ON SPACES DERIVABLE FROM A SOLID SEQUENCE SPACE AND A NON-NEGATIVE LOWER TRIANGULAR MATRIX

PETER D. JOHNSON AND FARUK POLAT

(Communicated by H. Radjavi)

Abstract. The scalar field will be either the real or complex numbers. Suppose that λ is a solid sequence space over the scalar field and *A* is an infinite lower triangular matrix with non-negative entries and positive entries on the main diagonal such that each of its columns is in λ . For each positive integer *k*, the *k*th predecessor of λ with respect to *A* is the solid vector space of scalar sequences *x* such that $A^k|x|$ is an element of λ . We denote this space by Λ_k and λ itself will be denoted by Λ_0 . Under reasonable assumptions, these spaces inherit some topological properties from λ . We are interested in a projective limit of the infinite product of the Λ_k consisting of sequences of sequences $(x^{(k)})$ satisfying $Ax^{(k)} = x^{(k-1)}$ for each k > 0. We show that for interesting classes of situations including the cases when $\lambda = l_p$ for some p > 1 and *A* is the Cesàro matrix, the space of our interest can be non-trivial.

1. Introduction

Throughout the paper the scalars \mathbb{F} will be either \mathbb{R} , the real numbers or \mathbb{C} , the complex numbers, and $\mathbb{N} = \{1, 2, ...\}$.

Although the only spaces to make an appearance in this paper will be spaces of sequences of scalars, in hopes of stirring interest in generalizations to a wider context, we give some basic definitions and properties concerning Riesz spaces (see [1, 2, 9]).

A real vector space *E*, equipped with a partial order \leq in E^2 , is a *Riesz space* or a *vector lattice* if $\sup\{x,y\}$ and $\inf\{x,y\}$ exist for all $x,y \in E$, and $x \leq y$ implies $\alpha x + z \leq \alpha y + z$ for all $z \in E$ and $0 \leq \alpha \in \mathbb{R}$. We define the modulus or absolute value of $x \in E$ by the formula $|x| := \sup\{x, -x\}$.

If *E* is a vector lattice, then the set $E^+ = \{x \in E : x \ge 0\}$ is referred to as the *positive cone* or simply the *cone* of *E*.

For $a \in E$, the *solid* hull of a is given by $S(a) = \{b \in E : |b| \le |a|\}$. A subset S in a vector lattice E is said to be *solid* or an *order ideal* if it follows from $|u| \le |v|$ in E and $v \in S$ that $u \in S$. In the sequel, we will use the term *solid* in preference to *order ideal*.

A norm ||.|| on a vector lattice *E* is said to be a *lattice norm* or *solid norm* if $|x| \leq |y|$ implies $||x|| \leq ||y||$ for each $x, y \in E$.

Keywords and phrases: Solid sequence space, Cesàro matrix, projective limit, solid topology, Fréchet space.

Mathematics subject classification (2010): Primary 46A45, 15A60; Secondary 46A13.

A vector lattice equipped with a solid norm is known as a *normed vector lattice*. If a normed vector lattice *E* is also norm complete, then it is a *Banach lattice*. It should be obvious that in a normed vector lattice *E*, ||x|| = ||x||| holds for all $x \in E$.

The space of all scalar valued sequences will be denoted by $\mathbb{F}^{\mathbb{N}}$. The subspace of $\mathbb{F}^{\mathbb{N}}$ consisting of sequences with only finitely many non-zero entries will be denoted by c_{00} , whether \mathbb{F} is \mathbb{R} or \mathbb{C} . All operations on sequences will be coordinatewise. If $x = (x_n) \in \mathbb{F}^{\mathbb{N}}$, then we write $|x| = (|x_n|)$. Let $x = (x_n)$ and $y = (y_n)$ be elements of $\mathbb{R}^{\mathbb{N}}$; $x \leq y$ means that $x_n \leq y_n$ for each $n \in \mathbb{N}$. It is clear that $(\mathbb{R}^{\mathbb{N}}, \leq)$ is a vector lattice, and the vector lattice definition of |x|, $x \in \mathbb{R}^{\mathbb{N}}$ agrees with the definition given here, $|x| = (|x_n|)$.

We will denote the sequence of zeros, (0,0,0,...) by <u>0</u>.

For 0 , we denote

$$l_p = \{(x_n) \subset \mathbb{F} : \sum_{n=1}^{\infty} |x_n|^p < \infty\}.$$

The usual "norm" or distance from $\underline{0}$, in l_p is defined by

$$||x||_p = (\sum_{n=1}^{\infty} |x_n|^p)^{\frac{1}{p}},$$

for each $x \in l_p$; $\|.\|_p$ is really a norm for $p \ge 1$.

If λ is a solid subspace of $\mathbb{F}^{\mathbb{N}}$, a topology on λ with which λ becomes a topological vector space is a *solid topology* if it has a basis of neighborhoods at the origin consisting of solid sets.

The spaces l_p , $1 \leq p < \infty$, l_{∞} , the space of bounded sequences and c_0 , the space of null sequences, are solid subspaces of $\mathbb{F}^{\mathbb{N}}$, and their usual norms, $||.||_p$ on l_p , the sup norm on l_{∞} and c_0 , are solid norms. The space of convergent sequences, c, is not solid.

Let $A = [a_{ij} : i, j \ge 1] = [a_{ij}]$ be an infinite matrix with non-negative entries and no zero columns. The domain of A, denoted by dom(A), is

$$dom(A) = \{x \in \mathbb{R}^{\mathbb{N}} : \sum_{j=1}^{\infty} a_{ij}x_j \text{ converges for each } i \in \mathbb{N}\}$$

For $x \in dom(A)$, Ax, the A-transform of x, is given by $(Ax)_i = \sum_{j=1}^{\infty} a_{ij}x_j$ for each $i \in \mathbb{N}$.

If $\lambda \subset dom(A)$,

$$A\lambda = \{Ax: x \in \lambda\}.$$

If $\lambda \subset \mathbb{F}^{\mathbb{N}}$,

$$A^{-1}(\lambda) = \{ x \in dom(A) : Ax \in \lambda \}.$$

If $A = [a_{ij}]$ is a lower triangular matrix (i.e. $a_{ij} = 0$, for i < j) with non-negative entries and positive entries on the main diagonal (i.e. $a_{ii} > 0$, for $i \in \mathbb{N}$), then $dom(A) = \mathbb{F}^{\mathbb{N}}$. The assumption of non-zero diagonal entries implies that A has a matricial inverse

 A^{-1} . This inverse A^{-1} is also lower triangular. A^{-1} will fail to have all non-negative entries, unless A is diagonal. The reader can consult the book [3] on infinite matrices.

The following definition was introduced in [5], and was inspired by [8].

DEFINITION 1. If $\lambda \subset \mathbb{F}^{\mathbb{N}}$ and *A* is an infinite matrix, with non-negative entries, then

$$sol - A^{-1}(\lambda) = \{x \in \mathbb{F}^{\mathbb{N}} : |x| \in A^{-1}(\lambda)\} = \{x \in \mathbb{F}^{\mathbb{N}} : |x| \in dom(A) \text{ and } A|x| \in \lambda\}.$$

The next result given in [5] justifies the name "sol $-A^{-1}(\lambda)$ ".

PROPOSITION 2. Let A be an infinite matrix with non-negative entries and λ be a solid subspace of $\mathbb{F}^{\mathbb{N}}$. Then we have

- (a) $sol A^{-1}(\lambda)$ is solid;
- (b) $sol A^{-1}(\lambda) \subset A^{-1}(\lambda);$
- (c) sol $-A^{-1}(\lambda)$ is the largest solid set of sequences contained in $A^{-1}(\lambda)$;

(d) sol $-A^{-1}(\lambda)$ is a subspace of $\mathbb{F}^{\mathbb{N}}$.

If τ is a solid topological vector space topology on λ , then it naturally induces a solid topological vector space topology on $sol - A^{-1}(\lambda)$.

Suppose λ is a solid subspace of $\mathbb{F}^{\mathbb{N}}$ with solid topology τ , and \mathscr{U} is a neighborhood base at the origin in (λ, τ) consisting of solid sets. It is shown in [5] that the sets

$$sol - A^{-1}(U) = \{ x \in sol - A^{-1}(\lambda) : A|x| \in U \}, \quad (U \in \mathscr{U})$$

constitute a neighborhood base at the origin for a solid topological vector space topology $sol - A^{-1}(\tau)$ on $sol - A^{-1}(\lambda)$. Further, if the topology on λ is Hausdorff and A has no zero columns, then the induced topology on $sol - A^{-1}(\lambda)$ is Hausdorff. Henceforward, all our matrices will be assumed to have no zero columns.

Note that the map $x \to A|x|$ is continuous but not linear from $sol - A^{-1}(\lambda)$ into λ . But the map $x \to Ax$ is continuous and linear from $sol - A^{-1}(\lambda)$ into λ .

Clearly, if λ is equipped with a solid norm $\|.\|$, then the topology induced on $sol - A^{-1}(\lambda)$ is induced by the solid norm $x \to \|A|x\|\|_{\lambda}$. The same comment holds for quasinorms, pseudonorms, and seminorms.

If λ is a solid sequence space with a solid topology, and $P_n : \mathbb{F}^{\mathbb{N}} \to \mathbb{F}^{\mathbb{N}}$ is defined by

$$P_n(x) = (x_1, \dots, x_n, 0, 0, \dots)$$

for all $n \in \mathbb{N}$, then, since $P_n(x) \in S(x)$, P_n is clearly continuous on λ , for all $n \in \mathbb{N}$.

LEMMA 3. Suppose that $\lambda \subset \mathbb{F}^{\mathbb{N}}$ is a solid topological vector space of sequences with a solid topology. Then $c_{00} \cap \lambda$ is dense in λ if and only if, for each $x \in \lambda$, $P_n(x) \to x$ as $n \to \infty$, in the topology on λ .

Proof. Since $P_n(x) \in c_{00} \cap \lambda$ for each $x \in \lambda$, by the solidity of λ , the "if" statement is clear. Now suppose that $c_{00} \cap \lambda$ is dense in λ ; suppose that $x \in \lambda$ and that U is a solid neighborhood of $\underline{0}$ in λ . Let $y \in c_{00} \cap \lambda$ be such that $x - y \in U$ and let $N \in \mathbb{N}$

be the largest index such that $y_N \neq 0$, if $y \neq \underline{0}$. If $y = \underline{0}$, let N = 1. In any case, for all $n \ge N$, $x - P_n(x) \in S(x - y) \subset U$. Since U was arbitrary, it follows that $P_n(x) \to x$ as $n \to \infty$. \Box

Usually, we have $c_{00} \subset \lambda$, but a solid vector space of sequences derived from λ , such as $sol - A^{-1}(\lambda)$, may fail to contain c_{00} ; indeed, it can happen that $sol - A^{-1}(\lambda)$ consists of the zero sequence alone. Let e_n denote the sequence with 1 in the n^{th} place and zero elsewhere, $n \in \mathbb{N}$. It is obvious that c_{00} is the linear span of $\{e_n : n \in \mathbb{N}\}$ and that Ae_n is the n^{th} column of A. The following lemma is also obvious.

LEMMA 4. Suppose that $c_{00} \subset \lambda \subset \mathbb{F}^{\mathbb{N}}$, λ is a solid vector space of sequences, and A is an infinite matrix with non-negative entries. Then $c_{00} \subset sol - A^{-1}(\lambda)$ if and only if each column of A is in λ .

Regarding the density of c_{00} in $sol - A^{-1}(\lambda)$, or equivalently by Lemma 3, "sectional convergence" in $sol - A^{-1}(\lambda)$, we have the following, by results in [5] and [7].

LEMMA 5. Suppose that $c_{00} \subset \lambda \subset \mathbb{F}^{\mathbb{N}}$, λ is a solid vector space of sequences with a solid Hausdorff topological vector space topology, and A is an infinite matrix with non-negative entries and every column of A is a non-zero sequence in λ . If c_{00} is dense in λ , then c_{00} is dense in sol $-A^{-1}(\lambda)$, in the topology on that space induced by the topology on λ .

Finally: suppose that λ is a solid vector space of sequences with a solid Hausdorff topological vector space topology τ , and A is an infinite matrix with non-negative entries, with every column a non-zero sequence in λ . If (λ, τ) is complete, is the same true for $(sol - A^{-1}(\lambda), sol - A^{-1}(\tau))$? Unfortunately, we do not know the answer to this question in total generality; the best we can say is : yes, usually. Here is the story we know, from [5].

Let \mathscr{P} denote the topology of coordinatewise convergence on $\mathbb{F}^{\mathbb{N}}$; in other words, \mathscr{P} is the product topology on $\mathbb{F}^{\mathbb{N}}$, considered to be the product of countably many copies of the scalar field, which bears its usual topology. Note that \mathscr{P} is a solid topology. If μ is a vector subspace of $\mathbb{F}^{\mathbb{N}}$, then by (μ, \mathscr{P}) we mean μ equipped with the relative topology induced by \mathscr{P} . If Γ is another topological vector space topology on μ , we will say that (μ, Γ) is locally coordinatewise closed, or *LCC*, for short, if there is a neighborhood base at the origin in (μ, Γ) each member of which is closed in (μ, \mathscr{P}) .

There do exist non-*LCC* solid spaces with solid topological vector space topologies, but they are not easy to find. All of the l_p , 0 are*LCC*, with their usual norm or quasinorm topologies, and from these we can produce many more*LCC*spaces by the following, from Theorems 2.10 and 2.13 of [5].

LEMMA 6. Suppose that $c_{00} \subset \lambda \subset \mathbb{F}^{\mathbb{N}}$, λ is a solid vector subspace of $\mathbb{F}^{\mathbb{N}}$, τ is a solid Hausdorff topological vector space topology on $\mathbb{F}^{\mathbb{N}}$, and A is an infinite matrix with non-negative entries, with each column a non-zero sequence in λ . Then we have

(a) If (λ, τ) is LCC, then so is $(sol - A^{-1}(\lambda), sol - A^{-1}(\tau))$;

(b) If (λ, τ) is LCC and complete, then so is $(sol - A^{-1}(\lambda), sol - A^{-1}(\tau))$.

These lemmas will be useful in what is to come, in the next section, although Lemma 6 is unnecessarily general for our purposes. Its role can be played, as well, by Proposition 10 in the next section.

2. Solid sequence spaces derived from l_p and the Cesàro matrix

Hardy [4] established the following, called Hardy's inequality.

THEOREM H. For any non-zero scalar sequence $x = (x_n) \in l_p$ and 1 ,we have

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} |x_k| \right)^p < \left(\frac{p}{p-1} \right)^p \sum_{n=1}^{\infty} |x_n|^p.$$

Furthermore, the constant $(\frac{p}{p-1})^p$ appearing in this inequality is the best (smallest) possible.

Let $A = [a_{ij}]$ be the Cesàro matrix, defined by

$$a_{ij} = \begin{cases} \frac{1}{i} : i \ge j \\ 0 : i < j \end{cases};$$

that is to say,

It is straightforward to verify that its inverse $A^{-1} = [x_{ij}]$ is defined by $x_{ij} = 0$ $(j \neq i, j \neq i-1)$, $x_{ii} = i$ and $x_{i,i-1} = -(i-1)$. We also have $dom(A) = \mathbb{F}^{\mathbb{N}}$ by its lower triangularity; $Ax = (\frac{1}{i} \sum_{j=1}^{i} x_j)_i$ for all $x \in \mathbb{F}^{\mathbb{N}}$. One may view A as a linear operator from the space $\mathbb{F}^{\mathbb{N}}$ into itself.

From now on, A denotes the Cesàro matrix if not otherwise stated.

By using Hardy's inequality, we have that

$$||Ax||_p \leq ||A|x|||_p \leq \frac{p}{p-1}||x||_p$$

for $1 , and <math>\frac{p}{p-1}$ cannot be replaced by any smaller constant. So the Hardy operator $H: l_p \to l_p$ defined by

$$H((x_n)) := A(x_n) = \left(\frac{1}{n}\sum_{k=1}^n x_k\right)_{n \in \mathbb{N}}$$

is linear and continuous with operator norm $||H|| = \frac{p}{p-1}$. Thus the Cesàro matrix multiplies l_p into l_p . Will the same hold for each matrix of Cesàro type,

in which $(b_k) \in l_p$ is a positive sequence? The answer is no, not necessarily, as the next example shows.

EXAMPLE 7. Fix $r \in (0,1)$ and let $b_k = k^{-r}$, k = 1, 2, ... Then $(b_k)_{k \ge 1} \in l_p$ for all $1 such that <math>p > \frac{1}{r}$. Note that

$$\sum_{k=1}^{n} \frac{1}{k^r} > \int_{1}^{n} \frac{1}{x^r} dx = \frac{n^{1-r} - 1}{1 - r}$$

Therefore, with the inequality understood to hold coordinate wise,

if $r \in (0, \frac{1}{2}]$, and in some other cases.

PROPOSITION 8. For $1 , <math>A(l_p)$ is dense in l_p .

Proof. For each $n \in \mathbb{N}$, A multiplies $(\underbrace{1,1,\ldots,1}_{n},-n,0,\ldots)$ into $(\underbrace{1,1,\ldots,1}_{n},0,\ldots)$. Therefore, $A(l_p)$ contains a sequence of vectors which span c_{00} , which is dense in

 l_p .

Let C be the set of all sequences x in $\mathbb{R}^{\mathbb{N}}$ with non-negative terms such that $Ax \in l_p$. Clearly, *C* is a cone in $\mathbb{R}^{\mathbb{N}}$. Let

$$ces_p = sol - A^{-1}(l_p) = \{x \in \mathbb{R}^{\mathbb{N}} : |x| \in C\} = \{x \in \mathbb{R}^{\mathbb{N}} : A|x| \in l_p\}.$$

Then ces_p is a solid subspace in the vector lattice $\mathbb{R}^{\mathbb{N}}$. This space was studied by Shiue [10] and Leibowitz [8]. They showed that ces_p is trivial if 0 , andcontains l_p as a proper subspace if $1 . One may induce a norm on <math>ces_p$ via $||x||_{ces_p} = ||A|x||_p$; clearly this is a solid norm. Leibowitz [8] proved that ces_p with this norm is complete, that is, ces_p is a Banach lattice.

 ces_p is not a subspace of l_{∞} as the next example shows.

EXAMPLE 9. Let $x = (x_n)$ be such that

$$x_n = \begin{cases} k : n = 2^k \\ 0 : \text{ otherwise} \end{cases}$$

Then $x \in ces_p$ but $x \notin l_{\infty}$. This shows that $ces_p \not\subset l_{\infty}$.

We now define $\Lambda_0, \Lambda_1, \Lambda_2, \dots$ by $\Lambda_0 = l_p, \Lambda_1 = ces_p$ (1 fixed) andfor k > 1,

$$\Lambda_k = sol - A^{-1}(\Lambda_{k-1}) = \{ x \in \mathbb{F}^{\mathbb{N}} : A | x | \in \Lambda_{k-1} \}.$$

By induction on k, Λ_k is a solid subspace of $\mathbb{F}^{\mathbb{N}}$ for each $k \ge 0$.

Since $\Lambda_0 = l_p \subset sol - A^{-1}(l_p) = ces_p = \Lambda_1$, we have

$$\Lambda_k = \{ x \in \mathbb{F}^{\mathbb{N}} : A | x | \in \Lambda_{k-1} \} \subset \{ x \in \mathbb{F}^{\mathbb{N}} : A | x | \in \Lambda_k \} = \Lambda_{k+1},$$

by the induction hypothesis that $\Lambda_{k-1} \subset \Lambda_k$.

Therefore $(\Lambda_k)_{k \ge 0}$ is an increasing sequence with respect to set inclusion, so $\Lambda_0 =$ $l_p \subset \Lambda_k$ for all $k \ge 0$.

The proof of the following proposition is very similar to the proof of Proposition 1.1 in [6] so that we omit its proof.

PROPOSITION 10. Suppose that $(\lambda, ||.||_{\lambda})$ is a solid Banach sublattice of $\mathbb{F}^{\mathbb{N}}$. Let A be an infinite lower triangular matrix with non-negative entries and positive entries on the main diagonal. Then we have that

$$sol - A^{-1}(\lambda) = \{x \in \mathbb{F}^{\mathbb{N}} : A|x| \in \lambda\}$$

is a solid Banach sublattice of $\mathbb{F}^{\mathbb{N}}$ if equipped with the solid norm $\|.\|$ defined by $||x|| = ||A|x||_{\lambda}$ where $x \in sol - A^{-1}(\lambda)$.

We have defined $||x||_{ces_p} = ||A|x||_p$. Similarly, we define $||x||_{\Lambda_k} = ||A|x||_{\Lambda_{k-1}}$. From the proposition above, it follows that all the Λ_k 's are Banach lattices.

Let $\{e_k\}$ be the sequence of basic unit vectors in l_p so that $(e_k)_N = \delta_{k,N}$ for all N where δ is the Kronecker delta. The next two propositions and their proofs are similar to results and proofs in [8].

PROPOSITION 11. (a) If $x \in \Lambda_k$, then $Ax \in \Lambda_{k-1}$, if k > 0. (b) $x \in \Lambda_k$ if and only if $A^k |x| \in \Lambda_0 = l_p$ for each $k \ge 0$. (c) Let $k > l \ge 0$ where k and l are integers. Then $A^{k-l}(\Lambda_k) \subset \Lambda_l$. (d) c_{00} is dense in Λ_k for each $k \ge 0$. Equivalently, for each $k \ge 0$ if $x = (x_j)_{j \in \mathbb{N}} \in \mathbb{N}^n$

 $\begin{array}{l} \Lambda_k, \ then \ \|x - \sum\limits_{j=1}^n x_j e_j\|_{\Lambda_k} \to 0 \ as \ n \to \infty. \\ (e) \ \Lambda_k \ is \ a \ separable \ Banach \ lattice \ for \ each \ k \ge 0. \end{array}$

Proof. (a) Let $x \in \Lambda_k$. Then $A|x| \in \Lambda_{k-1}$. Since $|Ax| \leq A|x|$ coordinate–wise and Λ_{k-1} is a solid subspace of $\mathbb{F}^{\mathbb{N}}$, these imply that $Ax \in \Lambda_{k-1}$.

(b) Let $x \in \Lambda_k$. Therefore $A|x| \in \Lambda_{k-1} \Rightarrow A^2|x| \in \Lambda_{k-2} \Rightarrow A^3|x| \in \Lambda_{k-3}$, etc. It follows that $A^k|x| \in \Lambda_0 = l_p$ for each $k \ge 0$. The reverse implication follows by induction on k.

(c) If k > 0 and $x \in \Lambda_k$, then $Ax \in S(A|x|) \subset \Lambda_{k-1}$; thus $A(\Lambda_k) \subset \Lambda_{k-1}$. Therefore, $A^2(\Lambda_k) = A(A(\Lambda_k)) \subset A(\Lambda_{k-1}) \subset \Lambda_{k-2}$, if k > 1, and so on.

(d) The conclusion follows from Lemma 3 and Lemma 5.

(e) The conclusion follows from Lemma 6 or from Proposition 10, and from part (d). \Box

For $1 , there is a natural mapping from <math>\Lambda_k$ into Λ_{k-1} given by averaging. Specifically, we have the following result, which is very similar to Proposition 5 of [8].

PROPOSITION 12. Let $1 and <math>k \in \mathbb{N}$. Define σ on Λ_k by $\sigma(x) = Ax$. Then σ is a one-to-one bounded linear operator from Λ_k into Λ_{k-1} with operator norm 1. Furthermore, the range of σ is a proper dense linear subspace of Λ_{k-1} .

Proof. Since $|Ax| \leq A|x|$ and Λ_{k-1} is solid, we have

$$\|\sigma(x)\|_{\Lambda_{k-1}} = \|Ax\|_{\Lambda_{k-1}} \le \|A|x\|\|_{\Lambda_{k-1}} = \|x\|_{\Lambda_k}.$$

Clearly, σ is linear, so σ is a bounded linear operator from Λ_k into Λ_{k-1} with $\|\sigma\| \leq 1$. But if all the coordinates of *x* are non-negative, then we have,

$$\|\sigma(x)\|_{\Lambda_{k-1}} = \|Ax\|_{\Lambda_{k-1}} = \|A|x\|\|_{\Lambda_{k-1}} = \|x\|_{\Lambda_k};$$

thus $\|\sigma\| = 1$.

Each e_k belongs to the range of σ . Indeed, one can compute directly that $e_k = \sigma(ke_k - ke_{k+1})$ for each $k \in \mathbb{N}$. Since c_{00} , the linear span of the e_k is dense in Λ_{k-1} , the range of σ is a dense linear subspace of Λ_{k-1} . On the other hand, it is not all of Λ_{k-1} . For example, let y be the sequence $(\frac{(-1)^{N+1}}{N})_N$. Then $y \in l_p \subset \Lambda_{k-1}$ for every p > 1

and $k \ge 0$. We claim that $y \in \Lambda_{k-1} \setminus A(\Lambda_k)$. Suppose the contrary that $y = \sigma(x) = Ax$ for some $x \in \Lambda_k$. Then $x = A^{-1}y = (1, -2, 2, -2, ...)$ and |x| = (1, 2, 2, 2, ...). It is easy to see that $(A^k|x|)_n \to 1$ as $n \to \infty$ for each k. This shows that $A^k|x| \notin l_p$ so that $x \notin \Lambda_k$, which is a contradiction.

Since A is lower triangular and invertible, σ is one-to-one on all of $\mathbb{F}^{\mathbb{N}}$, and thus on Λ_k for each k > 0. \Box

3. A special projective limit of $\prod_{k=0}^{\infty} \Lambda_k$

PROPOSITION 13. Let $B = [b_{ij}]$ be a lower triangular matrix such that each column of it is in c_{00} . Then $B^k x$ is in c_{00} for any $x = (x_i)_{i \in \mathbb{N}} \in c_{00}$ and any $k \in \mathbb{N}$.

Proof. If $x \in c_{00}$, then Bx is a finite linear combination of columns of B, and is therefore also in c_{00} , since each column of B is in c_{00} . Then $Bx \in c_{00}$ implies $B(Bx) = B^2 x \in c_{00}$, which implies $B^3 x \in c_{00}$, etc. \Box

We now define

$$X = \{ (x^{(k)}) \in \prod_{k=0}^{\infty} \Lambda_k : A x^{(k)} = x^{(k-1)}, \ k > 0 \}.$$

which is called the projective limit of $\prod_{k=0}^{\infty} \Lambda_k$ with respect to the maps $A : \Lambda_k \to \Lambda_{k-1}$.

Alternatively,

$$X = \{ (x^{(k)}) \in \prod_{k=0}^{\infty} \Lambda_k : \ x^{(k)} = (A^{-1})^k x^{(0)}, \ k > 0 \}.$$

Let $x^{(0)} \in c_{00}$. Since A^{-1} is a lower triangular matrix with columns in c_{00} , it follows from Proposition 13 that $(A^{-1})^k x^{(0)}$ is in c_{00} , and therefore $(A^{-1})^k x^{(0)} \in \Lambda_k$ for each $k \ge 0$. Therefore,

$$(x^{(k)})_{k \ge 0} = ((A^{-1})^k x^{(0)})_{k \ge 0} = (x^{(0)}, A^{-1}(x^{(0)}), \dots, (A^{-1})^k (x^{(0)}), \dots) \in X.$$

Hence *X* is not trivial. Since each Λ_k is complete with respect to $||.||_{\Lambda_k}$ and the map $x \to Ax$ from Λ_k into Λ_{k-1} is continuous, *X* is complete in the product topology on $\prod_{k=0}^{\infty} \Lambda_k$. Therefore *X* is a Fréchet space, when equipped with that product topology.

PROPOSITION 14. If $(x^{(k)})_{k \ge 0} \in X$, then $A^k |x^{(k)}| \ge |x^{(0)}|$ coordinate-wise for each k.

Proof. Let $(x^{(k)})_{k \ge 0} \in X$. Then $Ax^{(k)} = x^{(k-1)}$, k > 0 and $A|x^{(k)}| \in \Lambda_{k-1}$. We also have $A|x^{(k)}| \ge |x^{(k-1)}| = |Ax^{(k)}| \Rightarrow A^2|x^{(k)}| \ge A|Ax^{(k)}| = A|x^{(k-1)}| \ge |Ax^{(k-1)}| = |x^{(k-2)}|$, and so on. It follows that $A^k|x^{(k)}| \ge |x^{(0)}|$ coordinatewise, for each $k \ge 0$. \Box

Let $P_0, P_1, ...,$ be the projections on X, where, for example, $P_0((x^{(k)})) = x^{(0)}$, $P_1((x^{(k)})) = x^{(1)}, ...,$ for $(x^{(k)}) \in X$. Note that we can write

$$X = \{(x, A^{-1}x, A^{-2}x, \dots, A^{-k}x, \dots) : x \in P_0(X)\}.$$

It is clear that $c_{00} \subset P_0(X) \subset l_p$.

PROPOSITION 15. $P_0(X)$ is not solid and also not closed in $(l_p, \|.\|_p)$.

Proof. Let $x = (1, \frac{-1}{2}, \frac{1}{3}, \frac{-1}{4}, ...)$ and $y = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ...)$. Then $|x| \leq |y|$, coordinatewise, $x \in l_p$, $y \in P_0(X)$, because $A^{-1}y = e_1$, so $A^{-k}y \in c_{00} \subset \Lambda_k$, $k \in \mathbb{N}$. But $x \notin P_0(X)$, because $A^{-1}x \notin \Lambda_1$. This shows that $P_0(X)$ is not solid in l_p . Let us show that $P_0(X)$ is not closed in $(l_p, \|.\|_p)$. Let

$$x_j^{(n)} = \begin{cases} \frac{(-1)^{j-1}}{j} : 1 \leq j \leq n\\ 0 & : j > n \end{cases}$$

Then $x^{(n)} = (x_j^{(n)}) \in c_{00} \subset P_0(X)$ for each *n*. We also have that

$$\|x-x^{(n)}\|_p^p = \sum_{j=n+1}^{\infty} \frac{1}{j^p} \to 0 \text{ as } n \to \infty.$$

Hence x is the limit of $x^{(n)}$ in l_p . But $x \notin P_0(X)$. \Box

PROPOSITION 16. The onto map $T : P_0(X) \to P_1(X)$ defined by

$$Tx = A^{-1}x, x \in P_0(X)$$

is not continuous with respect to the norms $\|.\|_{\Lambda_0}$ and $\|.\|_{\Lambda_1}$.

Proof. It is easy to see that *T* is a linear map. Consider the sequence $x^{(n)} = (x_j^{(n)}) \in P_0(X)$ and $x = (x_j)$ in the proof of Proposition 15; $(x^{(n)})$ is a Cauchy sequence in $(P_0(X), \|.\|_{\Lambda_0})$ since $x^{(n)} \to x \in l_p$. But $(A^{-1}(x^{(n)}))_n$ is not a Cauchy sequence in $(P_1(X), \|.\|_{\Lambda_1})$. Let $\varepsilon > 0$. For each $n, m \in \mathbb{N}$ such that $n \ge m$, $A^{-1}(x^{(n)}) = (1, -2, 2, ..., \mp 2, \mp 1, 0, ...)$ and

$$|A^{-1}(x^{(n)}) - A^{-1}(x^{(m)})| = (0, ..., 0, 1, 2, ..., 2, 1, 0, ...).$$

so that

$$||A|A^{-1}(x^{(n)} - A^{-1}(x^{(m)})|||_p \ge ||(0, ..., 0, 1 - \varepsilon, 2 - \varepsilon, ..., 2 - \varepsilon, 1 - \varepsilon, 0, ...)||_p \ge 1,$$

for some $\varepsilon \in (0,1)$. \Box

We wonder if (X, \mathscr{P}) , where \mathscr{P} is the product topology on $\prod_{k=0}^{\infty} \Lambda_k$ (and so is not the same \mathscr{P} as in section 1), is normable? We think not, although we cannot prove it. But we can prove that the obvious norm on X, $\|.\|_X$ defined by

$$\|(x^{(k)})\|_{X} = \|P_{0}((x^{(k)}))\|_{\Lambda_{0}} = \|x^{(0)}\|_{p},$$

for all $(x^{(k)}) \in X$, does not give us the topology on X induced by the product topology on X as a subset $\prod_{k=0}^{\infty} \Lambda_k$. By the proof of Proposition 15, we can find a sequence in X which is Cauchy with respect to $\|.\|_X$ which does not converge, in the topology defined by $\|.\|_X$, to any element of X, so $(X, \|.\|_X)$ is not complete, whereas (X, \mathscr{P}) , by previous remarks, is complete.

4. A generalization of the space *X*

We can generalize the space X for an infinite lower triangular matrix of Cesàro type

and a solid sequence subspace λ of $\mathbb{F}^{\mathbb{N}}$ such that $A\lambda \subset \lambda$. We need to require the property $A\lambda \subset \lambda$ since a generalized Cesàro matrix may not multiply λ into λ as shown in Example 7. We can write A as a product,

So the inverse of the matrix A is the following infinite lower triangular matrix with columns in c_{00} ,

$$A^{-1} = \begin{bmatrix} a_1^{-1} & 0 & 0 & \dots \\ -a_1^{-1} & a_2^{-1} & 0 & \dots \\ 0 & -a_2^{-1} & a_3^{-1} & 0 & \dots \\ 0 & 0 & -a_3^{-1} & a_4^{-1} & 0 \\ \dots & \dots & \dots & \dots \\ \vdots & \vdots & \vdots & \ddots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \dots \end{bmatrix} (a_k > 0 \ \forall k \in \mathbb{N}).$$

Let us denote the space X derived from A and λ as the space X in the previous section was derived from the Cesàro matrix and l_p by $X(A,\lambda)$. By using Proposition 13, it follows that

$$X_{c_{00}} = \{(x, A^{-1}x, A^{-2}x, \dots) : x \in c_{00}\} \subset X(A, \lambda).$$

Therefore, $X(A, \lambda)$ is non-trivial.

Finally, we put some problems for further study on the spaces $X = X(A, \lambda)$.

PROBLEM 1. Let $(x^{(j)}) \in X \setminus \{0\}$. Can there be an element $(y^{(j)}) \in X$ such that $|x_k^{(j)}| \leq y_k^{(j)}$ for each $j \in \mathbb{N} \cup \{0\}$ and $k \in \mathbb{N}$?

PROBLEM 2. A Hausdorff locally convex topological vector space is called *nor*mable if and only if it has a bounded neighborhood of zero. Can it happen that X is normable in the product topology on $\prod_{k=1}^{\infty} \Lambda_k$?

Our thanks to the anonymous referee for numerous useful comments and criticisms of this paper.

Acknowledgements. This research was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) in the context of 2219-Post Doctoral Fellowship Program.

REFERENCES

- [1] Y. A. ABRAMOVICH AND C. D. ALIPRANTIS, *An invitation to Operator Theory*, American Mathematical Society Providence, Rhode Island (2002).
- [2] C. D. ALIPRANTIS AND O. BURKINSHAW, Positive Operators, Academic Press, Inc. Orlando, Florida (1985).
- [3] R. G. COOKE, Infinite matrices and sequence spaces, Macmillan and Co. Limited, London (1950).
- [4] G. H. HARDY, Note on a theorem of Hilbert, Math. Z. 6 (1920), 314-317.
- [5] P. D. JOHNSON JR. AND R. N. MOHAPATRA, The maximal normal subspace of the inverse image of a normal space of sequences by a non-negative matrix transformation, Ann. Polon. Math. (2) 45 (1985), 105–120.
- [6] P. D. JOHNSON JR. AND R. N. MOHAPATRA, Inequalities involving lower-triangular matrices, Proc. London Math. Soc. (3) 41 (1980), 83–137.
- [7] P. D. JOHNSON JR. AND R. N. MOHAPATRA, Sectional convergence in spaces obtained as inverse images of sequence spaces under matrix transformations, Math. Japon. (24) 2 (1979), 179–185.
- [8] G. M. LEIBOWITZ, A note on Cesàro sequence spaces, Tamkang J. Math. 2 (1971), 151–157.
- [9] W. A. J. LUXEMBURG, A. C. ZAANEN, Riesz Spaces, North-Holland, Amsterdam (1971).
- [10] J. S. SHIUE, On the Cesàro sequence spaces, Tamkang J. Math. 1 (1970), 19-25.

(Received June 19, 2014)

Peter D. Johnson Auburn University, Department of Mathematics and Statistics Auburn, Alabama 36849, USA e-mail: johnspd@auburn.edu

> Faruk Polat Çankiri Karatekin University, Faculty of Science Department of Mathematics Çankiri, 18000, Turkey e-mail: faruk.polat@gmail.com