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A SHORT–TYPE DECOMPOSITION OF FORMS

ZOLTÁN SEBESTYÉN, ZSIGMOND TARCSAY AND TAMÁS TITKOS

(Communicated by B. Jacob)

Abstract. The main purpose of this paper is to present a decomposition theorem for nonnegative
sesquilinear forms. The key notion is the short of a form to a linear subspace. This is a gener-
alization of the well-known operator short defined by M. G. Krein. A decomposition of a form
into a shorted part and a singular part (with respect to an other form) will be called short-type
decomposition. As applications, we present some analogous results for bounded positive opera-
tors acting on a Hilbert space; for additive set functions on a ring of sets; and for representable
positive functionals on a ∗ -algebra.

1. Introduction

To begin with we give a brief survey of the required definitions and results from
[8], which is our constant reference where the omitted details of this section can be
found.

Let X be a complex linear space and let t be a nonnegative sesquilinear form on
it. That is, t is a mapping from the Cartesian product X×X to C , which is linear in
the first argument, antilinear in the second argument, and the corresponding quadratic
form t[ · ] : X → R

∀x ∈ X : t[x] := t(x,x)

is nonnegative. In this paper all sesquilinear forms are assumed to be nonnegative,
hence we write shortly form. The quadratic form of a form fulfills the parallelogram
law

∀x,y ∈ X : t[x+ y]+ t[x− y]= 2(t[x]+ t[y]).

According to the Jordan–von Neumann theorem [27, Satz 1.3], a form is uniquely de-
termined via its quadratic form, namely

∀x,y ∈ X : t(x,y) =
1
4

3

∑
k=0

ikt[x+ iky].
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The set F+(X) of forms is partially ordered with respect to the ordering

t � w ⇐⇒ ∀x ∈ X : t[x] � w[x].

If there exists a constant c such that t � cw then we say that t is dominated by w
( t �d w , in symbols). Since the square root of the quadratic form defines a seminorm
on X , then the kernel of t

ker t :=
{
x ∈ X

∣∣ t[x] = 0
}

is a linear subspace of X . The Hilbert space Ht denotes the completion of the inner
product space X/kert equipped with the natural inner product

∀x,y ∈ X : (x+kert | y+kert)t := t(x,y).

We say that the form t is strongly w-absolutely continuous ( t �s w), if

∀(xn)n∈N ∈ XN :
(
(t[xn− xm] → 0) ∧ (w[xn] → 0)

)
=⇒ t[xn] → 0.

Remark that this notion is called closability in [8]; cf. also [19]. The singularity of t
and w (denoted by t ⊥ w) means that

∀s ∈ F+(X) :
(
(s � t) ∧ (s � w)

)
=⇒ s = 0.

The parallel sum t : w of t and w , and the strongly absolutely continuous (or closable)
part Dwt of t with respect to w are defined by

∀x ∈ X : (t : w)[x] := inf
y∈X

{
t[x− y]+w[y]

}
and

Dwt := sup
n∈N

(t : nw).

The following decomposition theorem of S. Hassi, Z. Sebestyén, and H. de Snoo simul-
taneously generalizes the operator decomposition of T. Ando [3, 24], the Lebesgue de-
composition of finitely additive set functions [4] (see also [16, 23, 26]), and the canon-
ical decomposition of densely defined forms [19].

THEOREM 1.1. Let t and w be forms on the complex linear space X . Then the
decomposition

t = Dwt+(t−Dwt)

is a (�s,⊥)-type decomposition of the form t with respect to w . That is, Dwt is
strongly w-absolutely continuous, (t−Dwt) is w-singular. Furthermore, this decom-
position is extremal in the following sense:

∀s ∈ F+(X) :
(
(s � t) ∧ (s �s w)

)
=⇒ s � Dwt.

The decomposition is unique precisely when Dwt is dominated by w .
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For the proof see [8, Theorem 2.11, Theorem 3.8, Theorem 4.6] or [16, Theorem
2.3]. See also [18, Theorem 3].

It is a natural idea to consider the following notion of absolute continuity: we say
that t is w-absolutely continuous ( t � w) if kerw ⊆ ker t , that is to say,

∀x ∈ X : w[x] = 0 =⇒ t[x] = 0

in analogy with the well-known measure case. Remark that w-strong absolute con-
tinuity implies w-absolute continuity. To see this consider e.g. constant sequences
(xn)n∈N , xn ≡ x ∈ kerw in the definition of w-strong absolute continuity.

The setup of this paper is the following. Our main purpose is to present an (�,⊥)-
type decomposition theorem for forms which we shall call a short-type decomposition.
More precisely, for every pair of forms t and w we shall show that t splits into abso-
lutely continuous and singular parts with respect to w , where the absolutely continuous
part is extremal in a certain sense. This will be done in Section 2. The key notion is
the short of a form, which is motivated by [2, Theorem 6] of W. N. Anderson and G. E.
Trapp.

In Section 3 we shall see that this is a generalization of the well-known operator
short defined by M. G. Krein [11]. Moreover, we present a factor decomposition for the
shorted operator. As an application, we gain also a short-type decomposition on the set
of bounded positive operators (analogous results for matrices can be found in [1, 13]).
That is, for every A,B ∈ B+(H ) there exist S,T ∈ B+(H ) such that

A = S+T,

where

ranS ⊆ ranB and ranT 1/2∩ ranB1/2 = {0}.

Furthermore, we prove the following characterization: the range of the bounded pos-
itive operator B is closed if and only if for every A ∈ B+(H ) the short-type decom-
position above is unique. In this case, the shorted part of A is closable with respect to
B .

Another important application can be found in Section 4. Using our main result,
we will prove a decomposition theorem for additive set functions. In the σ -additive
case this decomposition coincides with the well-known Lebesgue decomposition of
measures, but in the finitely additive case it differs from the Lebesgue-Darst decompo-
sition [4]. This fact will demonstrate that the Lebesgue-type decomposition, and the
short-type decomposition are different in general, and hence, absolute continuity does
not implies strong absolute continuity (see also [7, Example 2]).

Finally, in Section 5, we will apply our result to present a short-type decomposition
for representable positive functionals of a ∗ -algebra. We emphasize that we do not
make any assumptions for the algebra, neither the commutativity, nor the existence of
unit element.
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2. A short-type decomposition theorem for forms

Let t and w be forms on the complex linear space X . The purpose of this section
is to show that t has a decomposition into a w-absolutely continuous and a w-singular
part. This type decomposition will be called short-type decomposition, or (�,⊥)-type
decomposition. The concept of the short of a form, which is introduced in the following
lemma, will play an essential role in our further considerations.

LEMMA 2.1. Let Y ⊆ X be a linear subspace, and let t ∈ F+(X) . Then the
following formula defines a form on X

∀x ∈ X : t
Y

[x] := inf
y∈Y

t[x− y].

Furthermore, t
Y

is the maximum of the set

{
s ∈ F+(X)

∣∣ (s � t) ∧ (Y ⊆ kers)
}
.

Proof. Let Yt be the following subspace of Ht

Yt :=
{
y+kert

∣∣ y ∈ Y
}

and consider the orthogonal projection P from Ht onto Yt (the closure of Yt ). Then
for all x ∈ X∥∥(I−P)(x+kert)

∥∥2
t
= dist2(x+kert,Yt) = inf

y∈Y

∥∥(x− y)+kert
∥∥2

t
= inf

y∈Y
t[x− y].

Consequently, t
Y

is a form and Y ⊆ ker t
Y

. To show the maximality, assume that the
quadratic form of s vanishes on Y and s � t . According to the triangle inequality we
have

s[x] � s[x− y] � t[x− y]

for all y ∈ Y , and hence,

s[x] � inf
y∈Y

t[x− y] = t
Y

[x]. �

The form t
Y

is called the short of the form t to the subspace Y .
It follows from the definition that if t and w are forms and Y and Z are linear

subspaces, then

(
(t � w) ∧ (Y ⊆ Z)

)
=⇒ tZ � wY.

Now, we are in position to state and prove the main result of this section.
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THEOREM 2.2. Let t,w ∈ F+(X) be forms. Then there exists a (�,⊥)-type
decomposition of t with respect to w . Namely,

t = tkerw +(t− tkerw),

where the first summand is w-absolutely continuous and the second one is w-singular.
Furthermore, tkerw is the maximum of the set{

s ∈ F+(X)
∣∣ (s � t) ∧ (s � w)

}
.

The decomposition is unique precisely when tkerw is dominated by w .

Proof. It follows from the previous lemma that tkerw � w , and that tkerw is maxi-
mal. Let s be a form such that s � w and s � t− tkerw . Since tkerw � tkerw + s � t and
the quadratic form of tkerw + s vanishes on kerw , the maximality of tkerw implies that
s = 0 .

It remains only to prove that the decomposition is unique if and only if tkerw is
dominated by w . Let c be a constant such that tkerw � cw (we may assume that c > 1)
and let t = t1 + t2 be an (�,⊥)-type decomposition. Since tkerw is maximal, we have

t2 = t− t1 � tkerw − t1 � 1
c
(tkerw − t1) � 0 and w � 1

c
tkerw � 1

c
(tkerw − t1) � 0.

Since t2 ⊥ w , one concludes that tkerw − t1 = 0 . Since w-strong absolute continuity
implies w-absolute continuity, every (�s,⊥)-type decomposition is a (�,⊥)-type
decomposition as well. If the (�,⊥)-type decomposition is unique, then tkerw = Dwt ,
and tkerw �d w according to Theorem 1.1. �

Observe that (tY)Y = tY for each subspace Y , i.e., shortening to a subspace is
an idempotent operation. Furthermore, t � w precisely when tkerw = t .

REMARK 2.3. Let A be a complex algebra, let I ⊆ A be a left ideal, and let t
be a representable form on A . That is, a nonnegative sesquilinear form, which satisfies

(∀a ∈ A ) (∃λa > 0) (∀b ∈ A ) : t[ab] � λat[b].

A simple observation shows that tI is representable

tI [ab] = inf
x∈I

t[ab− x] � inf
x∈I

t[ab−ax] � inf
x∈I

λat[b− x] = λatI [b].

If w is a representable form on A as well, then kerw is obviously a left ideal, and
hence we have the following decomposition

t = tkerw +(t− tkerw)

where tkerw � w , (t− tkerw)⊥ w , and tkerw is representable. For a (�s,⊥) decompo-
sition of representable forms we refer the reader to [21].
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Finally, we show that the shorted form tY possesses an extremal property. In fact,
we prove that tY is a disjoint part of t for every subspace Y , or equivalently, tY is a
so-called t -quasi unit. After recalling the corresponding definitions, in Lemma 2.4 we
give a characterization of the extremal points of the convex set

[0, t] =
{
w ∈ F+(X)

∣∣ w � t
}
.

We say that u is a t -quasi-unit if Dut = u . The form u is a disjoint part of t if u
and t−u are singular. The set of extremal points of a convex set C is denoted by exC .
For the terminology see [6, 12, 17].

LEMMA 2.4. Let t and u be forms on D such that u � t , and let λ > 0 and
μ > 0 be arbitrary real numbers. Then the following statements are equivalent.

(i) u is a t -quasi-unit, i.e., Dut = u .

(ii) There exists w such that u = Dwt .

(iii) u is a disjoint part of t .

(iv) u ∈ ex[0, t] .

(v) (λu) : (μt) = λ μ
λ+μ u .

(vi) (λu) : t = u : (λ t) .

Proof. Here we prove only (i) ⇒ (v) ⇒ (vi) ⇒ (i) . The remainder can be found
in [17, Theorem 11]. Assume that u is a t -quasi unit, and observe that

(λu) : (μt) = (λu) :
(
Dλu(μt)

)
= (λu) : (μDut) = (λu) : (μu) =

λ μ
λ + μ

u.

according to the properties of the parallel sum and the following equalities

t : w = Dw(t : w) = Dwt : w

(see [8, Lemma 2.3, Lemma 2.4, Proposition 2.7]). Assuming (v) it is clear that

(λu) : t =
λ

1+ λ
u = u : (λ t).

Finally, since u � t , property (vi) implies that

Dut = sup
n∈N

(
t : (nu)

)
= sup

n∈N

(
(nt) : u

)
= Dtu = u. �

THEOREM 2.5. Let t be a form on X and let Y be a linear subspace of X . Then
t
Y

is an extremal point of the convex set

{s ∈ F+(X) | 0 � s � t}
and

Dt
Y

t = t
Y

.

Proof. According to the previous lemma, it is enough to show that tY is a disjoint
part of t . That is, tY and t− tY are singular. Let s be a form such that s � tY and
s � t− tY . Then tY + s vanishes on Y and tY + s � t , thus the maximality of tY
implies that s = 0 . �
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3. Bounded positive operators

Let H be a complex Hilbert space with the inner product (· | ·) and the norm ‖·‖ .
The set of bounded positive operators will be denoted by B+(H ) . The notation A � B
stands for the usual relation

∀x ∈ H : (Ax |x) � (Bx |x).
For every A ∈ B+(H ) we set

∀x,y ∈ H : tA(x,y) := (Ax |y)
which defines a bounded nonnegative form on H . Conversely, in view of the Riesz-
representation theorem, the correspondence A �→ tA defines a bijection between bounded
positive operators and bounded nonnegative forms. Consequently, we can define the
domination, (strong) absolute continuity, and singularity analogously to the ones de-
fined for forms. We write A �d B if there exists a constant c such that A � cB . If
Bx = 0 implies that Ax = 0 for all x ∈ H , we say that A is B-absolutely continuous
(A� B). The operators A and B are singular (A⊥ B) if 0 is the only positive operator
which is dominated by both A and B . Finally, A is strongly B-absolutely continuous
(A �s B) if for any sequence (xn)n∈N ∈ H N(

(A(xn − xm) |xn − xm) → 0 ∧ (Bxn |xn) → 0
) ⇒ (Axn |xn) → 0.

Remark that

A � B ⇐⇒ kerB ⊆ kerA and A ⊥ B ⇐⇒ ranA1/2∩ ranB1/2 = {0},
see [3] or [24]. It was proved by Krein that if M is a closed linear subspace of H and
A ∈ B+(H ) , then the set{

S ∈ B+(H )
∣∣ (S � A) ∧ (ranS ⊆ M )

}
possesses a greatest element. This follows immediately from our previous results, and
this is why we say that the form t

Y
is the short of t to the subspace Y . Indeed, let

t(x,y) = (Ax |y) and consider the form tM⊥ . Since tM⊥ is a bounded form, there
exists a unique S ∈ B+(H ) such that tM⊥(x,y) = (Sx |y) and

x ∈ M⊥ =⇒ tM⊥ [x] = 0 =⇒ (Sx |x) = 0 =⇒ M⊥ ⊆ kerS =⇒ ranS ⊆ M .

The maximality of S follows from the maximality of tM⊥ . Now, since the map A �→ tA

is an order preserving positive homogeneous map from B+(H ) into F+(H ) , the
following theorem is an immediate consequence of Theorem 2.2.

THEOREM 3.1. Let A and B be bounded positive operators on H . Then there is
a decomposition of A with respect to B into B-absolutely continuous and B-singular
parts. Namely,

A = A�,B +A⊥,B .

The decomposition is unique, precisely when A�,B is dominated by B.
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Proof. Let A�,B and A⊥,B be the operators corresponding to (tA)kertB and tA −
(tA)kertB , respectively. �

COROLLARY 3.2. Let B be a bounded positive operator with closed range. Then
for every A ∈ B+(H )

A = A�,B +A⊥,B .

is the unique decomposition of A into B-absolutely continuous and B-singular parts.

Proof. If ranB is closed, then the following two sets are identical according to the
well-known theorem of Douglas [5]{

S ∈ B+(H )
∣∣ (S � A) ∧ (ranS ⊆ ranB)

}
=

{
S ∈ B+(H )

∣∣ (S � A) ∧ (S �d B)
}
.

Consequently, the uniqueness follows from Theorem 3.1. Since ranB is closed, the
inclusion kerB ⊆ kerA�,B implies that ranA�,B ⊆ ranB . �

Observe that if ranB is closed, then A�,B coincides with DBA in the sense of Ando
[3], and therefore it is strongly absolutely continuous (or closable) with respect to B .
Furthermore, according to [24, Theorem 7] we have the following characterization of
closed range positive operators.

COROLLARY 3.3. Let B be a bounded positive operator. Then the following are
equivalent

(i) ranB is closed,

(ii) ∀A ∈ B+(H ) : A�,B �d B,

(iii) ∀A ∈ B+(H ) : DBA �d B.

If any of (i)− (iii) fulfills, then DBA = A�,B for all A ∈ B+(H ) .

COROLLARY 3.4. Let A be a bounded positive operator. Then A�,B is an ex-
tremal point of the operator segment

[0,A] := {S ∈ B+(H ) | S � A}
for all B ∈ B+(H ) .

We remark that the short AM of A to the closed linear subspace M of the (com-
plex) Hilbert space H possesses a factorization of the form

AM = A1/2P
M̃

A1/2,

where P
M̃

is defined to be the orthogonal projection onto the closed subspace M̃ :=
A−1/2〈M 〉 , see Krein [11]. This factorization can hold, of course, only if the underly-
ing space is complex. Below we offer an alternative factorization of the operator short
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that simultaneously treats the real and complex cases. In fact, we show that there exists
a (real or complex, respectively) Hilbert space HA , associated with the positive oper-
ator A , such that AM admits a factorization of the form JA(I −P)J∗A where JA is the
canonical continuous embedding of HA into H and P is the orthogonal projection
onto an appropriately defined subspace of HA , associated with M . The construction
below is taken from [15].

Let us consider the range space ranA , equipped with the inner product (· | ·)A
∀x,y ∈ H : (Ax |Ay)A = (Ax |y).

Note that the operator Schwarz inequality

(Ax |Ax) � ‖A‖(Ax |x)

implies that (· | ·)A defines an inner product, indeed. Let HA stand for the completion
of that inner product space. Consider the canonical embedding operator of ranA ⊆ HA

into H , defined by
∀x ∈ H : JA(Ax) := Ax.

Then JA is well defined and continuous due to the operator Schwarz inequality above
(namely, by norm bound

√‖A‖). This mapping has a unique norm preserving exten-
sion from HA to H which is denoted by JA as well. An easy calculation shows that
its adjoint J∗A acts as an operator from H to HA possessing the canonical property

∀x ∈ H : J∗Ax = Ax.

This yields the following useful factorization for A :

A = JAJ∗A.

THEOREM 3.5. Let H be a Hilbert space and let A ∈ B+(H ) . For a given
subspace M ⊆ H denote by P the orthogonal projection of HA onto the closure of
{Ax |x ∈ M } . Then the short of A to M equals JA(I−P)J∗A .

Proof. It is enough to show that the quadratic forms of JA(I−P)J∗A and tM⊥ are
equal. To verify this let x ∈ H . Then

(JA(I−P)J∗Ax |x) = ((I−P)Ax |(I−P)Ax)A = dist2(Ax, ranP)
= inf

y∈M
(Ax−Ay |Ax−Ay)A = inf

y∈M
(A(x− y) |x− y)

= tM⊥ [x],

as it is claimed. �

The above construction yields another formula for the quadratic form of the shorted
operator:
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COROLLARY 3.6. Let H be a Hilbert space, A ∈ B+(H ) and M ⊆ H any
closed linear subspace. Then for any x ∈ H

(JA(I−P)J∗Ax |x) = (Ax |x)− sup{|(Ax |y)|2 |y ∈ M ,(Ay |y) � 1}.

Proof. For x ∈ H we have

(JA(I−P)J∗Ax |x) = (Ax |Ax)A − (P(Ax) |P(Ax))A
= (Ax |x)− sup{|(Ax |Ay)A |2 |y ∈ M ,(Ay |Ay)A � 1}
= (Ax |x)− sup{|(Ax |y)|2 |y ∈ M ,(Ay |y) � 1},

indeed. �

COROLLARY 3.7. If A and B are bounded positive operators on the Hilbert
space H then the quadratic forms of A�,B and A⊥,B can be calculated by the fol-
lowing formulae:

(A�,Bx |x) = inf
y∈kerB

(A(x− y) |x− y),

(A⊥,Bx |x) = sup{|(Ax |y)|2 |y ∈ kerB,(Ay |y) � 1}.

Proof. Since A�,B is nothing but the short of A to the closed subspace kerB⊥ ,
Theorem 3.5 together with the above corollary implies the desired formulae. �

4. Additive set functions

In this section we apply our main theorem of finitely additive nonnegative set
functions. Our main reference is [16]. We recall first some definitions.

Let T be a non-empty set, and let R be a ring of some subsets of T . Let μ and
ν be (finitely) additive nonnegative set functions (or charges, for short) on R . We say
that ν is strongly absolutely continuous with respect to μ (in symbols ν �s μ ) if for
any ε > 0 there exists δ > 0 such that μ(R) < δ implies ν(R) < ε for all R∈ R . It is
important to remark that this notion is referred to as absolutely continuity in [16]. We
say that the charge ν is absolutely continuous with respect to μ (in symbols ν � μ ),
if μ(R) = 0 implies ν(R) = 0 for all R ∈ R . Finally, ν and μ are singular if the only
charge which is dominated by both ν and μ is the zero charge.

Let E be the complex vector space of R -step functions, and define the associated
form tν as follows:

∀ϕ ,ψ ∈ E : tν(ϕ ,ψ) :=
∫
T

ϕ ·ψ dν.

It was proved in [16, Theorem 3.2] that if μ and ν are bounded charges, then ν is
strongly absolutely continuous with respect to μ if and only if tν is strongly absolutely
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continuous with respect to tμ . Similarly, ν and μ are singular precisely when tν and
tμ are singular.

Using this result, the authors proved the classical Lebesgue-Darst decomposition
theorem. Namely, if μ and ν are bounded charges then the formula

νa : R → R; R �→ Dtμ tν [χR]

defines a charge on R , such that νa �s μ and (ν −νa)⊥ μ . We use this argument be-
low to provide a (�,⊥)-type decomposition. The following lemma (see [16, Lemma
3.3]) plays an essential role in the proof and may be very useful in deciding the additiv-
ity of the correspondence R �→ t[χR] for a given form t .

LEMMA 4.1. Let T be a non-empty set, and let R be a ring of subsets of T . For
a given form t on E the following statements are equivalent:

(i) The set function ϑ : R → R defined by ϑ(R) := t[χR] is additive;

(ii) t[ζ ] = t[|ζ |] for all ζ ∈ E .

The main result of this section is the following short-type decomposition of charges.
Here we emphasize that, in contrast to the Lebesgue-Darst decomposition, this decom-
position holds for not necessarily bounded charges as well.

THEOREM 4.2. Let R be a ring of subsets of a non-empty set T , and let μ and
ν be charges on R . Then there is a decomposition

ν = ν�,μ + ν⊥,μ ,

where ν�,μ � μ and ν⊥,μ ⊥ μ . Furthermore, if ϑ is a charge such that ϑ � ν and
ϑ � μ , then ϑ � ν�,μ .

Proof. Let us define the set function ν�,μ by

∀R ∈ R : ν�,μ (R) := (tν)kertμ [χR].

It is clear that μ(R) = 0 implies ν�,μ (R) = 0. Our only claim is therefore to prove
the additivity of ν�,μ . For this purpose, let ϕ ∈ E . In accordance with the previous
lemma, it is enough to show that

(tν)kertμ [|ϕ |] = (tν)kertμ [ϕ ].

Assume that

ϕ =
k

∑
i=1

λi · χRi ,
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where {λi}k
i=1 are non-zero complex numbers and {Ri}k

i=1 are pairwise disjoint ele-
ments of R . Define the function ψ as follows

ψ :=
k

∑
i=1

|λi|
λi

· χRk
+ χ

T\⋃k
i=1 Ri

.

Since |ψ(t)| = 1 for all t ∈ T , the multiplication with ψ is a bijection on E . Further-
more, for every η ∈ E we have that η ∈ ker tμ precisely when ψ ·η ∈ ker tμ . (Note
that ψ /∈ E in general.) As tν [ζ ] = tν [|ζ |] for all ζ ∈ E , we have that

(tν)kertμ [ϕ ] = inf
ξ∈kertμ

tν [ϕ − ξ ] = inf
ξ∈kertμ

tν [|ϕ − ξ |]

= inf
ξ∈kertμ

tν [|ψ | · |ϕ − ξ |] = inf
ξ∈kertμ

tν [||ϕ |−ψ ·ξ |]

= inf
ξ∈kertμ

tν [|ϕ |−ψ ·ξ ] = (tν)kertμ [|ϕ |].

Consequently, ν�,μ is a charge, which is absolutely continuous with respect to μ .
Since ν and ν�,μ are charges, ν⊥,μ := ν −ν�,μ is a charge too, which is derived from
tν − (tν)kertμ . Hence, ν⊥,μ and μ are singular. �

The following corollary is an immediate consequence of Theorem 2.5.

COROLLARY 4.3. Let ν and μ be a charges on R . Then ν�,μ is an extremal
point of the convex set of those charges that are majorized by ν .

REMARK 4.4. If R is a σ -algebra, μ and ν are σ -additive (i.e., μ and ν are
measures), then the notions of absolute continuity and strong absolute continuity coin-
cide, and hence

Dtμ tν = (tν)kertμ .

In this case, the short-type decomposition coincides with the Lebesgue decomposition.
Furthermore, we have the following formula for the absolutely continuous part

∀R ∈ R : ν�,μ (R) = inf
ϕ∈kertμ

∫
R

|1−ϕ(t)|2 dν(t).

If R is an algebra of sets, and we consider finitely additive charges on it, then the
involved absolute continuity concepts are different. Consequently, there exist μ and ν
such that

Dtμ tν �= (tν)kertμ .



A SHORT-TYPE DECOMPOSITION OF FORMS 827

5. Representable functionals

The Lebesgue-type decomposition of positive functionals were studied by several
authors, see e.g. [7, 9, 10, 21, 22, 25]. Szűcs in [21] proved that the Lebesgue-type
decomposition of representable positive functionals can be derived from their induced
sesquilinear forms. In this section we present a short-type decomposition for repre-
sentable positive functionals, which corresponds to the short type decomposition of
their induced forms.

Let A be a complex ∗ -algebra and let f : A → C be a positive linear functional
on it (that is, f (a∗a) � 0 for all a∈ A ). The form induced by f will be denoted by t f

t f : A ×A → C; (a,b) �→ f (b∗a).

For positive functionals f � g means that t f � tg . The positive functional f is called
representable, if there exists a Hilbert space H f , a ∗ -representation π f of A into H f ,
and a cyclic vector ξ f ∈ H f such that

∀a ∈ A : f (a) = (π f (a)ξ f | ξ f ) f .

Such a triple (H f ,π f ,ξ f ) is provided by the classical GNS-construction (see [14] for
the details): namely, denote by Nf the set of those elements a such that f (a∗a) = 0,
and let H f stand for the Hilbert space completion of the inner product space(

A /Nf ,(· | ·) f
)
; ∀a,b ∈ A : (a+Nf | b+Nf ) f := t f (a,b) = f (b∗a).

For a ∈ A let π f (a) be the left multiplication by a :

∀x ∈ A : π f (a)(x+Nf ) := ax+Nf .

The cyclic vector ξ f is defined as the Riesz-representing vector of the continuous linear
functional

H f ⊇ A /Nf → C; a+Nf �→ f (a).

Note also that

π f (a)ξ f = a+Nf .

We define the absolute continuity and singularity as for forms. Singularity means that
the zero functional is the only representable functional which is dominated by both f
and g . According to [20, Theorem 2], this is equivalent with the singularity of the
forms t f and tg . We say that f is g -absolutely continuous ( f � g ), if

∀a ∈ A : g(a∗a) = 0 =⇒ f (a∗a) = 0.

A decomposition of f into representable g -absolutely continuous and g -singular parts
is called short-type decomposition.

Now, the short-type decomposition for representable functionals can be stated as
follows.
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THEOREM 5.1. Let f and g be representable positive functionals on the ∗ -algebra
A . Then f admits a decomposition

f = f�,g + f⊥,g

to a sum of representable functionals, where f�,g is g-absolutely continuous, f⊥,g and
g are singular. Furthermore, f�,g is the greatest among all of the representable func-
tionals h such that h � f and h � g.

Proof. Let M be the following closed subspace of H f

M := {a+Nf | g(a∗a) = 0}

and let P be the orthogonal projection from H f onto M . Then M and M⊥ are
π f -invariant subspaces. Since π f is a ∗ -representation, it is enough to prove that M
is π f invariant. Let a,x ∈ A and assume that g(a∗a) = 0. Then

π f (x)(a+Nf ) = xa+Nf ∈ M

because

g(a∗x∗xa) = ‖πg(x)(a+Nf )‖2
g � ‖πg(x)‖2

g ·g(a∗a) = 0.

Consequently,

π f (x)〈M 〉 ⊆ π f (x)〈{a+Nf | g(a∗a) = 0}〉 ⊆ M ,

as it is stated. Now, let us define the functionals

f�,g(a) := (π f (a)(I−P)ξ f | (I−P)ξ f ) f .

f⊥,g(a) := (π f (a)Pξ f | Pξ f ) f .

Clearly, f�,g and f⊥,g are representable positive functionals. On the other hand, since

M⊥ is π f -invariant we find that

π f (a)(I−P)ξ f = (I−P)π f (a)(I−P)ξ f ,

and using π f invariance of M one has

(I−P)π f (a)Pξ f = (I−P)Pπ f (a)Pξ f = 0,

and thus

(I−P)π f (a)(I−P)ξ f = (I−P)π f (a)ξ f .

This gives

f�,g(a
∗a) = ‖π f (a)(I−P)ξ f‖2

f = ‖(I−P)π f (a)ξ f ‖2
f = ‖(I−P)(a+Nf )‖2

f = t f�,g
[a].
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Similarly,

f⊥,g(a
∗a) = ‖P(a+Nf )‖2

f = t f⊥,g
[a].

Since t f�,g
is tg -absolutely continuous, and t f⊥,g

is tg -singular, we infer that f�,g � g

and f⊥,g ⊥ g . The maximality of f�,g follows from the maximality of t f�,g
. �

COROLLARY 5.2. Let f and g be representable positive functionals on the
∗ -algebra A . Then f�,g is an extremal point of the convex set of those representable
functionals that are majorized by f .
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[17] Z. SEBESTYÉN AND T. TITKOS, Complement of forms, Positivity, 17 (2013), 1–15.
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(Received June 25, 2014) Zoltán Sebestyén
Institute of Mathematics, Eötvös L. University

Pázmány Péter sétány 1/c., Budapest H-1117, Hungary
e-mail: sebesty@cs.elte.hu

Zsigmond Tarcsay
Institute of Mathematics, Eötvös L. University
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