) . Without loss of generality we
can assume OI(A) = O ◦

I
(A)∪{I} , OI(B) = O ◦

I
(B) . Then A ⊥ I , hence A = 0 and

O ◦
I
(B) = O ◦

I
(A) =

◦
I .

Since dimH > 1 then
◦
I �= {0} and there exists P ∈◦

I \{0} . We have P , (I −
P) ∈◦

I= O ◦
I
(B) i.e., B ⊥ P , B ⊥ (I −P) thus B ⊥ I and OI(B) = O ◦

I
(B)∪{I} . The

obtained contradiction shows that OI(A) = OI(B) .
7 → 1. Observe that for any operator A ∈ G we have the equality π(A) =

π(π(A)) . By the implication 1 → 7, which is proved already, we have OI(A) =
OI(π(A)) . Similarly, OI(B) = OI(π(B)) . Denote P = π(A) , Q = π(B) . Then

OI(P) = OI(A) = OI(B) = OI(Q).

Since P ⊥ (I −P) , Q ⊥ (I −Q) then P ⊥ (I −Q) , Q ⊥ (I −P) . Thus P = PQ = Q
i.e., π(A) = P = Q = π(B) . �

Recall that on the set of idempotent operators the following order relation can be
introduced:

DEFINITION 2.13. [25] Let P,Q ∈ I . Define the minus order relation by P � Q
if P = PQ = QP .

On the set of idempotents this order coincides with the minus partial order in-
troduced in Definition 2.2, see [29] for the details. The following lemma relates the
�
� -order with the standard order on idempotents.

LEMMA 2.14. Let A,B∈ B(H) , B∈G . Then the following conditions are equiv-
alent:

1) A
�
� B;

2) there exists an idempotent P such that A = BP = PB;
3) there exists an idempotent Q such that Q � π(B) , A = BQ = QB.
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Proof.
1 → 2. If A = B then substitute P = I . In the other case there exists an idempotent

P such that AP = BP , PA = PB , P = π(A) . Then A = AP = PA = BP = PB .
2 → 3. Denote X1 = ImB , X2 = KerB . Let x∈ ImB . Then there exists a sequence

{yn}∞
n=1 ⊆H such that xn = B(yn)→ x as n→ ∞ . Then B(Pyn) = P(Byn) = Pxn → Px

i.e. Px ∈ ImB . If z ∈ KerB then B(Pz) = PBz = 0 and thus Pz ∈ KerB . In other
words, P(X1)⊆ X1 , P(X2)⊆ X2 and P : X1⊕X2 → X1⊕X2 has a matrix representation

P =
(

P1 0
0 P2

)
. Observe that π(B) =

(
I 0
0 0

)
. Denote Q = π(B)P . Then Q =

(
P1 0
0 0

)
,

Q2 = Q , π(B)Q = Qπ(B) = Q i.e. Q � π(B) . We have

A = BP = Bπ(B)P = BQ, A = PB = Pπ(B)B = QB.

3 → 1. Observe that B−A = B(I−Q)⊥ BQ = A . Let us show that A ∈G . Since
Q � π(B) , we obtain using the block matrix representation of the operators that

Q =

⎛
⎝I 0 0

0 0 0
0 0 0

⎞
⎠ , B =

⎛
⎝B1 B2 0

B3 B4 0
0 0 0

⎞
⎠ , A =

⎛
⎝B1 0 0

0 0 0
0 0 0

⎞
⎠ ,

where I , B1,B2,B3,B4 are the operators on the spaces of appropriate dimension. Then
BQ = QB implies that B2 = 0 and B3 = 0, so the result follows. �

From this lemma we have:

COROLLARY 2.15. If P ∈ I and A
�
� P then A ∈ I and A = PA = AP, i.e.,

�
� -

order coincides with the standard order on the idempotents and in the case when the
bigger operator is an idempotent.

Proof. There exists an operator Q ∈ I such that

Q � π(P) = P, A = PQ = QP.

Moreover by the arguments from the proof of Lemma 2.14 we have Q = π(A) . In other
words A2 = A , A ∈ I and A = π(A) = Q . Thus A � P . �

3. Additive monotone maps on operators on the Hilbert space

DEFINITION 3.1. Let M ⊆ B(H) . The map T : M →M is called 0-additive if for
any two operators A,B ∈ M such that A ⊥ B , A ∈ G we have:

a) T (A) ⊥ T (B) ; b) T (A+B) = T (A)+T (B) .

Below we investigate monotone maps on B(H) .

LEMMA 3.2. Let T : B(H)→B(H) be an additive bijective map which is strongly

monotone with respect to
�
< -order. Then T (

◦
G) =

◦
G , and the restrictions T | ◦

G
, T−1| ◦

G
are 0-additive maps.
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Proof. Let A ∈ ◦
G . Then ImA⊕KerA = H , KerA �= 0. Substitute P = π(A) ,

Q = I−P . We have P ⊥ Q , therefore A ⊥ Q . Moreover since KerA �= 0 then P �= I
and Q �= 0.

It follows that A
�
< (A + Q) and T (A)

�
< (T (A)+ T (Q)) . Therefore T (A) ∈ G ,

T (A) ⊥ T (Q) . Since Q �= 0 then T (Q) �= 0 and KerT (A) �= 0, T (A) ∈ ◦
G . Thus

T (
◦
G) ⊆ ◦

G .
Let

A,B ∈ ◦
G, A ⊥ B, A �= 0, B �= 0.

Then

A
�
< A+B, T (A)

�
< T (A)+T (B), T (A) ⊥ T (B).

If A = 0 or B = 0 then T (A) ⊥ T (B) . Moreover, T (A + B) = T (A) + T (B) by the

additivity of the map T . Therefore the restriction T | ◦
G

of the map T on the set
◦
G is

0-additive map.

Since the map T is bijective and strongly monotone with respect to
�
< -order then

the same arguments are applicable to its inverse T−1 . Thus T−1(
◦
G) ⊆ ◦

G and T−1| ◦
G

is a 0-additive map. It follows that T (
◦
G) =

◦
G and the lemma is proved. �

LEMMA 3.3. Let the map T :
◦
G→◦

G be bijective, T and T−1 be 0-additive.

Then the condition π(A) = π(B) holds true for some operators A,B ∈ ◦
G iff π(T (A)) =

π(T (B)) .

Proof. Let π(A) = π(B) . Our goal is to show that π(T (A)) = π(T (B)) . By
Lemma 2.12 we have O ◦

G
(A) = O ◦

G
(B) . Therefore T (O ◦

G
(A)) = T (O ◦

G
(B)) by the

bijectivity of the map T . Moreover, since the maps T and T−1 are 0-additive then T
strongly preserves the orthogonality of operators. In other words,

T (O ◦
G

(A)) = T (O(A)∩ ◦
G) = O(T (A))∩ ◦

G= O ◦
G

(T (A)).

Similarly, T (O ◦
G

(B)) = O ◦
G

(T (B)) . Therefore O ◦
G

(T (A)) = O ◦
G

(T (B)). By Lemma

2.12 we have π(T (A)) = π(T (B)) .
Conversely, let π(T (A)) = π(T (B)) . It is straightforward to check that the map

T−1 satisfies the conditions of the lemma. Therefore

π(T−1(T (A))) = π(T−1(T (B))),

i.e. π(A) = π(B) . �

LEMMA 3.4. Let the map T :
◦
G→◦

G be bijective, T and T−1 be 0-additive. Let

the map ϕ : I → I be defined by the following rule: ϕ(P) = π(T (P)) for all P ∈◦
I ,

ϕ(I) = I . Then ϕ is bijective and the maps ϕ and ϕ−1 are 0-additive.
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Proof. Let us show at first that the map ϕ is injective. Indeed, assume that P,Q ∈
I , ϕ(P) = ϕ(Q) . If ϕ(P) = I then P = I = Q since ϕ(

◦
I) ⊆◦

I . If ϕ(P) ∈◦
I then

π(T (P)) = ϕ(P) = ϕ(Q) = π(T (Q)).

By Lemma 3.3 we have π(P) = π(Q) . Moreover since P,Q ∈ I then P = π(P) =
π(Q) = Q and injectivity of the map ϕ is proved.

Let us prove the surjectivity of ϕ . Since

ϕ(I) = ϕ(
◦
I ∪{I}) = π(T (

◦
I))∪{I},

it is sufficient to check the equality π(T (
◦
I)) =

◦
I . Observe that

◦
I= π(

◦
G) . Moreover

π(A) = π(π(A)) for any operator A ∈ G , therefore by Lemma 3.3 we have that

π(T (A)) = π(T (π(A))).

It follows that

π(T (
◦
I)) = π(T (π(

◦
G))) = π(T (

◦
G)) = π(

◦
G) =

◦
I .

This implies that ϕ(I) = I hence the map ϕ is surjective. Thus ϕ is bijective.
Let us show 0-additivity of ϕ . Assume that P,Q∈ I , P⊥Q . If P = I then Q = 0,

ϕ(P) = I, ϕ(Q) = 0, ϕ(P+Q) = ϕ(P)+ ϕ(Q), ϕ(P) ⊥ ϕ(Q).

Similar formulas can be obtained if Q = I .

Let P �= I , Q �= I , P ⊥ Q . Then P,Q ∈◦
I ,

T (P+Q) = T (P)+T (Q), T (P) ⊥ T (Q).

Therefore π(T (P)) ⊥ π(T (Q)) ,

ϕ(P+Q) = π(T (P)+T(Q)) = π(T (P))+ π(T(Q)) = ϕ(P)+ ϕ(Q),

i.e. ϕ is 0-additive map.

Since ϕ is bijective, there exists ϕ−1 . Assume P ∈◦
I . Then ϕ(ϕ−1(P)) = P . On

the other side

ϕ(π(T−1(P))) = π(T (π(T−1(P)))) = π(T (T−1(P))) = π(P) = P,

i.e. ϕ−1(P) = π(T−1(P)) for any P ∈◦
I , ϕ−1(I) = I .

Applying the statement of the lemma to T−1 , we obtain that ϕ−1 is 0-additive. �

THEOREM 3.5. Let dimH � 2 and T : B(H) → B(H) be an additive map with
the following properties: for any A ∈ B(H) and Q ∈ I satisfying A ⊥ Q we have
T (A) ⊥ Q. Then there exists an α ∈ F such that T (A) = αA for any A ∈ B(H) .
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Proof. 1. Assume P1 ∈I , dim(ImP1)= 1 , λ ∈F\{0} . Let us show that T (λP1)=
μP1 for some μ ∈ F .

Since λP1 ⊥ (I −P1) , by the conditions of our theorem one gets that T (λP1) ⊥
(I−P1) . Therefore

Im(T (λP1)) ⊆ Ker(I−P1) = ImP1,

KerP1 = Im(I−P1) ⊆ Ker(T (λP1)).

There are two possible variants: either

Im(T (λP1)) = {0},
or

Im(T (λP1)) = ImP1, Ker(T (λP1)) = KerP1.

In the first case T (λP1) = 0 = 0×P1 . In the second case there exists μ ∈ F\{0} such
that T (λP1) = μP1 .

It follows that for any idempotent P1 satisfying the condition dim(ImP1) = 1 and
λ ∈ F there exists μ ∈ F such that T (λP1) = μP1 . We denote by σ1(λ ,P1) the above
value of a parameter μ .

2. Let us prove that the value σ1(λ ,P1) for P1 ∈ I satisfying dim(ImP1) = 1 and
λ ∈ F depends only on the vector generating ImP1 .

Let x ∈H , Px ∈ I be some idempotent satisfying the condition ImPx = 〈x〉 . Then
λ (I−Px) ⊥ Px and T (λ (I−Px)) ⊥ Px . Therefore

T (λ (I−Px))x = T (λ (I−Px))Pxx = 0.

Consider the expression T (λ I)x :

T (λ I)x = T (λPx + λ (I−Px))x =

= T (λPx)x+T (λ (I−Px))x = σ1(λ ,Px)Pxx = σ1(λ ,Px)x.

From the formula above we have that σ1(λ ,Px) does not depend on the particular idem-
potent Px but only on x . Let us define the function σ2(λ ,x) in such a way that for all
λ ∈ F and x ∈ H we have the equality T (λ I)x = σ2(λ ,x)x .

3. Let us show that the values of the function σ2(λ ,x) does not depend on x ∈ H .
Assume that for some λ ∈ F and x,y∈H we have inequality σ2(λ ,x) �= σ2(λ ,y) .

Then
σ2(λ ,x+ y)(x+ y) = T (λ I)(x+ y) = σ2(λ ,x)x+ σ2(λ ,y)y.

Since σ2(λ ,x) �= σ2(λ ,y) we have a non-trivial linear combination of vectors x and
y equal to zero. Therefore x and y are linear dependent. Without loss of generality
y = γx for some γ ∈ F . On the other side

T (λ I)y = γT (λ I)x = γσ2(λ ,x)x = σ2(λ ,x)y,

and σ2(λ ,x) = σ2(λ ,y) . The obtained contradiction shows that σ2(λ ,x) = σ2(λ ,y)
for any λ ∈ F and x,y ∈ H . By σ(λ ) we denote such a function that σ(λ ) = σ2(λ ,x)
for any λ ∈ F and x ∈ H .
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4. Let us show that σ(λ ) = αλ for all λ ∈ F and a certain element α ∈ F .
Let P ∈ I be a certain idempotent with dim(ImP) = 1. We choose an operator

N �= 0 such that N2 = 0, PN = N , NP = 0 (it does exist since dimH � 2). Then P′ =
P+ νN is also an idempotent with dim(ImP′) = 1 for all ν ∈ F . For all λ ∈ F\ {0}
we consider T (λP+N) :

T (λP+N) = T
(

λ
(
P+

1
λ

N
))

= σ(λ )
(
P+

1
λ

N
)

= σ(λ )P+
σ(λ )

λ
N,

T (λP+N) = T (λP)+T(N) = σ(λ )P+T (N),

thus T (N) =
σ(λ )

λ
N for all λ ∈ F \ {0} . Therefore the expression

σ(λ )
λ

does not

depend on λ , and there exists α ∈ F such that
σ(λ )

λ
= α for all λ ∈ F\ {0} .

5. Assume A ∈ B(H) , dim(ImA) < ∞ . Let us show that T (A) = αA.
Consider an operator A as a linear combination

A =
k

∑
i=1

λiPi,

where Pi are idempotents and dim(ImPi) = 1. From the previous items we obtain
T (λiPi) = αλiPi . By the additivity of T we have:

T (A) =
k

∑
i=1

T (λiPi) = α
k

∑
i=1

λiPi = αA.

6. Let A∈B(H) be an arbitrary bounded linear operator. Let us show that T(A) =
αA.

Assume x ∈ H , Px ∈ I is a certain idempotent satisfying the condition ImPx =
〈x〉 . Denote B = (I −Px)A(I−Px) . Since B ⊥ Px then T (B) ⊥ Px therefore T (B)x =
T (B)Pxx = 0. Moreover

A = APx +PxA(I−Px)+B.

Since dim(ImPx) = 1 < ∞ then

dim(ImAPx) < ∞, dim(ImPxA(I−Px)) < ∞,

and by item 5 we obtain:

T (APx) = αAPx, T (PxA(I−Px)) = αPxA(I−Px).

Consider the expression T (A)x :

T (A)x = T (APx)x+T(PxA(I−Px))x+T (B)x
= αAPxx+ αPxA(I−Px)x+0 = αAx.

Therefore T (A) = αA for all A ∈ B(H) and the theorem is proved. �
Let us recall a theorem of Ovchinnikov [25] about monotonemaps on idempotents.
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THEOREM 3.6. [25] Let dimH � 3 and ϕ : I → I be a bijective map which is
strongly monotone with respect to the standard order on idempotents. Then there exists
a linear or semilinear invertible bounded operator S : H →H such that ϕ(P) = SPS−1

for all P ∈ I or ϕ(P) = SP∗S−1 for all P ∈ I .

Our characterization result can be formulated as follows:

THEOREM 3.7. Let dimH � 3 and T : B(H) → B(H) be an additive bijective

map which is strongly monotone with respect to
�
< -order. Then there exists α ∈ F\{0}

and a linear or semilinear invertible bounded operator S : H → H such that T (A) =
αSAS−1 for all A ∈ B(H) or T (A) = αSA∗S−1 for all A ∈ B(H) .

Proof. 1. Applying Lemma 3.2 to the transformation T we obtain that T (
◦
G) =

◦
G ,

the map T :
◦
G→ ◦

G is bijective, and the restrictions T | ◦
G

, T−1| ◦
G

are 0-additive maps.

2. Let us define a map ϕ : I → I as follows: ϕ(P) = π(T (P)) for all P ∈◦
I ,

ϕ(I) = I . Then by Lemma 3.4 we have that ϕ is bijective, maps ϕ and ϕ−1 are
0-additive.

3. From Item 2 we have that the map ϕ is bijective and strongly monotone with

respect to
�
< -order. By the Ovchinnikov’s theorem (Theorem 3.6) there exists a linear

or semilinear invertible bounded operator S : H → H such that ϕ(P) = SPS−1 for all
P ∈ I or ϕ(P) = SP∗S−1 for all P ∈ I .

Applying if necessary the map P �→ S−1PS and the conjugation to the map T we

obtain an additive bijective map T1 which is strongly monotone with respect to
�
< -order

and satisfies the condition π(T1(P)) = P for any P ∈ I .

4. For any operator A∈ B(H) and idempotent Q∈ I , A⊥Q , we have Q
�
� Q+A .

Therefore

T1(Q)
�
� T1(Q)+T1(A), T1(A) ⊥ T1(Q).

It follows that T1(A)⊥ π(T1(Q)) = Q and we can apply the theorem 3.5 to the map T1 .
Consequently there exists α ∈ F such that T1(A) = αA for any operator A ∈ B(H) .

5. By the bijectivity of the map T1 we have that α �= 0. The map T1 is a com-
position of the map T with the map P �→ S−1PS and the conjugation transformation.
Therefore, the map T has the required form. �

In the above theorem the conditions of bijectivity and additivity are indispensable
as the examples in Section 5 show.

4. Monotone maps on orthogonal idempotents and their linear combinations

Denote by L the set of all finite linear combinations of orthogonal idempotents.
In other words,

L = {A ∈ B(H) | A =
n

∑
i=1

λiPi, Pi ∈ I, λi ∈ F, Pi ⊥ Pj if i �= j, 1 � i, j � n}.
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LEMMA 4.1. Let A,B ∈ L , A
�
� B. Assume that λ1, . . . ,λn ∈ F \ {0} are such

that A =
n
∑
i=1

λiPi , B =
n
∑
i=1

λiP′
i , for all i �= j we have Pi ⊥ Pj , P′

i ⊥ P′
j , λi �= λ j . Then

Pj

�
� P′

j for all j ∈ {1,2, . . . ,n} .

Proof. Fix a certain j ∈ {1,2, . . . ,n} . Then

λ jPj

�
� A

�
� B.

Since B ∈ L ⊆ G then we can apply Lemma 2.14 to the operators λ jPj and B . There-
fore there exists an idempotent P ∈ I such that

λ jPj = BP = PB.

Assume that f ∈ F[t] is a certain polynomial satisfying the condition f (0) = 0. Then

f (λ jPj) = f (BP) = f (B)P = P f (B),

and f (λ jPj)
�
� f (B) by Lemma 2.14.

Consider a polynomial f such that f (0) = 0, f (λi) = 0 for i �= j , f (λ j) �= 0. We
have

f (λ j)Pj = f (λ jPj)
�
� f (B) = f

(
n

∑
i=1

λiP
′
i

)
=

n

∑
i=1

f (λi)P′
i = f (λ j)P′

j,

therefore Pj

�
� P′

j and the lemma is proved. �
The following corollary is straightforward.

COROLLARY 4.2. Let A1,A2,B ∈ L satisfy A1

�
� B, A2

�
� B. Assume that A1 =

n
∑
i=1

λiPi, Pi ∈I, λi ∈F, Pi ⊥Pj , A2 =
n
∑
i=1

μiQi, Qi ∈I, μi ∈F, Qi ⊥Qj , and {λ1, . . . ,λn}
∩{μ1, . . . ,μn} ⊆ {0} . Then A1 ⊥ A2 .

THEOREM 4.3. Let dimH � 3 and a bijective map T : L→ L be strongly mono-

tone with respect to the
�
< -order. Then there exists a bijection σ : F → F such that

σ(0) = 0 and a linear or semilinear bounded invertible operator S : H → H such that

T

(
n

∑
i=1

λiPi

)
= S

(
n

∑
i=1

σ(λi)Pi

)
S−1

for all Pi , Pi ⊥ Pj if i �= j , or

T

(
n

∑
i=1

λiPi

)
= S

(
n

∑
i=1

σ(λi)P∗
i

)
S−1

for all Pi , Pi ⊥ Pj if i �= j .
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Proof. 1. For any operator A ∈ L it is natural to consider sequences of operators

that are below or above A with respect to the order
�
< . The sequence 0 �= A1,A2, . . . ,Al

is called a left chain for A with respect to
�
< -order if

A1
�
< A2

�
< · · · �

< Al
�
< A.

Similarly, A1,A2, . . . ,Ar is called a right chain for A if

A
�
< A1

�
< A2

�
< · · · �

< Ar.

The numbers l,r here are called the lengths of the chains. If values of l are bounded,
we denote by LA the maximal value of l . Otherwise LA = ∞ . In the same way, we
denote by RA the maximal value of r (or ∞).

Since the map T is strongly monotone with respect to
�
< -order then for an arbi-

trary operator A ∈ L we have LA = LT (A) , RA = RT (A) . So, LA and RA are invariants
of T . Corresponding invariants for matrices are introduced and investigated in [14,
Section 3].

In particular, T (0) = 0 since the maximal length of the left chain of A is equal to
0 iff A = 0. Moreover for any λ ∈ F \ {0} and any idempotent P ∈ I satisfying the
condition dim(ImP) = 1 we have LλP = 1 and therefore LT (λP) = 1 and there exist
μ ∈ F\ {0} and P′ ∈ I such that T (λP) = μP′ .

2. Observe that for A ∈ L the equality LA = 2 is true iff there are λ1,λ2 ∈ F\{0}
and P1,P2 ∈ I satisfying

dim(ImP1) = dim(ImP2) = 1, P1 ⊥ P2,

such that A = λ1P1 + λ2P2 . Therefore for T (A) we have that T (A) = λ ′
1P

′
1 + λ ′

2P
′
2 for

some λ ′
1,λ

′
2 ∈ F\ {0} and P′

1,P
′
2 ∈ I such that

dim(ImP′
1) = dim(ImP′

2) = 1, P′
1 ⊥ P′

2.

Note that if λ1 �= λ2 then the number of operators C ∈ L such that C
�
< A is finite.

If λ1 = λ2 then the number of operators C ∈L such that C
�
< A is infinite. This implies

that λ ′
1 = λ ′

2 iff λ1 = λ2 .
3. Let λ ∈ F \ {0} . Consider the operator λ I . Since Rλ I = 0 then RT(λ I) = 0.

Moreover any operator C ∈ L satisfying the conditions C
�
< λ I and LC = 2 has equal

eigenvalues. By Item 2 we have that for any operator C′ ∈ L satisfying conditions

C′ �
< T (λ I) and LC′ = 2 its non-zero eigenvalues are equal.

We stress that T (λ I)∈ L , and there exist scalars μ1,μ2, . . . ,μn ∈ F\{0} and non-

zero idempotent operators Q1,Q2, . . . ,Qn ∈ B(H) such that T (λ I) =
n
∑
i=1

μiQi , Qi ⊥Qj

if i �= j . Assume that μi �= μ j for a certain i �= j . There are idempotent operators
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Q̂i,Q̂ j such that Q̂i

�
� Qi , Q̂ j

�
� Qj , dim(ImQ̂i) = dim(Im Q̂ j) = 1. We denote C′ =

μiQ̂i + μ jQ̂ j . Indeed, LC′ = 2, its non-zero eigenvalues are not equal, and we obtain a
contradiction. Consequently μi = μ for any i∈ {1,2, . . . ,n} , T (λ I)= μQ . In addition,
RT(λ I) = RμQ = 0, and Q = I .

Hence for any λ ∈ F\ {0} there exists μ ∈ F\ {0} such that T (λ I) = μI .
4. Define the map σ : F → F by the following condition: σ(0) = 0 and for λ �= 0

the value σ(λ ) is equal to μ such that T (λ I) = μI . Note that items 1 – 3 hold for the
map T−1 as well. Then σ is point-wise invertible and hence it is surjective. Moreover,
σ is injective since T (λ1I) = σ(λ1)I = σ(λ2)I = T (λ2I) . Thus bijectivity of the map
σ is proved.

5. Denote T1(A) =
1

σ(1)
T (A) , σ1(λ ) =

σ(λ )
σ(1)

. Then σ1(1) = 1, T1(I) = I . For

any P ∈ I we have P
�
< I . Therefore T1(P)

�
< I and T1(P) ∈ I , and then we can apply

the Ovchinnikov’s theorem (Theorem 3.6) to (T1)|I .
Therefore there exists a linear or semilinear invertible bounded operator S : H →H

such that T1(P) = SPS−1 for all P ∈ I or T1(P) = SP∗S−1 for all P ∈ I . Applying to
T1 the map P �→ S−1PS and conjugation if necessary (in the latter case we use σ2 = σ1

instead of σ1 ) we obtain a bijective map T2 which is strongly monotone with respect

to
�
< -order and satisfies the property T2(P) = P for any P ∈ I .

6. Let λ ∈ F \ {0,1} , P ∈ I is arbitrary. Then T2(λP) = σ1(λ )Q for a certain
Q ∈ L . Let us show that Q is idempotent. Indeed, T2(λP) has the form σ1(λ )Q

because of λP
�
� λ I , so T2(λP)

�
� σ1(λ )I . Therefore, Q = 1

σ1(λ )T2(λP)
�
� I , i.e.,

Q ∈ I .
Moreover λP ⊥ (I−P) and

σ1(λ )Q = T2(λP)
�
� T2(λP+(I−P)),

I−P = T2(I−P)
�
� T2(λP+(I−P)).

Since the map σ1 is bijective, by Items 3 and 5 correspondingly we get that σ1(λ ) �= 0,
σ1(λ ) �= 1. Hence, we can apply Corollary 4.2 and obtain that σ1(λ )Q ⊥ (I−P) .

Thus T2(λP) ⊥ (I − P) and T2(λP)
�
� σ1(λ )P . Moreover if λ ∈ {0,1} then

T2(λP)
�
� σ1(λ )P . Therefore T2(λP)

�
� σ1(λ )P for all λ ∈ F , P ∈ I .

7. The statement of the theorem is also applicable to the map T−1
2 . Thus, applying

the same arguments as in Items 1–6 to the map T−1
2 we obtain T−1

2 (λP)
�
� σ−1

1 (λ )P

for all λ ∈ F , P ∈ I . Let λ = σ1(μ) then T−1
2 (σ1(μ)P)

�
� μP .

Since the map T2 is monotone we have that σ1(μ)P
�
� T2(μP) for all μ ∈ F ,

P ∈ I . Therefore T2(λP) = σ1(λ )P for all λ ∈ F , P ∈ I .
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8. Let λi ∈ F , Pi ∈ I , Pi ⊥ Pj for i �= j , i, j ∈ {1,2, . . . ,n} . Then

σ1(λ j)Pj = T2(λ jPj)
�
� T2

(
n

∑
i=1

λiPi

)

for all j ∈ {1,2, . . . ,n} , therefore,

n

∑
i=1

σ1(λi)Pi

�
� T2

(
n

∑
i=1

λiPi

)
.

Moreover,

T2

(
n

∑
i=1

λiPi

)
⊥
(

I−
n

∑
i=1

Pi

)
(1)

Indeed, T2

(
n
∑
i=1

λiPi

)
=

k
∑
i=1

μiP′
i for some μi ∈ F , P′

i ∈ I . Due to the infinity of the

field F there exists μ ∈ F such that μ �= μi for all i = 1, . . . ,n . By Item 7 it holds that

μ
(

I−
n
∑
i=1

Pi

)
= T2

(
σ−1

1 (μ)
(

I−
n
∑
i=1

Pi

))
. Then similarly to Item 6 we have

k

∑
i=1

μiP
′
i = T2

(
n

∑
i=1

λiPi

)
�
� T2

(
n

∑
i=1

λiPi + σ−1
1 (μ)

(
I−

n

∑
i=1

Pi

))

and

μ

(
I−

n

∑
i=1

Pi

)
= T2

(
σ−1

1 (μ)

(
I−

n

∑
i=1

Pi

))
�
� T2

(
n

∑
i=1

λiPi + σ−1
1 (μ)

(
I−

n

∑
i=1

Pi

))
,

Hence, by Corollary 4.2, Formula (1) holds. Thus

T2

(
n

∑
i=1

λiPi

)
=

n

∑
i=1

σ1(λi)Pi.

Since the map T2 can be obtained as a composition of T , the map P �→ S−1PS , conju-
gation and the scalar multiplication then the map T has the required form. �

5. Examples

In this section we are going to show that the conditions of the presented theorems
are indispensable.

Assume that the space H is separable and the sequence {xn}∞
n=1 ⊆ H is a basis in

H . By R and L we denote the operators representing left and right shift in this basis
correspondingly. It is straightforward to show that LR = I .

The following example shows that there are injective linear maps on B(H) strongly

monotone with respect to
�
<-order, which are not surjective and not of the form pre-

sented in Theorem 3.7.
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EXAMPLE 5.1. Define the map T : B(H) → B(H) as follows: T (A) = RAL for
all A ∈ B(H) . Then T is a linear injective map strongly monotone with respect to
�
< -order.

Proof. 1. The linearity of the map T is straightforward.
2. Let T̂ (A) = LAR for A ∈ B(H) . Since LR = I then

T̂ (T (A)) = L(RAL)R = A

for all A ∈ B(H) . Moreover

T (A) ·T(B) = (RAL) · (RBL) = R(AB)L = T (AB)

for any A,B ∈ B(H) .
3. Let us prove the injectivity of the map T . Indeed, assume that T (A) = T (B)

for some A,B ∈ B(H) . Then

A = T̂ (T (A)) = T̂ (T (B)) = B,

and the map T is injective.
4. Let us show that the map T strongly preserves the orthogonality relation be-

tween the operators. Let A ⊥ B then AB = BA = 0 and

T (A) ·T (B) = RALRBL = RABL = 0 = RBAL = T (B) ·T (A),

i.e. T (A)⊥ T (B) . If T (A)⊥ T (B) then T (AB) = T (BA) = 0 and AB = BA = 0 by the
injectivity of T , i.e. A ⊥ B .

5. Let us prove that T (G) = G .
Note that we have LH = H , KerL⊕ ImR = H . Moreover, for any operator A ∈

B(H) we have
ImT (A) = (RAL)H = RAH = R(ImA),

KerT (A) = KerL⊕R(KerA).

Let A ∈ G then ImA⊕KerA = H , it follows that

ImT (A)⊕KerT (A) = KerL⊕R(ImA⊕KerA)
= KerL⊕ ImR = H,

and T (A) ∈ G .
Moreover if A /∈ G then either ImA⊕KerA �= H or the sum ImA+KerA is not

direct. In both cases it turns out that T (A) /∈ G . Indeed, if the sum ImA+KerP is not
direct, then the set ImA∩KerP �= {0} . Hence, R(ImA∩KerP)= R(ImA)∩R(KerP) �=
{0} , and the sum ImT (A)+KerT (P) is not direct. Similarly, if ImA⊕KerP �= H , then
ImA⊕KerP is a proper subset in H . Hence its R-image is a proper subset in RH and
thus ImT (A)+KerT (P) is a proper subset in H .

Hence, T−1(G) ⊆ G , where by T−1(V ) we denote the full inverse image of the
set V . Hence, T (G) = G .
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6. Let us show that T is strongly monotone with respect to
�
< -order.

Indeed, let A,B ∈ B(H) , A
�
< B . Then

A ∈ G, A ⊥ (B−A).

Therefore
T (A) ∈ G,T (A) ⊥ (T (B)−T (A))

due to the linearity. Moreover, T (B−A) �= 0 and T (A)
�
< T (B) .

Similarly we obtain that if T (A)
�
< T (B) then A

�
< B . �

The following example shows that there are bijective maps on B(H) which are

strongly monotone with respect to
�
< -order, but not additive and not of the form pre-

sented in Theorem 3.7.

EXAMPLE 5.2. Define the map T : B(H) → B(H) as follows: T (A) = A for all
A ∈ B(H) \ {I +L, I +R} , T (I +L) = I +R , T (I +R) = I +L . Then T is a bijective

map strongly monotone with respect to the
�
< -order.

Proof. 1. Assume that A
�
< I +R . Let us show that A = 0.

Since A
�
< I + R then A ∈ G , A + B = I + R for a certain operator B ∈ B(H) ,

A ⊥ B . Denote P = π(A) . Then

A = AP = (I +R−B)P = P+RP

and
A = PA = P(I +R−B) = P+PR.

It follows that RP = PR . Let v ∈ ImP . we have

Pv = v, P(Rv) = RPv = Rv,

i.e. Rv ∈ ImP .
1. a) Assume that ImP �= {0} , ImP �= H and denote by s the minimal natural

number such that in ImP there are vectors with nonzero values on the s-th position
in the basis {xn}∞

n=1 ⊆ H . Moreover by vs ∈ ImP we denote the vector on which
minimum is attained.

Let us prove that s = 1.
Indeed, assume that s > 1 then RLvs = vs . From LR = I and RP = PR we have

that P = LPR . Consider P(Lvs) :

P(Lvs) = (LPR)(Lvs) = LPvs = Lvs,

it follows that Lvs ∈ ImP which contradicts the definition of s .
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Therefore s = 1, v1 ∈ ImP . Moreover for any natural number n we have Rnv1 ∈
ImP . Since ImP is closed linear subspace we have x1 ∈ ImP . Therefore xn =
Rn−1x1 ∈ ImP for any natural number n and ImP = H . However ImP �= H by the
assumption. So, we arrive to the contradiction.

1. b) Since the case 1. a) is non-realizable then either ImP = {0} or ImP = H . If
ImP = H then P = I , A = I +R which is not true. Thus ImP = {0} , P = 0, A = 0,
the result follows.

2. Let A
�
< I +L . Then

A∗ �
< I +L∗ = I +R,

and A∗ = 0 by item 1. Therefore A = 0.

3. Let us prove that the map T is monotone with respect to
�
< -order. Indeed,

assume A,B ∈ B(H) , A
�
< B .

If A ∈ {I +L, I +R} then KerA = {0} and the inequality A
�
< B is impossible. If

B ∈ {I +L, I +R} then A = 0 by above. Therefore T (A) = 0
�
< T (B) in this case.

Moreover, if A /∈ {I +L, I +R} , B /∈ {I +L, I +R} then

T (A) = A
�
< B = T (B).

4. Since T−1 = T then T is strongly monotone with respect to
�
< -order. �

So, both assumptions: additivity and bijectivity, are necessary in order to obtain
the result.

Let us compare the statement of Theorem 4.3 with its matrix analog ([13, Theorem
1.12]). In the last Theorem we have considered only injective monotone maps on the set
Dn(F) of diagonalizable matrices and in Theorem 4.3 we have considered the bijective
strongly monotone maps on the set L .

Observe that if H = F
n then L are linear operators with matrices, which are in

some fixed basis are the elements of the set of diagonalizable matrices Dn(F) . In
the finite dimensional case the characterization results coincide up to the fact that in
Theorem 4.3 there are more restrictions on the map, and any nonzero endomorphism f
of the field F should be replaced by the identity map or by the complex conjugation.

QUESTION 5.3. In [12] the
�
� -order is defined for the algebra of bounded lin-

ear operators over an arbitrary Banach space. So, the problem of characterization for
monotone maps with respect to �-order for operators on general Banach spaces is open.
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[27] D. S. RAKIĆ, D. S. DJORDJEVIĆ, Space pre-order and minus partial order for operators on Banach
spaces, Aequationes Math. 85, 3 (2013), 429–448.

[28] P. ŠEMRL, Order-preserving maps on the poset of idempotent matrices, Acta Sci. Math. (Szeged), 63
(2003), 481–490.
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