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ON SPACES DERIVABLE FROM A SOLID SEQUENCE SPACE

AND A NON–NEGATIVE LOWER TRIANGULAR MATRIX

PETER D. JOHNSON AND FARUK POLAT

(Communicated by H. Radjavi)

Abstract. The scalar field will be either the real or complex numbers. Suppose that λ is a solid
sequence space over the scalar field and A is an infinite lower triangular matrix with non-negative
entries and positive entries on the main diagonal such that each of its columns is in λ . For each
positive integer k , the kth predecessor of λ with respect to A is the solid vector space of scalar
sequences x such that Ak|x| is an element of λ . We denote this space by Λk and λ itself will be
denoted by Λ0 . Under reasonable assumptions, these spaces inherit some topological properties
from λ . We are interested in a projective limit of the infinite product of the Λk consisting
of sequences of sequences (x(k)) satisfying Ax(k) = x(k−1) for each k > 0 . We show that for
interesting classes of situations including the cases when λ = lp for some p > 1 and A is the
Cesàro matrix, the space of our interest can be non-trivial.

1. Introduction

Throughout the paper the scalars F will be either R , the real numbers or C , the
complex numbers, and N = {1,2, ...} .

Although the only spaces to make an appearance in this paper will be spaces of
sequences of scalars, in hopes of stirring interest in generalizations to a wider context,
we give some basic definitions and properties concerning Riesz spaces (see [1, 2, 9]).

A real vector space E , equipped with a partial order � in E2 , is a Riesz space
or a vector lattice if sup{x,y} and inf{x,y} exist for all x,y ∈ E , and x � y implies
αx+ z � αy+ z for all z ∈ E and 0 � α ∈ R . We define the modulus or absolute value
of x ∈ E by the formula |x| := sup{x,−x} .

If E is a vector lattice, then the set E+ = {x ∈ E : x � 0} is referred to as the
positive cone or simply the cone of E .

For a ∈ E , the solid hull of a is given by S(a) = {b ∈ E : |b| � |a|} . A subset S
in a vector lattice E is said to be solid or an order ideal if it follows from |u| � |v| in
E and v ∈ S that u ∈ S . In the sequel, we will use the term solid in preference to order
ideal.

A norm ‖.‖ on a vector lattice E is said to be a lattice norm or solid norm if
|x| � |y| implies ‖x‖ � ‖y‖ for each x,y ∈ E .
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A vector lattice equipped with a solid norm is known as a normed vector lattice. If
a normed vector lattice E is also norm complete, then it is a Banach lattice. It should
be obvious that in a normed vector lattice E , ‖x‖ = ‖ |x| ‖ holds for all x ∈ E .

The space of all scalar valued sequences will be denoted by FN . The subspace of
FN consisting of sequences with only finitely many non-zero entries will be denoted
by c00 , whether F is R or C . All operations on sequences will be coordinatewise.
If x = (xn) ∈ FN , then we write |x| = (|xn|) . Let x = (xn) and y = (yn) be elements
of RN ; x � y means that xn � yn for each n ∈ N . It is clear that (RN,� ) is a vector
lattice, and the vector lattice definition of |x| , x ∈ RN agrees with the definition given
here, |x| = (|xn|) .

We will denote the sequence of zeros, (0,0,0, ...) by 0.
For 0 < p < ∞ , we denote

lp = {(xn) ⊂ F :
∞

∑
n=1

|xn|p < ∞}.

The usual “norm” or distance from 0, in lp is defined by

||x||p = (
∞

∑
n=1

|xn|p)
1
p ,

for each x ∈ lp ; ‖.‖p is really a norm for p � 1.
If λ is a solid subspace of FN , a topology on λ with which λ becomes a topo-

logical vector space is a solid topology if it has a basis of neighborhoods at the origin
consisting of solid sets.

The spaces lp , 1 � p < ∞ , l∞ , the space of bounded sequences and c0 , the space
of null sequences, are solid subspaces of FN , and their usual norms, ||.||p on lp , the
sup norm on l∞ and c0 , are solid norms. The space of convergent sequences, c , is not
solid.

Let A = [ai j : i, j � 1] = [ai j] be an infinite matrix with non-negative entries and
no zero columns. The domain of A, denoted by dom(A) , is

dom(A) = {x ∈ F
N :

∞

∑
j=1

ai jx j converges f or each i ∈ N}.

For x ∈ dom(A) , Ax , the A-transform of x , is given by (Ax)i =
∞
∑
j=1

ai jx j for each

i ∈ N .
If λ ⊂ dom(A) ,

Aλ = {Ax : x ∈ λ}.
If λ ⊂ FN ,

A−1(λ ) = {x ∈ dom(A) : Ax ∈ λ}.
If A = [ai j] is a lower triangular matrix (i.e. ai j = 0, for i < j ) with non-negative

entries and positive entries on the main diagonal (i.e. aii > 0, for i∈N), then dom(A)=
F

N . The assumption of non-zero diagonal entries implies that A has a matricial inverse
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A−1 . This inverse A−1 is also lower triangular. A−1 will fail to have all non-negative
entries, unless A is diagonal. The reader can consult the book [3] on infinite matrices.

The following definition was introduced in [5], and was inspired by [8].

DEFINITION 1. If λ ⊂ FN and A is an infinite matrix, with non-negative entries,
then

sol−A−1(λ ) = {x ∈ F
N : |x| ∈ A−1(λ )} = {x ∈ F

N : |x| ∈ dom(A) and A|x| ∈ λ}.
The next result given in [5] justifies the name “sol−A−1(λ )”.

PROPOSITION 2. Let A be an infinite matrix with non-negative entries and λ be
a solid subspace of FN . Then we have

(a) sol−A−1(λ ) is solid;
(b) sol−A−1(λ ) ⊂ A−1(λ );
(c) sol−A−1(λ ) is the largest solid set of sequences contained in A−1(λ );
(d) sol−A−1(λ ) is a subspace of FN .

If τ is a solid topological vector space topology on λ , then it naturally induces a
solid topological vector space topology on sol−A−1(λ ) .

Suppose λ is a solid subspace of FN with solid topology τ , and U is a neigh-
borhood base at the origin in (λ ,τ) consisting of solid sets. It is shown in [5] that the
sets

sol−A−1(U) = {x ∈ sol−A−1(λ ) : A|x| ∈U}, (U ∈ U )

constitute a neighborhood base at the origin for a solid topological vector space topol-
ogy sol−A−1(τ) on sol−A−1(λ ) . Further, if the topology on λ is Hausdorff and A
has no zero columns, then the induced topology on sol−A−1(λ ) is Hausdorff. Hence-
forward, all our matrices will be assumed to have no zero columns.

Note that the map x → A|x| is continuous but not linear from sol −A−1(λ ) into
λ . But the map x → Ax is continuous and linear from sol−A−1(λ ) into λ .

Clearly, if λ is equipped with a solid norm ‖.‖ , then the topology induced on
sol−A−1(λ ) is induced by the solid norm x → ‖ A|x| ‖λ . The same comment holds
for quasinorms, pseudonorms, and seminorms.

If λ is a solid sequence space with a solid topology, and Pn : FN → FN is defined
by

Pn(x) = (x1, ...,xn,0,0, ...)

for all n ∈ N , then, since Pn(x) ∈ S(x) , Pn is clearly continuous on λ , for all n ∈ N .

LEMMA 3. Suppose that λ ⊂ FN is a solid topological vector space of sequences
with a solid topology. Then c00 ∩ λ is dense in λ if and only if, for each x ∈ λ ,
Pn(x) → x as n → ∞ , in the topology on λ .

Proof. Since Pn(x) ∈ c00 ∩λ for each x ∈ λ , by the solidity of λ , the “if” state-
ment is clear. Now suppose that c00∩λ is dense in λ ; suppose that x ∈ λ and that U
is a solid neighborhood of 0 in λ . Let y∈ c00∩λ be such that x−y∈U and let N ∈N
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be the largest index such that yN �= 0, if y �= 0. If y = 0, let N = 1. In any case, for all
n � N , x−Pn(x) ∈ S(x− y) ⊂U . Since U was arbitrary, it follows that Pn(x) → x as
n → ∞ . �

Usually, we have c00 ⊂ λ , but a solid vector space of sequences derived from λ ,
such as sol−A−1(λ ) , may fail to contain c00 ; indeed, it can happen that sol−A−1(λ )
consists of the zero sequence alone. Let en denote the sequence with 1 in the nth place
and zero elsewhere, n ∈ N . It is obvious that c00 is the linear span of {en : n∈ N} and
that Aen is the nth column of A . The following lemma is also obvious.

LEMMA 4. Suppose that c00 ⊂ λ ⊂ FN , λ is a solid vector space of sequences,
and A is an infinite matrix with non-negative entries. Then c00 ⊂ sol−A−1(λ ) if and
only if each column of A is in λ .

Regarding the density of c00 in sol−A−1(λ ) , or equivalently by Lemma 3, “sec-
tional convergence” in sol−A−1(λ ) , we have the following, by results in [5] and [7].

LEMMA 5. Suppose that c00 ⊂ λ ⊂ FN , λ is a solid vector space of sequences
with a solid Hausdorff topological vector space topology, and A is an infinite matrix
with non-negative entries and every column of A is a non-zero sequence in λ . If c00 is
dense in λ , then c00 is dense in sol−A−1(λ ) , in the topology on that space induced
by the topology on λ .

Finally: suppose that λ is a solid vector space of sequences with a solid Hausdorff
topological vector space topology τ , and A is an infinite matrix with non-negative
entries, with every column a non-zero sequence in λ . If (λ ,τ) is complete, is the same
true for (sol −A−1(λ ),sol −A−1(τ))? Unfortunately, we do not know the answer to
this question in total generality; the best we can say is : yes, usually. Here is the story
we know, from [5].

Let P denote the topology of coordinatewise convergence on FN ; in other words,
P is the product topology on FN , considered to be the product of countably many
copies of the scalar field, which bears its usual topology. Note that P is a solid topol-
ogy. If μ is a vector subspace of FN , then by (μ ,P) we mean μ equipped with the
relative topology induced by P . If Γ is another topological vector space topology on
μ , we will say that (μ ,Γ) is locally coordinatewise closed, or LCC , for short, if there is
a neighborhood base at the origin in (μ ,Γ) each member of which is closed in (μ ,P) .

There do exist non-LCC solid spaces with solid topological vector space topolo-
gies, but they are not easy to find. All of the lp , 0 < p � ∞ are LCC , with their usual
norm or quasinorm topologies, and from these we can produce many more LCC spaces
by the following, from Theorems 2.10 and 2.13 of [5].

LEMMA 6. Suppose that c00 ⊂ λ ⊂ FN , λ is a solid vector subspace of FN , τ is
a solid Hausdorff topological vector space topology on FN , and A is an infinite matrix
with non-negative entries, with each column a non-zero sequence in λ . Then we have

(a) If (λ ,τ) is LCC, then so is (sol−A−1(λ ),sol−A−1(τ));
(b) If (λ ,τ) is LCC and complete, then so is (sol−A−1(λ ),sol−A−1(τ)) .
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These lemmas will be useful in what is to come, in the next section, although
Lemma 6 is unnecessarily general for our purposes. Its role can be played, as well, by
Proposition 10 in the next section.

2. Solid sequence spaces derived from lp and the Cesàro matrix

Hardy [4] established the following, called Hardy’s inequality.

THEOREM H. For any non-zero scalar sequence x = (xn) ∈ lp and 1 < p < ∞ ,
we have

∞

∑
n=1

(
1
n

n

∑
k=1

|xk|
)p

<

(
p

p−1

)p ∞

∑
n=1

|xn|p.

Furthermore, the constant ( p
p−1)p appearing in this inequality is the best (smallest)

possible.

Let A = [ai j] be the Cesàro matrix, defined by

ai j =

{
1
i : i � j

0 : i < j
;

that is to say,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . . . .
1
2

1
2 0 . . . . . .

1
3

1
3

1
3 0 . . . . .

1
4

1
4

1
4

1
4 0 . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is straightforward to verify that its inverse A−1 = [xi j] is defined by xi j = 0 ( j �= i ,
j �= i− 1), xii = i and xi,i−1 = −(i− 1) . We also have dom(A) = F

N by its lower

triangularity; Ax = ( 1
i

i
∑
j=1

x j)i for all x ∈ FN . One may view A as a linear operator

from the space FN into itself.
From now on, A denotes the Cesàro matrix if not otherwise stated.
By using Hardy’s inequality, we have that

||Ax||p � || A|x| ||p � p
p−1

||x||p

for 1 < p < ∞ , and p
p−1 cannot be replaced by any smaller constant. So the Hardy

operator H : lp → lp defined by

H((xn)) := A(xn) =

(
1
n

n

∑
k=1

xk

)
n∈N
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is linear and continuous with operator norm ||H|| = p
p−1 .

Thus the Cesàro matrix multiplies lp into lp . Will the same hold for each matrix
of Cesàro type,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 0 0 . . .
b2 b2 0 . . .
b3 b3 b3 0 . .
b4 b4 b4 b4 0 .
. . . . . .
. . . . . .
. . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 0 0 . . .
0 b2 0 . . .
0 0 b3 0 . .
0 0 0 b4 0 .
. . . . . .
. . . . . .
. . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . .
1 1 0 . . .
1 1 1 0 . .
1 1 1 1 0 .
. . . . . .
. . . . . .
. . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

in which (bk) ∈ lp is a positive sequence? The answer is no, not necessarily, as the next
example shows.

EXAMPLE 7. Fix r ∈ (0,1) and let bk = k−r , k = 1,2, ... Then (bk)k�1 ∈ lp for
all 1 < p < ∞ such that p > 1

r . Note that

n

∑
k=1

1
kr >

n∫
1

1
xr dx =

n1−r −1
1− r

.

Therefore, with the inequality understood to hold coordinate wise,

B(bk) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 0 0 . . .
0 b2 0 . . .
0 0 b3 0 . .
0 0 0 b4 0 .
. . . . . .
. . . . . .
. . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . .
1 1 0 . . .
1 1 1 0 . .
1 1 1 1 0 .
. . . . . .
. . . . . .
. . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

b4

.

.

.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 1
r−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . .
0 2−r 0 . . .
0 0 3−r 0 . .
0 0 0 4−r 0 .
. . . . . .
. . . . . .
. . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
21−r −1
31−r −1
41−r −1

.

.

.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1

1− r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
21−2r−2−r

31−2r−3−r

41−2r−4−r

.

.

.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

/∈ l∞,

if r ∈ (0, 1
2 ] , and in some other cases.
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PROPOSITION 8. For 1 < p < ∞ , A(lp) is dense in lp .

Proof. For each n ∈ N , A multiplies (1,1, ...,1︸ ︷︷ ︸
n

,−n,0, ...) into (1,1, ...,1︸ ︷︷ ︸
n

,0, ...) .

Therefore, A(lp) contains a sequence of vectors which span c00 , which is dense in
lp . �

Let C be the set of all sequences x in RN with non-negative terms such that
Ax ∈ lp . Clearly, C is a cone in RN . Let

cesp = sol−A−1(lp) = {x ∈ R
N : |x| ∈C} = {x ∈ R

N : A|x| ∈ lp}.
Then cesp is a solid subspace in the vector lattice RN . This space was studied by
Shiue [10] and Leibowitz [8]. They showed that cesp is trivial if 0 < p � 1, and
contains lp as a proper subspace if 1 < p � ∞ . One may induce a norm on cesp via
||x||cesp = || A|x| ||p ; clearly this is a solid norm. Leibowitz [8] proved that cesp with
this norm is complete, that is, cesp is a Banach lattice.

cesp is not a subspace of l∞ as the next example shows.

EXAMPLE 9. Let x = (xn) be such that

xn =
{

k : n = 2k

0 : otherwise

Then x ∈ cesp but x /∈ l∞ . This shows that cesp �⊂ l∞ .

We now define Λ0,Λ1,Λ2, ... by Λ0 = lp , Λ1 = cesp (1 < p < ∞ , p fixed) and
for k > 1,

Λk = sol−A−1(Λk−1) = {x ∈ F
N : A|x| ∈ Λk−1}.

By induction on k , Λk is a solid subspace of FN for each k � 0.
Since Λ0 = lp ⊂ sol−A−1(lp) = cesp = Λ1 , we have

Λk = {x ∈ F
N : A|x| ∈ Λk−1} ⊂ {x ∈ F

N : A|x| ∈ Λk} = Λk+1,

by the induction hypothesis that Λk−1 ⊂ Λk .
Therefore (Λk)k�0 is an increasing sequence with respect to set inclusion, so Λ0 =

lp ⊂ Λk for all k � 0.
The proof of the following proposition is very similar to the proof of Proposition

1.1 in [6] so that we omit its proof.

PROPOSITION 10. Suppose that (λ , ||.||λ ) is a solid Banach sublattice of FN . Let
A be an infinite lower triangular matrix with non-negative entries and positive entries
on the main diagonal. Then we have that

sol−A−1(λ ) = {x ∈ F
N : A|x| ∈ λ}

is a solid Banach sublattice of FN if equipped with the solid norm ‖.‖ defined by
‖x‖ = ‖ A|x| ‖λ where x ∈ sol−A−1(λ ) .
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We have defined ‖x‖cesp = ‖ A|x| ‖p . Similarly, we define ‖x‖Λk = ‖ A|x| ‖Λk−1 .
From the proposition above, it follows that all the Λk ’s are Banach lattices.

Let {ek} be the sequence of basic unit vectors in lp so that (ek)N = δk,N for all N
where δ is the Kronecker delta. The next two propositions and their proofs are similar
to results and proofs in [8].

PROPOSITION 11. (a) If x ∈ Λk , then Ax ∈ Λk−1 , if k > 0 .
(b) x ∈ Λk if and only if Ak|x| ∈ Λ0 = lp for each k � 0 .
(c) Let k > l � 0 where k and l are integers. Then Ak−l(Λk) ⊂ Λl .
(d) c00 is dense in Λk for each k � 0 . Equivalently, for each k � 0 if x = (x j) j∈N ∈

Λk , then ‖x−
n
∑
j=1

x je j‖Λk → 0 as n → ∞ .

(e) Λk is a separable Banach lattice for each k � 0 .

Proof. (a) Let x ∈ Λk . Then A|x| ∈ Λk−1 . Since |Ax| � A|x| coordinate–wise and
Λk−1 is a solid subspace of FN , these imply that Ax ∈ Λk−1 .

(b) Let x ∈ Λk . Therefore A|x| ∈ Λk−1 ⇒ A2|x| ∈ Λk−2 ⇒ A3|x| ∈ Λk−3 , etc.
It follows that Ak|x| ∈ Λ0 = lp for each k � 0. The reverse implication follows by
induction on k .

(c) If k > 0 and x∈Λk , then Ax∈ S(A|x|)⊂Λk−1 ; thus A(Λk)⊂Λk−1 . Therefore,
A2(Λk) = A(A(Λk)) ⊂ A(Λk−1) ⊂ Λk−2, if k > 1, and so on.

(d) The conclusion follows from Lemma 3 and Lemma 5.
(e) The conclusion follows from Lemma 6 or from Proposition 10, and from part

(d). �
For 1 < p < ∞ , there is a natural mapping from Λk into Λk−1 given by averaging.

Specifically, we have the following result, which is very similar to Proposition 5 of [8].

PROPOSITION 12. Let 1 < p < ∞ and k ∈ N . Define σ on Λk by σ(x) = Ax.
Then σ is a one-to-one bounded linear operator from Λk into Λk−1 with operator
norm 1 . Furthermore, the range of σ is a proper dense linear subspace of Λk−1 .

Proof. Since |Ax| � A|x| and Λk−1 is solid, we have

‖σ(x)‖Λk−1 = ‖Ax‖Λk−1 � ‖ A|x| ‖Λk−1 = ‖x‖Λk .

Clearly, σ is linear, so σ is a bounded linear operator from Λk into Λk−1 with
‖σ‖ � 1. But if all the coordinates of x are non-negative, then we have,

‖σ(x)‖Λk−1 = ‖Ax‖Λk−1 = ‖ A|x| ‖Λk−1 = ‖x‖Λk ;

thus ‖σ‖ = 1.
Each ek belongs to the range of σ . Indeed, one can compute directly that ek =

σ(kek−kek+1) for each k∈N . Since c00 , the linear span of the ek is dense in Λk−1 , the
range of σ is a dense linear subspace of Λk−1 . On the other hand, it is not all of Λk−1 .

For example, let y be the sequence ( (−1)N+1

N )N . Then y ∈ lp ⊂ Λk−1 for every p > 1
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and k � 0. We claim that y ∈ Λk−1 \A(Λk) . Suppose the contrary that y = σ(x) = Ax
for some x ∈ Λk . Then x = A−1y = (1,−2,2,−2, ...) and |x| = (1,2,2,2, ...) . It is
easy to see that (Ak|x|)n → 1 as n → ∞ for each k . This shows that Ak|x| /∈ lp so that
x /∈ Λk , which is a contradiction.

Since A is lower triangular and invertible, σ is one-to-one on all of FN , and thus
on Λk for each k > 0. �

3. A special projective limit of
∞
∏
k=0

Λk

PROPOSITION 13. Let B = [bi j] be a lower triangular matrix such that each col-
umn of it is in c00 . Then Bkx is in c00 for any x = (x j) j∈N ∈ c00 and any k ∈ N .

Proof. If x ∈ c00 , then Bx is a finite linear combination of columns of B , and
is therefore also in c00 , since each column of B is in c00 . Then Bx ∈ c00 implies
B(Bx) = B2x ∈ c00 , which implies B3x ∈ c00 , etc. �

We now define

X = {(x(k)) ∈
∞

∏
k=0

Λk : Ax(k) = x(k−1), k > 0}.

which is called the projective limit of
∞
∏
k=0

Λk with respect to the maps A : Λk → Λk−1 .

Alternatively,

X = {(x(k)) ∈
∞

∏
k=0

Λk : x(k) = (A−1)kx(0), k > 0}.

Let x(0) ∈ c00 . Since A−1 is a lower triangular matrix with columns in c00 , it follows
from Proposition 13 that (A−1)kx(0) is in c00 , and therefore (A−1)kx(0) ∈ Λk for each
k � 0. Therefore,

(x(k))k�0 = ((A−1)kx(0))k�0 = (x(0),A−1(x(0)), ...,(A−1)k(x(0)), ...) ∈ X .

Hence X is not trivial. Since each Λk is complete with respect to ||.||Λk and the map
x → Ax from Λk into Λk−1 is continuous, X is complete in the product topology on

∞
∏
k=0

Λk . Therefore X is a Fréchet space, when equipped with that product topology.

PROPOSITION 14. If (x(k))k�0 ∈ X , then Ak|x(k)| � |x(0)| coordinate–wise for
each k .

Proof. Let (x(k))k�0 ∈ X . Then Ax(k) = x(k−1), k > 0 and A|x(k)| ∈ Λk−1 . We also
have A|x(k)|� |x(k−1)|= |Ax(k)|⇒A2|x(k)|� A|Ax(k)|= A|x(k−1)|� |Ax(k−1)|= |x(k−2)|,
and so on. It follows that Ak|x(k)| � |x(0)| coordinatewise, for each k � 0. �
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Let P0,P1, ..., be the projections on X , where, for example, P0((x(k))) = x(0) ,
P1((x(k))) = x(1), ..., for (x(k)) ∈ X . Note that we can write

X = {(x,A−1x,A−2x, ...,A−kx, ...) : x ∈ P0(X)}.

It is clear that c00 ⊂ P0(X) ⊂ lp .

PROPOSITION 15. P0(X) is not solid and also not closed in (lp,‖.‖p) .

Proof. Let x = (1, −1
2 , 1

3 , −1
4 , ...) and y = (1, 1

2 , 1
3 , 1

4 , ...) . Then |x| � |y| , coordi-
natewise, x ∈ lp , y ∈ P0(X) , because A−1y = e1 , so A−ky ∈ c00 ⊂ Λk , k ∈ N . But
x /∈ P0(X) , because A−1x /∈ Λ1 . This shows that P0(X) is not solid in lp . Let us show
that P0(X) is not closed in (lp,‖.‖p) . Let

x(n)
j =

{
(−1) j−1

j : 1 � j � n

0 : j > n
.

Then x(n) = (x(n)
j ) ∈ c00 ⊂ P0(X) for each n . We also have that

‖x− x(n)‖p
p =

∞

∑
j=n+1

1
jp

→ 0 as n → ∞.

Hence x is the limit of x(n) in lp . But x /∈ P0(X) . �

PROPOSITION 16. The onto map T : P0(X) → P1(X) defined by

Tx = A−1x, x ∈ P0(X)

is not continuous with respect to the norms ‖.‖Λ0 and ‖.‖Λ1 .

Proof. It is easy to see that T is a linear map. Consider the sequence x(n) =
(x(n)

j ) ∈ P0(X) and x = (x j) in the proof of Proposition 15; (x(n)) is a Cauchy se-

quence in (P0(X),‖.‖Λ0) since x(n) → x ∈ lp . But (A−1(x(n)))n is not a Cauchy se-
quence in (P1(X),‖.‖Λ1) . Let ε > 0. For each n,m ∈ N such that n � m , A−1(x(n)) =
(1,−2,2, ...,∓2,∓1,0, ...) and

|A−1(x(n))−A−1(x(m))| = (0, ...,0,1,2, ...,2,1,0, ...).

so that

‖A|A−1(x(n) −A−1(x(m))|‖p � ‖(0, ...,0,1− ε,2− ε, ...,2− ε,1− ε,0, ...)‖p � 1,

for some ε ∈ (0,1) . �



SOLID SEQUENCE SPACES 813

We wonder if (X ,P) , where P is the product topology on
∞
∏
k=0

Λk (and so is not

the same P as in section 1), is normable? We think not, although we cannot prove it.
But we can prove that the obvious norm on X , ‖.‖X defined by

‖(x(k))‖X = ‖P0((x(k)))‖Λ0 = ‖x(0)‖p,

for all (x(k)) ∈ X , does not give us the topology on X induced by the product topology

on X as a subset
∞
∏
k=0

Λk . By the proof of Proposition 15, we can find a sequence in

X which is Cauchy with respect to ‖.‖X which does not converge, in the topology
defined by ‖.‖X , to any element of X , so (X ,‖.‖X) is not complete, whereas (X ,P) ,
by previous remarks, is complete.

4. A generalization of the space X

We can generalize the space X for an infinite lower triangular matrix of Cesàro
type

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 0 . . . .
a2 a2 0 . . . .
a3 a3 a3 0 . . .
a4 a4 a4 a4 0 . .
. . . . . . .
. . . . . . .
. . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (ak > 0 ∀k ∈ N)

and a solid sequence subspace λ of FN such that Aλ ⊂ λ . We need to require the
property Aλ ⊂ λ since a generalized Cesàro matrix may not multiply λ into λ as
shown in Example 7. We can write A as a product,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 0 . . .
0 a2 0 . . .
0 0 a3 0 . .
0 0 0 a4 0 .
. . . . . .
. . . . . .
. . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . .
1 1 0 . . .
1 1 1 0 . .
1 1 1 1 0 .
. . . . . .
. . . . . .
. . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

So the inverse of the matrix A is the following infinite lower triangular matrix with
columns in c00 ,

A−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a−1
1 0 0 . . . .

−a−1
1 a−1

2 0 . . . .

0 −a−1
2 a−1

3 0 . . .

0 0 −a−1
3 a−1

4 0 . .
. . . . . . .
. . . . . . .
. . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(ak > 0 ∀k ∈ N).
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Let us denote the space X derived from A and λ as the space X in the previous section
was derived from the Cesàro matrix and lp by X(A,λ ) . By using Proposition 13, it
follows that

Xc00 = {(x,A−1x,A−2x, ...) : x ∈ c00} ⊂ X(A,λ ).

Therefore, X(A,λ ) is non-trivial.
Finally, we put some problems for further study on the spaces X = X(A,λ ) .

PROBLEM 1. Let (x( j)) ∈ X \ {0} . Can there be an element (y( j)) ∈ X such that

|x( j)
k | � y( j)

k for each j ∈ N∪{0} and k ∈ N?

PROBLEM 2. A Hausdorff locally convex topological vector space is called nor-
mable if and only if it has a bounded neighborhood of zero. Can it happen that X is

normable in the product topology on
∞
∏
k=0

Λk ?
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